Medical Research and Health Care Financing: Evidence from Academic Medical Centers

Pierre AzoulayMisty HeggenessJennifer KaoMIT and NBERUS Census BureauUCLA Anderson

NBER Summer Institute 2020–Health Care Workshop July 24, 2020

All opinions and any errors are solely those of the authors and do not reflect any official position of the Census Bureau.

- Central assumption in post-war science policy: basic research ultimately generates practical insights
 - Seems truer in health care than many other sectors of the economy [Azoulay et al. 2019; Cutler and McClellan 2001; Gelijns and Rosenberg 1995]

- Central assumption in post-war science policy: basic research ultimately generates practical insights
 - Seems truer in health care than many other sectors of the economy [Azoulay et al. 2019; Cutler and McClellan 2001; Gelijns and Rosenberg 1995]
- But whether this translation happens depends crucially on institutions [Dasgupta and David 1994; Mokyr 2002; Rosenberg 1963]

- Central assumption in post-war science policy: basic research ultimately generates practical insights
 - Seems truer in health care than many other sectors of the economy [Azoulay et al. 2019; Cutler and McClellan 2001; Gelijns and Rosenberg 1995]
- But whether this translation happens depends crucially on institutions [Dasgupta and David 1994; Mokyr 2002; Rosenberg 1963]
 - Formal: universities and research institutions; open-access databases; biomaterial libraries; patents [e.g., Furman and Stern 2011; Williams 2010]
 - Informal: collaboration, disclosure and authorship norms; materials sharing; priority and credit allocation [e.g., Gans et al. 2017; Walsh et al. 2005; Hill and Stein 2020]

- Central assumption in post-war science policy: basic research ultimately generates practical insights
 - Seems truer in health care than many other sectors of the economy [Azoulay et al. 2019; Cutler and McClellan 2001; Gelijns and Rosenberg 1995]
- But whether this translation happens depends crucially on institutions [Dasgupta and David 1994; Mokyr 2002; Rosenberg 1963]
 - Formal: universities and research institutions; open-access databases; biomaterial libraries; patents [e.g., Furman and Stern 2011; Williams 2010]
 - Informal: collaboration, disclosure and authorship norms; materials sharing; priority and credit allocation [e.g., Gans et al. 2017; Walsh et al. 2005; Hill and Stein 2020]
- We focus on one particular set of institutions: Academic Medical Centers (AMCs)

Academic Medical Centers

▶ Triple mission: patient care, teaching, and research

Academic Medical Centers

- Triple mission: patient care, teaching, and research
- Bridges the "ideas sector" (i.e., biomedical research) and the "production sector" (i.e., clinical care) of the health care economy

Academic Medical Centers

- Triple mission: patient care, teaching, and research
- Bridges the "ideas sector" (i.e., biomedical research) and the "production sector" (i.e., clinical care) of the health care economy
- This paper: How do health care reimbursement shocks impact the rate, quality, and direction of subsequent innovation?

Biomedical research funding

Source: Commonwealth Fund Task Force of Academic Health Centers, 1999

- In 1997, the US spent \$42 billion on biomedical R&D
- 76% of NIH's extramural research budget went to AMCs
- Clinical care in AMCs is more expensive. Ongoing debate about whether this premium is justified [Burke et al. 2017; Mechanic, Coleman, and Dobson 1998; Newhouse 2003]

Biomedical research: a taxonomy

Biomedical research: a taxonomy

Biomedical research: a taxonomy

Focus on	 Bench Research Typically curiosity-driven: "A new role for the PAX9 protein in ribosome biogenesis" Universities, research institutes, AMCs, industry 	
advancement		 Bedside Research Clinical trials: "Targeting HPV consequences in a cervical cancer CT" "Other": "Longitudinal measurement of the changing sleep need in adolescence" AMCs, SMOs, community hospitals, physician group practices

Biomedical research: a taxonomy

	Bench Research	Translational Research
Focus on scientific	 Typically curiosity-driven: "A new role for the PAX9 protein in ribosome biogenesis" Universities, research institutes, AMCs, industry 	 Use-inspired research: "Role of notch1 signaling in abdominal aortic aneurysm" Needs access to lab space and patients Only AMCs
advancement		Bedside Research
		 Clinical trials: "Targeting HPV consequences in a cervical cancer CT" "Other": "Longitudinal measurement of the changing sleep need in adolescence" AMCs, SMOs, community hospitals, physician group practices

Source of research funding in AMCs, 1997

Shock: Medicare reimbursement cuts

- Medicare reimburses hospitals prospectively on a per-admission basis, as a function of:
 - 1. Teaching subsidies
 - 2. Disproportionate share subsidies
 - 3. Outlier payments

Shock: Medicare reimbursement cuts

- Medicare reimburses hospitals prospectively on a per-admission basis, as a function of:
 - 1. Teaching subsidies
 - 2. Disproportionate share subsidies
 - 3. Outlier payments
- Balanced Budget Act of 1997 (BBA): reduced the scale of these adjustments
 - Planned Medicare spending reductions of \$117 billion to \$127 billion over 5 years
 - ▶ Concerns about severity \rightarrow \$20B restored by the Balanced Budget Refinement Act in 1999 and the Benefits and Improvement Protection Act in 2000.

Shock: Medicare reimbursement cuts

- Medicare reimburses hospitals prospectively on a per-admission basis, as a function of:
 - 1. Teaching subsidies
 - 2. Disproportionate share subsidies
 - 3. Outlier payments
- Balanced Budget Act of 1997 (BBA): reduced the scale of these adjustments
 - Planned Medicare spending reductions of \$117 billion to \$127 billion over 5 years
 - ▶ Concerns about severity \rightarrow \$20B restored by the Balanced Budget Refinement Act in 1999 and the Benefits and Improvement Protection Act in 2000.
- Impact of BBA on subsequent research is ambiguous (in sign and magnitude)

Story #1: Medicare cuts spell the doom of AMC research

> This is the narrative preferred by academic medical leaders and their lobbyists

Story #1: Medicare cuts spell the doom of AMC research

April 27, 2016 The Washington Post

Grade Point | Opinion

Harvard medical professor: The nation's teaching hospitals are under threat

Amitabh Chandra @amitabhchandra2 · May 1

If they are it would be an excellent thing because right now they are mostly ATMs hooked up to the **Treasury**

Story #1: Medicare cuts spell the doom of AMC research

- > This is the narrative preferred by academic medical leaders and their lobbyists
- Economists typically skeptical: if this research does not happen in AMCs, it will happen elsewhere
 - "Hobby doctors" would be better off tending to patients
- But self-serving narratives can sometimes be correct
 - Translational research is often very hard to perform outside of the AMC setting
 - Cross-subsidies from clinical care are often argued to be a key source of funding that allow clinical investigators to step on the NIH grant funding treadmill [Jones and Sanderson 1996]

Story #2: "Induced Research"

- If clinical revenues (and rents) are suddenly decreased, AMCs can "crank up" the research dial
 - Current researchers may be encouraged to apply for more grants or to run more clinical trials
 - They could hire more researchers
- In other words, the NIH (and industry) might be considered "just another payer"

Story #2: "Induced Research"

- If clinical revenues (and rents) are suddenly decreased, AMCs can "crank up" the research dial
 - Current researchers may be encouraged to apply for more grants or to run more clinical trials
 - They could hire more researchers
- In other words, the NIH (and industry) might be considered "just another payer"
- Of course, no guarantee that such "induced research" is particularly valuable
- Nor is there any guarantee that such increase would target research that occurs primarily within AMCs

What We Do

 Study research inputs, outputs, and composition in AMCs following a major shock to hospital finance: the BBA of 1997

What We Do

 Study research inputs, outputs, and composition in AMCs following a major shock to hospital finance: the BBA of 1997

Two sample of hospitals: teaching hospitals and AMCs, 1992-2007

What We Do

 Study research inputs, outputs, and composition in AMCs following a major shock to hospital finance: the BBA of 1997

Two sample of hospitals: teaching hospitals and AMCs, 1992-2007

Diff-in-diff design exploiting variation in exposure to the reform

Preview of Results

Following cuts to health care reimbursements:

- 1. More research (applications, funding, publications) in relatively more exposed hospitals after the reform (relative to before)
- 2. The financing shock does not seem to change the distribution of research "impact"
- 3. But it does not cut evenly across research types: only translational and clinical research appear to increase
- 4. No effect on the quality of care that we can measure

Measuring research outcomes

1. NIH grants

Source: NIH IMPAC II

2. Publications

- Source: PubMed and Web of Science
- Impact measured using
 - Publication-to-publication citations (e.g., top 5 percent of articles, by citations)
 - Patent-to-publication citations from Marx and Fuegi (2020)
 - "Disruptive" index from Funk and Owen-Smith (2017)
- Direction measured using MeSH terms (e.g., drosophila melanogaster)

> The BBA reduced the scale of the teaching and disproportionate payment subsidies

- The BBA reduced the scale of the teaching and disproportionate payment subsidies
- Differentially affected hospitals along two dimensions:
 - 1. Proportion of PPS price per discharge affected by subsidies
 - e.g., hospitals with larger resident-to-bed ratio more affected

- The BBA reduced the scale of the teaching and disproportionate payment subsidies
- Differentially affected hospitals along two dimensions:
 - 1. Proportion of PPS price per discharge affected by subsidies
 - e.g., hospitals with larger resident-to-bed ratio more affected
 - 2. Proportion of patients funded by Medicare
 - Hospitals with greater share of patients more affected
 - Prior literature has used this to identify impact of Medicare payment changes [Acemoglu and Finkelstein 2008; Kaestner and Guardado 2008; Wu and Shen 2014]

- The BBA reduced the scale of the teaching and disproportionate payment subsidies
- Differentially affected hospitals along two dimensions:
 - 1. Proportion of PPS price per discharge affected by subsidies
 - e.g., hospitals with larger resident-to-bed ratio more affected
 - 2. Proportion of patients funded by Medicare
 - Hospitals with greater share of patients more affected
 - Prior literature has used this to identify impact of Medicare payment changes [Acemoglu and Finkelstein 2008; Kaestner and Guardado 2008; Wu and Shen 2014]
- We use both sources of variation: simulated change in PPS price per discharge weighted by the share of Medicare patients [Cutler 1998; Dafny 2005; Shen 2003]

Measuring exposure to the reform (cont.)

Simulated change in PPS revenue per discharge:

 $sim\Delta rev_{h,1995} = rev_{h,1995} - sim rev_{h,1995}$

Measuring exposure to the reform (cont.)

Simulated change in PPS revenue per discharge:

 $sim\Delta rev_{h,1995} = rev_{h,1995} - sim rev_{h,1995}$

Average revenue loss per discharge:

$$BBA_Bite_h = sim \Delta rev_{h,1995} \times \left[\frac{MedicareDischarges}{TotalDischarges}\right]_{h,1995}$$

Distribution of BBA Bite

Number of Hospitals 100-Northridge Hospital Medical Center 12,200 discharges (24% Medicare) 13 residents and interns 1 pub, 0 grant apps, 0 funded grants 80 **St. Louis University Hospital** 11,100 discharges (44% Medicare) 230 residents and interns 143 pubs, 11 grant apps, 3 funded grants 60 40 20 Ω 0.000 0.005 0.010 0.015 0.020

Annual Hospital Characteristics: N = 780 Teaching Hospitals

	mean	median	sd	min	max
Hospital Characteristics					
BBA Bite (x100)	0.45	0.35	0.35	0.00	1.84
Medicare share of discharges	0.34	0.34	0.13	0.02	0.71
Medicare price per discharge (\$1,000s)	8.30	7.48	2.85	3.67	27.48
Discharges (1000s)	16.82	14.91	10.39	0.34	62.79
Medicare teaching payment (\$ Mill.)	5.45	2.26	7.91	0.00	59.81
Medicare DSH payment (\$ Mill.)	3.97	2.38	4.54	0.00	36.21
Residents and interns	101.92	41.82	139.35	0.06	1,097.72
Number of Grant Applications					
Total	8.82	0.00	32.97	0.00	444.00
New	7.15	0.00	26.43	0.00	355.7
Competitive Renewal	1.67	0.00	6.60	0.00	88.25
MD Principle Investigator	3.08	0.00	11.87	0.00	158.62
PhD Principle Investigator	4.26	0.00	16.22	0.00	193.38
MD/PhD Principle Investigator	1.36	0.00	5.81	0.00	87.75
Number of Publications					
Total	45.40	2.06	148.55	0.00	1,683.62
Article Citation Ranking: ≤25	11.19	0.81	31.02	0.00	306.12
Article Citation Ranking: >75	12.78	0.34	50.22	0.00	630.94
Cited in Patent	11.34	0.25	43.40	0.00	547.31
Disruptive	1.69	0.12	4.86	0.00	51.00
Laboratory Research	12.41	0.06	47.18	0.00	487.50
Translational Research	12.34	0.25	42.86	0.00	516.00
Clinical Research: Clinical Trials	5.43	0.38	16.94	0.00	179.69
Clinical Research: Other Clinical	11.54	0.94	34.80	0.00	402.31

Annual Hospital Characteristics: N = 780 Teaching Hospitals

	mean	median	sd	min	max
Hospital Characteristics					
BBA Bite (x100)	0.45	0.35	0.35	0.00	1.84
Medicare share of discharges	0.34	0.34	0.13	0.02	0.71
Medicare price per discharge (\$1,000s)	8.30	7.48	2.85	3.67	27.48
Discharges (1000s)	16.82	14.91	10.39	0.34	62.79
Medicare teaching payment (\$ Mill.)	5.45	2.26	7.91	0.00	59.81
Medicare DSH payment (\$ Mill.)	3.97	2.38	4.54	0.00	36.21
Residents and interns	101.92	41.82	139.35	0.06	1,097.72
Number of Grant Applications					
Total	8.82	0.00	32.97	0.00	444.00
New	7.15	0.00	26.43	0.00	355.7
Competitive Renewal	1.67	0.00	6.60	0.00	88.25
MD Principle Investigator	3.08	0.00	11.87	0.00	158.62
PhD Principle Investigator	4.26	0.00	16.22	0.00	193.38
MD/PhD Principle Investigator	1.36	0.00	5.81	0.00	87.75
Number of Publications					
Total	45.40	2.06	148.55	0.00	1,683.62
Article Citation Ranking: \leq 25	11.19	0.81	31.02	0.00	306.12
Article Citation Ranking: >75	12.78	0.34	50.22	0.00	630.94
Cited in Patent	11.34	0.25	43.40	0.00	547.31
Disruptive	1.69	0.12	4.86	0.00	51.00
Laboratory Research	12.41	0.06	47.18	0.00	487.50
Translational Research	12.34	0.25	42.86	0.00	516.00
Clinical Research: Clinical Trials	5.43	0.38	16.94	0.00	179.69
Clinical Research: Other Clinical	11.54	0.94	34.80	0.00	402.31

Annual Hospital Characteristics: N = 780 Teaching Hospitals

	mean	median	sd	min	max	
Hospital Characteristics						
BBA Bite (x100)	0.45	0.35	0.35	0.00	1.84	
Medicare share of discharges	0.34	0.34	0.13	0.02	0.71	
Medicare price per discharge (\$1,000s)	8.30	7.48	2.85	3.67	27.48	
Discharges (1000s)	16.82	14.91	10.39	0.34	62.79	
Medicare teaching payment (\$ Mill.)	5.45	2.26	7.91	0.00	59.81	
Medicare DSH payment (\$ Mill.)	3.97	2.38	4.54	0.00	36.21	
Residents and interns	101.92	41.82	139.35	0.06	1,097.72	
Number of Grant Applications						
Total	8.82	0.00	32.97	0.00	444.00	
New	7.15	0.00	26.43	0.00	355.7	
Competitive Renewal	1.67	0.00	6.60	0.00	88.25	
MD Principle Investigator	3.08	0.00	11.87	0.00	158.62	
PhD Principle Investigator	4.26	0.00	16.22	0.00	193.38	
MD/PhD Principle Investigator	1.36	0.00	5.81	0.00	87.75	
Number of Publications						
Total	45.40	2.06	148.55	0.00	1,683.62	
Article Citation Ranking: \leq 25	11.19	0.81	31.02	0.00	306.12	
Article Citation Ranking: >75	12.78	0.34	50.22	0.00	630.94	
Cited in Patent	11.34	0.25	43.40	0.00	547.31	
Disruptive	1.69	0.12	4.86	0.00	51.00	
Laboratory Research	12.41	0.06	47.18	0.00	487.50	
Translational Research	12.34	0.25	42.86	0.00	516.00	
Clinical Research: Clinical Trials	5.43	0.38	16.94	0.00	179.69	
Clinical Research: Other Clinical	11.54	0.94	34.80	0.00	402.31	

Trends in NIH-funded research activity, 1992-2007

Difference in differences regression

For hospital h in year t:

$$\textit{ResearchOutcome}_{h,t} = \alpha + \sum_{z} \beta_{z} \times 1(z) \times \textit{BBA}_{-}\textit{Bite}_{h} + \delta_{h} + \tau_{t} + \varepsilon_{h,t}$$

$$\mathbf{BBA_Bite}_{h} = (rev_{h,1995} - simrev_{h,1995}) \times \left[\frac{MedicareDischarges}{TotalDischarges}\right]_{h,1995}$$

- β_z : impact of BBA on research outcomes
- δ_h : hospital FE
- τ_t : calendar year FE
- Outcomes are transformed with the inverse hyperbolic sine function

Total grant applications increase

Year

Total grant applications increase: magnitudes

	Total
	(1)
A. BBA Bite $ imes$ Post	19.07***
	(4.284)
Elasticity	0.053
Adjusted R ²	0.023
Diff. Wald test p-value	
B. High BBA Bite $ imes$ Post	0.105***
	(0.0247)
Elasticity	0.110
Adjusted R ²	0.019
Diff. Wald test p-value	
Mean of Outcome	0.751
Nb. Observations	12,480
Nb. Hospitals	780
Year FEs	Yes
Hospital FEs	Yes

• A 1 % increase in BBA Bite \implies 5% increase in grant applications

Total grant applications increase: magnitudes

		Grant Cycle	
	Total	New	Renewal
	(1)	(2)	(3)
A. BBA Bite $ imes$ Post	19.07***	24.53***	3.314
	(4.284)	(4.421)	(2.754)
Elasticity	0.053	0.069	0.011
Adjusted R ²	0.023	0.034	0.005
Diff. Wald test p-value		0.0	000
B. High BBA Bite $ imes$ Post	0.105***	0.136***	0.00913
	(0.0247)	(0.0249)	(0.0152)
Elasticity	0.110	0.146	0.009
Adjusted R ²	0.019	0.028	0.005
Diff. Wald test p-value		0.0	000
Mean of Outcome	0.751	0.705	0.372
Nb. Observations	12,480	12,480	12,480
Nb. Hospitals	780	780	780
Year FEs	Yes	Yes	Yes
Hospital FEs	Yes	Yes	Yes

- ▶ A 1 % increase in BBA Bite ⇒ 5% increase in grant applications
- Effects driven by new grant applications (vs. competitive renewals)

Total grant applications increase: magnitudes

		Grant Cycle		Princi	ipal Investi	gator
	Total	New	Renewal	MD	PhD	MD-PhD
	(1)	(2)	(3)	(4)	(5)	(6)
A. BBA Bite $ imes$ Post	19.07***	24.53***	3.314	16.40***	22.75***	28.53***
	(4.284)	(4.421)	(2.754)	(4.298)	(4.032)	(4.070)
Elasticity	0.053	0.069	0.011	0.048	0.065	0.099
Adjusted R ²	0.023	0.034	0.005	0.021	0.039	0.056
Diff. Wald test p-value	0.000				0.151	0.010
B. High BBA Bite $ imes$ Post	0.105***	0.136***	0.00913	0.0944***	0.122***	0.145***
	(0.0247)	(0.0249)	(0.0152)	(0.0216)	(0.0213)	(0.0219)
Elasticity	0.110	0.146	0.009	0.099	0.129	0.155
Adjusted R ²	0.019	0.028	0.005	0.018	0.032	0.043
Diff. Wald test p-value		0.0	00		0.211	0.038
Mean of Outcome	0.751	0.705	0.372	0.519	0.533	0.328
Nb. Observations	12,480	12,480	12,480	12,480	12,480	12,480
Nb. Hospitals	780	780	780	780	780	780
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes
Hospital FEs	Yes	Yes	Yes	Yes	Yes	Yes

- ▶ A 1 % increase in BBA Bite ⇒ 5% increase in grant applications
- Effects driven by new grant applications (vs. competitive renewals)

Total number of grants funded increase by 5-10%

Year

Total publications increase by 2-8%...

With similar effects among low impact publications...

...and high impact publications

▶ Similar for other measures of impact: patent-to-pub citations, "disruptive" vs. "consolidating" pubs

Measuring the BBA effect on research composition

Focus on scientific advancement

Bench Research	Translational Research		
 Not disease-oriented Not a clinical trial Basic science keyword 	 Disease-oriented Not a clinical trial Basic science keyword 		
	Bedside Research		
	Clinical Trials Not a clinical research Not a clinical trial Disease-oriented No basic science key		

Focus on clinical applications

Basic science keyword:

- Molecular biology technique MeSH term
- Model organism MeSH term
- Cellular structures and macromolecules MeSH term
- Biochemical and cellular processes MeSH term

Variation across research composition

Variation across research composition

Variation across research composition

What may be driving these effects?

 Canonical conceptual framework: physician-behavior with multiple payers [McGuire and Pauly 1991]

What may be driving these effects?

- Canonical conceptual framework: physician-behavior with multiple payers [McGuire and Pauly 1991]
- Researchers might increase their research effort, potentially substituting away from patient care (in the case of physicians)
 - But: from qualitative evidence, NIH-funded research tends to be an "all-or-nothing" commitment
 - Generating preliminary results for a NIH grant application requires substantial resources

What may be driving these effects?

- Canonical conceptual framework: physician-behavior with multiple payers [McGuire and Pauly 1991]
- Researchers might increase their research effort, potentially substituting away from patient care (in the case of physicians)
 - But: from qualitative evidence, NIH-funded research tends to be an "all-or-nothing" commitment
 - Generating preliminary results for a NIH grant application requires substantial resources
- Changes can occur at the institution level
 - Soft money appointments entail that AMCs can issue an unlimited number of "hunting licenses" for NIH grants (which carry substantial overhead)
 - Consistent with the extensive margin channel, our effects are driven by new grant applications and not competitive renewals

Are there countervailing effects on the quality of care? No

For hospital h: Δ SurvivalRate_{h,c} = β BBA_Bite_h + Discharges_h + ε_h

	Heart Attack (1)	Heart Failure (2)	Hip/Knee (3)	Pneumonia (4)
A. BBA Bite	-0.0835	-0.0137	-0.0031	-0.0117
	(0.0544)	(0.0319)	(0.0311)	(0.0367)
Ln(Discharges in 1995)	0.0017	0.0014	0.0001	0.0046**
	(0.0025)	(0.0015)	(0.0014)	(0.0019)
B. High BBA Bite	-0.0084**	-0.0015	0.0006	-0.0013
	(0.0031)	(0.0019)	(0.0019)	(0.0022)
Ln(Discharges in 1995)	0.0020	0.0015	0.0000	0.0047**
	(0.0024)	(0.0015)	(0.0014)	(0.0019)
Mean of Outcome	0.0270	0.0106	-0.0005	0.0147
Nb. Observations	700	700	700	700

Cuts to Medicare rates increases research in more exposed hospitals

- Cuts to Medicare rates increases research in more exposed hospitals
- Undermines a plausible rationale for Medicare GME subsidies
 - Cross-subsidies from patient revenues might be less important for the research enterprise than previously thought

- Cuts to Medicare rates increases research in more exposed hospitals
- Undermines a plausible rationale for Medicare GME subsidies
 - Cross-subsidies from patient revenues might be less important for the research enterprise than previously thought
- Substituting clinical care for research activities might be hard to do for individual faculty members; but institutions can adjust.

- Cuts to Medicare rates increases research in more exposed hospitals
- Undermines a plausible rationale for Medicare GME subsidies
 - Cross-subsidies from patient revenues might be less important for the research enterprise than previously thought
- Substituting clinical care for research activities might be hard to do for individual faculty members; but institutions can adjust.
 - Caveat #1: what if the NIH budget had not expanded in the same time period?
 - Caveat #2: some shocks might be really too big to handle (e.g., COVID-19)

Questions & comments welcome!

pazoulay@mit.edu misty.heggeness@gmail.com jennifer.kao@anderson.ucla.edu