Dynamic Oligopoly and Price Stickiness

Olivier Wang
NYU Stern

Iván Werning MIT

Imperfect Competition

Imperfect Competition

- Monopolistic competition: continuum of firms (Dixit-Stiglitz)
 - simple and tractable
 - reigns supreme: trade, macro, growth, ...

Imperfect Competition

- Monopolistic competition: continuum of firms (Dixit-Stiglitz)
 - simple and tractable
 - reigns supreme: trade, macro, growth, ...
- Oligopoly: finite number of firms
 - more realistic and complicated
 - extensive IO literature
 - "rise in market power": markups, concentration, superstar firms, ...
- Q: Oligopoly important for macro?

This Paper

- Standard macro model...
 - representative agent, infinite horizon
 - consumption, labor and money
 - nominal rigidities a la Calvo

This Paper

- Standard macro model...
 - representative agent, infinite horizon
 - consumption, labor and money
 - nominal rigidities a la Calvo
- Here:
 - oligopoly with any *n* firms
 - general demand structure (e.g. Kimball, not just CES)

This Paper

- Standard macro model...
 - representative agent, infinite horizon
 - consumption, labor and money
 - nominal rigidities a la Calvo
- Here:
 - oligopoly with any *n* firms
 - general demand structure (e.g. Kimball, not just CES)
- Results
 - 1. Sufficient statistics for M shocks
 - 2. Calibration and counterfactuals
 - 3. Inspecting the mechanism
 - 4. Phillips Curve

Literature

Mongey (2016)

Rotemberg-Saloner (1986), Rotemberg-Woodford (1992)

• IO Literature (dynamic): Ericson-Pakes (1995), Bajari-Benkard-Levin (2007), ...

Passthrough Literature (static): Goldberg (1985),
 Atkeson-Burstein (2008), Gopinath-Itskhoki (2010),
 Arkolakis-Costinot-Donaldson-Rodríguez Clare (2015),
 Amiti-Itskhoki-Konings (2019)

Setup

- Households: consumption, labor, money
- Firms: continuum of sectors s...
 - n_s firms within sector s
 - Calvo price rigidity: constant probability of price change λ_s
- Equilibrium concepts for oligopoly game...
 - Markov: dominant equilibrium concept in IO

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$C(t) = G(\{C_s(t)\}_s)$$

 $C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t) \rbrace_s) \qquad \longrightarrow C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \longrightarrow \frac{1}{n_s} \sum_{j=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t) \rbrace_s) \qquad \longrightarrow C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \longrightarrow \frac{1}{n_s} \sum_{j=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \tilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt \qquad \qquad \int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)})\right) dt$$

$$C(t) = G(\lbrace C_s(t) \rbrace_s) \qquad \longrightarrow C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \longrightarrow \frac{1}{n_s} \sum_{j=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \widetilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left(p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt \qquad \qquad \int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)})\right) dt$$

$$C(t) = G(\lbrace C_s(t) \rbrace_s) \qquad \longrightarrow C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \longrightarrow \frac{1}{n_s} \sum_{j=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \widetilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left(p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

$$p_{1,s}, p_{2,s}, \dots, p_{n,s}$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t) \rbrace_s) \qquad \longrightarrow C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \longrightarrow \frac{1}{n_s} \sum_{j=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \tilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left(p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

$$p_{1,s}, p_{2,s}, \dots, p_{n,s}$$

Calvo pricing Poisson arrival

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

 $c_{i,s}(t) = l_{i,s}(t)$

$$\int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\{C_s(t)\}_s) \qquad C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \tilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left(p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

 $p_{1,s}, p_{2,s}, \ldots, p_{n,s}$

Calvo pricing Poisson arrival

Reset strategy
$$p_{i,t}^* = g^{i,s}(p_{-i,s};t)$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

 $c_{i,s}(t) = l_{i,s}(t)$

$$\int_0^\infty e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\{C_s(t)\}_s) \longrightarrow C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \longrightarrow \frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \tilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t)dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left(p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

 $p_{1,s}, p_{2,s}, \ldots, p_{n,s}$

Calvo pricing Poisson arrival λ

Reset strategy

$$p_{i,t}^* = g^{i,s}(p_{-i,s};t)$$

$$\{p_{j,s}\}_{j \neq i}$$

• Constant C, L, M, P, W, r

- Constant C, L, M, P, W, r
 - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

- Constant C, L, M, P, W, r
 - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

• firms

$$(\rho + n\lambda)V(p) = D^{i}(p)(p_{i} - W) + \lambda \sum_{j=1}^{n} V(g^{j}(p_{-j}), p_{-j})$$

- Constant C, L, M, P, W, r
 - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

• firms

$$(\rho + n\lambda)V(p) = D^{i}(p)(p_{i} - W) + \lambda \sum_{j=1}^{n} V(g^{j}(p_{-j}), p_{-j})$$

$$g(p_{-i}) \in \arg\max_{p_{i}} V(p_{i}, p_{-i})$$

- Constant C, L, M, P, W, r
 - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

• firms

$$(\rho + n\lambda)V(p) = D^{i}(p)(p_{i} - W) + \lambda \sum_{j=1}^{n} V(g^{j}(p_{-j}), p_{-j})$$

$$g(p_{-i}) \in \arg\max_{p_{i}} V(p_{i}, p_{-i})$$

• steady state price vector P = g(P, P, ..., P)

1. Sufficient Statistics

Starting at steady state...

- Starting at steady state...
- ...unanticipated permanent shock to money...

- Starting at steady state...
- ...unanticipated permanent shock to money...

- Starting at steady state...
- ...unanticipated permanent shock to money...

- Starting at steady state...
- ...unanticipated permanent shock to money...

Proposition. (Aggregation)

$$\log \frac{P(t)}{P^*} \approx \log \frac{P(0)}{P^*} e^{-\lambda (1 - \sum_{n} (n-1)\beta_n \omega_n)t}$$

$$\beta_n \equiv \frac{\partial}{\partial p_j} g(P^*)$$

extensions: heterogeneous λ , productivity, costs

- Starting at steady state...
- ...unanticipated permanent shock to money...

Proposition. (Aggregation)

$$\log \frac{P(t)}{P^*} \approx \log \frac{P(0)}{P^*} e^{-\lambda (1 - \sum_{n} (n-1)\beta_n \omega_n)t}$$

$$\beta_n \equiv \frac{\partial}{\partial p_j} g(P^*)$$

extensions: heterogeneous λ , productivity, costs

W(t)

W(t)

Firm i

Firm i Firm j

Firm 1

Firm 2

Firm 1

Sufficient Statistic

Proposition.

$$(n-1)\beta_n = \frac{\rho + \lambda}{\lambda} \frac{n-1}{n-2 + \frac{\epsilon_i^i - 1}{\epsilon_i^i - \frac{\mu}{\mu - 1}}} \quad \epsilon_i^i = \frac{-\partial \log D^i}{\partial \log p_i}$$

$$\mu = \frac{P}{W}$$

$$\epsilon_i^i = \frac{-\partial \log D^i}{\partial \log p_i}$$

Sufficient Statistic

Proposition.

$$(n-1)\beta_n = \frac{\rho + \lambda}{\lambda} \frac{n-1}{n-2 + \frac{\epsilon_i^i - 1}{\epsilon_i^i - \frac{\mu}{\mu - 1}}} \quad \epsilon_i^i = \frac{-\partial \log D^i}{\partial \log p_i}$$

$$\mu = \frac{P}{W}$$

$$\epsilon_i^i = \frac{-\partial \log D^i}{\partial \log p_i}$$

- Intuition... (reverse causality $\beta \rightarrow \mu$)
 - Nash markup $\iff \beta = 0$
 - higher markup \iff rivals mimic my price (high β)

Sufficient Statistic

Proposition.

$$(n-1)\beta_n = \frac{\rho + \lambda}{\lambda} \frac{n-1}{n-2 + \frac{\epsilon_i^i - 1}{\epsilon_i^i - \frac{\mu}{\mu - 1}}} \quad \epsilon_i^i = \frac{-\partial \log D^i}{\partial \log p_i}$$

$$\mu = \frac{P}{W}$$

$$\epsilon_i^i = \frac{-\partial \log D^i}{\partial \log p_i}$$

- Intuition... (reverse causality $\beta \rightarrow \mu$)
 - Nash markup $\iff \beta = 0$
 - higher markup \iff rivals mimic my price (high β)
- Very few statistics needed!
 - markup observable? maybe
 - elasticity observable? maybe

2. Counterfactuals

$$\frac{1}{n} \sum \Psi(\frac{c_i}{C}) = 1$$

$$\Psi'(x) = \frac{\eta - 1}{\eta} \exp\left(\frac{1 - x^{\theta/\eta}}{\theta}\right) \quad \text{(Klenow-Willis)}$$

- Under monopolistic competition
 - \rightarrow elasticity η
 - \rightarrow superelasticity θ
- Oligopoly: elasticities also depend on *n*

- Low θ similar to CES: slowest convergence at n=2
- But with high enough θ , fastest convergence at n=2!
- Duopoly is knife-edge: half-life stuck at CES level... in contrast: $n \ge 3$ arbitrarily large as θ increases

Pass-Through

- Amiti-Itskhoki-Konings 19: own cost pass-through
 - high for small firms
 - low for large firms
 - consistent with CES Cournot but not Bertrand

Depart from CES to match

pass-through = f(market share)

in dynamic (Bertrand) model

HHI and Half-life

- National HHI 0.05 to 0.1 (e.g., Gutierrez-Philippon): MP 15% stronger
- Local HHI 0.15 to 0.05 (Rossi-Hansberg, Sarte, Trachter): MP 25% weaker

3. Inspecting the mechanism

- Two effects with finite *n*…
 - feedback: firm i cares about others' prices
 - strategic: firm i can affect others' prices

- Two effects with finite *n*…
 - feedback: firm i cares about others' prices
 - strategic: firm i can affect others' prices
- Feedback effect with $n = \infty$
 - inputs from other firms
 - Kimball (1995) demand

• Compare MPE with *n* firms to

as if monopolistic market

- $n = \infty$ and modified Kimball preferences to match elasticities
- \Rightarrow equilibrium if *n* firms ignore how they affect rivals' pricing \Rightarrow "non-strategic" model

Small strategic effects

4. Phillips Curve

Phillips Curve

- Generalize preferences and allow arbitrary paths of
 - Interest rate shocks
 - Real shocks
- Monopolistic NKPC
 - First order ODE
 - Inflation only depends on future MC
 - Kimball \Leftrightarrow less frequent adjustment (lower λ)
- Oligopolistic NKPC
 - Higher order ODE: inflation persistence
 - Not just MC: demand, interest rates
 - Not equivalent to lower λ

Phillips Curve

Standard NKPC

$$\dot{\pi} = 0.05\pi - 1.05mc$$

- Oligopoly: Example with n = 3
 - MPE

$$\dot{\pi} = 0.07\pi - 0.28mc$$

$$+1.31\ddot{\pi} + 0.45mc + 0.03(r - \rho)$$

Non-strategic (= monopolistic Kimball)

$$\dot{\pi} = 0.05\pi - 0.27mc$$

3-Eq Oligopoly NK

Combine with Euler equation

$$\dot{c} = \sigma^{-1} \left(r - \pi - \rho - \epsilon^r \right)$$

Taylor rule

$$r = \rho + \phi \pi + \epsilon^m$$

• AR(1) ϵ^r , ϵ^m shocks

n	Model	σ ($\sigma\left(\pi\right)$		$\sigma\left(c\right)$	
		ϵ^r	ϵ^m	ϵ^r	ϵ^m	
∞	$\theta = 0 \text{ (CES)}$	2.2%	2.7%	0.8%	1.0%	
∞	$\theta = 10$	2.0%	2.4%	1.0%	1.3%	
10	MPE Non-strategic	$2.3\% \\ 2.7\%$	2.8% $3.3%$	$1.1\% \\ 1.4\%$	1.4% 1.7%	

Conclusions

Monopolistic competition used pervasively

- Our paper: oligopoly...
 - 1. sufficient statistics for micro to macro
 - 2. calibration: concentration amplifies non-neutrality
 - 3. for simple shocks: mostly driven by implied demand shape, rather than strategic interactions
 - 4. more differences with Phillips curve and general shocks