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Abstract

New computing tools and big data are transforming the insurance industry.
Insurers may now have more information about underlying risks than consumers
do. We evaluate the individual and market equilibrium effects of this rising in-
formation asymmetry using two large-scale surveys and a laboratory experiment.
Across all three settings, we find an ‘information premium’ - that is, consumers
are willing to pay more for insurance when there is uncertainty about underlying
risks versus when risks are known. This leads to a rightward shift in demand
for insurance. Importantly, we find that the information premium is negatively
correlated with risk aversion. This leads to a selection effect: individuals who
are willing to pay more for insurance when underlying risk information is un-
certain are not necessarily those who are most risk averse. The implication is a
misallocation of insurance and a reduction in consumer welfare.
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1 Introduction

The insurance industry plays a central role in the economy. In the United States,
insurance premiums amount to $1.2 trillion each year, or about 7% of gross domes-
tic product.1 The industry is experiencing a technological transformation with the
emergence of InsurTech companies using big data, artificial intelligence and machine
learning to assess consumer risk.2 The increasing availability of personal-level data and
computing tools to insurers means that they may be able to obtain more precise esti-
mates of underlying risks than those available to consumers, who may have difficulty
estimating their own risks.

The impact of the changing information asymmetry between insurers and consumers
is not well understood. This is in large part because understanding the impact requires
data on two key factors that are typically unobserved in insurance claim data. The first
factor is consumers’ attitudes toward underlying risks when those risks are uncertain or
complex. This affects the extent of information frictions (Handel and Kolstad, 2015).
Laboratory experiments using lottery choices have documented that individuals are
ambiguity averse and have difficulty reducing compound lotteries (Halevy, 2007). This
suggests that willingness-to-pay (WTP) for insurance should be higher when underlying
risks are uncertain versus when they are known (i.e., a level effect). We refer to the
difference in WTP under uncertain and known risks as the ‘information premium.’

The second factor is the relationship between risk preferences, measured by the
risk premium an agent is willing to pay over the actuarially fair price of insurance,
and the information premium. This factor is critical since it determines the allocative
effect of information frictions (i.e., a selection effect). A positive correlation implies
that as risk-related information becomes more uncertain, more risk averse agents will
be more likely to buy insurance. On the other hand, a negative correlation implies
that more risk averse agents will be less likely to buy insurance. The latter possibility
implies negative welfare consequences for consumers, since those who need insurance
most based on their risk preferences will be less likely to purchase it when information
about underlying risks is uncertain. Since both risk and information premia drive
insurance demand, estimating them from administrative data on insurance take-up is
not tractable without imposing strong assumptions on their joint distribution.

In this paper, we generate new data on these two factors using two surveys and a
1See https://www.iii.org/fact-statistic/facts-statistics-industry-overview
2For an overview of recent technological trends, see the 2019 report on “Insurance and Big

Data” (https://www.genevaassociation.org/big-data-and-insurance. Companies like Google and Ama-
zon invested in InsurTech companies in 2018 and are considering entering insurance markets. See
https://www.insurancejournal.com/news/national/2019/01/02/513324.htm.
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laboratory experiment. In our first survey, over 4,000 Americans representative of the
U.S. population are asked their WTP to fully insure a hypothetical product that has a
known value. We experimentally vary underlying risks and the risk-related information
structure, including certain risks, a range of risks, and compound risks. The survey is
incentivized: respondents receive a payoff (up to $10) based partly on their insurance
decision and partly on whether the product fails, whereby failure is randomly deter-
mined by our survey software based on the underlying risk distribution. The survey
has several attractive features. First, the experimental variation in underlying risk and
risk-related information allows us to jointly estimate risk aversion and the informa-
tion premium at varying underlying risks. Second, each respondent makes decisions
in a string of scenarios with varying underlying risks, which allows us to explore the
inter-personal ranking of insurance take-up.

In our second survey, over 5,000 Americans representative of the U.S. population
are asked their hypothetical WTP to insure a possible defect in a used car up to
$5,000. We again experimentally vary whether the underlying risks are certain or
are represented by a range of probabilities and ask respondents to make decisions in
multiple scenarios. An advantage of our second survey relative to the first is that we
use monetary amounts that are more aligned with those that people face in existing
markets; as such, the higher-stakes data from this survey is helpful to illustrate the
effects of information frictions on actual insurance markets.

We conduct market equilibrium and welfare analysis by combining the data from the
surveys with auto collision insurance claims data. Specifically, we sample theWTP data
from our surveys using the empirical distribution of insurance claims in existing markets
and construct a synthetic demand curve given by the joint distribution of risk, risk
attitudes and information frictions. We consider different supply-side scenarios that
vary in terms of degree of market competition (from perfect competition to monopoly)
and ability of insurers to price discriminate on the basis of risk (uniform pricing versus
risk-based pricing). Motivated by the advent of InsurTech, we also analyze the strategic
choice of information disclosure by a monopolist with precise estimates of the risks faced
by consumers.

In both surveys, we find that WTP for insurance is significantly higher in settings
with more complex or ambiguous information. The average information premium is
positive for most relevant levels of underlying risk and is as high as 100% of the expected
loss. Crucially, we find a negative correlation of about −0.3 between risk aversion and
the information premium across individuals. This negative correlation is remarkably
robust to variation in underlying risk probability and to the sources of informational
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frictions. It implies that more risk averse individuals may sub-optimally under-insure
when underlying risks are uncertain.

Our demand analysis points to a significant misallocation of insurance associated
with information frictions, which is largely driven by the negative correlation between
risk aversion and the information premium. First, uncertainty about underlying risks
drives up the average WTP for insurance, which implies that aggregate demand is
higher relative to a world where agents are fully informed about risks. Second, since
the risk premium and the information premium are negatively correlated, the average
risk premium is lower in a market where agents are exposed to complex information
than in a market where agents face equivalent risks but are fully informed about them.
We estimate the welfare loss associated with complex information to range between 7%
under perfect competition to 40% under monopoly, with even larger effects estimated
for the high-stakes survey. The results are quantitatively similar whether or not insurers
are allowed to price discriminate. Further, due to the negative relationship between
information premium and underlying risk, a monopolist would strategically withhold
information about risks from low risk consumers and disclose risk information to high
risk consumers.

We next conduct a laboratory experiment to evaluate the reproducibility of our
survey results and link our findings to the experimental economics literature on risk
preferences (e.g., Harrison and Rutström (2008)). In our experiment, undergraduate
students are incentivized to make decisions about insuring a hypothetical product. We
find the same pattern of results in our laboratory experiment: 1) average WTP is higher
under uncertain underlying risks, and 2) there is a negative correlation of -0.12 to -0.57
between the risk premium and the information premium. We also demonstrate that
these results can be replicated in three related laboratory experiments in the literature
(Halevy, 2007; Abdellaoui et al., 2015; Chew et al., 2017).

Finally, we consider the drivers of heterogeneity in the information premium. First,
we explore the impact of our variation in features of information uncertainty. We find
that larger range probabilities result in higher information premia. The information
premium decreases as underlying risks increase. However, we do not find significant
differences between ambiguous and unambiguous risks. Second, we use the rich set of
background data available on survey respondents, including demographic background,
socio-economic status, cognitive ability and financial literacy, which allows us to ex-
plore the determinants of the information premium. We find that these individual
characteristics - for example, sociodemographic characteristics, financial literacy and
the ability to reduce compound lotteries - account for about 20% of the variation in
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risk premia. Interestingly, they only account for about 1% of the variation in informa-
tion premia. The main covariate of information attitudes are risk attitudes themselves,
which alone account for 10% of the variation in information premium.

Our first contribution is to the empirical literature that uses naturally occurring
data on insurance take-up and claims to study the demand for insurance (Einav et al.,
2010a; Jaspersen, 2016) and to the emerging literature on the impact of information
frictions on insurance markets (Handel and Kolstad, 2015; Handel et al., 2019). Much
of the related literature has made the assumption that consumers are perfectly able
to estimate their underlying risks (Barseghyan et al., 2011; Einav et al., 2012; Sydnor,
2010). However, recent work has noted that welfare analysis and the effect on market
competition is sensitive to information frictions (Handel and Kolstad, 2015) and to the
specification of risk preferences (Einav et al., 2010a). We propose that in addition,
the joint distribution of risk, risk preferences and attitudes toward information need
to be considered. Specifically, our results reject the assumption in Handel and Kolstad
(2015) that informational frictions and risk preferences are orthogonal. In addition,
we propose that ignoring the information premium in related work can lead to biased
estimation of risk preferences.

Our market equilibrium analysis extends the literature on selection in markets
(Einav et al., 2010b; Einav and Finkelstein, 2011; Mahoney and Weyl, 2017; Spin-
newijn, 2017; Handel et al., 2019). As the model of Handel et al. (2019) emphasizes,
understanding the relationship between risk, risk attitudes and information frictions is
crucial to evaluate welfare and policy interventions. In this context, the use of survey
data allows us to estimate their joint distribution without any structural assumptions
and provide a direct measurement of selection effects associated with information fric-
tions.

Our analysis is also related to measuring asymmetric information in insurance mar-
kets (Chiappori and Salanié, 2013). Specifically, our estimates of the relationship be-
tween risk, risk preferences and information attitudes cast doubt into using the corre-
lation between risk and insurance coverage as a gauge of the degree of adverse selection
in the market.

Our second contribution is to the experimental economics literature on risk pref-
erences, which has a long tradition in economics (Harrison and Rutström, 2008). For
example, this literature evaluates the invariance of risk preferences to the choice do-
main (Dawling et al., 2011; Harrison, 2011; Vieider et al., 2015) and to violations of
the reduction principle - i.e., the inability of individuals to reduce compound lotteries
(Starmer, 2000). The literature also documents aversion to compound lotteries and

4



aversion to ambiguity (Halevy, 2007; Abdellaoui et al., 2015; Chew et al., 2017). Some
of our results - for example that individuals are averse to compound risks and that risk
aversion decreases with the underlying risks - confirm the results in related work (Ab-
dellaoui et al., 2015). However, our paper is entirely new in estimating the correlation
between risk preferences and attitudes toward information about underlying risk.3

Our findings have policy relevance that is timely to the technological transforma-
tion with the advent of InsurTech. Policies that simplify underlying risk information
for consumers are needed to improve the allocation of insurance. Further, our results
suggest that a monopolist may have the incentive to selectively disclose risk informa-
tion. A policy of mandatory disclosure of risk estimates by insurers could mitigate the
selection effect and improve welfare.

In what follows, Section 2 lays out the theoretical framework. Section 3 summarizes
the first (main) survey. Section 4 describes our main results. Section 5 summarizes
the second survey and our demand analysis. Section 6 investigates the sources behind
information attitudes. Section 7 discusses measurement error correction. Section 8
discusses reproducibility of our findings across our three settings as well as with related
laboratory experiments in the literature. Section 9 concludes.

2 Framework

We are interested in environments in which an agent’s demand for insurance might vary
with the information about the underlying (objective) risks. To motivate our analysis,
consider the following thought experiment. Imagine an urn containing red and blue
balls. If a red ball is drawn from the urn, the agent suffers a $100 loss. No loss occurs
if a blue ball is drawn from the urn. The agent does not know the precise proportion
of red and blue balls in the urn and instead observes a sample of draws from the run.
Figure 1 illustrates two possible scenarios. In the first scenario, the agent receives a
sample of two balls – one red and one blue. In the second scenario, the agent receives a
sample of ten balls – five red and five blue. The question is whether we should expect
the willingness to pay for insurance against the loss to be the same across the two
scenarios.

In principle, it is reasonable to assume that the agent’s expected probability of
3Our paper is also related to research using field experiments to measure risk attitudes, for example

(Harrison et al., 2007a,b). These papers use specific sub-samples of the population and tailor the design
of the experiments to risks subjects are familiar with. In contrast, we use an artificial design in our
survey but include a representative sample of the U.S. population.
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sample 1 sample 2

red ball = loss

urn with red and blue balls

beliefs: Pr(loss) = 0.5 beliefs: Pr(loss) = 0.5

WTP(sample 1) = WTP(sample 2)?

WTP for insurance?

Figure 1: Urn Thought Experiment

suffering a loss is the same across the two scenarios. However, we argue that it is also
reasonable to expect that the agent’s demand for insurance will differ across scenarios
given that the first sample is less informative than the second. This situation finds its
parallel in actual insurance markets. For instance, an experienced driver is typically
better informed about the risks of driving than a novice driver (all else equal), while a
person living in her home for a while has a better grasp of the various perils that can
affect the house (flood, fire, etc.) than a new homeowner.

2.1 Preliminaries

We formalize our ideas by focusing on the following insurance framework. An agent is
exposed to an objective binary risk, defined as the probability p ∈ [0, 1] that he suffers
a loss. That is, the set of outcomes is X = {0, 1}, where x = 0 refers to experiencing
a loss and x = 1 refers to the absence of it, with p := Pr(x = 0).

The agent has access to information I ∈ I about risk p. We define an information
environment I(p) ⊂ I as a subset of possible I when the risk is p.4 Information I

can represent different things. For instance, I can represent a sample of realizations
of x as in the urn example described previously. I can also represent information
about the possible values or the distribution of risk p. Different I will typically lead to

4We implicitly assume the existence of a data generating process that maps p to a set of possible
I the agent may receive.
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different beliefs about p, even if these beliefs reduce to p, i.e., lead to the same expected
probability of a loss. For instance, if the agent’s beliefs are represented by a probability
distribution over possible values of p as in the urn example, an increase in the sample
size would lead to a less dispersed distribution.

We consider the agent’s demand for insurance, expressed as the willingness to pay
(WTP) for full insurance, i.e., for a policy that ensures an outcome x = 1 after risks
are realized. Specifically, demand is given by a mapping W : I(p) → R, where W (I)

denotes the WTP for insurance under information I ∈ I(p).5 Note that if the agent’s
preferences are represented by an utility function V : I(p) → R, then 1 − W (I)

represents the certainty equivalent of I. Risk aversion is associated with a WTP higher
than the actuarially fair price of insurance when I = p, i.e., when the agent knows p.

Definition 1. The agent is risk averse (loving) at p ∈ (0, 1) if W (p) > (<) p. The
agent is risk neutral if W (p) = p.

If the specific attributes of I do not affect the agent’s demand for insurance we say
that the agent satisfies the reduction principle, i.s., her WTP only depends on p. That
is, she acts as if she reduces any information I ∈ I(p) into risk probability p.

Assumption 1 (Reduction Principle). W (I) = W (p) for all I ∈ I(p) and all p ∈ [0, 1].

The reduction principle underlies most of the empirical analysis of insurance and
it implies that, fixing the distribution of underlying risks in the population and in-
surance prices, both the aggregate demand for insurance and the risk profile of those
who acquire insurance in the market is invariant to the information structure.6 That
is, demand analysis assuming the reduction principle abstracts from the information
environment faced by the agent and from any potential heterogeneity in both informa-
tion and information attitudes in the population. An implication under Assumption 1
is that the agent’s risk preferences can be estimated from a sample of observations
(W (p), p).7

5Since the agent observes I and not necessarily p, we consider information as the primitive over
which preferences are defined, in a similar spirit as in Blackwell (1951). One possibility is that the
agent has intrinsic preferences for information, as defined by Grant et al. (1998). That is, the agent
may experience different utility depending on which I he has, even if she cannot act upon I to affect
her risks. Nonetheless, the above definitions imply that W also reflects the instrumental value of I in
environments where actions contingent on I that affect p are unobserved by the econometrician.

6We refer the reader to Barseghyan et al. (2016) for a review of existing approaches to estimate
risk preferences using field data and of potential identification issues. A notable exception is Handel
and Kolstad (2015) who find significant biases in consumers’ perception of risks and health insurance
use.

7For instance, if we assume that the agent has EU preferences with constant absolute risk aversion
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The central tenet of our analysis is that violations of Assumption 1 are pervasive,
implying that market demand and insurer decisions about prices and information will
be shaped by both risk preferences and attitudes towards information and their re-
lationship to underlying risks. Specifically, as suggested by the urn example and by
the experimental evidence, individuals are typically more risk averse in environments
where underlying risks are uncertain.8 These attitudes are associated with a lower
WTP under simple information in our framework, where simple information is defined
as having perfect information about underlying risk p.

Definition 2. The agent prefers simple information (SI) at p if W (I) > W (p), for all
I ∈ I(p) \ {p}.

Aversion to SI and SI-neutrality are defined in a similar fashion. To provide a mea-
sure of the impact of information and how it relates to risk preferences we decompose
the WTP for insurance into a risk premium and an (simple) information premium.

Definition 3. The information premium of I ∈ I(p) is given by µ(I) := W (I)−W (p).

The risk premium is µ(p) := W (p)− p.

A positive µ(I) and a positive µ(p) are respectively associated with a preference for
SI and to risk aversion.

2.2 Informational effects on the demand for insurance

We decompose the impact of the information structure on aggregate demand into a
level effect and a composition or selection effect. The former measures how informa-
tion changes the level of aggregate demand at any given price. The latter looks at how
information changes the composition of demand in terms of both preferences for in-
formation and risk profiles of those acquiring insurance, keeping the level of aggregate
demand fixed.

Let the population be given by a set of agents T ,9 with each agent t ∈ T being
represented by the tuple (Wt, pt, It), where Wt is the agent’s WTP function, pt is
her underlying risk, and It ∈ I(pt) is the information she possesses about risk pt.

10

(CARA) utility, given by u(x) = − e
−θx

θ , then a single observation (W (p), p) is enough to identify the
CARA coefficient θ. Since WTP satisfies u(1−WTP ) = pu(0)+(1−p)u(1), θ satisfies e−θ(1−WTP ) =
p+ (1− p)e−θ.

8Most of the evidence pertains to compound and ambiguous risks and framing effects, although
there is also evidence of sensitivity to the complexity of information (Moffatt et al., 2015).

9T can represent a finite set of agents T = {1, ·, N} or a large market with a continuum of agents
T = [0, 1].

10This characterization of demand for binary risks can be expressed in terms of a joint distribution
of individual surplus, costs and frictions following the approach of Handel et al. (2019).
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following Aggregate demand is given by the set of agents in T with WTP Wt above
the price for insurance ρ(pt), which is allowed to vary with underlying risk. That is, we
assume that insurers could potentially price discriminate based on underlying risk. This
possibility captures the recent technological advances in risk assessment experienced
by the insurance industry. Accordingly, given a price function ρ(·) aggregate demand
is pinned down by the joint distribution of (Wt, pt, It). Abusing notation, let I = {It ∈
I(pt), t ∈ T} denote the information held by agents in market T. Also, let FI denote
the cdf of Wt(It) under information structure I. Aggregate demand at risk p and price
schedule ρ is then given by 1− FI(ρ(p)|pt = p).

The next result (trivially) provides the necessary and sufficient condition under
which demand is lower under simple information. Let the information structure in
which all agents receive simple information be denoted by P = {It = pt, t ∈ T}.

Remark 1 (Level Effect). Aggregate demand is lower under simple information P than
under I for any price schedule ρ if and only if FI(·|pt = p) first order stochastically
dominates FP(·|pt = p) for all p.

A sufficient condition for Remark 1 is that agents have a preference for simple
information.

Remark 2. If all agents have a preference for simple information, then aggregate
demand is lower under P than under I for any price schedule ρ.

Beyond acting as a demand shifter, information can also affect the composition of
demand, i.e., the preference and risk profiles of those acquiring insurance. The compo-
sition depends on the relationship between Wt(It) and Wt(pt) and pt. For instance, if
Wt(It) and Wt(pt) are not aligned for some fixed pt, i.e., if the interpersonal ranking of
Wt(It) does not coincide with the ranking of individuals according to their risk aversion
Wt(pt)) then those acquiring insurance under information structure I may exhibit a
different degree of risk aversion than those buying insurance under P . The following
simple example illustrates this composition effect.

Example 1. There are three agents, T = {1, 2, 3}, facing the same probability pt =

p = 10% of losing $100. Their WTP when It = p are W1(p) = 9 , W2(p) = 8 and
W3(p) = 7. The price for insurance is $10. Consider the following two scenarios:

1. Aligned preferences: µ1(I1) = 4, µ2(I2) = 2 and µ3(I3) = 0.

2. Negative Correlation: µ1(I1) = 0, µ2(I2) = 2 and µ3(I3) = 4.
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In this example, no agent would buy insurance under simple information. In the
‘aligned preferences’ scenario, agents 1 and 2 buy insurance at the market price, since
Wt(It) = Wt(p) + µt(It) ≥ 10 for t = 1, 2. In the ‘negative correlation’ scenario, agents
2 and 3 buy insurance. Hence, the level effect involves raising demand from 0 to 2
agents. However, in the aligned preferences scenario it is the two most risk averse
agents who buy insurance, while in the negative correlation scenario the two least risk
averse agents end up acquiring insurance. Hence, while aggregate demand is the same
across the two scenarios, the composition or selection effect implies an average WTP
for simple risks of 8.5 when preferences are aligned, and only 7.5 when preferences are
negatively correlated.

The next result formally establishes that the misalignment of preferences across
information structures reduces the average degree of risk aversion among insured agents,
keeping the aggregate level of demand fixed. To do so we introduce the following
partial order over WTP rankings that captures the degree of preference alignment
across information structures.

Definition 4. Risk and information preferences are misaligned if there exist a set
of agents T ′ ⊆ T such that for all t ∈ T ′ there exist a subset τ(t) ⊂ T such that
Wt(pt) > Wt′(pt′) and Wt(It) < Wt′(It′) for all t′ ∈ τ(t).

In the context of a large market with a continuum of agents, a sufficient condition
for preference misalignment is that the risk and information premia are negatively
correlated.

Remark 3. If there is a continuum of agents T = [0, 1] and F has full support then a
sufficient condition for preferences to be misaligned is corr(µ(p), µ(I)) < 0.

Fixing the level of aggregate demand, preference misalignment is associated with a
reduction in the average degree of risk aversion of the pool of insured agents. For any
fixed aggregate demand level D, which represents the number (or measure) of agents
acquiring insurance, let TD be the set of size |TD| = D of agents with the highest WTP.

Remark 4 (Selection Effect). The average risk premium of agents in TD is (weakly)
lower under I than under P at any given demand level D and strictly so for some
D < |T | if and only if preferences are misaligned.

The level effect can lead to over-provision of insurance. In addition, the selection
effect can have a large impact on welfare in insurance markets due to a substantial
reallocation of insurance towards less risk averse individuals, even if the underlying risk
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profile of the pool of insured agents does not change substantially across information
structures.

These effects also impact the estimation of risk preferences using data from insur-
ance buyers. Specifically, the level effect will introduce a positive bias in risk aversion
estimates while the selection effect will lead to selection bias.

2.3 Implications for information disclosure

The presence of informational effects impacts insurers’ incentives to disclose informa-
tion to potential buyers. To illustrate the case, consider a monopolist with access to
sophisticated risk assessment tools. Specifically, assume that the monopolist observes
pt or is able to accurately estimate it. In addition to choosing the price schedule ρ(p),
the monopolist can decide whether to disclose pt to the agent.11 To maximize profits
the monopolist will disclose information or not depending on whether aggregate de-
mand conditional on risk goes up or not, i.e., on whether the level effect is negative or
positive, respectively.

Remark 5 (Information Disclosure). Disclosure of simple information to agents with
pt = p is optimal for a monopolist at all price schedules if and only if FI(·|pt = p) first
order stochastically dominates FP(·|pt = p).

3 Survey Design

Our primary empirical evidence comes from our first survey. This was an incentivized
survey that we conducted with a representative sample of the U.S. population who
are part of the Understanding America Study (UAS) at the University of Southern
California. The UAS is an internet panel with a representative sample of U.S. house-
holds. Over four thousand respondents participated in the survey.12 A key benefit
of conducting research on the UAS is that the sample includes adults ages 18+ from
many different backgrounds and educational levels. Another advantage is that we have
interesting information on this sample regarding their real-world insurance decisions.
Appendix A provides the summary statistics of the respondents.

11Similar arguments apply to the case in which the monopolist has more accurate information about
risk than the agent and can choose the degree of complexity of the information conveyed to the agent,
i.e., can decide whether to obfuscate or simplify information.

12All 5,674 UAS panel members were recruited to complete the survey online, and 4,534 respondents
accessed and completed the survey. 62 respondents started but did not complete the survey and are
excluded from our analysis.
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In the survey, we asked each participant to make a series of 10 decisions in private.
Each participant was the owner of a machine, which was described to have some proba-
bility p of being damaged and some probability of remaining undamaged. Undamaged
machines paid out $10 to the subject at the end of the survey, while damaged machines
paid out nothing. The probability of damage, including information available about
said probability, was varied in each decision. Specifically, we considered the following
information environments:

(i) Simple risk : I represents the underlying risk probability, i.e., IS(p) = {I = p}.

(ii) Compound risk : I represents the uniform distribution on a range of probabilities
centered around p, i.e., ICR(p) = {I = U [p− ε, p+ ε], ε ∈ (0,min{p, 1− p}]}

(iii) Ambiguous risk : I is given by a range of possible risk probabilities centered
around p, i.e., IAR(p) = {I = [p− ε, p+ ε], ε ∈ (0,min{p, 1− p}].}

We elicited the maximum willingness to pay for full insurance using the Becker-
DeGroot-Marschak mechanism (Becker et al., 1964),13 where the actual price of insur-
ance was drawn at random by the computer from a uniform distribution on (0,100).
Appendix E contains the survey instructions. Since we did not have enough time in the
session to ask questions about all probabilities that we wanted to include, we divided
participants into four groups, as described in Table 1. All participants received a block
of decisions with 5 risk probabilities under simple risk, and a block of decisions with
5 range probabilities under either compound or ambiguous risks. The order of blocks
was randomized, but the order of probabilities within each block was kept constant and
was ordered from smallest to largest. In addition, half of the participants received a
range noting that ‘all numbers within this range are equally likely’ while the other half
did not receive this information (ambiguous risk). Hence, the former group received a
compound risk, while the latter group received an ambiguous risk.

After the main questions, participants were asked a question eliciting their ability
to reduce compound lotteries, and received $1 for a correct answer. Earnings were in
virtual dollars, which were translated to US dollars at the rate of 20 virtual dollars =
$1. Participation in all parts of the survey required approximately 15 minutes, and
participants earned $10 for survey completion, in addition to $8.6 on average on the
insurance experiment.14

13This is a common mechanism in similar experiments, for instance see Halevy (2007).
14It is common in the UAS to combine multiple studies in one survey session. As such, prior to

completing the experiment, participants also received a series of un-incentivized questions designed to
evaluate understanding of annuity products for another project (Brown et al., 2017).
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Table 1: Summary of Decisions Presented to Respondents, Survey 1

Group Decision #
(within block)

(1) Probability of
Loss (%)

(2) Range
Probability (%)

1 5 3-7
2 10 1-19

1 3 20 13-27
4 50 46-54
5 80 68-72
1 5 1-9
2 10 3-17

2 3 20 18-22
4 40 28-52
5 70 61-79
1 2 1-3
2 10 6-14

3 3 20 8-32
4 40 38-42
5 90 83-97
1 2 0-4
2 10 8-12

4 3 20 16-24
4 30 21-39
5 60 48-72

Notes: Respondents were assigned to one of four groups, and were presented both the probabilities described
in (1) and (2) in the order displayed here. Half of respondents were told that each probability in the range is
equally likely, while half were not given information about the probability distribution within a range.
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4 Empirical Analysis

This section presents the main empirical patterns regarding risk attitudes and pref-
erences for simple information while Section 6 shows their relationship to sociodemo-
graphic variables. First, we illustrate the magnitude of risk and information premia
and how they change with the underlying risk probability. Next, we explore the re-
lationship between risk attitudes and preferences for simple information by focusing
on the correlation structure, controlling for underlying risk probabilities. In what fol-
lows, to facilitate comparisons, we report underlying risk probabilities, WTP, as well
as risk and information premia in percentages (e.g., µ(p = 10) = 15 means that the
risk premium for full insurance against a 0.1-likely loss is 0.15). We replicate qualita-
tively similar results for high stakes decisions in Survey 2 (see Appendix B) and in the
laboratory experiment (see Section 7).

4.1 Risk Attitudes and Preferences for Simple Information

Figure 2 displays the risk preferences of respondents when the probability of failure
is known (i.e., simple risk). The risk preferences are measured by the average risk
premium (µ(p) = W − p) at each possible p. The 0 line represents risk neutrality. A
clear pattern emerges from the figure: average risk aversion decreases as losses become
more likely, suggesting that agents transition from exhibiting significant risk aversion
at small probabilities to becoming risk lovers at very high p. Table C.2 in Appendix
C reports the estimates and their statistical significance. In addition, we find risk
premium to be widely heterogeneous: the standard deviation ranges from 25% to 30%.

Turning to informational effects, Figure 3 presents the average information premium
(µ(I) = W (I)−W (p)) at each possible p. Each data point shows the range size asso-
ciated with it. Since our design includes two range sizes for most of the probabilities,
the graph displays two lines, respectively associated with small and big ranges.15

On average, agents exhibit significantly large information premia at p < 50% when
range sizes are big, leading to an increase in WTP as high as 100% of the expected
loss. Smaller range sizes still elicit a strong response for p < 50%.16 Information premia
decrease with the underlying risk probability, which is consistent with Abdellaoui et al.
(2015), who find that aversion to compound and ambiguous lotteries increases with the
probability of winning the lottery. However, as we show in Section 6 and in Appendix

15Table C.2 in Appendix C shows the average information premium at each p by group.
16The companion laboratory experiment results in similar information patterns as the survey, but

the information premia for the small range are only substantial for the 5% and 10% loss probabilities.
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Figure 2: Average Risk Premium at Different Probabilities (bars represent 95% confidence intervals).

C, the presence of large information premia does not seem to be driven by ambiguity
or by the inability to reduce compound lotteries. Information premia are somewhat
less heterogeneous than risk premia, and have a standard deviation between 14% and
20%.

While we included a large range of possible p in our survey, for practical purposes
the smaller p are most interesting since the typical probability of a loss against which
people insure are lower than 50%. The fact that we observe large information premia at
these small probabilities suggests that the information structure in insurance markets
can have a large influence in the demand for insurance. Specifically, markets with
complex or ambiguous information environments would exhibit greater demand for
insurance due to strong level effects.

4.2 Relationship Between Risk and the Information Premium

A pattern that emerges in our analysis of risk and information attitudes is that both risk
aversion and preferences for simple information are prevalent at low risk probabilities.
We next look at the correlation between the insurance premium and the information
premium, normalized by range size. We do so for each underlying probability point
separately to control for the negative relationship between underlying risk p and both
µ(p) and µ(I).

Figure 4 plots the correlation coefficients, showing that risk and information premia
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Figure 3: Information Premium at Different Probabilities (point labels represent range size and bars
represent 95% confidence intervals).

are negatively correlated at all risk probabilities. Furthermore, the correlation coef-
ficient is remarkably invariant to underlying risk regardless of whether we control for
individual characteristics (partial correlation) or not (total correlation): it consistently
lies between −0.24 and −0.35, even after controlling for cognitive ability, financial liter-
acy and demographic background.17 As we show in Section 7, the negative correlation
is robust to measurement error and replicated in the companion laboratory experiment
we conducted and in data from existing experimental studies.18

5 Demand Analysis

Our findings show that information about underlying risks has a significant impact
on agents’ demand for insurance. To illustrate the extent of these effects, we use our
survey data to simulate the demand for full insurance against binary risks. To do,
so we construct a demand curve for insurance by applying our sample of (Wt, pt, It)

data to the empirical distribution of risk probabilities in existing insurance markets.
Specifically, we use the claim rates for auto-collision insurance estimated by Barseghyan

17Table 7 in Section 7 reports the (total) correlation coefficients in columns two and four and shows
that they are highly significant. The partial correlation coefficients are virtually identical to the total
correlation estimates and are therefore omitted. All coefficients are significant at the 1% level.

18Appendix D.3 shows that the correlation of individual WTP rankings across information environ-
ments is high, consistent with the findings of Einav et al. (2012), but it goes down with range size due
to the negative correlation.
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Figure 4: Correlation Coefficients between Risk Premium and Information Premium.

et al. (2011) to generate a distribution of risk probabilities. We then discretize this
distribution using as a support the eleven risk probabilities (from 0.02 to 0.90) covered
by our survey. Finally, we calculate aggregate demand for insurance, given by the share
of agents with WTP above the price, by weighting each observation according to how
likely its associated risk probability is given the estimated discrete distribution of risk
probabilities.

Equipped with this demand curve, we analyze market equilibrium in two different
pricing scenarios. In the first scenario, insurers charge a single price for full insurance
and do not price insurance contingent on the underlying risk (uniform pricing). This
might be due to regulation banning risk-based pricing (e.g., the ACA bill in the US
does not permit risk based pricing for health insurance) or because insurers do not
observe underlying risk probabilities, and thus are exposed to adverse selection. In the
second scenario, we allow insurers to charge prices contingent on the underlying risk
(risk-based pricing). In each scenario, we look at the market allocation for prices that
range from perfect competition to monopoly. By covering the whole range of profitable
prices we do not need to impose further assumptions on the structure of competition
among insurers in the spirit of Mahoney and Weyl (2017).

In each scenario we then compare outcomes under two information environments,
namely, simple risk and compound or ambiguous risk. We pool together the compound
and ambiguous risk samples since ambiguous and compound ranges elicit similar effects
in our data. In addition, we also consider the case in which information is endogenously
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determined by a monopolist who decides whether to selectively disclose simple infor-
mation to agents as a function of their risk.

5.1 Constructing the Demand for Insurance

We assume that the need of agent i to fill an insurance claim follows a Poisson process
with arrival rate λi. Given this, agent i’s probability of suffering a loss, i.e., of filing
at least one claim, is given by pi = 1 − e−λi . To construct the distribution of pi,
we assume that λi follows a gamma distribution with mean λ̄ = 0.116 and standard
deviation 0.272, which correspond to the (annualized) mean and standard deviation of
claim rates in auto-collision insurance estimated by Barseghyan et al. (2011).19

Accordingly, the cdf of risk probabilities is given by H(p) = G(− log(1 −
p); 0.182, 0.638), where G(·;α, β) is the cdf of a gamma distribution with shape pa-
rameter α and scale parameter β. Next, we discretize this distribution to generate a
cdf Ĥ whose support points coincide with the eleven different risk probabilities cov-
ered in our survey data.20 Finally, we use this distribution to weigh each observation
(Wt, pt, It) under simple risk and range risk in our survey data by how likely p is
according to Ĥ.21

Focusing first on the uniform pricing scenario, to determine the market allocation
for insurance, we consider the set of prices, up to the monopoly price, that yield non-
negative profits to insurers taking into account the presence of adverse selection. Let
ρ denote the price for insurance and s(ρ) = 1 − F̂ (ρ) the fraction of agents in the
population with Wt(It) > ρ, i.e., the share of agents who buy insurance when the price
is ρ. Profits are given by

π(ρ) = (ρ− E(p|Wt(It) ≥ ρ))s(ρ).

Figure 5 (left panel) depicts the demand for insurance (s(ρ)) and the range of
possible prices for simple and range risks. It turns out that in both cases the set of
prices associated with non-negative profits is the interval [13, 50], where ρ = 13 is the

19Barseghyan et al. (2011) estimate that the average semiannual claim rate in auto collision insur-
ance is 0.058 with a standard deviation of 0.136.

20We use the following discretization: Ĥ(0.02) = H(0.025); Ĥ(0.05) = H(0.075) − H(0.025);
Ĥ(0.1) = H(0.15) − H(0.075); Ĥ(0.1n) = H(0.1n + 0.05) − H(0.1n − 0.05) for n = 2, 3, · · · , 8;
and Ĥ(0.9) = 1−H(0.85). The mean under Ĥ is higher than under H (0.096 versus 0.070) since the
latter places substantial probability mass below p = 0.02.

21Our approach implies that observations with the same p but different range size are equally
probable. Results do not qualitatively change if we focus on a subsample in which each p is assigned
to a unique range size.
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price under perfect competition and ρ = 50 is the monopoly price. The level effect on
aggregate demand is substantial: for ρ ∈ [13, 50], the absence of simple information
leads to a 10− 14% higher demand.

Perfect	  compe++on	   Monopoly	  

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

0	   5	   10	   15	   20	   25	   30	   35	   40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	  

De
m
an

d	  

price	  

Compound/Ambiguous	  

Simple	  

Perfect	  compe++on	   Monopoly	  

0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

0	   5	   10	   15	   20	   25	   30	   35	   40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	  

Bi
as
	  [μ

(I)
]	  

	  

price	  

Total	  Bias	  

Selec+on	  Effect	  

Figure 5: Demand for Insurance (left) and Bias in Risk Premium Estimates (right).

The higher demand is driven by the higher WTP of agents with positive information
premia, some of which become insurance buyers in the absence of simple information.
In addition, there are important differences across markets in the population of agents
who buy insurance.

Table 2 provides a comparative of the main features, such as average risk premia
and risk probabilities, of the simple risk and compound/ambiguous risk markets for
the case of perfect competition (ρ = 13) and monopoly (ρ = 50). In both markets, the
presence of adverse selection implies that the risk probability of the pool of insured
agents is between 25-33% higher than in the population when the market is competitive
(under monopoly risk probabilities are more than 50% higher).

More importantly, the average risk premium is lower under compound risk than
under simple risk, while the information premium of the insured population is at least
twice as large under compound risk than in the whole population. These differences
are due to both the level effect associated with higher demand, and to the selection
effect induced by the negative correlation between risk and information premia.

The presence of information premia means that if we were to use data on (Wt, pt)

from the pool of insured agents to estimate risk attitudes, our estimates would be
biased. The left panel of Figure Figure 5 and Table 2 show the size of the bias, given
by the average information premium, i.e., the average difference between WTP and risk
premium. On average, risk premium estimates are 18-22% higher than the actual level
of risk premium in the pool of insured agents. To quantify the relative contribution of
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the selection effect to the overall bias we proceed as follows. First, we keep aggregate
demand constant under compound risk but reallocate insurance to those with the
highest risk premium. Second, we compute the selection effect as the change in the
average risk premium in the pool of insured agents caused by the reallocation. Figure 5
shows that the selection effect increases with the price of insurance, accounting for 35%
of the bias under perfect competition and 79% of the bias under monopoly.

Regarding the efficiency of the allocation of insurance, the absence of simple infor-
mation can lead to large welfare losses. To assess these losses, we measure the welfare
from being insured as the difference between the WTP for insurance under simple in-
formation (µ(p) + p) and the price (ρ) for those who buy insurance. That is, we do
not include the information premium since the underlying risks covered by the policy
are not altered by the information provided to agents. Nonetheless, it can be shown
that this welfare measure would differ from one that takes into account preferences for
information only on the welfare of the pool of agents that remain uninsured in either
scenario. According to our measure, the average welfare in the market is given by

E
(
(µ(p) + p− ρ)1{W (I)>ρ}

)
,

where 1{·} is the indicator function. The bottom panel in Table 2 shows the welfare
estimates. The lack of simple information leads to welfare losses ranging from 7% to
about 40%, depending on how competitive the market is. They are primarily driven by
the selection effect, with roughly 90% of overall welfare losses caused by the negative
correlation between risk and information premia.

The magnitude of the welfare losses suggests that regulation aimed at providing
simple information about underlying risks in insurance markets would be beneficial,
regardless of other aspects of the market such as the degree of competition among
insurers.

Finally, the negative relationship of both risk and information premia with under-
lying risk depicted in Figures 2 and 3 has important implications for measuring the
extent of asymmetric information in insurance markets. Existing research emphasizes
the positive correlation between risk (p) and coverage (W (I) ≥ ρ) as evidence of asym-
metric information (Chiappori and Salanié, 2013). However, when risk premium is
negatively correlated with risk this correlation will be lower than under independence
of risk premium and underlying risk (the correlation between the insurance premium
W (I)− p and risk probability p is roughly −0.4 in our data). To show these potential
differences, we compute a conterfactual correlation between risk and coverage under
independence by randomly drawing p and W (I) − p from their marginal distribution
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in each market to construct synthetic individual WTP for insurance.
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Table 2: Demand for Insurance - Aggregate Outcomes

Uniform Price Risk-based Pricing
Overall Perfect Competition Monopoly Perfect Competition Monopoly

Population Simple Compound Simple Compound Simple Compound Simple Compound

Insured Pool
Share of Population 100% 62.3% 68.6% 27.2% 29.8% 87.7% 91.0% 23.6% 26.0%
Risk Probability 9.6% 12.8% 12.1% 15.6% 15.0% 7.8% 7.7% 9.6% 9.5%
Risk Premium 22.1 34.5 29.9 58.5 48.3 26.6 25.1 66.3 54.7
Info Premium 2.8 5.3 10.5 3.43 11.6
Estimation Bias 17.7% 21.7% 13.6% 21.3%
Selection Effecta 35.2% 78.6% 33.4% 79.3%

Consumer Welfare 21.3 19.9 6.6 4.0 23.3 22.8 5.4 2.9
Welfare Lossb 6.7% 39.4% 2.3% 46.4%
Selection Effect c 88.4% 95.1% 89.3% 95.2%

Corr(risk, coverage) 0.263 0.238 0.238 0.228 -0.312 -0.389 0.001 -0.014
risk prefs ⊥ riskd 0.347 0.320 0.423 0.417 0.000 0.000 0.111 0.121

aDifference between the average risk premium in a market with the same demand at each p as under compound risk, but in which those with the highest risk premium get
insurance, and the average risk premium under compound, expressed as a fraction of the average information premium.
bDifference between average welfare under simple and compound risk, relative to the average welfare under simple risk.
cDifference between average welfare in a market with the same demand at each p as under compound risk, but in which those with the highest risk premium get insurance, and
average welfare under compound risk, relative to the difference between average welfare under simple and compound risk.
dThe correlation coefficient is the average of a sample of 1,000 correlation coefficients, each obtained by randomly assigning insurance premium (W (I)− p) to risk probabilities
(p) to compute agents’ WTP for insurance.
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Table 2 shows that while the correlation between risk and coverage is increasing
in the degree of adverse selection under independence it is not monotone in our data:
the correlation under monopoly is lower than under perfect competition and simple
risks despite exhibiting higher adverse selection, while it is is lower under complex
information than under simple risk.

Finally, the right-hand-side panel of Table 2 shows that the informational effects
are quantitatively similar when insurers engage in risk-based pricing.

5.2 Demand for Insurance under High Stakes

One might be skeptical about constructing the demand for insurance using data from
small-stakes decisions. As such, we also construct the demand analysis using Survey
2, in which individuals made hypothetical decisions over large stakes.

Survey 2 also utilized respondents from the UAS internet panel, and was conducted
in the spring of 2020.22 In Survey 2, we asked respondents their hypothetical WTP
to fully insure a used car against mechanical defects assessed at $5,000 (Appendix
E provides the wording of the question). Each respondent received two questions
- one with a precise underlying risk and one with a range of underlying risks - in
random order. We experimentally varied the underlying risks faced across respondents
(generating 11 different groups). Table 3 provides a summary of decisions presented to
respondents. Unlike Survey 1, Survey 2 was not incentivized.

Appendix B presents the empirical analysis of Survey 2. Overall, the data exhibits
the same empirical patterns as Survey 1, with two major differences. First, individuals
are significantly less risk averse at high stakes, with risk premium being significantly
above zero only for p < 0.2. Similarly, the information premia are lower under high
stakes, although still large for p < 0.2. For those with WTP data in both surveys
(about a fifth of the sample), we find that the risk premium across the two surveys are
significantly correlated (the correlation coefficient is 0.39).

Table 4 presents the market equilibrium analysis using the high-stakes data, showing
qualitatively similar results with the main analysis presented in Table 2.23 There are
some slight differences. For example, the lower risk premia in Survey 2 result in a
smaller share of insured agents in the population. Further, because Survey 2, relative

22All 8.815 panel members who were in the sample in 2020 were recruited to complete the survey
online, and 7,145 respondents accessed the survey. 1,826 respondents started but did not complete
the survey and are excluded from our analysis.

23Under uniform pricing, perfect competition prices were the same across simple and compound
risks, given by ρ = 13. Monopoly prices were ρ = 50 under both scenarios.
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Table 3: Summary of Decisions Presented to Respondents, Survey 2

Group (1) Probability of
Loss (%)

(2) Range
Probability (%)

1 2 0-4
2 5 1-9
3 10 1-19
4 20 13-27
5 30 21-39
6 40 28-52
7 50 45-54
8 60 48-72
9 70 61-79
10 80 73-87
11 90 83-97

Notes: Respondents were assigned to one of 11 groups, and
were presented both the probabilities described in (1) and
(2), in random order.

to Survey 1, displays a larger reduction in risk premium than in information premium,
we see even bigger estimation bias and welfare effects than in Survey 1.24

24Note that these differences may not be attributable to high stakes alone, because several factors
change between Survey 1 and Survey 2, including the stakes, whether or not the survey is incentivized
and the context.
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Table 4: Demand for Insurance - Aggregate Outcomes under High Stakes

Uniform Price Risk-based Pricing
Overall Perfect Competition Monopoly Perfect Competition Monopoly

Population Simple Compound Simple Compound Simple Compound Simple Compound

Insured Pool
Share of Population 100% 27.0% 27.9% 9.6% 11.5% 58.5% 61.2% 15.5% 9.7%
Risk Probability 9.6% 13.2% 13% 14.1% 12.4% 4.8% 4.6% 4.1% 6.2%
Risk Premium 2.8 22.8 20.1 44.1 36.2 13.4 12.4 38.7 42.8
Info Premium 1.0 4.8 10.8 2.1 12.3
Estimation Bias 23.9% 29.8% 17.9% 28.7%
Selection Effecta 40.7% 56.8% 23.4% 53.6%

Consumer Welfare 6.2 5.6 1.8 1.0 7.8 7.6 2.8 0.6
Welfare Lossb 9.7% 43.9% 3.5% 77.3%
Selection Effect c 96.0% 88.5% 94.0% 28.5%

Corr(risk, coverage) 0.139 0.134 0.095 0.065 -0.371 -0.410 -0.153 -0.072
risk prefs ⊥ riskd 0.454 0.442 0.446 0.435 0.000 -0.054 0.160 0.121

aDifference between the average risk premium in a market with the same demand at each p as under compound risk, but in which those with the highest risk premium get
insurance, and the average risk premium under compound, expressed as a fraction of the average information premium.
bDifference between average welfare under simple and compound risk, relative to the average welfare under simple risk.
cDifference between average welfare in a market with the same demand at each p as under compound risk, but in which those with the highest risk premium get insurance, and
average welfare under compound risk, relative to the difference between average welfare under simple and compound risk.
dThe correlation coefficient is the average of a sample of 1,000 correlation coefficients, each obtained by randomly assigning insurance premium (W (I)− p) to risk probabilities
(p) to compute agents’ WTP for insurance.
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5.3 Strategic Information Disclosure

In the demand analysis thus far, we have exogenously imposed the information struc-
ture on the market and restricted supply-side decisions to prices only. However, as
stressed in Subsection 2.3, insurers with the ability to observe or estimate the risks
faced by an agent might have an incentive to withhold or share this information with
the agent. We next examine the potential response of the insurers to information
frictions.

Table 5 presents the information disclosure decisions of a monopolist who maximizes
profits by choosing both the price schedule ρ(p) and whether to reveal p to the agent.
Consistent with the fact that agents exhibit on average a positive information premium
at low probabilities and zero or negative at high p (see Figure 3), the monopolist chooses
to disclose p to the agent at most underlying probabilities at or above 50%. Beyond
increasing the profits of the monopolist, such a selective disclosure policy also has
allocative implications, since it increases the average underlying risk of the insured pool.
Although such implications are quantitatively small in a market like auto insurance
where the risk distribution has a very thin right tail, they could be substantial in
insurance markets where likely risks are more prevalent (e.g. health insurance).

Table 5: Information Disclosure under Monopoly

p 2 5 10 20 30 40 50 60 70 80 90
Survey 1 (Incentivized) no no no no no no yes no yes no yes
Survey 2 (High Stakes) no no no yes no no yes no yes yes no

Overall, our demand analysis highlights the need to account for the information and
preference structure underlying insurance markets and, crucially, for the relationship
between risk and information attitudes, since the latter can have a significant impact
in the composition of the insured pool. This is especially relevant given the fact not
much attention has been paid to the relationship between risk preferences and attitudes
toward compound and ambiguous lotteries, which, as we show below, it does not seem
to be driven by sociodemographic characteristics, financial literacy or the ability to
reduce compound lotteries.
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6 Covariates of the Information Premium

A preference for simple information may reflect aversion to the dispersion or perceived
randomness of risk probabilities, and can have multiple causes, e.g., ambiguity aversion,
inability to reduce compound risks or aversion to complexity of information about risks.
Our design allows us to gauge the relative contribution of these sources, as well as look
at whether information attitudes depend on sociodemographic characteristics. We can
also measure the effect of the ability to reduce compound risks by looking at whether
the subject correctly answered incentivized questions included in the survey about
reducing compound risks. Finally, measures of cognitive ability and financial literacy
can serve as proxies for attitudes toward complex information.

Table 6 shows the results of regressing information premia µ(I) on range size,
whether the information about the range is ambiguous, the error in the quiz regarding
reducing compound risk (normalized by the size of the range), measures of financial
literacy and cognitive ability, as well as sociodemographic variables. All the regressions
control for the underlying risk p and for whether the simple risk questions were asked
before the range questions or if the order was reversed (p-values are adjusted to con-
trol for multiple hypothesis testing). The first column shows the regression estimates
without controlling for risk attitudes (µ(p)), while the second column does control for
risk attitudes.

Several conclusions emerge from these estimates. First, risk attitudes are by far
the most important covariate of information premia: Risk premium accounts for about
10% of the overall variation of the information premium, while the rest of variables
combined only account for a R2 of 1%. Second, the table reflects the relationship
between risk probabilities and range sizes depicted in Figure 3, namely, the wider
the dispersion in risk probabilities and the lower the risk probability the higher the
information premium. Once we control for range size, ambiguous information or the
inability to reduce compound lotteries do not significantly increase the information
premium. Third, cognitive and socio-demographic variables do not seem to significantly
drive preferences for information. In contrast, gender, income, as well as cognitive
ability and financial literacy are significantly associated with risk attitudes. The third
column in Table 6 shows that individuals with higher financial literacy and cognitive
ability are less risk averse. Similarly, being male and earning an income above $100k
are associated with lower risk aversion. These relationships are consistent with previous
studies about risk attitudes (Outreville, 2014).

Finally, it is interesting to note that there are significant order effects in the field
experiment, with higher information premia associated with the reverse order, i.e.,
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when agents were asked about WTP for range risks first. This may suggest that being
exposed to simple risk may have an anchoring effect on WTP for insurance against
range risks with the same underlying risk probability.25

7 Measurement Error Correction

An important concern with the estimates of the correlation between risk and informa-
tion premia presented in Subsection 4.2 is that they may be biased downward due to
measurement error in WTP induced by the elicitation mechanism. The effect of such
measurement error goes beyond the typical attenuation bias, given that the information
premium is defined as the difference W (I)−W (p).

To formally show the problem, let Ŵ (I) = W (I) + εI be the elicited WTP under
information I, where εI is a random variable representing classical measurement error.
Accordingly, the elicited risk premium is given by µ̂(p) = µ(p) + εp and the elicited
information premium is given by µ̂(I) = µ(I) + εI − εp. Assuming that measurement
errors are independently drawn and that they are independent of W (·), the correlation
between µ̂(I) and µ̂(p) is given by

corr(µ̂(I), µ̂(p)) =
cov(µ(I), µ(p))− V ar(εp)√

(V ar(µ(I) + V ar(εI − εp))(V ar(µ(p) + V ar(εp))
.

Hence, the numerator is negatively biased while the denominator is biased upwards,
making both the direction and the size of the bias indeterminate.

To correct for these biases, we follow the approach proposed by Gillen et al. (2017),
which is based on the idea of using additional measures of the same variable as in-
struments. For instance, if we have duplicate measures of the risk premium, µ̂(p) and
µ̂d(p) = µ(p) + εdp we can use µ̂d(p) as an instrument for µ̂(p) in a regression of µ̂(I)

on µ̂(p). Since errors are independent across measures the measurement error in µ̂(I),
given by εI − εp, is independent of the measurement error εdp in µ̂d(p), making the
latter a valid instrument. Accordingly, the regression coefficient β̂ delivers a consistent

estimate of
cov(µ(I), µ(p))

V ar(µ(p))
. If, in addition, we have and additional measure µ̂d(I) of

the information premium, the correlation between the risk and information premia can
25No such order effects seem to be present in the exeriment (see Table D.11 in Appendix D.4).
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Table 6: Covariates of Information Premium and Risk Premium

µ(I) µ(I) µ(p)
Risk Probability -0.06*** -0.10*** -0.41***

(0.01) (0.01) (0.01)
Probability Range 0.11*** 0.12***

(0.01) (0.02)
Ambiguity 0.54 0.54

(0.33) (0.38)
Financial literacy -0.15 -0.52 -1.71*

(0.23) (0.27) (0.50)
Average Cognitive Score 0.49 0.55 -1.34*

(0.24) (0.23) (0.28)
Quiz Error -0.06 0.15

(0.09) (0.12)
µ(p) -0.10***

(0.01)
Age -0.05 -0.02 0.08

(0.07) (0.08) (0.14)
Age2/100 0.04 0.01 -0.24

(0.07) (0.08) (0.13)
Female -0.64 -0.20 3.90***

(0.35) (0.40) (0.76)
Married -0.60 -0.73 -0.59

(0.37) (0.42) (0.83)
Some College 0.29 0.50 -1.22

(0.48) (0.55) (1.02)
Bachelor’s Degree or Higher 0.28 0.33 -2.19

(0.54) (0.63) (1.16)
Hh Income: 25k-50k 0.45 0.80 0.21

(0.54) (0.61) (1.16)
Hh Income: 50k-75k 0.38 0.55 -2.82

(0.60) (0.68) (1.26)
Hh Income: 75k-100k 0.75 0.90 -0.97

(0.62) (0.72) (1.41)
Hh Income: Above 100k 0.29 -0.33 -6.38***

(0.62) (0.72) (1.33)
Non-Hispanic Black -1.70 -2.37 2.58

(0.75) (0.86) (1.53)
Spanish/Hispanic/Latino 0.31 0.33 0.04

(0.70) (0.80) (1.37)
Other Race/Ethnicity -0.12 0.13 1.23

(0.66) (0.77) (1.24)
Reverse Order 4.64*** 4.77*** -2.51***

(0.33) (0.38) (0.71)
R2 0.03 0.12 0.20
N 19050 10992 19432
All regressions include a constant and standard errors are clustered. Regressions including µ(p)
are IV regressions with the linear interpolation of adjacent risk premia as the instrument for µ(p).
Bonferroni-adjusted p-values: *p < 0.10, **p < 0.05, ***p < 0.01



be consistently estimated using

ĉorr(µ(p), µ(I)) = β̂

√
ĉov(µ̂(p), µ̂d(p))

ĉov(µ̂(I), µ̂d(I))
, (1)

where ĉorr and ĉov represent sample correlation and covariance, respectively.
Gillen et al. (2017) exploit the use of duplicate measures or replicas to obtain not

only consistent but also efficient estimates via stacked IV regressions, one per available
replica, with the remaining replicas acting as instruments. They call their approach
an obviously related instrumental variable (ORIV) regression and show how to obtain
consistent correlation estimates and bootstrapped standard errors.

To obtain replicas of risk and information premia, we take advantage of the fact
that our experimental design elicits subjects’ WTP for insurance for multiple loss
probabilities under both simple and compound/ambiguous risks. Specifically, we use
the linear interpolation of risk premium associated with the probability points adjacent
to p as the second measure of µ(p). That is, if p′ < p and p′′ > p are the loss probabilities
closest to p in the experimental design, the replicas of risk and information premia are
given by

µ̂d(p) = µ(p′)
p′′ − p
p′′ − p′

+ µ(p′′)
p− p′

p′′ − p′
,

µ̂d(I) = µ(I ′)
p′′ − p
p′′ − p′

+ µ(I ′′)
p− p′

p′′ − p′
,

where I ′ and I ′′ represent the compound/ambiguous risks respectively associated with
p′ and p′′. Since range sizes vary in our experiments, we normalize elicited information
premium by dividing it by range size and perform the linear interpolation using the
normalized premia.26

Table 7 shows the ORIV correlation estimates for the loss probabilities that allow
for linear interpolation (column three), that is, those with adjacent probabilities on
both sides. As the table shows the corrected correlations are of similar magnitude
if not slightly more negative. These results are reassuring in that they suggest that
the negative relationship between risk and information premia is not an artifact of
measurement error.

26For the laboratory sample we average the normalized information premia elicited in the small
range and big range treatments.
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Table 7: Correlation between risk and insurance premia

p correlationa ORIV correlationb

2 -0.312∗∗∗ -
5 -0.291∗∗∗ -
10 -0.276∗∗∗ -0.310∗∗∗
20 -0.241∗∗∗ -0.319∗∗∗
30 -0.329∗∗∗ -0.324∗∗∗
40 -0.256∗∗∗ -0.353∗∗∗
50 -0.347∗∗∗ -0.306∗∗∗
60 -0.284∗∗∗ -
70 -0.309∗∗∗ -
80 -0.267∗∗∗ -
90 -0.276∗∗∗ -
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.

8 External Validity

A large literature in experimental economics has used incentivized laboratory exper-
iments with university students to evaluate risk preferences. We next show that the
pattern of results we described from our survey studies also hold in the laboratory. We
first present the results of our companion laboratory experiment and then extend our
discussion to evaluating the results of other laboratory experiments in the literature
for which we were able to obtain data.

8.1 Laboratory Experiment

The laboratory experiment was designed to follow Survey 1 closely and included a sim-
ilar set of decision questions. Approximately 100 university students at the University
of Wisconsin-Madison BRITE laboratory participated. The advantages of the labora-
tory experiment are that it was conducted in person with a relatively higher-educated
population so we can assure that subjects understand the instructions. The laboratory
session was also longer and involved a greater number of decisions, which allows us to
obtain more precise estimates. Our results are qualitatively similar to Survey 1. The
fact that we obtain similar results despite different survey wording and different re-
spondent populations is reassuring since it speaks to the reproducibility of our results.
Further, it allows us to more closely link our results to the experimental economics
literature on risk preferences.
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The laboratory experiment was conducted at the BRITE Laboratory for economics
research and computerized using ZTree (Fischbacher, 2007). Participants were re-
cruited from a subject pool of undergraduate students at the University of Wisconsin-
Madison. A total of 119 subjects participated in the experiment. All subjects faced
13 decisions in each treatment, covering risk probabilities from 2% to 98%. In each
decision they stated their maximum willingness to pay for full insurance against binary
risks. All subjects were asked for their WTP under simple risk. In addition, we random-
ized subjects to two different informational treatments, compound risk and ambiguous
risk, both dealing with probability ranges. We also added an additional treatment for
all subjects, multiplicative risk, dealing with more complex types of compound risks,
which we discuss below. Elicitation mechanisms and payments were similar to those
in the survey. Section D in the Appendix provides a full description of the experiment
as well as detailed results.

We find that the empirical patterns unveiled by our survey are replicated are repli-
cated in the experiment. Both risk premium and information premium are decreasing
in risk probability p, as shown in Figure 6. The only major difference is that subjects
in the experiment were significanlty less risk averse.
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Figure 6: Average Risk and Information Premia at Different Probabilities.

In addition, risk and information premia exhibit a negative correlation of similar
magnitude: correlation coefficients consistently lie between −0.24 and −0.35, even after
controlling for both measurement error and personal characteristics such as cognitive
ability, financial literacy and other demographics. (see Table D.10 in Appendix D).

Finally, we analyze covariates of risk and information premia with the experimental
data and find that qualitatively similar results (see Appendix D.4).
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8.2 Additional Experimental Data

As additional evidence of the external validity of our findings, we computed the cor-
relation between risk premium and compound risk premia in the data of some of the
most prominent studies looking at the relationship between ambiguity and compound
risk attitudes, namely the papers by Halevy (2007), Abdellaoui et al. (2015) and Chew
et al. (2017). As the bottom panel of Table 7 shows, they are consistent with our find-
ings. Interestingly, since the data in Abdellaoui et al. (2015) includes three different
probabilities we were able to calculate the ORIV correlation for p = 1/2, which turns
out to be identical to the ORIV correlation of −0.3 in both our laboratory experiment
and the UAS dataset.27

Table 8: Correlation between risk and insurance premia

p Study N correlation ORIV correlation
50 This paper - UAS 1,043 -0.347∗∗∗ -0.306∗∗∗
50 This paper - Experiment 119 -0.401∗∗∗ -0.299∗∗∗
50 Halevy (2007) - $2 treatment 104 -0.557∗∗∗ -
50 Halevy (2007) - $20 treatment 38 -0.542∗∗∗ -
8.33 Abdellaoui et al. (2015)c 115 -0.418∗∗∗ -
50 Abdellaoui et al. (2015)d 115 -0.365∗∗∗ -0.310∗∗
91.67 Abdellaoui et al. (2015) 115 -0.518∗∗∗ -
50 Chew et al. (2017) 188 -0.493∗∗∗ -
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.
c Correlation between the simple risk premium and hypergeometric CR premium. The hypergeometric CR
treatment is similar to the multiplicative risk treatment in our experiment.
d ORIV correlation from the Abdellaoui et al. (2015) dataset is computed using the average risk premium under
simple lotteries with winning probabilities 1/12 and 11/12 as a replica for the risk premium at probability 1/2.

8.3 Other Information Environments

In our experiment we also added a treatment in which the information environment
dealt with multiplicative risks, in which the loss is realized if an only if two independent
binary risks with respective probabilities p1 and p2. Specifically, let (p1, p; 1 − p1, p

′)

27Abdellaoui et al. (2015) design uses compound lotteries in their ‘hypergeometric CR’ treatment
that resemble those in our multiplicative risks treatment, which prevents us from obtaining a replica of
the information premium given that such compound lotteries are hard to compare across p. Nonethe-
less, the ORIV correction can be performed by using just a replica of the risk premium, obtained via
linear interpolation of the risk premia associated with winning probability 1/2 by using winning proba-
bilities 1/12 and 11/12. Such a replica is a valid instrument since its measurement error is independent
of the errors in the risk and information premia associated with 1/2.
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denote the binary first-stage lottery leading to risk p with probability p1 and risk p′

with probability 1− p1. The information environment we considered is IMR(p) = {I =

(p1, p2; 1−p1, 0), p1×p2 = p}. Arguably, multiplicative risks are more complex to reduce
since they require to multiply two probabilities instead of finding the midpoint of a
range of probabilities. In addition, the first stage probability exhibits skewness since
it leads to either no loss or a 2nd stage probability.28

Interestingly, the informational effects of multiplicative risks are much stronger than
those associated with ranges. Figure 7 shows the comparison of information premia for
multiplicative risk and range treatments. Whereas the information premium associated
with multiplicative risks also declines as p goes up, it is still large at p ≤ 80%. A possible
explanation for this disparity is that multiplicative risks are perceived as more complex
and hence agents have a harder time reducing them. Using the incentivized quiz about
reducing both range and multiplicative risks, Table D.9 in the Appendix shows that
the inability to reduce lotteries seems to increase WTP under multiplicative risks.
However, they are still much larger under multiplicative risks for those who correctly
reduce them. 29
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Figure 7: Information Premium of Big Range and Multiplicative Risk Treatments

Overall, the correlation patterns observed using probability ranges continue to hold
under multiplicative risk: information premium is negatively related to p and the cor-
relation between risk and information premia is significantly negative (see Table D.10
in Appendix D).

28Experimental evidence shows that individuals are averse to negative skewness. See (Dillenberger
and Segal, 2017) for a definition of negative skewness and for relevant references.

29We also find that negative skewness does not explain such disparity. Our regression estimates in
Appendix D.4 show that p1 does not significantly affect the information premium once we control for
p.
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9 Discussion and Conclusion

There are several takeaways from our analysis, which point to policy interventions,
methodological changes and potential avenues for future research. Such implications
of our analysis acquire particular relevance given the external validity of our findings.

First, the framing and perception of risks can have significant effects in the demand
and allocation of insurance, partly driven by the negative correlation between risk
aversion and a preference for simple information. In this context, policies aimed at
regulating information disclosure can have large welfare benefits.

Second, informational effects can potentially introduce significant biases in risk pref-
erence estimates. Accordingly, it is necessary to enrich existing estimation approaches
to include features of the information structure in order to obtain accurate estimates
of the distribution of risk preferences in the population.

Finally, the sources of agents reaction to compound risks remain elusive. Existing
theories such as ambiguity aversion, inability to reduce compound lotteries or aversion
to complexity account for a small share of the variation of information premia. In ad-
dition, while preferences for simple information and risk attitudes are strongly related,
most of the sociodemographic variables traditionally associated with risk attitudes,
such as income or education, lack explanatory power when it comes to preferences for
simple information.
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Appendix A Descriptive Statistics
Table A.1 presents the summary statistics of the main sociodemographic variables of
households in the UAS in Survey 1.

Table A.1: Descriptive Statistics - UAS

Survey 1 Survey 2
Variable Mean Std. Dev. Mean Std. Dev.
Age 48.34 15.52 50.75 16.24
Female 0.57 0.49 0.58 0.49
Married 0.59 0.49 0.56 0.49
Some College 0.39 0.49 0.37 0.48
Bachelor’s Degree or Higher 0.36 0.48 0.42 0.49
HH Income: 25k-50k 0.24 0.43 0.21 0.41
HH Income: 50k-75k 0.20 0.40 0.19 0.39
HH Income: 75k-100k 0.13 0.34 0.14 0.34
HH Income: Above 100k 0.20 0.40 0.27 0.44
Black 0.08 0.27 0.07 0.26
Hispanic/Latino 0.10 0.29 0.15 0.35
Other Race 0.10 0.30 0.14 0.35
Financial Literacy (range: 0-100) 67.52 22.11 69.79 21.96
No. Individuals 4,442 5,319

Appendix B Empirical Analysis of Survey 2
This section presents the risk and information attitudes in the high stakes environment
(Survey 2). As can be seen from the figures presented, the results are qualitatively
similar to Survey 1.

Figure B.1 presents the average risk premium, normalized by loss size. For prob-
abilities up to 10% agents are significantly risk averse, turning to risk seeking as loss
probability goes up. In terms of magnitudes, risk premium at low probabilities are
about a third of those in survey 1, but still quite large. For instance, a 2% loss prob-
ability elicits a risk premium of about 9%, i.e., over four times the actuarially fair
price.

Figure B.2 presents the average information premium at each possible p, normalized
by the size of the loss. On average, agents exhibit significantly large information premia
at p < 20%, about half the size of the information premia in survey 1.
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Figure B.1: Average Risk Premium (bars represent 95% confidence intervals).

Figure B.2: Average Information Premium (labels denote range size and bars are 95% confidence
intervals).

Figure B.3 plots the correlation coefficients, showing that risk and information
premia are negatively correlated at all risk probabilities and of the same magnitudes
as in the case of survey 1.
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Figure B.3: Correlation Coefficients between Risk Premium and Information Premium.

Appendix C Statistical Analysis of WTP
In this section we present the average WTP under simple risk (W (p)) and the infor-
mation premium under compound or ambiguous risk. We report both averages for
the whole sample, and also distinguishing by whether the decisions involved ambigu-
ous ranges. Finally, we use our incentivized quiz about reducing compound risks, to
contrast average WTP by subjects’ ability to reduce compound lotteries.

Table C.2 presents whole sample averages and reports both whether WTP are dif-
ferent from risk probabilities and whether information premium is significantly different
from zero using one-sided paired t-tests.

Ambiguity Tables C.3 and C.4 show the effect of presenting agents with non-
ambiguous versus ambiguous ranges. There is no clear effect of ambiguity on the
information premium. For some probabilities it is bigger under non-ambiguity and for
other ambiguity is associated with a higher information premium. Overall, effects seem
to be quantitatively of the same order of magnitude.

Ability to reduce compound lotteries. Table C.5 shows the average WTP asso-
ciated with the range used in the incentivized question that asked subjects to compute
the underlying failure probability. There are no substantial differences in information
premia between those who answered correctly and those who did not correctly reduce
the range, except for the last 2 ranges, in which those who reduced the range properly
actually exhibit a higher WTP.
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Table C.2: WTP for Insurance - UAS

Group 1 Group 2 Group 3 Group 4
p W (p)a µ(I)b,c W (p) µ(I) W (p) µ(I) W (p) µ(I)

2 28.2∗∗∗ 2.5∗∗∗ 28.3∗∗∗ 3.0∗∗∗
(2) (4)

5 25.8∗∗∗ 2.8∗∗∗ 28.9∗∗∗ 4.4∗∗∗
(4) (8)

10 28.5∗∗∗ 3.6∗∗∗ 31.4∗∗∗ 3.5∗∗∗ 31.4∗∗∗ 2.2∗∗∗ 30.9∗∗∗ 2.3∗∗∗
(18) (14) (8) (4)

20 34.1∗∗∗ 3.5∗∗∗ 36.8∗∗∗ 2.5∗∗∗ 36.6∗∗∗ 4.6∗∗∗ 37.1∗∗∗ 2.0∗∗∗
(14) (4) (24) (8)

30 42.4∗∗∗ 3.0∗∗∗
(18)

40 48.1∗∗∗ 3.5∗∗∗ 49.1∗∗∗ 1.7∗∗∗
(24) (4)

50 54.7∗∗∗ -0.6∗
(8)

60 60.3 2.2∗∗∗
(24)

70 66.5∗∗∗ -0.6
(18)

80 69.8∗∗∗ -0.1
(4)

90 77.9∗∗∗ -1.1∗∗
(14)

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
c Range sizes in parenthesis.

C.1 Interpersonal Rankings of WTP

We present in this section the correlation between interpersonal rankings of WTP for
insurance both across different underlying risks and information environments. Specif-
ically, we rank individuals by their WTP for insurance for each pair of underlying risk
and information (p, I) and then compute the correlation of those rankings with those
under simple risk (p, I = p).

Figure C.4 plots the correlation coefficients as a function of the difference between
underlying risk probabilities and information. The horizontal axis corresponds to the
difference in underlying risk |p− p′| between (p, p) and (p′, I).

As the figure shows, correlation coefficients are high across environments, for fixed
underlying risks (or close risks if one looks at the correlation between ordinal rankings
of adjacent risk probabilities). However correlation substantially decreases with the
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Table C.3: WTP for Insurance: Non-Ambiguous Range

Group 1 Group 2 Group 3 Group 4
p W (p)a µ(I)b,c W (p) µ(I) W (p) µ(I) W (p) µ(I)

2 29.2∗∗∗ 2.3∗∗ 28.5∗∗∗ 2.8∗∗∗
(2) (4)

5 25.3∗∗∗ 2.6∗∗∗ 29.2∗∗∗ 3.4∗∗∗
(4) (8)

10 27.6∗∗∗ 4.1∗∗∗ 32.0∗∗∗ 2.9∗∗∗ 32.0∗∗∗ 2.1∗∗∗ 30.1∗∗∗ 3.0∗∗∗
(18) (14) (8) (4)

20 32.8∗∗∗ 3.6∗∗∗ 37.6∗∗∗ 1.7∗∗∗ 37.2∗∗∗ 4.4∗∗∗ 35.9∗∗∗ 2.7∗∗∗
(14) (4) (24) (8)

30 41.5∗∗∗ 4.0∗∗∗
(18)

40 48.4∗∗∗ 3.9∗∗∗ 49.9∗∗∗ 1.4∗∗
(24) (4)

50 53.0∗∗∗ 0.03
(8)

60 60.3 3.1∗∗∗
(24)

70 66.8∗∗∗ 0.0
(18)

80 67.7∗∗∗ 0.8∗
(4)

90 78.2∗∗∗ -0.8∗
(14)

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
c Range sizes in parenthesis.

difference between underlying risk probabilities, both within and across environments.
The presence of informational effects tends to decrease the correlation when probability
differences are not too large, but bigger ranges do not translate into significantly lower
correlations than smaller ranges.

Appendix D Experiment

D.1 Design

The laboratory experiment was conducted at the BRITE Laboratory for economics re-
search and computerized using ZTree (Fischbacher, 2007). Participants were recruited
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Table C.4: WTP for Insurance: Ambiguous Range - UAS

Group 1 Group 2 Group 3 Group 4
p W (p)a µ(I)b,c W (p) µ(I) W (p) µ(I) W (p) µ(I)

2 27.2∗∗∗ 2.8∗∗∗ 28.1∗∗∗ 3.3∗∗∗
(2) (4)

5 26.2∗∗∗ 2.9∗∗∗ 28.7∗∗∗ 5.4∗∗∗
(4) (8)

10 29.4∗∗∗ 3.1∗∗∗ 30.7∗∗∗ 4.1∗∗∗ 30.7∗∗∗ 2.4∗∗∗ 31.7∗∗∗ 1.6∗∗∗
(18) (14) (8) (4)

20 35.4∗∗∗ 2.9∗∗∗ 36.1∗∗∗ 3.3∗∗∗ 36.1∗∗∗ 4.7∗∗∗ 38.2∗∗∗ 1.2∗∗
(14) (4) (24) (8)

30 43.3∗∗∗ 2.0∗∗∗
(18)

40 47.8∗∗∗ 3.1∗∗∗ 48.3∗∗∗ 2.0∗∗∗
(24) (4)

50 56.4∗∗∗ -1.2∗∗
(8)

60 60.3 1.2∗∗
(24)

70 66.3∗∗∗ -1.2∗∗
(18)

80 71.9∗∗∗ -1.1∗∗
(4)

90 77.5∗∗∗ -1.4∗∗
(14)

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
c Range sizes in parenthesis.

from a subject pool of undergraduate students at the University of Wisconsin-Madison.
A total of 119 subjects participated in 9 sessions, with an average of 13 subjects par-
ticipating in each session. Upon arriving to the lab, subjects were seated at individual
computers and given copies of the instructions. After the experimenter read the in-
structions out loud, she administered a quiz on understanding (see Appendix E for the
complete instructions and quiz provided to subjects).

Each participant made 52 insurance decisions individually and in private. In each
decision period, the subject was the owner of a unit called the A unit. The A unit
had some chance of failing, and some chance of remaining intact. Intact A units paid
out 100 experimental dollars to the subject at the end of the experiment, while failed
A units paid out nothing. The probability of A unit failure, including the information
available about said probability, was varied in each decision.
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Table C.5: WTP by Ability to Reduce Compound Lotteries

Correct Incorrect
Decision p W (p)a µ(I)b n W (p) µ(I) n

Range
3-7 5 22.6∗∗∗ 2.7∗∗∗ 658 34.2∗∗∗ 2.7∗∗ 247
3-17 10 26.3∗∗∗ 3.3∗∗∗ 484 37.3∗∗∗ 3.3∗∗∗ 417
8-32 20 30.6∗∗∗ 5.2∗∗∗ 523 42.4∗∗∗ 3.9∗∗∗ 539
21-39 30 38.7∗∗∗ 4.0∗∗∗ 655 48.5∗∗∗ 1.2∗ 406
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
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Figure C.4: Correlation of interpersonal rankings by differences in risk.

In each decision period, we elicited the maximum willingness to pay for full in-
surance using the Becker-DeGroot-Marschak mechanism. Subjects moved a slider to
indicate how much of their 100 experimental dollar participation payment they would
like to use to pay for insurance. Then, the actual price of insurance was drawn at
random using a bingo cage from a uniform distribution on (0,100). If the willingness
to pay was equal to or greater than the actual price, the subject paid the actual price,
which assured that the A unit would be replaced if it failed. On the other hand, if the
willingness to pay was less than the actual price, the subject did not pay for insurance
and lost the A unit if there was a failure.

All subjects faced 52 different independent decisions in which they stated their
maximum willingness to pay for full insurance for their A unit. We randomized subjects
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to two different treatments; in one, subjects received all information about probability
with greater precision (which we call the No Ambiguity group) and in the other some of
the probability information was ambiguous (we call this group the Ambiguity group).
However, all subjects faced multiple information sets; in that sense, our design includes
both within- and between- subject components.

We start by explaining the decisions faced by the No Ambiguity group. We divide
the decisions into 4 different ‘blocks’ of 13 decisions each. In each ‘block’ of decisions,
we asked subjects to state maximum willingness to pay for an expected rate of failure
of between 2% and 98%, as described in Table D.6. The four ‘blocks’ were as follows:
1) Probability of Loss, which provided full information about the failure rate, 2) Range
Small, which provided a small range of possible probabilities of failure, 3) Range Big,
which provided ranges of greater size, and 4) Compound Risk, which corresponds to
multiplicative risks.30 It was clearly explained that within the Range blocks, the actual
probability of failure would be chosen from within the range with all integer numbers
equally likely. The Compound Risk ‘block’ implies a loss only if both probabilities
are realized. As can be noted from Table D.6, each decision within the block has a
corresponding decision with the same expected probability across multiple different
information environments for ease of comparison.

Both Compound Risk and Range blocks constitute a decision that involves solving
a compound risk problem. While there is no ambiguity in these decisions, we propose
that in line with Halevy (2007) we may expect to see aversion from compound risk,
which would manifest itself in higher willingness to pay for insurance. Along the
range treatments, we chose Small and Big range in order to vary levels - Big Range is
somewhat more imprecise than Small range.

The Ambiguity group faced similar decisions to the No Ambiguity group (as denoted
by Table D.6, except that the actual selection of the probability of failure for the Range
‘blocks’ was left ambiguous. Specifically, subjects were told that the actual probability
is within the range but is unknown.

Subjects made decisions one at a time, but had a record sheet in front of them
summarizing the ranges and probabilities for all 52 decisions. To control for any order
effects, we conducted the experiment using 4 different possible orders, assigned at
random to each session: (1, 2, 3, 4); (2, 3, 4, 1)’ (3, 4, 1, 2) and (4, 1, 2, 3).

Following all 52 decision rounds, subjects also completed a quiz testing their ability
to reduce compound lotteries and a short demographic questionnaire.31

At the end of the experiment, only one of the decisions was selected at random and
paid out, and no feedback on outcomes was given until the end, so we consider each
decision made an independent decision. At the end of the experiment, we first randomly
selected one decision to be the ‘decision-that-counts.’ Then, we randomly selected the
actual price of insurance. Finally, we used the reported probability of failure in the
‘decision-that-counts’ to randomly choose whether or not the A unit would fail. All
random selections were carried out using a physical bingo cage and bag of orange and

30In the experiment itself, these were called ‘Known Failure Rate’ (1), ‘Uncertain Failure Rate’ (2
and 3), and ‘Failure Rate Depends on Environmental Conditions’ (4)

31Other data subjects consented to provide include administrative data on math entrance exams,
available at the university.
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white balls rather than a computerized system to assure transparency.
Earnings in experimental dollars were converted to US dollars at the rate of 10

experimental dollars = $1. Participation required approximately one hour and subjects
earned an average of about $29.5 each.32

Table D.6: Experiment Treatments

Decision #
(within block)

(1) Probability of
Loss (%)

(2) Range
Small (%)

(3) Range
Big (%)

(4) Compound Risk
1st; 2nd, (%)

1 2 1-3 0-4 40; 5
2 5 3-7 1-9 10; 50
3 10 3-17 1-19 40; 25
4 20 16-24 8-32 25; 80
5 30 29-31 21-39 85; 35
6 40 38-42 28-52 50; 80
7 50 46-54 38-62 66; 76
8 60 58-62 48-72 86; 70
9 70 69-71 61-79 75; 93
10 80 76-84 68-92 95; 84
11 90 83-97 81-99 92; 98
12 95 93-97 91-99 99; 96
13 98 97-99 96-100 99; 99

D.2 Analyisis of WTP

In this section we Table D.7 presents the average WTP under simple risk as well as the
information premium across treatments. The table also reports both whether W (p) is
different from p and whether the information premium is different from zero according
to one-sided paired t-tests.

Ambiguity. Table D.8 shows the effect of presenting agents with non-ambiguous
versus ambiguous ranges. As expected ambiguity seems to elicit a somewhat stronger
response from agents. Nonetheless, the effect of non-ambiguous ranges is quite large
and significant at low to moderate probabilities, especially at big ranges.

32In this paper, we report only on the insurance choice experiment, which was conducted at the be-
ginning of the session. However, subjects stayed to participate in another risk task after the insurance
task was over. The time and earnings reported above exclude the additional task time and payout.
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Table D.7: WTP for Insurance

Range Multi-Risk
p W (p)a µ(I)b (size) µ(I) (size) µ(I)

2 3.98∗∗ 0.14 (2) 1.29 (4) 6.74∗∗∗
5 5.51 2.55∗∗ (4) 5.37∗∗∗ (8) 10.88∗∗∗
10 13.38∗∗ 2.70∗∗∗ (14) 5.20∗∗∗ (18) 11.28∗∗∗
20 23.27∗∗ 0.94 (8) 3.27∗∗∗ (24) 12.23∗∗∗
30 31.38 -0.51 (2) 2.11∗ (18) 9.41∗∗∗
40 38.94 1.78∗∗ (4) 5.41∗∗∗ (24) 13.88∗∗∗
50 50.29 -0.45 (8) 1.53 (24) 9.47∗∗∗
60 58.11 0.83 (4) 0.92 (24) 9.10∗∗∗
70 65.80∗∗ 1.68∗∗ (2) -0.08 (18) 7.86∗∗∗
80 75.58∗∗ -1.66∗ (8) -1.52 (24) 3.60∗∗
90 82.92∗∗∗ -1.34∗ (14) -1.19 (18) 2.05
95 86.61∗∗∗ -1.29 (4) 0.57 (8) 1.25
98 89.04∗∗∗ -0.42 (2) -0.80 (4) 1.29
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

Table D.8: WTP by Ambiguity

Compound Range Ambiguous range
p W (p)a µ(I)b (size) µ(I) (size) W (p) µ(I) (size) µ(I) (size)

2 3.48∗ -0.45 (2) -0.05 (4) 4.46∗ 0.15 (2) 2.56∗ (4)
5 4.77 2.41 (4) 3.55∗∗ (8) 6.21 2.67∗ (4) 7.10∗∗∗ (8)
10 12.40 3.21∗∗ (14) 4.40∗∗∗ (18) 14.31∗∗ 2.21∗∗ (14) 5.97∗∗∗ (18)
20 22.21 1.79∗ (8) 2.59∗ (24) 24.28∗∗ 0.13 (8) 3.92∗∗ (24)
30 31.05 -0.21 (2) 1.28 (18) 31.69 -0.80 (2) 2.90∗ (18)
40 38.05 2.55∗∗ (4) 5.90∗∗∗ (24) 39.79 1.05 (4) 4.95∗∗∗ (24)
50 50.28 -0.97 (8) 0.24 (24) 50.31 0.05 (8) 2.75 (24)
60 56.84 0.62∗ (4) 1.47 (24) 59.31 1.03 (4) 0.41 (24)
70 63.97∗∗ 1.97∗ (2) 0.31 (18) 67.54 1.41 (2) -0.44 (18)
80 72.72∗∗∗ -0.12 (8) -0.69 (24) 78.30 -3.13∗∗∗ (8) -2.31 (24)
90 80.14∗∗∗ -1.19 (14) -0.48 (18) 85.56∗∗ -1.49 (14) -1.87 (18)
95 83.26∗∗∗ 0.57 (4) 2.02 (8) 89.79∗∗ -3.07∗∗ (4) -0.80 (8)
98 86.74∗∗∗ -0.33 (2) 0.05 (4) 91.23∗∗∗ -0.51 (2) -1.61 (4)
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

Ability to reduce compound lotteries. Finally, we check whether the results
might be solely driven by subjects’ lack of understanding of how to reduce compound
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lotteries. The next table shows the WTP and risk premia of subjects that answered
correctly an incentivized quiz asking them to compute the underlying failure proba-
bility of some of the above scenarios. There were six questions in the quiz, three for
ranges and three regarding compound risks. Table D.9 presents the results. While the
magnitude of µ(I) is higher on average for those who respond incorrectly, subjects that
reduce compound risks still exhibit significant information premia, especially under
multiplicative risks.

Table D.9: WTP by Ability to Reduce Compound Lotteries - Lab

Correct Incorrect
Decision p W (p)a µ(I)b n W (p) µ(I) n

Range
0-4 2 3.18∗∗ 0.31 105 10.00 8.64 14
3-17 10 13.02∗ 2.13∗∗ 88 14.39∗ 4.32∗∗ 31
61-79 70 64.56∗∗∗ 0.32 89 69.47 -1.24 30

Multi-Risk
10; 50 5 4.69 9.50∗∗∗ 84 7.49 14.20∗∗∗ 35
50; 80 40 37.61 11.47∗∗∗ 77 41.38 18.31∗∗∗ 42
95; 84 80 73.88∗∗ 4.10∗∗ 50 76.81∗ 3.23∗ 69

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

D.2.1 Correlation Between Risk and Information premia

Table D.10 presents the correlation coefficients for different p between risk and infor-
mation premia, as well as the ORIV correlation coefficients. To perform the ORIV
correction we use the linear interpolation of adjacent risk premia as a replica of risk
premium. We do not use replicas of the information premium given the lack of a direct
comparability of information premium between different multiplicative risks.33

D.3 Interpersonal Rankings of WTP

Figure D.5 plots the correlation coefficients as a function of the difference between un-
derlying risk probabilities and information treatments. The horizontal axis corresponds
to the difference in underlying risk |p− p′| between (p, p) and (p′, I). As in the survey

33Information premium might depend on different attributes of the compound lottery such as skew-
ness. Not having a replica for the information premium implies that the ORIV correlation is consistent
as long as the variation in each replica of the risk premium due to measurement error is identical (Gillen
et al., 2017).
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Table D.10: Correlation between risk and insurance premia – Experiment

Range Multi-Risk
p correlationa ORIV correlationb correlation ORIV correlation

2 -0.197∗∗ - -0.249∗∗ -
5 -0.120 -0.059 -0.166∗∗ -0.012
10 -0.214∗∗ 0.210 -0.304∗∗∗ -0.333∗
20 -0.394∗∗∗ -0.405∗∗∗ -0.315∗∗∗ -0.268∗∗∗
30 -0.567∗∗∗ -0.499 -0.388∗∗∗ -0.301∗∗∗
40 -0.203∗∗ -0.428∗ -0.239∗∗∗ -0.192∗∗∗
50 -0.401∗∗∗ -0.299∗∗∗ -0.378∗∗∗ -0.366∗∗∗
60 -0.240∗∗∗ -0.289∗∗ -0.347∗∗∗ -0.254∗∗∗
70 -0.374∗∗∗ -0.299∗∗∗ -0.372∗∗∗ -0.373∗∗∗
80 -0.388∗∗∗ -0.425∗∗∗ -0.402∗∗∗ -0.373∗∗∗
90 -0.459∗∗∗ -0.529∗∗∗ -0.525∗∗∗ -0.530∗∗∗
95 -0.538∗∗∗ -0.596∗∗∗ -0.539∗∗∗ -0.529∗∗∗
98 -0.569∗∗∗ - -0.587∗∗∗ -
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.

data, correlation coefficients are high across treatments in the lab, for fixed underlying
risks (or close risks if one looks at the correlation between ordinal rankings of adjacent
risk probabilities). However correlation substantially decreases with the difference be-
tween underlying risk probabilities, both within and across treatments. The presence
of informational effects tends to decrease the correlation when probability differences
are not too large, but bigger ranges do not translate into significantly lower correlations
than smaller ranges. In the lab, multiplicative risks have a large negative effect on the
correlation of interpersonal rankings.

D.4 Covariates of Information Premium in the Laboratory

Table D.11 presents the regression estimates from the experiment. We run separate
regressions for the range and multiplicative risk treatments. In the latter regressions we
include the first stage risk probability since it is associated with negative skeweness.34
We also include as proxies for financial literacy whether the subject’s major is quanti-
tative (life sciences, natural sciences, economics and business, and engineering majors)
and whether she took an economic course. GPA and the number of correct answers in
the cognitive reflection test (CRT) (Frederick, 2005) are proxies for cognitive ability.

The results in terms of the explanatory power of risk premium largely replicate the
findings using the UAS data. The regression R2 goes from 0.03 to 0.14 in the range
treatment and from 0.14 to 0.28 for multiplicative risks. Neither ambiguity nor skewe-
ness seem to significantly affect information premia. Interestingly, a higher cognitive

34It can be shown that lotteries with p1 < (>) 0.5 are negatively skewed.
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Figure D.5: Correlation of interpersonal rankings by differences in risk - Experiment.

ability (CRT score) is significantly associated with a lower information premium only
in the multiplicative risks treatment, potentially reflecting the fact that these risks are
more complex than range risks and thus elicit a higher reaction in subjects with lower
ability. In terms of demographics only age is statistically significant in the multi-risk
treatment.

Unlike the field experiment, order effects are not significant. To measure them we
consider whether the subjects answered the simple risk questions first or faced the
reverse order, meaning that the answer questions of the respective treatment (range or
multiplicative risks) first.
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Table D.11: Covariates of Information Premium and Risk Premium - Experiment

µ(I) µ(p)
Range Multi-Risk

Risk Probability -0.04* -0.07*** -0.07 -0.15*** -0.12***
(0.01) (0.01) (0.04) (0.04) (0.03)

Probability Range 0.25** 0.18
(0.08) (0.08)

(Probability Range)2 -0.01 -0.01
(0.00) (0.00)

1st Stage Probability -0.04 0.00
(0.03) (0.03)

Ambiguity -0.28 0.17
(1.21) (1.24)

Quiz Score -0.12 -0.26 0.39 0.30
(0.47) (0.46) (0.48) (0.51)

Quantitative Major 1.35 0.88 -2.11 -3.10 -2.84
(1.41) (1.49) (2.17) (2.34) (3.02)

Statistics Course 1.88 1.52 -2.73 -3.11 -3.22
(1.97) (1.86) (2.74) (2.94) (4.04)

Cumulative GPA 0.88 1.30 -0.12 0.28 1.20
(0.96) (0.91) (1.53) (1.47) (1.59)

CRT Score -0.46 -0.28 -3.09*** -3.35*** 0.15
(0.56) (0.55) (0.86) (0.90) (1.13)

µ(p) -0.15*** -0.31***
(0.04) (0.07)

Age -0.20 -0.18 1.48*** 1.62*** 0.15
(0.09) (0.09) (0.18) (0.16) (0.22)

Female 0.27 -0.19 3.63 1.88 -4.56
(1.43) (1.54) (1.87) (1.99) (2.63)

Years in College -0.18 -0.13 -0.36 -0.27 0.96
(0.76) (0.81) (1.16) (1.29) (1.69)

Black/African American -2.51 -2.69 -2.92 -2.12 -0.19
(3.88) (4.03) (8.40) (9.38) (3.86)

Asian -1.97 -2.21 -1.61 -1.44 0.94
(1.53) (1.40) (2.14) (2.20) (3.45)

Hispanic 3.14 5.50 0.71 4.47 10.30
(1.66) (2.23) (3.18) (3.81) (6.07)

Reverse Order -2.21 -1.64 -1.67 -1.34 4.08
(1.21) (1.24) (1.64) (1.65) (2.42)

R2 0.04 0.13 0.14 0.28 0.09
N 3094 2618 1547 1309 1547
All regressions include a constant and standard errors are clustered. Regressions including µ(p)
are IV regressions with the linear interpolation of adjacent risk premia as the instrument for µ(p).
Bonferroni-adjusted p-values: *p < 0.10, **p < 0.05, ***p < 0.01
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Appendix E Instructions

E.1 Survey 1

You can earn up to $10 for the next part. The amount you earn depends on the
decisions you make, so you should read carefully!

We will ask you to make decisions about insurance in a few different scenarios. This
time, at the end of the survey, one of the scenarios will be selected by the computer
as the “scenario that counts.” The money you earn in the “scenario that counts” will
be added to your usual UAS payment. Since you won’t know which scenario is the
“scenario that counts” until the end, you should make decisions in each scenario as if
it might be the one that counts.

We will use virtual dollars for this part. At the end of the survey, virtual dollars
will be converted to real money at the rate of 20 virtual dollars = $1. This means that
200 virtual dollars equals $10.00.

Each Scenario

• You have 100 virtual dollars

• You are the owner of a machine worth 100 virtual dollars.

• Your machine has some chance of being damaged, and some chance of remaining
undamaged, and the chance is described in each decision.

• You can purchase insurance for your machine. If you purchase insurance, a
damaged machine will always be replaced by an undamaged machine.

• At the end, in the scenario-that-counts, you will get 100 virtual dollars for an
undamaged machine. You will not get anything for a damaged machine.

Paying for Insurance
You will move a slider to indicate how much you are willing to pay for insurance,

before learning the actual price of insurance. To determine the actual price of insurance
in the “scenario that counts”, the computer will draw a price between 0 and 100 virtual
dollars, where any price between 0 and 100 virtual dollars is equally likely.

If the amount you are willing to pay is equal to or higher than the actual price,
then:

• You pay for the insurance at the actual price, whether or not your machine gets
damaged

• If damage occurs, your machine is replaced at no additional cost

• If there is no damage, your machine remains undamaged

• You get 100 virtual dollars for your machine

• That means you would earn 100 virtual dollars (what you start with) PLUS 100
virtual dollars (amount you get for machine) MINUS the price of insurance.
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If the amount you are willing to pay for insurance is less than the actual price, then:

• You do not pay for the insurance

• If damage occurs, your machine is damaged and you do not get any money for
your machine. That means you would earn 100 (what you start with) but you
would not earn anything for your machine.

• If there is no damage, your machine remains undamaged and you get 100 virtual
dollars. That means you would earn 100 virtual dollars (what you start with)
PLUS 100 virtual dollars (amount you get for the machine).

This means that the higher your willingness to pay, the more likely it is that you
will buy insurance.

BASELINE BLOCK: ALL TREATMENTS
Remember: You can earn up to $10 for the next part. The amount you earn depends

on the decisions you make, so you should read carefully!
KNOWN DAMAGE RATE: The chance of your machine being damaged is 5% [10,

20, etc].
Please move the slider to indicate the maximum amount you are willing to pay for

insurance.
Remember, if the amount you are willing to pay is higher than the actual price,

then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and you will get 100
virtual dollars for it. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and you will not get any money for it.

[ Slider moves from 0 to 100 in integer increments. ]
CONFIRMATION MESSAGE
You have indicated you are willing to pay up to X for insurance. Continue? Y / N
RANGE BLOCK: AMBIGUOUS RANGE
UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is

between 3% and 7% [8-32 etc]. The exact rate of damage within this range is unknown.
Please move the slider to indicate the maximum amount you are willing to pay for

insurance.
Remember, if the amount you are willing to pay is higher than the actual price,

then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

[ Slider moves from 0 to 100 in integer increments. ]
RANGE BLOCK: NON-AMBIGUOUS RANGE
UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is

between 3% and 7% [8-32 etc]. All damage rates in this range are equally likely.
Please move the slider to indicate the maximum amount you are willing to pay for

insurance.
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Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

[ Slider moves from 0 to 100 in integer increments. ]
QUESTION
Before we finish, we’d like you to answer a final question. You will receive $1 for a

correct answer.
Suppose a machine has a chance of being damaged between X and Y%. All damage

rates in this range are equally likely. What is the average rate of damage for this
machine?

The ranges to use in the question are: Group 1: range 3-7%; group 2: range 3-17%;
group 3: 8-32%; group 4: 21-39%

END SCREEN
Thank you for participating!
The computer selected scenario X to be the “scenario that counts”
The computer selected the price of X virtual dollars for the insurance. Since the

maximum you were willing to pay for insurance was X virtual dollars, you [bought/did
not buy] insurance at the price of X.

The likelihood of damage for scenario X was [X%/between X% and Y%]. Your
machine [was / was not] damaged and you got [ nothing / amount ] for your machine.

Based on the scenario the computer selected, your earnings for this part are X
virtual dollars.

Converted to real money, your earnings are $X (X virtual dollars divided by 20).
You also earned $0 / $1 in the previous question.
A total of $X will be added to your usual UAS payment.
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E.2 Survey 2

Our two questions were added to an existing UAS survey fielded in March, 2020, which
focused mainly on perceptions and behaviors related to the Coronavirus. Given that
this other survey may have induced some background risk, our questions were asked
(randomly) either at the beginning or end of the survey. We do not find a significant
difference in responses across the two orders; hence, we pool them in our analysis.
The questions were as follows:

Question 1: Suppose you already bought a used car. After inspecting the car, an
independent agency tells you that the chance the car may be defective and in the first
year is 2%. If the car is defective, your only option will be to fix it and you will need
to pay $5,000 to do this.

How much would you pay for an insurance policy that would give you back the full
$5,000 to fix the car?

[ Slider moves from 0 and $5,000 in integer increments. ]

Question 2: Suppose you already bought a different used car. After inspecting
the car, an independent agency tells you that the chance the car may be defective in
the first year is between 0 and 4%. All failure rates in this range are equally likely.
If the car is defective, your only option will be to fix it and you will need to pay $5,000
to do this.

How much would you pay for an insurance policy that would give you back the full
$5,000 to fix the car?

[ Slider moves from 0 and $5,000 in integer increments. ]
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E.3 Laboratory Experiment: Order 1, No Ambiguity in Ranges

Note that the different orders are exactly the same, except that the order of risk
scenarios (known, range, or compound) are different in both the instructions and on
the subjects’ screen.

In this part, we will use experimental dollars as our currency. At the end of
the experiment, your experimental dollars will be converted to US dollars and paid
out to you in CASH with the following conversion rate:

10 experimental dollars = $1. This means 100 experimental dollars = $10.

You will start with 100 experimental dollars - this is your participation pay-
ment for this part of the experiment ($10).

You will make a series of 52 different decisions. Once all decisions have been
made, we will randomly select one of those to be the decision-that-counts by drawing
a number at random from a bingo cage with balls numbered from 1 to 52. Note, that
since all decisions are equally likely to be chosen, you should make each decision as if
it will be the decision-that-counts. Please pay close attention because you can earn
considerable money in this part of the experiment depending on the decisions you
make. You should think of each decision as separate from the others.

Each Decision Period
- In each decision period, you will be the owner of a unit called an A unit. -

Your A unit has some chance of failing, and some chance of remaining intact. - The
probability of failure differs for different decision periods, so you should pay careful
attention to the instructions in each decision period. - In each decision period, you will
have the opportunity to purchase insurance for your A unit. You can use up to 100
experimental dollars from your participation payment to purchase the insurance. If
you purchase insurance, a failed A unit will always be replaced for you. - At the end of
the experiment, in the decision-that-counts, intact A units (those that have not failed)
will pay out 100 experimental dollars. Failed A units will pay out 0 experimental
dollars.

Paying for Insurance
You will indicate how much you are willing to pay for insurance in each decision by

moving a slider. You will indicate your willingness to pay before learning the actual
price of insurance for that round. To determine the actual price of insurance in the
‘decision that counts’, a number will be drawn at random from a bingo cage with
numbers from 1 to 100. Any number is equally likely to be drawn.

If the maximum amount you were willing to pay for insurance is equal to or higher
than the actual price of insurance, then: - You pay for the insurance at the actual
price, whether or not a failure occurs - If a failure occurs, your A unit is replaced at
no additional cost to you - If there is no failure, your A unit remains intact - Your A
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unit always pays out 100 experimental dollars
If the maximum amount you were willing to pay for insurance is less than the actual

price of insurance, then: - You do not pay for the insurance - If a failure occurs, your
A unit will fail and you get no experimental dollars - If there is no failure, your A unit
will remain intact and pays out 100 experimental dollars

If you indicate you are willing to pay 0 experimental dollars for insurance, then
you will never buy the insurance.

Failure of the A unit
After learning whether you have purchased insurance, you will find out whether

your A unit has failed or not in the ‘decision that counts’. The likelihood of failure
depends on the specific directions in each decision. In some decisions, the likelihood
of failure is known, and in some decisions, the likelihood of failure is uncertain. Let’s
go through some examples:

Known Failure Rate
In decisions with a known failure rate, the failure rate will be given to you. For

example, suppose the failure rate is 15%. To determine whether your A unit will fail,
we will place 100 balls in this bag. 15 will be orange and 85 will be white. Then, you
will draw a ball at random. If the ball you drew is orange, your A unit will fail. If it
is white, your A unit will remain intact (will not fail).

As another example, suppose the failure rate is 50%. To determine whether your
A unit will fail, we will place 100 balls in this bag. 50 will be orange and 50 will be
white. Again, if the ball you drew is orange, your A unit will fail and if it is white
your A unit will remain intact (will not fail). In this type of decision, drawing an
orange ball means your A unit fails.

Uncertain Failure Rate
In decisions with an uncertain failure rate, the failure rate will be given to you as a

range. For example, suppose the failure rate is in the range 5% to 25%. To determine
whether your A unit will fail, we will place 100 balls in this bag. Between 5 and 25
of the balls will be orange, and the remaining balls will be white. All failure rates in
this range will be equally likely - a separate bingo draw will determine the number of
orange balls before they are put in the bag. This means it is equally likely that there
are 5, 6, 7...through 25 orange balls in the bag. Then, you will draw a ball at random.
If the ball you drew is orange, your A unit will fail. If it is white, your A unit will
remain intact (will not fail).

As another example, suppose the failure rate is in the range 40%-60%. To
determine whether your A unit will fail, we will place 100 balls in this bag. Between 40
and 60 of the balls will be orange, and the remaining balls will be white. All numbers
in this range will be equally likely. Again, if the ball you drew is orange, your A unit
will fail and if it is white your A unit will remain intact (will not fail). In this type of
decision, drawing an orange ball means your A unit fails.

Failure Rate Depends on Environmental Conditions
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In decisions where the failure rate depends on environmental conditions, the A
unit may only fail if environmental conditions are poor, but not if the environmental
conditions are good. The likelihood of poor environmental conditions and the actual
likelihood of failure are known and given to you. For example, suppose that the chance
of poor environmental conditions is 50%. If the environment is poor, then there is a
30% chance of failure of the A unit. This means that we will have 2 bags with 100
balls each. In the first bag, we will put 50 orange balls and the remaining balls will
be white. You will draw a ball at random from the first bag. If the ball is white, the
environmental conditions are good and your A unit will not fail. If the ball is orange,
the environmental conditions are poor and you will draw from the second bag. In the
second bag, we will put 30 orange balls and the remaining balls will be white. You will
draw a ball at random from the second bag. If the ball you drew from the second bag
is orange, your A unit will fail. If it is white, your A unit will remain intact (will not
fail).

As another example, suppose that the chance of poor environmental conditions
is 70%. If the environment is poor, then there is a 50% chance of failure of the
A unit. This means that the first bag will have 100 balls - 70 orange and the
remaining white. You will draw a ball from the first bag at random. If it is white,
your A unit will remain intact. If it is orange, we will prepare the second bag.
The second bag will have 100 balls - 50 orange and the remaining white. You will
draw a ball from the second bag at random. If the ball you drew from the second
bag is orange, your A unit will fail. If it is white, your A unit will remain intact
(will not fail). In this type of decision, both balls must be orange for your A unit to fail.

In summary:
- Each decision is equally likely to be the decision-that-counts. Therefore you

should pay close attention to each decision you make. - The likelihood of failure may
be different in each decision period. Pay close attention and reference the instructions
if you need to. - Intact A units pay out 100 experimental dollars at the end of the
experiment. Failed A units pay out nothing. - In each decision period, you will decide
how much you are willing to pay for insurance. If your willingness to pay is greater
than or equal to the actual price of insurance, then you will buy insurance. If your
willingness to pay is less than the actual price of insurance, then you will not buy
insurance. This means that the higher your willingness to pay, the more likely it is
that you will buy insurance. Insurance guarantees that your A unit will be replaced at
no cost and will pay out 100 experimental dollars. If you bought insurance, you pay
for insurance whether or not your A unit fails.

Before you begin making decisions, you will answer the next set of questions on
your screen to confirm your understanding. You may refer back to instructions at any
time. Please answer the questions on your screen now.

Your decisions
You will now have 30 minutes for this part. Please take your time when making

each of the 52 decisions. There will be a 5-second delay before you can submit each of
your decisions on the screen. Please also record your decisions on the record sheet.
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E.4 Laboratory Experiment: Order 1, Ambiguity in Ranges

Note that the ambiguity instructions are exactly the same as the instructions without
ambiguity, except that for the ’uncertain failure rate’ scenarios, rather than informing
subjects that any probability in the range is equally likely, we say that the probability is
unknown. In the below, we provide just the instructions that are different from E.3.

Uncertain Failure Rate In decisions with an uncertain failure rate, the fail-
ure rate will be given to you as a range. For example, suppose the failure rate is in
the range 5% to 25%. To determine whether your A unit will fail, we will place 100
balls in this bag. Between 5 and 25 of the balls will be orange, and the remaining
balls will be white. The exact number of orange balls is unknown and could be any
number between 5 and 25. Then, you will draw a ball at random. If the ball you drew
is orange, your A unit will fail. If it is white, your A unit will remain intact (will not
fail).

As another example, suppose the failure rate is in the range 40%-60%. To determine
whether your A unit will fail, we will place 100 balls in this bag. Between 40 and 60 of
the balls will be orange, and the remaining balls will be white. Again, if the ball you
drew is orange, your A unit will fail and if it is white your A unit will remain intact
(will not fail). In this type of decision, drawing an orange ball means your A unit fails.
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