The Returns to College(s): Estimating Value-Added and Match Effects in Higher Education

> Jack Mountjoy Chicago Booth & NBER

Brent Hickman WUSTL Olin

July 2020

Disclaimer

The conclusions of this research do not necessarily reflect the opinions or official position of the Texas Education Research Center, the Texas Education Agency, the Texas Higher Education Coordinating Board, the Texas Workforce Commission, or the State of Texas.

Motivation

- Enrolling in college tends to pay off for marginal students E.g. Card (2001); Lemieux and Card (2001); Carneiro et al. (2011); Angrist and Chen (2011); Zimmerman (2014); Heckman et al. (2018); Mountjoy (2019)
- But for the college-bound, choice is not whether to enroll, but where
- Is college college? Or does it matter which college?

Motivation

1. Do some colleges boost student outcomes more than others?

- Estimate value-added (VA) separately for each college and outcome
- Isolate causal college impacts from selection bias in mean outcomes

1. Do some colleges boost student outcomes more than others?

- Estimate value-added (VA) separately for each college and outcome
- Isolate causal college impacts from selection bias in mean outcomes

2. Do institutional characteristics predict value-added?

- Correlate college-level observables with college-level VA
- Raw outcomes, selectivity, spending, faculty, mobility metrics

1. Do some colleges boost student outcomes more than others?

- Estimate value-added (VA) separately for each college and outcome
- Isolate causal college impacts from selection bias in mean outcomes

2. Do institutional characteristics predict value-added?

- Correlate college-level observables with college-level VA
- Raw outcomes, selectivity, spending, faculty, mobility metrics

3. Do colleges that boost some outcomes also boost others?

Correlate college VA across outcomes to learn about mechanisms
 Earnings, industry, BA completion, major, persistence

1. Do some colleges boost student outcomes more than others?

- Estimate value-added (VA) separately for each college and outcome
- Isolate causal college impacts from selection bias in mean outcomes

2. Do institutional characteristics predict value-added?

- Correlate college-level observables with college-level VA
- Raw outcomes, selectivity, spending, faculty, mobility metrics

3. Do colleges that boost some outcomes also boost others?

Correlate college VA across outcomes to learn about mechanisms
 Earnings, industry, BA completion, major, persistence

4. Does value-added vary across students? (Mis)match effects?

Estimate heterogeneous college VA by student observables

Race, income, gender, "cognitive" & "non-cognitive" skills

Challenges

Big data

College-specific treatment effects require many students & schools

Rich data

▶ Need to link high school \rightarrow college \rightarrow degrees \rightarrow earnings

Identification

Endogenous applications & admissions invite massive selection bias

Solutions

Data: linked administrative records spanning the Texas population

- All TX public high school grads across all TX public universities
- Link high school records, college records, and earnings by SSN
- Key component: apps & admissions at all TX public universities

Solutions

Data: linked administrative records spanning the Texas population

- All TX public high school grads across all TX public universities
- Link high school records, college records, and earnings by SSN
- Key component: apps & admissions at all TX public universities

► Identification: proxy for unobservables using admissions portfolios

- High-dimensional 2-layer signal of ability, ambition, advantage
- Variations on this "matched applicant" theme: Dale and Krueger (2002, 2014); Fryer and Greenstone (2010); Cunha and Miller (2014); Arcidiacono et al. (2016); Abdulkadiroglu et al. (2020)
- Our implementation: FEs for every distinct portfolio of apps & admits

Solutions

Data: linked administrative records spanning the Texas population

- ► All TX public high school grads across all TX public universities
- Link high school records, college records, and earnings by SSN
- Key component: apps & admissions at all TX public universities

► Identification: proxy for unobservables using admissions portfolios

- High-dimensional 2-layer signal of ability, ambition, advantage
- Variations on this "matched applicant" theme: Dale and Krueger (2002, 2014); Fryer and Greenstone (2010); Cunha and Miller (2014); Arcidiacono et al. (2016); Abdulkadiroglu et al. (2020)
- Our implementation: FEs for every distinct portfolio of apps & admits

▶ Validation: battery of empirical exercises to probe validity

- Covariate balance across college treatments within portfolios
- VA estimates impervious to all available additional controls
- Typical strategies appear to substantially under-correct for selection

Contributions

- Estimating labor market returns to college selectivity/ "quality" Hunt (1963); Wise (1975); Brewer et al. (1999); Dale and Krueger (2002, 2014); Hoekstra (2009); Black and Smith (2004, 2006); Long (2008, 2010); Andrews et al. (2016); Ge et al. (2018); Bodoh-Creed and Hickman (2019); Black et al. (2020)
- $\rightarrow\,$ We replicate & extend DK in very different data: large, recent, diverse, precise
- ightarrow Also build on Black and Smith (2006): other dimensions of college quality

Contributions

- Estimating labor market returns to college selectivity/ "quality" Hunt (1963); Wise (1975); Brewer et al. (1999); Dale and Krueger (2002, 2014); Hoekstra (2009); Black and Smith (2004, 2006); Long (2008, 2010); Andrews et al. (2016); Ge et al. (2018); Bodoh-Creed and Hickman (2019); Black et al. (2020)
- $\rightarrow\,$ We replicate & extend DK in very different data: large, recent, diverse, precise
- ightarrow Also build on Black and Smith (2006): other dimensions of college quality
- Examining outcomes across individual colleges using admin data Cunha and Miller (2014); Hoxby (2019); Chetty et al. (2020)
- ightarrow Move beyond confining college heterogeneity to pre-specified observable like selectivity
- $\rightarrow\,$ Teacher VA: meaningful differences not captured by observable "quality" measures
- $\rightarrow~$ We link admissions data to identify & validate causal VA on many outcomes

Contributions

- Estimating labor market returns to college selectivity/ "quality" Hunt (1963); Wise (1975); Brewer et al. (1999); Dale and Krueger (2002, 2014); Hoekstra (2009); Black and Smith (2004, 2006); Long (2008, 2010); Andrews et al. (2016); Ge et al. (2018); Bodoh-Creed and Hickman (2019); Black et al. (2020)
- ightarrow We replicate & extend DK in very different data: large, recent, diverse, precise
- ightarrow Also build on Black and Smith (2006): other dimensions of college quality
- Examining outcomes across individual colleges using admin data Cunha and Miller (2014); Hoxby (2019); Chetty et al. (2020)
- ightarrow Move beyond confining college heterogeneity to pre-specified observable like selectivity
- $\rightarrow\,$ Teacher VA: meaningful differences not captured by observable "quality" measures
- ightarrow We link admissions data to identify & validate causal VA on many outcomes
- Testing for mismatch in education
 Bowen and Bok (2000); Sander and Taylor (2012); Arcidiacono et al. (2016);
 Arcidiacono and Lovenheim (2016); Dillon and Smith (2018); Angrist et al. (2019)
- ightarrow Natural application of our research design & high-quality admin data, including earnings
- ightarrow Our approach naturally answers related questions too: mobility, supermodularity

Limitations

- Our variation is limited to
 - Choices among 4-year colleges
 - By inframarginal admitted students
 - Enjoying multiple admission offers
 - In the Texas public sector

Other important margins involve different students, counterfactuals

- Marginally qualified applicants crossing a minimum cutoff Hoekstra (2009); Zimmerman (2014); Goodman et al. (2017)
- Fancy privates, questionable for-profits, CCs, no college at all Cohodes and Goodman (2014); Cellini and Turner (2019); Mountjoy (2019)
- Intervening early enough to transform fundamental college ambitions Hoxby & Turner (2013), Bodoh-Creed & Hickman (2019), Dynarski et al. (2020)

Causal consequences at distinct junctures in the U.S. college pipeline

Today's Agenda

\checkmark Introduction

Setting & Data

- Research Design
- VA Estimates & Validation
- Distributional Magnitudes
- Institutional Predictors
- Potential Mechanisms
- Match Effects
- Conclusion

Data Setting: Texas

- 2nd largest U.S. state, population 29 million
- ▶ 10th largest economy in the world
- 30+ public universities enrolling 726,000 students

Data: Linked Administrative Records

- ► All public high school graduates in Texas (1999-2008 cohorts)
 - Demographics (gender, race, free/reduced price lunch, HS location)
 - Academic achievement (test scores, rigor of HS coursework, top 10%)
 - "Non-cognitive" measures (daily attendance, disciplinary infractions)
- Applications and admissions decisions at all Texas public universities
 - Form each student's exact portfolio of applications & admissions
- Enrollments and degrees at all Texas public (& private) universities
 - Persistence (years completed)
 - Transfer
 - BA completion (by year 4, 6, 8...)
 - Major (STEM indicator)
- Quarterly earnings records for all Texas employees
 - Directly from state UI tax records
 - Industry (oil & gas indicator)

Data: Summary Statistics

	Mean	(SD)		Count	Share
Covariates			Treatments		
Female	.544		Texas A&M (TAMU)	54,953	.13
Low-income (FRPL)	.241		UT-Austin	52,508	.124
Black	.121		Texas Tech	32,371	.077
Hispanic	.227		UT-San Antonio	27,569	.065
10th grade test score (std.)	0	(1)	North Texas	24,146	.057
High school attendance (std.)	0	(1)	Texas State-San Marcos	23,686	.056
			Houston	23,528	.056
Applications			Stephen F. Austin State	17,372	.041
Applied to 1 school	.601		Sam Houston State	15,704	.037
Applied to 2 schools	.233		UT-Pan American	15,000	.035
Applied to 3 schools	.104		UT-Arlington	14,595	.035
Applied to 4 schools	.041		UT-El Paso	14,361	.034
Applied to 5+ schools	.022		Angelo State	10,585	.025
			Lamar	10,569	.025
Admissions			Tarleton State	9,795	.023
Admitted to 1 school	.691		TAMU-Corpus Christi	8,550	.02
Admitted to 2 schools	.212		Texas Southern	7,736	.018
Admitted to 3 schools	.069		Prairie View A&M	7,353	.017
Admitted to 4 schools	.02		TAMU-Kingsville	6,675	.016
Admitted to 5+ schools	.009		West Texas A&M	6,498	.015
			UT-Dallas	6,453	.015
Academic Outcomes			Midwestern State	5,873	.014
Ever transfer	.271		Houston-Downtown	5,196	.012
Years of college completed	2.89	(1.52)	TAMU-Commerce	4,293	.01
BA within 4 years	.274		Texas Woman's	4,001	.009
BA within 6 years	.592		TAMU-International	3,537	.008
BA within 8 years	.652		UT-Tyler	3,248	.008
STEM degree	.13		TAMU-Galveston	2,797	.007
			Sul Ross State	2,037	.005
Earnings Outcomes			UT-Permian Basin	1,963	.005
Has positive earnings	.848				
Annualized earnings	44,834	(28,485)			

Observations 422,956

Data: College Selectivity Distribution

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- Research Design
- VA Estimates & Validation
- Distributional Magnitudes
- Institutional Predictors
- Potential Mechanisms
- Match Effects
- Conclusion

Potential Outcomes Framework

Potential outcome for student i at counterfactual college j:

Potential Outcomes Framework

Potential outcome for student i at counterfactual college j:

Two different threats to identification from observational comparisons:

 $\mathbb{E}[Y_i|D_{ij} = 1] - \mathbb{E}[Y_i|D_{i0} = 1] = \underbrace{\nu_j - \nu_0}_{\text{Causal value-added of } j \text{ vs. } 0}$

+
$$\underbrace{\mathbb{E}[\alpha_i|D_{ij}=1] - \mathbb{E}[\alpha_i|D_{i0}=1]}_{\text{Vertical selection bias}}$$
 + $\underbrace{\mathbb{E}[\epsilon_{ij}|D_{ij}=1] - \mathbb{E}[\epsilon_{i0}|D_{i0}=1]}_{\text{Differential match bias}}$

Raw Means: BA Completion

Raw Means

Threat 1: Vertical Selection Bias

Potential outcome for student i at counterfactual college j:

Two different threats to identification from observational comparisons:

$$\mathbb{E}[Y_i|D_{ij} = 1] - \mathbb{E}[Y_i|D_{i0} = 1] = \underbrace{\nu_j - \nu_0}_{\text{Causal value-added of } j \text{ vs. } 0}$$

+
$$\underbrace{\mathbb{E}[\alpha_i|D_{ij}=1] - \mathbb{E}[\alpha_i|D_{i0}=1]}_{\text{Vertical selection bias}}$$
 + $\underbrace{\mathbb{E}[\epsilon_{ij}|D_{ij}=1] - \mathbb{E}[\epsilon_{i0}|D_{i0}=1]}_{\text{Differential match bias}}$

Vertical Selection Bias: 10th Grade Test Scores

Raw Means

Vertical Selection Bias: Within Admission Portfolios

Threat 1: Vertical Selection Bias

Potential outcome for student i at counterfactual college j:

Two different threats to identification from observational comparisons:

$$\mathbb{E}[Y_i|D_{ij}=1] - \mathbb{E}[Y_i|D_{i0}=1] = \underbrace{\nu_j - \nu_0}_{\text{Causal value-added of } j \text{ vs. } 0}$$

+
$$\underbrace{\mathbb{E}[\alpha_i|D_{ij}=1] - \mathbb{E}[\alpha_i|D_{i0}=1]}_{\text{Vertical selection bias}}$$
 + $\underbrace{\mathbb{E}[\epsilon_{ij}|D_{ij}=1] - \mathbb{E}[\epsilon_{i0}|D_{i0}=1]}_{\text{Differential match bias}}$

Assumption 1: No vertical selection bias within admission portfolios

We will further test this shortly

Threat 2: Differential Match Bias

Potential outcome for student i at counterfactual college j:

Two different threats to identification from observational comparisons:

$$\mathbb{E}[Y_i|D_{ij} = 1] - \mathbb{E}[Y_i|D_{i0} = 1] = \underbrace{\nu_j - \nu_0}_{\text{Causal value-added of } j \text{ vs. } 0}$$

+
$$\underbrace{\mathbb{E}[\alpha_i|D_{ij}=1] - \mathbb{E}[\alpha_i|D_{i0}=1]}_{\text{Vertical selection bias}}$$
 + $\underbrace{\mathbb{E}[\epsilon_{ij}|D_{ij}=1] - \mathbb{E}[\epsilon_{i0}|D_{i0}=1]}_{\text{Differential match bias}}$

Differential Match Bias: Canon, Theory, Evidence

- Value-added canon (teachers, schools, neighborhoods):
 - ▶ Eliminate match effects from the model entirely: $\epsilon_{ij} \equiv 0 \;\; \forall j \in \mathcal{J}$
 - Or grant them a simple life as orthogonal errors: $\{\epsilon_{ij}\}_{j \in \mathcal{J}} \perp \{D_{ij}\}_{j \in \mathcal{J}}$
 - Somewhat stronger than necessary: symmetric sorting allowed
- ▶ We will test for match effects: college x covariate interactions
 - We find little scope for match effects in explaining student outcomes
 - VA estimates for average student are robust to including interactions

Threat 2: Differential Match Bias

Potential outcome for student i at counterfactual college j:

Two different threats to identification from observational comparisons:

$$\mathbb{E}[Y_i|D_{ij}=1] - \mathbb{E}[Y_i|D_{i0}=1] = \underbrace{\nu_j - \nu_0}_{\text{Causal value-added of } j \text{ vs. } 0}$$

+
$$\underbrace{\mathbb{E}[\alpha_i|D_{ij}=1] - \mathbb{E}[\alpha_i|D_{i0}=1]}_{\text{Vertical selection bias}}$$
 + $\underbrace{\mathbb{E}[\epsilon_{ij}|D_{ij}=1] - \mathbb{E}[\epsilon_{i0}|D_{i0}=1]}_{\text{Differential match bias}}$

Assumption 2: No differential match bias within admission portfolios

Implicit in the canon; we will directly investigate match effects in a bit

Identification and Implementation

Derive baseline regression specification from model primitives:

$$egin{aligned} Y_i &= Y_{i0} + \sum_{j
eq 0} (Y_{ij} - Y_{i0}) D_{ij} \ &= \kappa +
u_0 + \sum_{j
eq 0} (
u_j -
u_0) + lpha_i + \sum_j \epsilon_{ij} D_{ij} \ &= \ddot{\kappa} + \sum_{j
eq 0} \widetilde{
u}_j D_{ij} + \sum_{p
eq 0} \ddot{\phi}_p A_{ip} + \ddot{\epsilon}_i \end{aligned}$$

• Under Assumptions 1 & 2, $\ddot{\epsilon}_i$ is mean independent of regressors

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- ✓ Research Design
- VA Estimates & Validation
- Distributional Magnitudes
- Institutional Predictors
- Potential Mechanisms
- Match Effects
- Conclusion

Raw Means: BA Completion

Raw Means

Typical Controls: BA Completion

Raw Means
 Typical Controls
Baseline Value-Added: BA Completion

Raw Means: Earnings

Raw Means

Typical Controls: Earnings

Raw Means
Typical Controls

Baseline Value-Added: Earnings

Additional Checks: Richer Portfolio Specifications

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- ✓ Research Design
- ✓ VA Estimates & Validation
- Distributional Magnitudes
- Institutional Predictors
- Potential Mechanisms
- Match Effects
- Conclusion

Distributional Magnitudes of VA Across Colleges

Accounting for estimation error in the distribution of value-added:

$$\sigma_{estimates}^2 = \sigma_{signal}^2 + \sigma_{noise}^2$$

	BA Completion	Earnings
Panel A: Raw Outcome Means		
Standard deviation of estimates across colleges	.179	8,070
Standard deviation of signal component	.179	8,065
Standard deviation of noise component	.004	276
Panel B: Causal Value-Added Estimates		
Standard deviation of estimates across colleges	.039	1,530
Standard deviation of signal component	.037	1,332
Standard deviation of noise component	.012	753
Panel C: Relationships between Raw Outcome Means and Value-Added		
Signal SD of causal value-added \div signal SD of raw outcome means	.207	.165
Correlation of VA estimate with raw outcome mean (uncorrected for noise)	.471	.176
Correlation of signal VA with raw outcome mean (corrected for noise)	.495	.203
Regression of school's value-added estimate on its raw outcome mean (SE)	.103 (.036)	.033 (.035)

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- ✓ Research Design
- ✓ VA Estimates & Validation
- Distributional Magnitudes
- Institutional Predictors
- Potential Mechanisms
- Match Effects
- Conclusion

Reminder: Selectivity Distribution

Selectivity: Strong Predictor of Raw Earnings

Selectivity: Uninformative about Earnings Value-Added

Selectivity: Student-Level Regressions (Replicating DK)

Selectivity: Early Career Dynamics (Employer Learning?)

Selectivity: BA Completion & STEM Majors

Beyond Selectivity: Non-Peer College Inputs

	BA Completion	Earnings
Non-Peer College Inputs: Correlation with Causal Value-Added		
Instructional expenditures per student	.342	.317
Academic support expenditures per student	.158	.288
Student services expenditures per student	.295	.076
Share of faculty who are full-time	.371	.450
Share of faculty who are tenured or on tenure-track	.267	.411
Average faculty salary	.082	.090
Faculty/student ratio	.433	.433
Share of degrees in STEM fields	.332	.422

Peer vs. Non-Peer Inputs

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- ✓ Research Design
- $\checkmark\,$ VA Estimates & Validation
- Distributional Magnitudes
- ✓ Institutional Predictors
- Potential Mechanisms
- Match Effects
- Conclusion

VA on Earnings vs. VA on BA Completion: in 4 Years

VA on Earnings vs. VA on BA Completion: in 6 Years

VA on Earnings vs. VA on BA Completion: in 8 Years

VA on Earnings vs. VA on STEM and Non-STEM Degrees

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- ✓ Research Design
- $\checkmark\,$ VA Estimates & Validation
- Distributional Magnitudes
- \checkmark Institutional Predictors
- ✓ Potential Mechanisms
- Match Effects
- Conclusion

VA Estimates by Subpopulation: Earnings

Black Subsample: The Role of HBCUs

Testing for Mismatch: Across the Non-HBCUs

Testing for Mismatch: Across the Non-HBCUs

Testing for Mismatch: Across the Non-HBCUs

Today's Agenda

- \checkmark Introduction
- ✓ Setting & Data
- ✓ Research Design
- $\checkmark\,$ VA Estimates & Validation
- Distributional Magnitudes
- \checkmark Institutional Predictors
- $\checkmark\,$ Potential Mechanisms
- ✓ Match Effects
- Conclusion

Conclusion

Validating the Matched Applicant Approach: OVB

VA on Earnings vs. VA on BA Completion: in 8 Years

Selectivity: Uninformative about Earnings Value-Added

Appendix

Data: Variation Within (75%) vs. Across (25%) Schools

Insufficiency of Simpler Portfolio Specifications

Insufficiency of Simpler Portfolio Specifications

Additional Checks: Earnings Measurement

Additional Checks: Missing Earnings

Accounting for Estimation Error: EB Shrunk Forecasts

Accounting for Estimation Error: EB Shrunk Forecasts

Intergenerational Mobility Statistics: Our Raw Analogue

Intergenerational Mobility Statistics vs. Causal VA

Intergenerational Mobility Statistics vs. Causal VA

STEM VA vs. Non-STEM VA

STEM and Non-STEM: Residualized on Each Other

Other Potential Mechanisms: Persistence and Transfer

Other Potential Mechanisms: Industry of Employment

Allowing Match Effects: Similar VA for Average Student

Allowing Match Effects: Similar VA for Average Student

