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Abstract:

We analyze wartime prosthetic device patents to investigate how procurement policy
affects the cost, quality, and quantity of medical innovation. Analyzing whether inven-
tions emphasize cost and/or quality requires generating new data. We do this by first
hand-coding the economic traits emphasized in 1,200 patent documents. We then train a
machine learning algorithm and apply the trained models to a century’s worth of medi-
cal and mechanical patents that form our analysis sample. In our analysis of these new
data, we find that the relatively stingy, fixed-price contracts of the Civil War era led in-
ventors to focus broadly on reducing costs, while the less cost-conscious procurement
contracts of World War I did not. We provide a conceptual framework that highlights the
economic forces behind this finding. We also find that inventors emphasized dimensions
of product quality (e.g., a prosthetic’s appearance or comfort) that aligned with differ-
ences in buyers’ preferences across wars. Finally, we find that the Civil War and World
War I procurement shocks led to substantial increases in the quantity of prosthetic device
patenting relative to patenting in other medical and mechanical technology classes. We
conclude that procurement environments can significantly shape the scientific problems
with which inventors engage, including the choice to innovate on quality or cost.
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From 1960 to 2018, U.S. health spending rose from 5 to nearly 18 percent of GDP.
Research documents that the advance of medical innovation underlies a substantial share
of this cost growth (Smith, Newhouse, and Freeland, 2009; Cutler, 2004). A key question,
then, is why medical innovation has tended to bring cost-increasing enhancements to
quality rather than cost-reducing advances in productivity.

Expensive technologies pose dilemmas related to health system cost, access, and eq-
uity (Chandra and Skinner, 2012; Shepard, Baicker, and Skinner, 2019). Treatments in-
cluding proton beam therapy, the cancer drug Avastin, and the hepatitis C drug Sovaldi,
provide striking illustrations. Each treatment is used regularly in the United States. By
contrast, the British National Health Service (NHS) has strongly limited their coverage.
This reflects the NHS’s assessment that these treatments are too costly to finance without
severe restrictions.” This coverage dilemma prompts us to ask whether policy can shape
the amount of costly versus cost-reducing innovation in which inventors engage.

We analyze the effects of incentives on both the quantity and cost-consciousness of
medical innovation. We first show that health care payment models can, at least in
theory, play a role in steering inventor efforts between quality- and cost-oriented innova-
tion. Our empirical analysis considers two important periods in the history of prosthetic
device innovation, namely the U.S. Civil War and World War 1. We show that both wars
led to substantial increases in prosthetic device patenting. A key point of contrast is that

the Civil War led to a much larger rise in cost-conscious innovation. To the best of our

"Early estimates implied that Avastin, for example, could extend life by several months at a cost ex-
ceeding $50,000 per year of treatment (Kolata and Pollack, 2008). This fails the NHS’s cost-effectiveness
thresholds. Avastin’s coverage has thus come primarily through the Cancer Drugs Fund, which temporar-
ily financed payments for a number of costly drugs in spite of the system’s cost-effectiveness thresholds
(Hawkes, 2015). While Sovaldi was recommended positively by the UK’s National Institute for Health
and Care Excellence, the NHS initially capped use to 10,000 patients per year, which was far below need
(Boseley, 2016). With regards to proton beam therapy, Limb (2019) writes that “Since 2008, some 1,400 pa-
tients have been referred to hospitals in the US and Europe under an NHS overseas treatment programme
that funds treatment, transport, and accommodation.” The construction of major proton beam treatment
centers in the UK itself is a relatively recent development.



knowledge, this analysis provides the first evidence that cost-conscious payment models
can indeed steer medical innovation in a cost-conscious direction.

We begin by developing a framework to show how payment models can shape in-
centives for inventors to improve product quality or reduce costs.> The framework’s first
implication is straightforward: cost-based payments, which protect suppliers against
cost overruns, provide far greater incentives for quality-enhancing innovation than for
cost-conscious innovation. Fixed-price payments, which do not adjust with realized
costs, are the standard alternative to cost-based payments. We explore the conditions
under which fixed-price payments will tilt incentives in favor of cost-conscious inno-
vation. Our framework’s most novel insight is that the effects of fixed-price payment
models depend crucially on market structure and on how high payments are set. When
payments are low, fixed-price payment models will tend to steer innovation in a cost-
conscious direction. For example, if a payment is set below a firm’s baseline costs, then
the firm must innovate to reduce costs before sales become profitable. By contrast, we
show that fixed-price payment models with high payment rates can lead inventors to fo-
cus on quality-enhancing innovation: high payments make sales highly profitable, which
can lead firms to compete for market share based on their products” quality.

Empirically assessing how incentives shape the emphases of inventors requires over-
coming two primary challenges. First, existing data sources that categorize patents or
clinical trials do not provide information on an invention’s detailed economic attributes.
Extracting this information requires going deeper into an invention’s details. Second,
linking incentives to the specific attributes on which inventors focus requires analyzing
settings across which incentives vary meaningfully.

To gain insight into how inventors advanced the frontier of prosthetic device tech-

nology, we use machine learning tools to construct a novel data set. We begin by closely

2The framework applies insights from Rogerson (1989, 1994) and from Laffont and Tirole (1986).



reading 1,200 patents from the periods surrounding the U.S. Civil War and World War 1.
Our selection is comprised of prosthetic device patents and patents from other medical
and mechanical technology classes. Based on these close readings, we code variables
describing the economic traits emphasized in each patent. These variables include a set
of four traits that we interpret as cost-conscious attributes and two traits that capture
dimensions of product quality. We then use machine learning tools to extend our data
set to include a much larger set of patents.

We analyze two striking episodes in the history of prosthetic device innovation,
namely the U.S. Civil War and World War I. These episodes were associated with dra-
matic increases in demand, as amputations were remarkably common. Our empiri-
cal analysis takes a standard difference-in-differences structure. We compare pre-war
patenting within out treatment and control groups to patenting during and after the
wars. We use other medical and mechanical technology classes to establish control
groups for our treated prosthetic device class.

Our first result quantifies the effects of the Civil War and World War I on the quan-
tity of prosthetic device innovation. For several years during each episode, prosthetic
device patenting was elevated by nearly 100 log points relative to patenting in our con-
trol groups. Despite analyzing only two “treatment events,” the relative increases in
prosthetic device patenting are quite strongly statistically distinguishable from zero.

Second, we find that the demand shock associated with the Civil War generated
substantial effort to reduce the cost of producing prosthetic devices. During the Civil
War period, the average prevalence of our four cost-oriented traits temporarily doubled
in prosthetic device patents but was essentially flat within our control groups. This
high degree of cost-oriented innovation was plausibly driven by the design of the U.S.
government’s procurement program, through which manufacturers received low, fixed-

price payments.



Third, prosthetic device patents exhibit an increased emphasis on traits connected to
the mass production of prosthetic devices during both wars. That is, wartime patents
suggest shifts away from bespoke prosthetic limbs. This common shift in emphases is
consistent with a role for economies of scale within the supply chain.

Finally, the prosthetic device patents of the Civil War and World War I episodes
diverged with respect to dimensions of product quality. Civil War-era prosthetic device
patents exhibit a substantial increase in emphasis on comfort. By contrast, World War I-
era prosthetic device patents de-emphasize comfort and exhibit an increase in emphasis
on appearance. These differences are plausibly, though not definitively, linked to a World
War I-era shift in choice away from veterans and towards medical professionals. This
shift was accompanied by a heightened emphasis (by both the government and medical
professionals) on the re-employment and social re-integration of amputee veterans.

Our analysis contributes to several lines of research. First, an important line of re-
search studies the effects of market size on the pace of new drug development and, to
a lesser extent, the development of medical devices (Finkelstein, 2004; Acemoglu and
Linn, 2004; Budish, Roin, and Williams, 2015).3 This research has not previously spoken
to the question of why new medical technologies have tended to focus on quality rather
than cost. We make progress on this question by developing the requisite data and by
identifying historical settings in which it can be addressed. Our findings suggest that
cost-conscious payment models can steer innovation in a cost-conscious direction.

Second, our findings add to broader lines of research on innovation’s determinants.

Our analysis complements existing research on demand-induced innovation, within

3Additional papers include Acemoglu, Cutler, Finkelstein, and Linn (2006), who find that the intro-
duction of Medicare had no effect on the development of drugs for the elderly, Clemens (2013), who finds
that U.S.-based medical equipment and device patenting rose following the introduction of Medicare,
Blume-Kohout and Sood (2013), who find that research on drugs with high Medicare market shares rose
following the introduction of Medicare Part D, and Dubois, De Mouzon, Scott-Morton, and Seabright
(2015), who find that potential profits affect the number of new molecular entities that come to market.



which the environmental literature is extensive.# A study of particular relevance to our
work comes from Newell, Jaffe, and Stavins (1999), who analyzed the effects of energy
prices on the detailed energy efficiency attributes of A/C technology. We also add to a
body of research that analyzes innovation in the context of shocks connected to wars.

Finally, we add to an expanding set of papers that use natural language processing,
or text analysis, in economics research. Analyses of patent texts have become increas-
ingly common in the innovation literature.® Our application shares similarities with
recent analyses of “sentiment” and “partisanship,” where the objective is to construct
new variables describing a text’s economic content (Shapiro, Sudhof, and Wilson, 2018;
Gentzkow, Shapiro, and Taddy, 2019). We develop several practical insights into best
practice methods for this class of machine learning applications.

The paper proceeds as follows. Section 1 develops an analytic framework that con-
nects payment models to the emphasis of inventors on quality and cost. Section 2 pro-
vides background on the historical episodes we analyze. Section 3 discusses our novel
data set and section 4 our empirical strategy. Section 5 presents our results and section

6 concludes.

4See Popp (2010) and Popp (2019) for reviews. Acemoglu, Aghion, Bursztyn, and Hemous (2012)
present a theoretical framework for analyzing the dynamic effects of environmental policy on innovation,
while papers by Aghion, Dechezleprtre, Hemous, Martin, and Van Reenen (2016), Howell (2017), John-
stone, Hascic, and Popp (2008), Ito and Sallee (2018), Knittel (2011) and Newell, Jaffe, and Stavins (1999)
provide empirical evidence.

5Hanlon (2015), for example, analyzes innovation in the British textile industry as it responded to the
supply chain shock connected to declines in access to imported cotton during the U.S. Civil War. Moser
and Voena (2012) and Baten, Bianchi, and Moser (2017) use the U.S.”s World War I era “Trading with
the Enemy” act to analyze the effects of compulsory licensing. Moser, Voena, and Waldinger (2014) ana-
lyze how innovation was shaped by Jewish migration during World War II, while Waldinger (2010) and
Waldinger (2011) analyze how innovation was shaped by the Nazi expulsion of professors and scientists.
Iaria, Schwarz, and Waldinger (2018a) study the effects of the collapse in scientific communication associ-
ated with the onset of World War 1. Finally, Khan (2009) and Khan (2015) focus on the Civil War’s effects
on the trajectories of entrepreneurial inventors.

6See, for example, Khoury and Bekkerman (2016); Bergeaud, Potiron, and Raimbault (2017); laria,
Schwarz, and Waldinger (2018b); Watzinger and Schnitzer (2019); Arts, Cassiman, and Gomez (2018);
Cockburn, Henderson, and Stern (2018).



1 Conceptual Framework

Our analysis is concerned with two aspects of the relationship between market forces
and medical innovation. The first is the effect of potential profits on the volume of in-
novation in a particular technological space. The second is whether incentives shape the
extent to which an inventor allocates effort to improve production processes or partic-
ular dimensions of treatment quality. This second choice has not previously received
attention in the literature on medical innovation.

Inventors make meaningful economic choices regarding the time and resources they
devote to improving each of a product’s attributes. They presumably do this, at least
in part, to maximize their effort’s impact on the product’s value. Cancer treatments
provide a natural illustration. Key dimensions of innovation in the cancer treatment
setting are life extension, quality of life improvements (e.g., reduction of side effects),
and cost reduction. Similarly, innovation in the production of coronary stents could in-
volve streamlining production, the use of lower-cost materials, the use of materials with
greater durability, and improvements to the mechanisms through which drug-eluting
stents store and release medication. Importantly, advancing a particular dimension of a
treatment’s frontier can involve solving a distinct scientific problem with unique costs
and payoffs. An effort to advance the frontier can thus involve important choices regard-
ing which problems to solve.

In a well-functioning innovation space, returns would connect cleanly to the social
value an inventor’s efforts are expected to create. There are multiple reasons, how-
ever, why markets for new technologies might fail to meet this standard. These include
the classic public goods problem and the “business-stealing” effect, which can apply
broadly across industries (Romer, 1986; Aghion and Howitt, 1992; Tirole, 1988). Incen-
tives for medical innovation are also shaped by the institutional characteristics of health

care markets. These include regulatory approval and reimbursement systems designed



by governments or other third-party payers. Because many medical innovations require
regulatory approval to reach the market, attributes that influence approval will weigh
heavily in inventors’ objective functions. In the U.S., this will tend to reward life ex-
tension and safety over cost and dimensions of well-being that are difficult to measure
(Budish, Roin, and Williams, 2015).

The following framework connects market size, market structure, and the structure
of reimbursements to inventors’ decisions to engage in quality-enhancing and cost-
reducing innovation. Many of the considerations we highlight are featured in analyses
by Rogerson (1989, 1994). A distinction of interest is that Rogerson focuses on pro-
curement from a single source, which is typical in the settings he analyzes. Our setting
involves a moderate number of mid-sized manufacturers, which makes competition over
market share an ongoing consideration.

Suppose, as in our empirical applications, that a government needs to procure Q
prosthetic devices from a market with N potential manufacturers indexed by j. While the
government determines how firms are reimbursed, demand for a given firm’s product
may be driven by either the government or the final consumers. Let firm j's market
share, mj(vj,v,]-, p]‘?, p ].), be an increasing function of its own quality (12—27 > () and a
decreasing function of other firms” quality (;7% < 0). In general, market shares will also
be functions of consumer prices (p]? and p© ]-). In our contexts, however, consumers do
not pay directly for a manufacturer’s output, such that p;? = 0and p?; = 0. Quality can
be increased through innovative effort ¢; ,, while cost can be reduced through innovative
effort ejc. Firm j’s per-unit production costs, c]-(ejlc, ej,v), are increasing in innovation on
quality (% > 0) and decreasing in innovation on cost (;% < 0). The cost of innovative
effort itself is b(ej) = b(ej. +¢;,), with b(0) =0, b’(0) =0, b’ > 0, and b" > 0.

Both overall profitability and the relationship between profit and innovation depend

on the government’s reimbursement schedule. Our description of the reimbursement



schedule nests classic “cost-plus” and “fixed-price” reimbursement schemes. That is,
reimbursements can contain both a fixed component and a cost-based component: r; =
r+ Bcj(ejc, ej,). Cost-plus reimbursement, for example, ensures that firms make a profit
regardless of ¢; by either setting f > 1andr = 0or f = 1and r > 0.7 A fixed-price
reimbursement, by contrast, sets B = 0 and pays exclusively through r.

We make several simplifying assumptions about the environment that are worth stat-
ing explicitly. First, we treat the problem as static rather than separating the periods
during which innovation choices are made from the periods during which sales occur.®
Second, we abstract from the possibility that the government may separate the innova-
tion and manufacturing functions by directly financing, or even producing, innovation
itself.? Third, we characterize how innovative effort affects a firm’s profitability while
holding other firms’ effort levels fixed. Fourth, our characterization of cost-based reim-
bursements abstracts from the fact that the procurer’s estimates of cost might be aver-
aged across firms and might be updated with lags.’® These assumptions do not affect

the qualitative insights we emphasize but allow for simplified exposition.

This set-up yields three expressions of interest. First, profit for firm j, 7;, is

7j(ej0,€jc) = Qmj(vj, v, pj, p< ;)1 — cj(eje €j0)] — b(e)). (1)

Second, the effect of an increase in quality-oriented innovation on profit is

7Rogerson (1994) points out that setting B > 1 can be attractive when production-phase profits are
needed to encourage innovation on quality and when the procurer desires for the magnitude of that
incentive to rise with overall project costs.

8Canonical models have effectively captured key features of the problem of contracting to induce effort
to reduce production costs in one-period frameworks (Shleifer, 1985; Laffont and Tirole, 1986; Rogerson,
2003). While incentives for innovation on product quality are best captured by models with distinct “prod-
uct development” and “production” phases, our framework nonetheless captures the forces emphasized
by Rogerson (1989, 1994) that are most relevant to our setting.

9While direct public financing for research and development was absent in the context of our Civil
War application, it was a factor in the context of our World War I application.

®Rogerson (1994) points out that lags can be used purposefully to make cost-conscious innovation
profitable within an ostensibly cost-based reimbursement structure.
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These expressions have implications for the effects of the size of the market, market
structure, and the structure of reimbursements on innovation. First, so long as profit
is increasing in either quality-enhancing or cost-reducing innovation, the magnitude of
the incentive to innovate is strictly increasing in the size of the market, Q. Second, the
relative returns to quality-enhancing and cost-reducing innovation depend, among other
things, on market structure and the structure of reimbursements.

Under the most basic form of cost-plus reimbursement, the government sets r > 0
and f = 1, which implies that Z—g = 1. This has three direct implications: 1) the first
term in equation (2), which describes increases in profit from increases in units sold,
will be positive, 2) the second term in equation (2), which captures changes in profit per
unit, is equal to o, and 3) the first term in equation (3), which again captures changes
in profit per unit, is 0. Together, these implications push innovation towards quality
enhancement and away from cost reduction under a cost-plus reimbursement regime. A
positive return is initially (i.e., starting from e; = 0) guaranteed for quality-enhancing
innovation, while there is no benefit to innovating to reduce cost.

Under a fixed-price regime, we have g = 0 and r; = r. Under this regime, note that

o o S o . dr;
the initial return to cost-saving innovation is guaranteed to be positive, since 7 ;’ =0,
]
—Cf < 0, and db({o) = 0. Note that the initial return to quality enhancing innovation
dej,c dej,c q y &

depends crucially on the level at which the payment is set. Since ;e—jfv = 0, the change

in profit per unit sold (the second term in equation (2)) is negative. A positive return

thus requires the first term, which describes profit linked to increases in the number
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of units sold, to be positive. Now note that if r < ¢;(0,0), the first term will also
be negative. A fixed payment regime with a reimbursement rate set below baseline
cost thus guarantees that cost-reducing innovation will occur before quality enhancing
innovation. Note, however, that if the payment is set too low firms will neither innovate
nor be willing to make sales, since all sales would generate losses.

Fixed-price regimes will tend to generate innovation on both cost and quality. When
r < ¢j(0,0), participating firms will initially focus on cost-conscious innovation, but may
ultimately choose positive levels of both cost-conscious and quality-enhancing innova-

tion.*?

Interestingly, it is possible for a fixed-price regime to generate predominantly
quality enhancing innovation. This outcome will be relatively likely when the fixed
reimbursement is very high (r; >> Cj(ej,m e]',v)) and when market share is highly sensi-
tive to quality (% >> (). These conditions can lead the first term of equation (2) to
exceed the sum of the second term of equation (2) and the first term of equation (3).
Market structure and the level of reimbursement within fixed payment regimes can thus
determine the focus of innovative efforts.

Market structure influences several aspects of the returns to innovating on both cost
and quality. First, as noted above, the returns to innovation on quality are increasing
with the effect of quality on market-share (%). Markets in which consumers are highly
sensitive to variations in quality will thus tend to generate intensive effort to innovate
on quality relative to cost. A related point is that contracts over fixed quantities reduce
tirms’ incentives to innovate on quality by shutting down (or at least blunting) the mar-
ket share channel. Second, market structure may, for practical reasons, either facilitate

or inhibit the administration of cost-based reimbursements. The cost structure for a mo-

nopolist, for example, describes the cost structure for an entire market. The procurer

A firm makes sales and innovates if its profit-maximizing innovation choices result in per-unit pro-
duction costs that are below the reimbursement rate, or r > c;(ef , e7,) (which can occur even when

e o
r < ¢(0,0)).
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may thus adjust reimbursement rates quickly in response to a monopolist’s innovation
on cost, which blunts the incentive for cost-conscious innovation. In a market with many
small players, by contrast, reimbursements may be set to align with the procurer’s esti-
mates of cost, perhaps as averaged across participating firms. A single firm’s innovation
on cost might then have very little effect on payments, making cost-conscious innovation
profitable.

Finally, the procurer may, in some cases, contract directly on dimensions of innovative
effort. During World War I, for example, the British government played a direct role in
identifying the “kinds of devices” manufacturers should produce (Guyatt, 2001, p. 312).
Further, both the U.S. and British governments of World War I took the step of directly
employing researchers for the production of new materials and prosthetic device designs
(Guyatt, 2001; Linker, 2011).

Our basic framework is useful for analyzing the incentives generated by a rich set
of reimbursement systems. Systems of potential interest include traditional Medicare’s
fee-for-service model and the widely used Prospective Payment System for hospital re-
imbursement. In what follows, we analyze the innovation that occurred under the Civil

War and World War I era systems for procuring and reimbursing prosthetic devices.

2 Background on Wartime Prosthetic Device Procurement

Both the U.S. Civil War and World War I were associated with dramatic increases
in demand for prosthetic devices. In this section, we describe the size of these demand
shocks, then provide background on U.S. and foreign systems for rehabilitating amputee
veterans and procuring their artificial limbs. Because the histories connected to each

conflict are dense, our brief discussion will inevitably miss many nuances.
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2.1 Background on Wartime Demand Shocks

The U.S. Civil War was contested between the armies of the Union and the Confed-
eracy from April 1861 to May 1865. An estimated 35,000 amputees survived the war
(Linker, 2011, p. 98). Because the government had not formed a permanent bureau-
cracy for addressing veteran health care needs prior to the war, both the Union and
Confederacy implemented ad hoc artificial limb procurement systems as the scope of
need became clear. The Union army’s program for procuring artificial limbs, which was
administered within its broader pension system, was initiated through a Congressional
appropriation dating to July 21st, 1862 (Hasegawa, 2012, p. 21). In a communication
to Congress, Barnes and Stanton (1866) report that as of May 1866 the Union program
had delivered 6,075 artificial limbs, including 3,798 legs and 2,204 arms, at a cost of just
under $360,000 (roughly $6 million in 2018). Hasegawa (2012) documents the delivery
of just under 750 prosthetic devices by the Confederacy over a similar period.

World War I was contested from July 1914 to November 1918, with U.S. involve-
ment commencing April 6th, 1917. The war produced an estimated 300,000 amputee
survivors worldwide, of whom roughly 67,000 were German and 41,000 British (Guyatt,
2001, p. 98). Relative to the Civil War, demand associated with 4,000 amputee U.S. vet-
erans was relatively modest. Because production capacity was low among the European
powers and high in the U.S., however, the U.S.-based artificial limb industry played a
major role in satisfying global demand. Linker (2011) writes, for example, that “While
serving in France, American orthopedist Robert Osgood estimated that during the year
1915, French manufacturers were able to produce only 700 limbs for its 7,000 amputees”

(Linker, 2011, p. 98)."> The European powers thus utilized U.S. manufacturing capabil-

A historical question of interest is why the prosthetic device industry in Europe had not developed
in the wake of the Crimean War which, like the U.S. Civil War was fought using “Minie Ball” bullets,
which dramatically increased the prevalence of wounds necessitating amputation (Freemon, 1993). The
answer likely lies in sheer numbers. Estimates of wounded war survivors were roughly three times larger
during the U.S. Civil War than during the Crimean War (Garrison, 1917). Additionally, a larger fraction

13



ities. Great Britain, for example, invited the largest American prosthetic companies “to

set up workshops at the main amputee center” (Linker, 2011, p. 99).

2.2 Background on Civil War-Era Procurement

Although the Union’s Civil War era artificial limb program was ad hoc, its design
was quite sensible. As Hasegawa (2012) documents, a modest initial appropriation by
Congress led General William Hammond to convene a panel of physicians to, in Ham-
mond’s words, “determine what kind of Artificial Limbs should be adopted for the
use of mutilated soldiers.” Hasegawa (2012) describes a series of subsequent meetings
during which the panel assessed inventors’ prototypes for artificial arms and legs. If
satisfactory, the panel deemed an artificial limb “serviceable,” allowing its subsequent
purchase through the program.

Reimbursement occurred on a fixed-price basis. Artificial arm provision was tem-
porarily delayed because no prototypes were initially deemed to be of sufficiently high
quality to merit approval (Hasegawa, 2012, p. 34)."3 Artificial arms were subsequently
approved at a price of $50, while the price for artificial legs was set at $75 (roughly $1,500

in 2018 dollars) for the bulk of the war (Hasegawa, 2012, p. 37-38). Importantly, with

of the surviving wounded was likely to be amputees during the Civil War than during the Crimean War
due to improvements in surgical survival rates. Estimates suggest amputation survival rates of roughly
75 percent during the U.S. Civil War (Figg and Farrell-Beck, 1993). During the years surrounding the
Crimean War, by contrast, amputation survival rates among civilians treated in the relatively favorable
conditions of the London Hospital were nearly 50 percent. (Macleod, 1858, p. 168) enumerates a total of
521 amputee British survivors during the last year of the two and a half year conflict, a period extending
from April 1, 1855, to March 30, 1856. He notes that the 73 percent survival rate for this latter period of
the war was surely far higher than the rate under the far less favorable conditions of the war’s first two
years. A final point of interest is that roughly 60 percent of the Crimean War’s surviving war wounded
were from the Russia Empire (Garrison, 1917). While details on Russian procurement of prosthetic devices
have proven difficult to come by, we speculate that its arrangements were likely less generous than those
of either the Union or, for that matter, the Confederacy.

3This indicates that the panel took its job rather seriously, as a number of low-quality offerings were
denied approval. Further, this highlights that the artificial arm patents from this period were associated
with appreciable improvements in product quality, at least as assessed by the review panel.
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reference to section 1’s conceptual framework, these prices were quite low relative to
manufacturers’ stated costs.’ Balance billing was not permitted. After the war’s conclu-
sion, the panel of physicians rated the qualities of alternative limbs and allowed soldiers
to select higher-quality limbs at higher prices, with the soldier paying or taking home
the difference from the allowance (Hasegawa, 2012, p. 40).

Over the decades immediately following the war, the U.S. government provided reg-
ular artificial limb replacements for veterans. Like the initial appropriation for artificial
limbs, these reforms took place within the context of the Union Army’s pension system.
Importantly, veterans were allowed to choose between a replacement limb and cash,
which was referred to as a commutation payment (Hasegawa, 2012, p. 76). Statistics
from annual reports of the army’s Surgeon General reveal that veterans overwhelmingly
preferred cash; from 1870 to 1891, “arm amputees chose a new device over commutation
only 1.4 percent of the time, and leg amputees selected a new leg 21.9 percent of the time”
(Hasegawa, 2012, p. 76). As detailed below, this program’s budgetary costs, coupled with
societal perceptions of limbless veterans “pocketing” their allowances, greatly impacted

World War I era views regarding care and rehabilitation for veteran amputees.'>

2.3 Shifts in Approaches to Treatment, Rehabilitation, and Innovation

By World War I, the U.S. had substantively formalized the treatment of amputee vet-
erans. This occurred within a broader effort to formalize veterans’ health care, which
was motivated in part by the cost overruns and seemingly endemic politicization of ben-

efits administered through the Union Army’s pension system (Cogan, 2017). In addition

"Hasegawa (2012) documents that a leading manufacturer told the government his costs were $150
per artificial leg. Findings from Chan and Dickstein (2019) caution, however, that providers will tend to
inflate cost-assessments when their reimbursements depend on it.

SLinker (2011) argues that Civil War amputees who opted for cash rather than a replacement limb,
or who otherwise purchased cheap peg legs, had effects on views of treatment and rehabilitation that
prevailed during World War L
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to being formalized, care for amputees had also been largely centralized at large facil-
ities including the recently built Walter Reed Hospital.?® Progressive Era policymakers
worried that amputee veterans would, like many of their Civil War predecessors, fail to
return to gainful employment. As Linker (2011, p. 13) writes, “The veterans of America’s
First World War were expected to become citizen-workers once their military service was
over; they were to make useful lives, not to languish at the expense of the US Treasury.”
Further, “The Limb Lab’s goal was to give every man, whether legless or armless, a
‘modern limb’—a limb that would make it possible for amputee soldiers to pass as nor-
mal, able-bodied citizens in the workplace and on the streets” (Linker, 2011, p. 101). The
British and German governments had similar views on the importance of rehabilitation
and reemployment.'”

Between the Civil War and World War I, discretion in the choice of artificial limb
shifted from soldier to government. During World War I, amputee veterans underwent
extensive rehabilitation prior to their return to civilian life, including obligatory use of
standard-issue prosthetic limbs. Linker (2011, p. 101) writes that “the OSG [Office of the
Surgeon General] forcefully mandated artificial limb wear, creating legislation that made
it virtually impossible for US amputee soldiers to be discharged from military service
without months of rehabilitation and daily routine artificial limb wear.” Physicians now
mediated between veterans and artificial limb manufacturers.

Medical professionals of the World War I era de-emphasized the amputee’s comfort

16Treatment of amputee veterans also took place at Letterman hospital in San Francisco. As Linker
(2011, p. 80) writes, “Surgeon General Gorgas designated two general hospitals to become permanent
installations for rehabilitative care: Letterman General Hospital in San Francisco and Walter Reed General
Hospital in Washington. Later in the war, the list of military rehabilitation hospitals would grow to 14,
but Letterman and Walter Reed remained the flagship facilities during and after the war.”

7See, for example, Guyatt (2001, p. 311-312) regarding the British government’s objectives with regards
to artificial limbs. In a description of German austerity towards amputee veterans, Perry (2014, p. 124)
describes the prevailing view as being that “the greatest obstacle to war-time physical rehabilitation was
not the injury itself, but rather the soldier’s own lack of ‘will to work”” and that they were “encour-
aged by others to become dependent on welfare and charity.” Perspectives on amputee veterans and the
importance of self-sufficiency thus differed starkly from what one might expect in more recent times.
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in favor of this strict rehabilitation program. In a description of prevailing views and

approaches to rehabilitation, Linker (2011, p. 109-114) writes:

Once surgical healing had been attained... the ‘toughening’ of the stump by
‘pounding it on a firm surface’ should be 'vigorously pursued’... Following
stump pounding exercises, “patients usually complained of discomfort’... An-
other report stated that when amputees were forced to wear artificial limbs
soon after surgery, they often ‘expressed gratitude when the artificial limb

[was] removed.’

In addition to driving a relatively severe program of physical rehabilitation, the desire
for economic and social reintegration spurred an emphasis on “disguising” veterans’
disabilities. A chief of the War Risk Insurance Bureau, for example, wrote that “One of
the most useful and necessary duties of this department will be to prescribe and furnish
medical and surgical treatment in order that disabilities may be reduced or caused to
disappear entirely” (Linker, 2011, p. 100).

A final key point differentiating Civil War and World War I prosthetic device innova-
tion is the direct role of governments in these efforts. During the Civil War, innovation
came entirely from private industry. During World War I, innovation was, in part, con-
ducted by governments and contracted directly by governments. The U.S. “Limb Lab”
is an instance of innovation conducted by the government itself. In the United King-
dom, Guyatt (2001, p. 312) notes that “the government’s Ministry of Pensions decided
which limb-makers were contracted and, increasingly, what kinds of devices they should
make.” This work was complemented by a government-run laboratory focused on “de-

veloping new materials for use in the industry.”
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3 Data and Text Analysis

We begin this section with a discussion of the historical patent data we use to estimate
the effects of wartime demand shocks on overall patent flows. We also discuss the
typical caveats for using patents as a measure of innovation and provide evidence on
why the patents we analyze have relatively strong links to true technological advances.
We then discuss the new data we generated through text analysis (or natural language

processing) using a combination of close readings and machine learning techniques.

3.1 Historical Patent Data

The first question we attempt to answer is if wartime increases in demand for pros-
thetic devices increased the rate of prosthetic device patenting. This analysis requires
information on 19th and early 2oth century patents by technology class. Until relatively
recently, the patent data sets analyzed by economists did not facilitate this type of histor-
ical analysis. The groundbreaking NBER patent database (Hall, Jaffe, and Trajtenberg,
2001), for example, begins with patents granted in 1963. Economists have recently devel-
oped databases extending to the earliest surviving records of the U.S. Patent and Trade-
mark Office (USPTO). To identify historical patents based on their technology classes,
we use the database assembled by Berkes (2018)."8

Figure 1 provides an initial look at time series on prosthetic device patents and

BIna comparison of several recent efforts to compile data sets on the universe of U.S. patents, Andrews
(2019) concludes that the database laid out in Berkes (2018) is “currently the gold standard.” Additional
analyses of 19th and early 2o0th century patents have been made possible by these data. Berkes and Nencka
(2019), for example, analyze the effects of the original Carnegie Library donations on innovative activity,
finding that the establishment of Carnegie Libraries had substantial effects on patenting rates. Berkes,
Gaetani, and Mestieri (2019) use the historical patent data to analyze the rise and fall of cities. They find
that diverse innovation portfolios are associated with a city’s resilience to the rise and fall of particular
industries, while cities with innovation in the most central fields exhibit the strongest growth over sub-
sequent decades. A similarly historic patent data set is under analysis by Akcigit, Grigsby, and Nicholas
(2017). The PATSTAT database maintained by the European Patent Office, as analyzed for example by
Doran and Yoon (2018), enables patents granted by the U.S. Patent Office to be tracked as far back as 1899.
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other broad categories of patents during the historical episodes we analyze. The dashed
vertical lines in each panel encompass the years we subsequently associate with “war-
induced” booms in prosthetic device patenting. It is quite clear from the panels of figure
1 that both the Civil War and World War I were associated with dramatic increases in the
rate of prosthetic device patenting. However, quantifying the causal effect of wartime
demand shocks faces the difficulty of constructing appropriate counterfactuals, which

we discuss in section 4.

3.2 Patents As a Measure of Innovation

Our use of patents as a measure of innovation faces standard caveats. Not all inno-
vations are patented (Moser, 2005, 2012), for example, and not all patents are indicative
of meaningful innovation. Further, in our historical context we can use neither patent
citations nor market valuations as proxies for value or scientific impact, as has been done
in analyses of patents from more recent periods (Trajtenberg, 1990, 1989; Hall, Jaffe, and
Trajtenberg, 2005; Kline, Petkova, Williams, and Zidar, 2019)." Nonetheless, there is
substantial evidence to support a strong link between this period’s prosthetic device
patents and meaningful technological advances.

In our Civil War and World War I era contexts, two factors ease standard concerns
regarding the link between patents and the underlying flows of innovation. First, the
periods we analyze pre-date more recent concerns regarding “patent trolls” (Cohen,
Gurun, and Kominers, 2014). Second, Khan (2015) observes that “there is ample evidence
that inventors during the 19th century were especially anxious to secure their rights
through patenting.” Together, these factors suggest that useless patents and unpatented

innovations are less common in our context than in recent settings.

YStandard reference sections were not included in patents until the mid-2oth century. Similarly, market
valuations are not available for the mid-19th and early-2o0th century firms we study.
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Two additional points connect this period’s prosthetic device patents to meaningful
technological advances. First, medical histories document that these episodes were, in
fact, episodes of substantial advance in artificial limb technologies. Finally and more
directly, available data establish links from patents to manufacturers, from manufactur-
ers to sales, and from both sales and manufacturers to expert assessments of quality.
We present the data underlying these connections in table 1. Twelve out of the thir-
teen most notable manufacturers of artificial legs and eight out of the nine most notable
manufacturers of artificial arms from the Civil War period can be linked to at least one
patent. Through May 1866, these patent-holding manufacturers accounted for nearly all
of the artificial legs and nearly 9o percent of the artificial arms furnished to Union Army
veterans.

Post- and late-war rankings of artificial limbs by quality further support a link be-
tween quality and market share (Barnes, 1865; Houston and Joynes, 1866). The top three
rated artificial legs accounted for just under 60 percent of sales through 1866, while the
top four rated artificial arms accounted for just over 60 percent of sales through 1866. The
highly-rated limbs with low market shares were those developed relatively late during
the war, namely the artificial arms of John Condell and the National Arm and Leg Com-
pany. The low market shares of these limbs are thus largely mechanical, as they were
not on the market when most of the limb purchases for which we have documentation
occurred. Low-rated limbs with non-trivial market share tended to be either unpatented

or to involve pre-war patents, suggesting an incumbency advantage.

3.3 Coding Patent Attributes

Beyond measuring patent flows, our analysis aims to understand the economic at-
tributes that are emphasized in each patent. We pursue this to understand how inventors

distributed their efforts across improving aspects of production processes and/or par-
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ticular dimensions of each product’s quality. Because the data required for this analysis
did not previously exist, we developed a novel data set.

Our data set contains information from historical patent documents that quantifies
the economic attributes that each patent emphasize. First, we created a program to
scrape the historical patent documents from Google Patents. Within the text of these
patent documents, we then analyzed six innovative attributes.>® Four of these, namely
cost, simplicity, adjustability, and materials, are cost-oriented production process at-
tributes. That is, these traits emphasize dimensions of an innovation’s construction. We
use the term “adjustability,” for example, to describe patents that emphasize uniform
production of outputs that can subsequently be fitted (or “adjusted”) to the needs of a
specific consumer. Our other two traits, namely comfort and appearance, are quality-
oriented attributes. Table 2 presents a concise verbal definition of each economic at-
tribute.

To develop this data set, we first manually classify our six attributes for two sets
of patents surrounding the war eras of interest. The first set contains patents related
to prosthetic devices, or class 623, as defined using the UPSTO’s patent classification
system. The NBER patent database categorizes class 623 as a subset of technology sub-
category 39, “Misc. Drugs and Med,” which in turn is a subset of technology category
3, “Drugs and Medical.” The second set contains patents from all other classes within
the “Drugs and Medical” and “Mechanical” categories, which form our control groups.
The patents of interest come 1840 to 1890 and 1900 to 1940. Our sample of closely-read
patents is then selected using stratified random sampling. We stratified across patent
classes and war episodes to ensure coverage across our treatment and control groups

during both time periods of interest.

290ur focus on these attributes was motivated by initial close readings of patent documents from both
prosthetic devices and our control groups. Useable attributes needed to be of economic interest, as well
as coherently and similarly defined in both our treatment and control groups.

21



As summarized in table A.1, the manually coded data set contains 195 prosthetic
device patents and 399 other medical or mechanical patents from the Civil War period,
as well as 302 prosthetic device patents and 305 other medical or mechanical patents
from the World War I period. We use these manually classified data to train a machine

learning model to code the same variables for additional patents.

3.4 Text Analysis

This section provides an overview of the text analysis tools we developed and imple-
mented. Classifying text according to its semantic content requires overcoming several
important difficulties. First, synonyms and variation in word meaning across contexts
can induce errors in text classification tasks. Researchers can select from a variety of
available algorithms, each having strengths and weaknesses, to address these issues.
Second, even a well-chosen algorithm can perform poorly if provided too little data from
which to learn. A model may also perform poorly if trained on data from contexts that
differ from those to which it is applied. Neglecting these issues can lead an algorithm to
generate inaccurate data, which can result in biased or uninformative estimates.

Our experimentation with a set of machine learning models showed that models
trained on the entirety of each patent’s text generated inaccurate results and were com-
putationally slow. We thus modified existing algorithms by constraining the text inputs
they consider to a combination of keywords and the immediate textual context surround-
ing the keywords. We adopted this approach for two reasons. First, restricting the input
data in this way improved model accuracy. Second, our approach led to efficiency gains

with respect to both processing times and small sample performance.
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3.4.1 Overview of Key Issues

Machine learning algorithms generally perform best when provided many observa-
tions from which to learn. The number of observations required for a particular classifi-
cation task depends on the complexity of the data used. When using text as data, each
observation can contain hundreds of unique words. If provided too few observations,
an algorithm can struggle to ascertain each word’s relative importance. Directing an
algorithm to focus on the most relevant words can aid in achieving accurate results from
a relatively small training set.

The complexity of language presents additional challenges for text classification. Two
such challenges are “polysemy,” which applies when a word has multiple meanings, and
“synonymy,” which applies when multiple words have the same meaning. Variation in
word meaning and usage can occur within and between text documents, across domains
(e.g., prosthetic device patents vs. mechanical device patents), and across time periods.
An algorithm’s performance depends on how effectively these issues are addressed.

Classifying text by searching for keywords, for example, will tend to yield poor re-
sults if the keywords suffer from a high degree of polysemy. Keyword searches fail to
account for nuanced variations in contextual meaning, which can lead to large inclu-
sion errors when polysemy is severe. Machine learning models, by contrast, attempt
to use context to ascertain meaning. Such models can fail to detect contextual mean-
ing, however, when the algorithm is provided a data set containing too few documents

(observations) from which to learn.

3.4.2 Owur Approach: Feature Selection for Machine Learning

A machine learning algorithm’s performance can often be improved by limiting its
attention to the most relevant words, or “features,” in a document’s text. This process is

called “feature selection.” The familiar Lasso procedure, for example, limits the number
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of features in the model by applying a penalty factor within its objective function. Guyon
and Elisseeff (2003) note that feature selection has been shown to help at “improving
the prediction performance of the predictors, providing faster and more cost-effective
predictors, and providing a better understanding of the underlying process that gener-
ated the data.” We thus develop and validate an approach that selects a set of features
comprised of keywords, their synonyms, and a flexible neighborhood of textual context
surrounding the keywords and synonymes.

We begin by connecting each of our attributes to lists of keywords. To construct these
lists, we first develop domain knowledge by closely reading 1,200 patent documents.
We then supplement our initial lists of keywords using a data-driven process. Specif-
ically, after preprocessing the patent texts we use the algorithm “Word2Vec” (Mikolov,
Sutskever, Chen, Corrado, and Dean, 2013) to identify additional synonymes.

With our comprehensive list of keywords, we then implement our method for select-
ing the constrained set of features that are inputs for a machine learning algorithm. The
steps in our method are displayed diagrammatically in figure B.1. After preprocessing,
we select each occurrence of a keyword within a given document. We then pair each key-
word with a neighborhood of its surrounding context. We term this neighborhood the
“spread.” If the spread parameter takes a value of j, for example, we keep the keyword
and all words up to j — 1 spots to the left or right of the keyword.**

The next step in implementing our algorithm is to arrange the words selected through

?'Figure B.2 displays an illustrative example of a patent document to highlight how we instruct a
machine learning algorithm to see only important words in an otherwise cumbersome text document.
Consider the following sentence fragment from a patent in our sample: “[joints] may be moved in ad-
justing the fingers or thumb to any given article.” Our preprocessing procedure converts this sentence
fragment to “joints moved adjusting fingers thumb given article.” The word “adjusting” is, unsurpris-
ingly, one of our keywords indicating a potential case of the trait “adjustability.” If our spread parameter
were j = 3, then our feature space would include the words: joints, moved, adjusting, fingers, thumb.
This technique provides contextual cues, namely “fingers” and “thumbs,” that signify that the keyword
“adjusting” does not denote mass-producibility. Instead, here the word “adjusting” indicates an improve-
ment in the functionality of the prosthetic hand. See appendix B for additional discussion of the selection
of the spread parameter.
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the above procedure into a document-term, or “doc-term,” matrix. Each unique word
in the set of selected words is assigned to a column within the doc-term matrix. Each
document is assigned to a row. Entry (i, ) is thus assigned a value corresponding to the
relative frequency with which word j was used in document i, called the “tf-idf” value.**

Note that the poor performance of algorithms that do not limit the feature space
is linked to the dimensionality of the doc-term matrix. When the feature space is not
constrained, the number of columns in the doc-term matrix can far exceed its number
of rows, with many of these columns representing largely extraneous words. This can
inhibit the model from isolating the words on which it should focus. When this prob-
lem arises, restricting the feature space can enable machine learning models to obtain

accurate results even at smaller sample sizes.

3.4.3 Evaluating the Performance of Alternative Models

Our evaluation of alternative machine learning approaches generated several in-
sights. First, constraining the feature space led to significant gains in the accuracy ob-
tained by each of the machine learning algorithms with which we experimented.?3 Our
preferred algorithm, from which we obtained the most accurate models, was Gradient
Boosted Machines (GBM) (Friedman, 2001).

Second, reasonable text analysis algorithms can perform poorly if not provided a suf-
ticient number of observations from which to learn. Rule-of-thumb statements regard-

ing the sample size needed to train an accurate machine learning model are difficult to

#2Tf-idf is defined as tfidf;; = i']flog (%) where t;; is the total number of times a term j appears in

the document i, T; is the total number of terms in document i, D is the total number of documents, and
D; is the total number of documents containing term j.

23For more details on the accuracy metric we adopt and the cross-validation procedure we employ,
see appendix B. The algorithms we considered were Support Vector Machines (Cortes and Vapnik, 1995),
Gradient Boosted Machines (Friedman, 2001), Naive Bayes, Random Forests (Breiman, 2001), and Lasso
(Tibshirani, 1996).
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make. However, researchers can take reliable steps to ascertain their particular needs.
A reliable way to establish an endpoint for sample collection is to iteratively measure a
model’s out-of-sample accuracy as additional observations are added to the training set.
When the accuracy score asymptotes, the gains from further expanding the training set
become small (see appendix section B.6.1 for a more thorough discussion of the exercise
we conducted). We find that the gains from expanding our training set vary consider-
ably across the variables we constructed, as the economic traits differ in their degree of
semantic complexity.?4

Third, the training set must cover the full set of contexts to which the trained model
will be applied. This is because word meaning and usage can vary across contexts. To
illustrate this point, we partition our data into distinct combinations of time periods
and/or patent classes. We then investigate how models perform when they are trained
in one context and used for prediction in others. For example, we use World War I-era
patents from our control classes to train a model we then use for prediction of traits
in Civil War-era prosthetic device patents (see appendix section B.6.3 for a more thor-
ough discussion of the exercise we conducted). For quality-oriented traits, we find that
different train-test contexts result in substantial losses in the model’s accuracy. Cost-
oriented production process traits suffer from less loss of accuracy. This suggests that
the semantic indicators of production-processes transfer more readily across contexts.

Finally, we illustrate why it can be important for researchers to concede when a text
analysis problem has proven too difficult to place strong weight on the ensuing analysis.
As shown in section B.6.2, moderate declines in accuracy can, in our setting, result in

substantially attenuated estimates. As shown in table B.2, we obtain moderately lower

24For the most straightforward economic traits we analyze (e.g., “simplicity,” for which the problems of
polysemy and synonymy are modest), we obtain high accuracy scores with training data sets containing
as few as 100 observations. For more semantically complicated traits (e.g., “comfort,”) accuracy continued
to improve as the training set traits expanded to roughly 1,000 observations.
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accuracy scores for the trait we term “materials” than for other traits. Consequently, our

analysis of materials may be less reliable than our analysis of other traits.

3.5 Novel Dataset on Patent Attributes

Our final data set, produced by our machine learning approach, describes the eco-
nomic attributes of 745,558 patents, with the earliest coming from 1840 and the latest
from 1940. There are 814 prosthetic device patents, 19,666 other medical patents, and
725,078 mechanical patents. Our regression analyses focus on samples of our 745,558
patents for which the patent year is in relatively close proximity to each conflict. These
samples extend from 1855 to 1867 and from 1910 to 1922.

Across this large set of patents, table A.3 shows that the economic traits we coded
are only modestly correlated with one another. The primary exceptions are cost and
simplicity. Among prosthetic device patents, these traits share a correlation of 0.378
with an associated r-squared of 0.142. Similarly, across all patents in our data set these
traits share a correlation of .303 with an associated r-squared of 0.092. Correlations
across all other trait pairs are between -0.1 and 0.1, highlighting that each trait captures

an independent dimension of innovation.

4 Empirical Strategy

Here, we present our specifications for analyzing both changes in patenting rates and
changes in the economic characteristics emphasized by inventors in their patent applica-
tions. After presenting each estimation framework, we highlight the key challenges we
face when attempting to generate causal estimates of the effects of wartime procurement.

We begin by estimating the following regression equations. The first is specified as

an Ordinary Least Squares model for predicting the log of patents per year:
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In(Nie) = @) + ar + B11{War}, x 1{Prosthetic}. + €. (4)

The second is specified as a Poisson model of patent counts:

E[Npe| Xi] = exp(Veuw(r) + 7t + B11{War}, x 1{Prosthetic} + e:). (5)

In both equation (4) and equation (5), c denotes patent classes, t denotes time (multi-year
time periods for these specifications), and w(t) denotes war episodes (Civil War and
World War I). N;. denotes the number of patents in class c at time t. The specifications
include time fixed effects (a; or +) and episode-by-patent class fixed effects (a ;) or
Yew(t))- The coefficient of interest is 1, which is an estimate of the differential change
in the patenting rate for prosthetic devices relative to the control classes during war
episodes relative to pre-war periods.

The key challenge in developing causal estimates is to construct control groups that
approximate the counterfactual development of patenting rates for prosthetic devices.
Technology classes might generate inappropriate counterfactuals for a variety of reasons.
They might, for example, be affected by very different scientific developments (e.g.,
nuclear technology). Alternatively, a plausibly comparable technology class will be a
poor control class if it is directly affected by wars (e.g., firearms) or if it is shaped by
spillovers from prosthetic device innovation.

Our selection of a complementary set of control groups follows the logic of Finkel-
stein (2004), whose analysis of vaccine clinical trials is analogous to our setting in key
respects. The patents we use to construct control groups come from broad categories
of medical and mechanical innovations. Our largest control group incorporates all such
patents. We also consider sub-groups that are chosen to either increase comparability

or reduce the likelihood that the control group contains patent classes that could be di-
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rectly affected by the wars. Like Finkelstein (2004), we also consider data-driven control
groups. For our analysis of patent flows, the data-driven approach selects the control
group to match baseline flows of prosthetic device patents in levels.

For estimating the effects of wartime procurement on changes in patent character-
istics, we use a simple difference-in-differences model. The variable of interest in this
analysis describes the share of patents, within a given technology class, that emphasize
the characteristic of interest. This removes the underlying trend of patenting rates and
creates a measure of the relative intensity with which inventors focus on particular traits.

We can write the estimator as follows:

B = [Prosth. Trait Share,sime — Prosth. Trait Sharepewar]

— [Other Trait Sharegytime — Other Trait Sharep ewar], (6)

where

# Category Patents with a Trait,,, ;o4

Category Trait Share . ; =
8oL period # Category Patents,,,,;,4

Identifying suitable control groups for estimating B in equation (6) requires over-
coming additional difficulties beyond those associated with estimating B; in equations
(4) and (5). These additional issues stem from the fact that some traits of interest are
only relevant to a small set of the technology classes within our broadest control group.
The statistics in table A.2 reveal, for example, that our quality-oriented traits “appear-
ance” and “comfort” are much more prevalent in prosthetic device patents than in other
medical or mechanical patents. In contrast, the prevalence of cost-oriented production-

process attributes is similar when comparing prosthetic devices to our broadest control

group.
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This key difference between our quality-oriented and cost-oriented traits may apply
somewhat broadly across technology classes. Quality-oriented traits capture the func-
tional and aesthetic details that, within a given technological class, create value for con-
sumers. Cost-oriented production process traits like “simplicity” and “cost,” by contrast,
are abstractions that may effectively apply to production processes in many technology
classes.

This issue requires that control groups for analyses of patents” attributes be selected
using an approach that weeds out technology classes for which an attribute is largely
irrelevant. Our primary method for constructing control groups uses the synthetic con-
trol approach to matching the levels and trajectories of a patent category’s emphasis on a
trait over the baseline period. We obtain similar results using a simpler “caliper method”
approach. The caliper method selects control groups based on the average prevalence of
a trait across the entirety of the baseline period.?> When implementing the synthetic con-
trol approach for our Civil War sample, patent flows for many technology classes were
limited, including prosthetic devices. In each of 1858 and 1861, for example, there was a
single prosthetic device patent. The maximum across the pre-Civil War years was seven,
which occurred in 1859. The share of patents emphasizing a given trait is thus highly
volatile across the Civil War baseline when expressed at an annual frequency. Matching
year-to-year trends would amount to matching noise. For our baseline method, we thus
match levels and trends in four-year moving averages.?®

Table 3 presents data on the baseline means for our patent trait variables for pros-

25Notably, the primary results we emphasize also differ little, with one key exception, when we use
the full set of other medical and mechanical patent classes as the control group. The exception is that
our estimate for the trait we term “appearance” is strongly positive during the Civil War period when we
adopt either a simple matching or synthetic control approach but is strongly negative when we use the
full sample. The explanation for this discrepancy likely lies in the fact that “appearance” is one of the
quality-oriented traits for which the broad set of control classes constitutes a poor control group.

26 As a natural robustness check, we have confirmed that our results are little changed by matching
levels and trends on either three-year moving averages or five-year moving averages.
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thetic devices, for the full sample of other medical and mechanical control classes, and
the synthetic control group for each trait. The synthetic control procedure successfully
brings the baseline means for the control groups much closer to the means for pros-
thetic devices. Notably, although the mean for appearance is matched quite closely for
the World War I sample, the mean for the Civil War control group remains moderately
below the mean for prosthetic devices. This reflects both the difficulty of matching
quality-oriented traits and the moderate size of our samples of Civil War-era patents
relative to World War I-era patents. Consequently, results for our analysis of appearance

during the Civil War period ought to be interpreted with caution.

5 Results

This section presents estimates of equations (4), (5), and (6). Subsection 5.1 presents
estimates of wartime procurement’s effects on overall prosthetic device patenting flows
during the Civil War and World War I. Subsection 5.2 presents estimates of changes
in the economic attributes emphasized in prosthetic device patents during the wartime

patent booms relative to the pre-war periods.

5.1 Overall Patent Flows

Figure 2 provides a graphical illustration of the changes in patenting rates, from
pre-war periods to the wartime periods of elevated prosthetic device patenting, that
underlie our estimates of equation (4). Panel A presents the distribution of changes for
the Civil War era and Panel B presents the distribution for the World War I era. Each
observation underlying these histograms represents a patent class in our broadest control
group. The dashed vertical lines are placed at the value of the change for prosthetic

devices. In the Civil War histogram, the change in prosthetic device patenting is the
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rightmost point in the distribution, while the World War I change is quite close to the
right end of the distribution. Despite having only two class-by-time period treatment
events, these figures provide an initial indication of why wartime increases in prosthetic
device patenting are strongly statistically distinguishable from zero when we conduct
inference using “randomization tests” (Imbens and Rosenbaum, 2005).

Table 4 presents estimates of equation (4). The estimates presented across the columns
differ exclusively with respect to the patent classes that are used as controls. The estimate
in column 1 reveals that wartime changes in prosthetic device patenting were roughly
95 log points larger than changes in patenting in all other medical or mechanical patent
classes. Columns 2 through 6 reveal that this estimate is only moderately sensitive to us-
ing subsets of the broader set of controls. The subsets include other categories matched
based on baseline patenting rates (column 2), other medical categories only (column
3), the “miscellaneous” mechanical classes (column 4), metalworking mechanical classes
(column 5), and materials processing mechanical classes (column 6).?7 The estimates
range from 85 log points to 102 log points.

Table 5 presents estimates of equation (5). The estimates in table 5 differ from the
estimates in table 4 exclusively by model choice. That is, they are estimates of the Poisson
model described by equation (5) rather than the OLS model described by equation (4).
All estimates are between 0.54 and 0.88, suggesting that wartime demand shocks led to

large increases in flows of prosthetic device patents.

270ur restriction of the control group to other medical technology classes (column 3), is similar to the
approach taken by Moser, Voena, and Waldinger (2014) in their analysis of chemicals patenting. We obtain
similar, though modestly smaller, results when further narrowing our control group to the sub-category
“Miscellaneous-Drugs and Medicine,” which also contains Prosthesis innovation. This sub-category is
quite small during these periods, however, as it comprised of only two other classes, namely “Optics:
Eye Examining, Vision Testing and Correcting” and “Dentistry.” A further issue facing this approach to
selecting control classes is that optics and dentistry are medical categories for which it is plausible that the
Civil War and World War I may have had a direct effect. This may contribute to why we obtain moderately
smaller point estimates when using these control classes rather than a broader control group. For details,
we refer readers to the descriptions of the technology classes that are available on the website for the
NBER patent database: http://www.nber.org/patents/.
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Cluster-robust standard errors are presented in parenthesis below our estimates in
table 4 and table 5. The standard errors in table 5 are smaller than the standard errors
from table 4, suggesting that the Poisson model may better fit the statistical properties
of the count data we analyze, resulting in efficiency gains. However, both models may
result in cluster-robust standard errors that are insufficiently conservative due to the
small number of “treated patent class episodes” in our sample, namely two.

Our empirical setting falls into the class of settings flagged by Bertrand, Duflo,
and Mullainathan (2004) and Cameron, Gelbach, and Miller (2008), where conventional
cluster-robust standard errors may result in insufficiently conservative inference. In such
settings, randomization inference has been found to generate p-values that confer ap-
propriate degrees of statistical significance (Cameron, Gelbach, and Miller, 2008; Imbens
and Rosenbaum, 2005). Figure 3 displays our prosthesis point estimates (dashed vertical
lines) in the context of distributions generated from three distinct randomization infer-
ence procedures.?®® In each case, the “true point estimate” is larger in magnitude than
nearly the entirety of the “placebo distribution.” One of the 500 estimates exceeds the
true estimate when using assignment algorithm A, two when using algorithm B, and
zero when using algorithm C. The implication, in each case, is that our estimates are
statistically distinguishable from zero at the p <.o1 level.

As with any difference-in-differences research design, a question we face is whether
our estimates might be biased by differential trends in prosthetic device patenting that

pre-date the onset of the wars we analyze. The time series presented in figure 1 suggest

We use three distinct procedures for assigning placebo treatment status. In each case, we assign
placebo treatment status to two patent class-by-episode observations. The sample from which these are
drawn includes mechanical and medical patent classes other than prosthetic devices. For the first pro-
cedure (presented in panel A of figure 3), we assign placebo treatment status at random across both
treatment episodes. For the second (presented in panel B of figure 3), we assign treatment at random
to one patent class from each of the treatment episodes. For the third, we restrict the sample to patent
classes that appear in both the Civil War and World War I sub-samples, then assign treatment at random
to a single patent class. The dispersion of the distributions of placebo point estimates are only modestly
affected by these alternative assignment mechanisms.
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quite strongly that this is not the case. Appendix A further investigates this potential
issue by presenting estimates of equation (A.1), which is a standard “event study” spec-
ification. The resulting pre-war point estimates do not suggest a pre-existing trend.
Interestingly, wartime booms in prosthetic device patenting were not sustained over
the long run. This might initially seem puzzling given that the government’s commit-
ment to providing limbs was ongoing. Historical context provides evidence, however,
that sustained demand for U.S.-manufactured prosthetic limbs was short-lived during
both episodes. Following World War I, demand for U.S.-manufactured devices was
short-lived because, as mentioned in section 2, the European powers made conscious
efforts to develop their own prosthetic device industries. By 1920, moreover, amputees
in Germany, Canada, and the United States were documented to prefer adapting to life
without a prosthetic (Linker, 2011, p. 114,118). As discussed in section 2, the same was
true following the Civil War; an overwhelming majority of Union veterans chose cash
over replacement artificial limbs when they were given that choice during the post-war
years. Substantial demand for replacement limbs thus may not have materialized. In
both settings, the preference for cash over replacement limbs highlights that, contempo-

raneous innovation notwithstanding, quality remained low in an absolute sense.

5.2 Traits of Wartime Prosthetic Device Patents

We now turn to estimating the effects of wartime procurement on the economic char-
acteristics of prosthetic device patents. Our estimates of equation (6) are presented in
table 6, while the underlying time series are presented in figures 4, 5, 6, and 7. In the time
series figures, the dashed vertical lines encompass the years during which prosthetic de-
vice patenting was elevated, as first shown in figure 1. The p-values reported table 6 are
generated using randomization inference within each of the historical episodes taken

separately. Several facts of interest emerge from this analysis.
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Our first finding concerning patent traits is that, relative to patents in other medical
and mechanical categories, prosthetic device patents exhibited an increased emphasis on
the trait we term “adjustability” during both war episodes (see figures 4 and 5 for the
time series underlying the estimates in table 6). During the Civil War and World War
I episodes, the share of prosthetic device patents exhibiting this trait increased by an
average of roughly 10 percentage points more than the changes that occurred across the
synthetic control groups.

Our finding on “adjustability” is consistent with an important role for economies of
scale. That is, as demand increased, manufacturers appear to have shifted away from
the construction of bespoke prosthetic limbs. Importantly, this linkage between wartime
procurement and the rise of mass production finds support in the historical literature
(Guyatt, 2001).%9

Our next finding is that the Civil War period was associated with across-the-board

increases in our cost-oriented production process traits. The average across these traits

awri awi

(namely “cost,” “simplicity,” “materials,” and “adjustability”) increased by an econom-
ically substantial 0.13 on a base of 0.15. The magnitude of this difference, as well as
the underlying time series, is presented in figure 6. This estimate is statistically distin-
guishable from zero at the 0.01 level, as it is a true outlier relative to the distribution of
randomization test outcomes. In contrast, the average across cost-oriented production
process traits moved quite modestly during the World War I period. While both periods
ushered in substantial emphases on adjustability, Civil War-era prosthetic device patents

A

also exhibit economically substantial shifts towards emphases on “cost,” “simplicity,”

?9In discussing British manufacturing efforts during World War I, for example, Guyatt (2001, p. 311)
writes “why the government turned to standardization when it came to considering how best to answer
the huge new demand for artificial limbs, the impetus must also have come from the American limb-
making industry, now represented in Britain by the three firms at Roehampton. For at least a generation,
the American industry had embraced modern theories of manufacturing, introducing greater efficiency in
the production process and a ‘uniformity of all essential parts” in the limb.”
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and experimentation with materials. Changes in these three traits were relatively mod-
est during the World War I episode.

Two factors likely contributed to the Civil War period’s emphasis on production pro-
cesses. First, the prosthetic device manufacturing industry was decentralized during this
time period, which would have facilitated extensive experimentation. Second, the gov-
ernment’s procurement arrangement, namely fixed-price reimbursement of $50 per arm
and $75 per leg (roughly $1,000 and $1,500 in 2018 dollars), created a strong incentive for
cost-oriented production process innovation. Crucially, these payments were set below
both manufacturers’ stated costs and the costs implied by a sparse set of records from
the 1860 census of manufacturers.3° As shown in the framework we developed in section
1, this is precisely the form of payment under which firms will be assured to undertake
cost-reducing innovation.

Finally, the prosthetic device patents of the Civil War and World War I episodes di-
verged with respect to their quality-oriented characteristics. Specifically, Civil War-era
prosthetic device patents exhibit a substantial increase in emphasis on comfort, while
World War I-era prosthetic device patents de-emphasized comfort and increased em-
phasis on appearance (see figure 7 for the underlying time series). These differences are
plausibly linked to changes in institutional views regarding the importance of rehabili-
tation, re-employment, and social re-integration, as discussed in section 2. Importantly,
however, these differences likely reflect contributions from several factors that it would

be difficult to empirically disentangle.

3°0Our knowledge of manufacturers’ stated (and, unsurprisingly, inflated) costs comes from Hasegawa
(2012), while the authors of Hornbeck and Rotemberg (2019) generously shared the relevant manufactur-
ing census records.
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5.3 Robustness of Analysis of Patent Traits

This section explores the extent to which our analysis of the direction of prosthetic
device innovation is robust to using alternatives to our synthetic control procedure for
generating the control groups underlying our baseline estimates. Tables A.4, A.5, A.6,
and A.7 present difference-in-differences estimates using different control samples for
comparison with the estimates from table 6. The tabulations and changes in table A.4 are
based exclusively on our set of 1,200 manually coded patents. Table A.5 reports estimates
associated with the full sample as coded using our baseline machine learning model.
Table A.6 reports estimates for which the control group is restricted to medical patent
classes only, while table A.7 reports estimates that use a simple matching procedure to
select the control group rather than the synthetic control procedure.

The estimates in tables A.7 are quite similar to those in table 6. In the Civil War
period, essentially all traits have positive point estimates. During the World War I period
we see large negative estimates for comfort, while appearance and adjustability have the
largest positive estimates. The consistency between the synthetic control and simple
matching approaches suggests that our baseline estimates are not sensitive to the choice
of matching methodology used to select control groups.

The estimates in tables A.4, A.5, and A.6 reveal that our estimates for appearance are
sensitive to whether our analysis uses a data-driven control group. By contrast, estimates
for our cost-oriented production process traits are relatively insensitive to estimation
using either data-driven controls or broadly selected control classes. The same is true
of our estimates for comfort. The sensitivity of our appearance estimates should not
be surprising, as appearance is far more relevant to prosthetic devices than to most
other medical or mechanical innovations. Selecting a control group that matches a trait’s
baseline prevalence can provide a more appropriate counterfactual. Nonetheless, the fact

that matching is required to select an appropriate control group leads us to be cautious
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in interpreting the strength of our quantitative estimates for appearance.

As a final robustness check, we have constructed synthetic controls from a sample
of medical and mechanical technology classes that excludes all classes that might be
directly affected by wars. In addition to classes involving firearms and ammunition, we
exclude surgery, classes with plausible linkages to military uniforms (e.g., boot and shoe
making, buckles, etc.) camp equipment (e.g., tents), and several others. Excluding these
technology classes from the set of potential “donors” to our synthetic control groups has

very little effect on our estimates.

6 Discussion and Conclusion

Our analysis of Civil War and World War I-era prosthetic device patenting yields
several findings of potential interest. First, we find that wartime procurement programs
were associated with large increases in the volume of prosthetic device patents. We thus
add to an existing body of evidence finding that innovation can respond quite strongly
to changes in demand.

Second, we find that wartime demand shocks generated increases in emphasis on
mass production. During both the Civil War and World War I, manufacturers delivered
prosthetics at prices below what might have initially appeared feasible. Patents from
both periods suggest shifts away from the production of bespoke artificial limbs. This is
consistent with an important role for economies of scale within the supply chain.

Third, cost-conscious innovation, including efforts to introduce new materials and
shed extraneous parts, increased substantially during the Civil War. This highlights the
potential relevance of the Civil War period’s procurement model, which involved fixed-
price reimbursement at modest rates. Experts observe that modern medical innovations

have tended to bring costly enhancements to quality rather than cost-conscious improve-
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ments in productivity (Chandra and Skinner, 2012; Skinner, 2013). Our findings provide
a useful counter-example to this tendency. Demand shocks coupled with cost-conscious
payment models can steer innovation in a cost-conscious direction.

Fourth, we find that the prosthetic device patents of the Civil War and World War I
episodes diverged with respect to dimensions of quality. Civil War-era prosthetic device
patents exhibited an increase in emphasis on comfort. By contrast, World War I-era
prosthetic device patents de-emphasized comfort and emphasized appearance. These
differences are plausibly linked to a World War I era shift in choice away from veterans
and towards medical professionals. This shift was associated, in turn, with a heightened
emphasis on veteran rehabilitation and re-employment. Importantly, however, these
differences between Civil War and World War I-era prosthetic device innovations may
stem from several factors that would be difficult to empirically disentangle.

Two key caveats accompany our reading of the evidence. First, we reiterate the stan-
dard caveat associated with interpreting flows of patents as flows of innovation. As
noted in our discussion of table 1, we are able to directly link Civil War-era patents to
manufacturers, market shares, and expert assessments of product quality. Further, med-
ical historians recognize both the Civil War and World War I as key episodes in pros-
thetic device innovation’s history. There is thus little doubt that meaningful advances in
prosthetic device innovation occurred during these time periods. The standard caveat,
however, ought nonetheless to be borne in mind.

A second caveat involves the limitations of text analysis. As discussed in section 3,
seemingly modest reductions in the accuracy of our text analysis models can substan-
tially attenuate our estimates of the effects of wartime procurement on the direction of
prosthetic device innovation. While the accuracy of our models is generally quite high,
it varies across the variables we construct. Moderately lower accuracy warrants caution,

for example, in interpreting our analysis of the attribute we term “materials.” Further,
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we highlight a key difference between dimensions of product quality and aspects of
the production process. Dimensions of product quality can be highly context-specific,
which makes it difficult to select control groups. Consequently, we have more confidence
in our analyses of attributes that relate to the production process than in our analyses of
attributes that capture dimensions of quality.

We conclude by emphasizing our contribution to the use of text analysis tools for eco-
nomics research. For researchers interested in our particular context, we have generated
a novel data set describing the detailed economic content of prosthetic device patents,
other medical patents, and all mechanical patents from 1840 to 1940. The full data set
stems from our application of a modified supervised machine learning algorithm to
manually coded descriptions of 1,200 closely read patents. For researchers who desire
to apply similar tools in other settings, we provide a set of best-practice insights to help
guide the development and evaluation of text analysis models. As text analysis becomes
more popular, in particular when applied to patents, we hope that future researchers

will find value in these insights.
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Patents in Prosthetic Devices and Mechanical Classes

Panel A

Distribution of Changes During Civil War
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Figure 2: Patents in Prosthetic Devices and Mechanical Classes:

Note: This figure presents distributions of changes in the log of patents per year. Each data point in
each distribution corresponds with a change for an individual USPTO class. The changes in panel A are
calculated from a “base” period extending from 1855 to 1861 to a “war” period extending from 1862 to
1866. The changes in panel B are calculated from a “base” period extending from 1910 to 1915 to a “war”
period extending from 1916 to 1922. The vertical dashed line in each panel corresponds with the change
that occurred in USPTO class 623 “Prosthesis.”
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Table 3: Baseline Summary Statistics for Prosthetic Devices, All Control Classes, and
Re-Weighted Synthetic Control Classes

Panel A: Civil War Prosthetics All Controls Synthetic Controls
cost 0.117 0.193 0.118
simplicity 0.102 0.185 0.110
adjustability 0.346 0.303 0.350
materials 0.0327 0.0550 0.0328
production 0.150 0.184 0.151
appearance 0.415 0.0952 0.352
comfort 0.350 0.0685 0.346
Panel B: World War I Prosthetics All Controls Synthetic Controls
cost 0.156 0.263 0.156
simplicity 0.363 0.391 0.362
adjustability 0.436 0.411 0.436
materials 0.0385 0.0585 0.0386
production 0.248 0.281 0.248
appearance 0.223 0.0708 0.222
comfort 0.426 0.0693 0.426

Note: This table presents baseline means for three samples, namely prosthetics, the “all controls” sample,
and the “synthetic controls” sample. Panel A presents baseline means for the Civil War period, for which
the baseline extends from 1855 to 1861. Panel B presents baseline means for the World War I period,
for which the baseline extends from 1910 to 1915. The “all controls” sample consists of patents from all
mechanical classes and all medical classes other than prosthetics. The “synthetic controls” sample was
selected to match baseline prosthetics on their values across each year from 1855 to 1861 in panel A, and
across each year from 1910 to 1915 in panel B.
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Appendix Material

A Figures and Supplemental Tables

This appendix expands on our description of a piece of analysis on which the main
text’s details are limited. Figure A.1 presents estimates of the following event-study

model:

E[Nic|Xe] = exp(Yew + Yt + ) Pr1{Prosthetic}, x 1{Year of War}, +-¢c¢).  (A.1)
$£0

In contrast with our estimates of equations (4) and (5), for which we collapsed the data
into multi-year time periods, we estimate equation (A.1) using data that are collapsed at
an annual frequency. In the summation, the omitted interaction between the prosthetic
device indicator variable and the time dummy variables corresponds with the first full
year of either the Civil War or World War I (i.e., the year for which ¢t = 0 is the first
full year of either war). Each B; can thus be described as a difference-in-differences
style estimate of the change in the prosthetic device patenting rate relative to patenting
rates in the control categories from year f relative to the first full year of each war. In
panel A, the control patent classes consist of all classes other than prosthetic devices
that are either medical or mechanical classes. In panel B, the control patent classes are
restricted to other medical classes. Standard errors are clustered at the patent class-by-
war episode level. For reasons discussed in the main text, these standard errors are likely
to be insufficiently conservative, which motivates our use of randomization methods for
inference when we assess the statistical significance of our primary estimates of interest.

The estimates trace out the differential changes one can observe through careful in-
spection of the time series in figure 1. Crucially, the point estimates associated with years

prior to each war (i.e., t < 0) exhibit no discernable pattern that might be suggestive of
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a worrisome pre-existing trend. The point estimate for year t = —1 is fairly close to o,

is moderately smaller than the estimates for year t = —2 through t = —5, is moderately
larger than the estimates for t = —8 through t = —6 and is economically indistinguish-
able from the estimate for years t = —9 through t = —12. Prosthetic device patenting

exhibits a strong increase relative to the control categories across years t = 1 through
t = 7. There is a notable peak in years t = 3 and t = 4, which correspond with the 4th

and 5th full calendar years following the onset of each war.
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Appendix Figure A.1: Event Study Estimates of Changes in Prosthetic Device Patenting
Rates During the Civil War and World War I: Note: The figure presents estimates of the f; coefficients
from equation (A.1). Data are analyzed at an annual frequency. The omitted year corresponds with the
first full year of either the Civil War or World War I, such that each §; can be described as a difference-in-
differences style estimate of the change in the prosthetic device patenting rate relative to patenting rates
in the control categories from year f relative to the first full year of each war. In panel A, the control patent
classes consist of all classes other than prosthetic devices that are either medical or mechanical classes. In
panel B, the control patent classes are restricted to other medical classes. Standard errors are clustered at
the patent class-by-war episode level. For reasons discussed in the main text, these standard errors are
likely to be insufficiently conservative, which motivates the use of randomization methods for inference
when we assess the statistical significance of our primary estimates of interest.
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B Text Analysis Appendix

In this appendix we discuss our approach to designing, evaluating, and selecting
our preferred machine learning algorithm for analyzing the texts of patent documents.
We begin by describing our objective and comparing our setting with other uses of text
analysis in economics research. We then define key terms and discuss examples of the
key threats to successful text analysis, along with our approach to addressing them.

Finally, we discuss several dimensions of best practice text analysis.

B.1 Generating Economic Data through Text Analysis

Our goal in conducting text analysis is to create variables that describe the economic
content of patent texts. Specifically, we analyze the texts of prosthetic device patents,
other medical patents, and mechanical patents to determine whether they emphasize
traits we term simplicity, cost, adjustability, materials, comfort, and appearance. We
code these traits as binary variables, which are our text analysis outputs.

Our text analysis task shares several key commonalities with recent “sentiment” and
“partisanship” analyses, where the objective is to rate the sentiment or the degree of
partisanship of a publication, writer, or speaker (Shapiro, Sudhof, and Wilson, 2018§;
Shapiro and Wilson, 2019; Garcia, 2013; Gentzkow, Shapiro, and Taddy, 2019; Gentzkow
and Shapiro, 2010).3" Key commonalities are as follows. First, the researcher must either
obtain or create a data set containing a set of outputs (the “true values” for the variables
of interest) corresponding to a set of text inputs (a subset of the texts of interest). A

machine learning algorithm then learns a function, or model, that relates these input-

31Similarly motivated text analysis exercises have also been used quite recently to study patents. Deche-
zlepretre, Hemous, Olsen, and Zanella (2019), for example, use a keyword search approach to code patents
based on whether they relate to “automation.” Cockburn, Henderson, and Stern (2018) similarly use a
keyword search approach to track the advance of artificial intelligence through references within patent
texts and journal articles.
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output pairs. Cross-validation is used to evaluate the model’s performance by splitting
the manually coded input-output pairs into two sets: one on which the model will be
trained and another on which the model’s performance will be tested. The train-test
split is crucial for reliably evaluating performance, as testing on the same data used for
training will tend to produce overly optimistic results due to over-fitting.3> The selected
predictive model is then used to assign values for the output variables of interest to
the full set of text inputs. Note that these methods are typically used because resource
limitations prevent researchers from closely reading and manually coding true values
for the broader set of texts. In our case, for example, the broader set of texts consists of
more than 700,000 patent documents.

Our preferred algorithm can be described as a modified supervised machine learn-
ing algorithm. Our algorithm is somewhat analogous to algorithms used for sentiment
analysis by Shapiro, Sudhof, and Wilson (2018). Straightforward algorithms for senti-
ment analyses make use of “lexicons” that assign positive and negative values to the
sentiment associated with extensive lists of words. A simple “Lexical Methodology,” for
example, is to assign a document a sentiment score based on the sum or mean of the
values assigned to the words in its text by the lexicon. In our setting, this is analogous
to determining that a patent emphasizes a particular economic trait if its text contains a
keyword with which we associate that trait. Shapiro, Sudhof, and Wilson (2018) discuss
how this basic approach can be improved upon through tools that account for context
(e.g., “negation rules”). While the word “happy” conveys positive sentiment, for ex-
ample, the phrase “not happy” conveys the opposite. A similar concern motivates the
tool we design, which incorporates a neighborhood of contextual clues to root out false-

positive errors.

32Testing on the left-out data gives insight regarding how generalizable a model will be to new data.
Further, repeating cross-validation using randomized train-test splits decreases the likelihood that high
performance is simply a result of an opportunistic split.
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B.2 The Central Problems of “Polysemy” and “Synonymy”

When using algorithms to extract economic information from text, researchers must
overcome errors driven by the complexity of language. In particular, errors can be gen-
erated by variations in a word’s meanings across contexts and by similarities in the
meanings of multiple words. These issues are commonly termed “polysemy” and “syn-
onymy,” respectively (Scott Deerwester, 1990; Magerman, Looy, Baesens, and Debackere,
2011).

Synonymy (multiple words having the same meaning) can lead to false negatives, as
an algorithm may fail to account for words that are similar in meaning to an attribute’s
most intuitive keywords. By contrast, polysemy (when words have multiple, context-
dependent meanings) elicits false positives. If an algorithm does not detect a word’s
distinct contextual meaning, it may falsely connect a text input with the concept of in-
terest (Turney and Pantel, 2010). Polysemy can take multiple forms. In some cases, a
word’s meaning is straightforwardly negated by the words around it (e.g., the aforemen-
tioned difference between “happy” and “not happy”). In other cases, a word’s meaning
may differ with the subject matter contained in the full text or in a particular sentence
(e.g., the meaning of “fork” in the phrases “fork in the road” versus “knife and fork”).
The difficulties posed by polysemy and synonymy can be closely related, as a keyword'’s

contextual meaning cannot be learned if the keyword itself is not initially detected.

B.3 Illustrative Examples from Patent Texts

The attributes we analyze exhibit varying degrees of “polysemy” and “synonymy.”
The attribute we term “simplicity,” for example, was relatively straightforward. This
is because the language linked to “simplicity” is relatively common across texts; it is

unlikely to have ambiguous meaning or numerous synonyms. One prosthetic device
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patent, for example, quite explicitly stated that “The object of my invention is to imitate
this eccentric motion of the knee-joint in the simplest manner.” Another states, “The
advantages of my invention are as follows: ... great simplicity, and therefore cheap-
ness.” The meaning of simplicity extended quite well to patents in our control classes.
One such patent highlights, for example, “that the machinery which we use, as here-
inafter described, is simple in construction.” The relative ease of classifying simplicity is
shown in the high performance, which we define more precisely below, we obtain when
training the models we consider. Notably, our preferred model performed quite well in
predicting “simplicity” even when the training set contained as few as 100 observations.

By contrast, the attribute we term “comfort” was relatively difficult to work with.
Difficulties arose because the language used to indicate a product’s “comfort” regu-
larly suffered from ambiguity. Sometimes, the meaning of comfort was quite clear. A
straightforward example from prosthetics states “My present invention has for its object
the production of an artificial leg constructed on such principles that it will give more
strength and durability to the limb, and also ease and comfort to the wearer.” A straight-
forward true positive from a different mechanical class states that “Until the external
pressure becomes too great... air [is] allowed to enter the box A, until the person sitting
in it feels comfortable.” Difficulties arose, however, from polysemous words used to de-
scribe discomfort. For example, the word “disturbing” often connotes bodily discomfort
in prosthetic device patents. In mechanical classes, by contrast, the word “disturbing”
tends to have meanings connected to the device’s functionality (e.g., “disconnecting or
disturbing the pump”). The difficulties created by such cases translated into poor pre-
dictive accuracy when we attempted to train our preferred model on relatively small

training sets.33

33 As discussed below, comfort is a trait for which accuracy experienced substantial gains as the size of
our training data set increased.
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B.4 Assessing a Model’s Accuracy

A model’s accuracy in a binary classification problem can be well described by the
evaluation metrics of “sensitivity” and “specificity.” Sensitivity refers to the rate of true
positives as a share of all positives, while specificity refers to the rate of true negatives
as a share of all negatives. These metrics were particularly well suited for our study
as they directly ascertain an algorithm’s ability to confront the issues of polysemy and
synonymy.

Sensitivity and specificity are related. When specificity is reasonably high, sensi-
tivity measures how well an algorithm addresses synonymy by directly revealing the
algorithm’s ability to correctly detect the desired characteristics: If included keywords
inadequately detect patent characteristics due to excluded synonymous keywords, sen-
sitivity would be low. Whereas, when sensitivity is reasonably high, specificity measures
the algorithm’s ability to ascertain a keyword’s context-specific meaning: If the algorithm
correctly detects the absence of a given characteristic in the presence of a keyword, it is
identifying contextual cues that nullify a keyword’s relevance, causing specificity to in-
crease. If either sensitivity or specificity is very low, however, then the algorithm may
arbitrarily assign positive or negative outcomes depending on which outcome occurs
most frequently in the training data.

The simple average of sensitivity and specificity is commonly termed the “balanced
accuracy score.” The balanced accuracy score, averaged across “repeated 10-fold cross-
validations,” is the criterion we use for model evaluation. We used balanced accuracy, as
opposed to other evaluation metrics, as it accounts for class imbalance in the dependent

variable—a potential issue common in binary classification tasks.3* As a rough rule of

34In the context of a binary classification problem, class “imbalance” means that there are more/less
negative outcomes compared to positive outcomes. See Brodersen, Ong, Stephan, and Buhmann (2010)
for a widely cited discussion of the balanced accuracy score’s attractive properties in settings where this
holds.
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thumb, we targeted balanced accuracy scores of at least go percent.3> As shown below,
however, incremental improvements in an algorithm’s accuracy can have meaningful
implications for a research project’s estimates of primary interest.

We contrast the performance of our preferred model with models generated by a
variety of alternative algorithmic techniques. In cases where text classification is well
defined by a set of important words, a natural benchmark for assessing alternative tools
is a keyword search. A keyword search algorithm codes patents as emphasizing a par-
ticular trait if the document contains any words that are strong markers for the trait. As
highlighted below, a keyword search is highly effective at identifying positive outcomes
for tasks like ours. It may produce false positives, however, by ignoring contextual cues
that nullify a keyword’s relevance. Whether this shortcoming outweighs a keyword
search’s ability to detect positive outcomes depends on the degree of polysemy in a

researcher’s particular task.

B.5 Our Preferred Algorithm: A Novel Modified ML Approach

We considered several classes of algorithms as potential tools for constructing our
data set. These included “unsupervised” machine learning algorithms, “supervised”
machine learning algorithms, modified supervised learning algorithms, and simple key-
word searches. Our preferred algorithm can be described as a modified supervised
learning algorithm. The key modification, which involves constraining the feature space
from which the algorithm learns, generated advantages with respect to both accuracy
and computing requirements.

Unsupervised learning tools are meant to form meaningful groupings of input data

35 Another common measure of model performance in binary classification tasks is AUC, the area under
the receiver operating characteristic curve. For our “comfort” trait we achieve an AUC score of 0.92 and
for our “simplicity” variable we attain an AUC score of 0.95. These scores are quite high, suggesting
that positive and negative outcomes are quite distinctly separated as the majority of outcomes are simply
determined by the presence of a keyword.
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based on some predefined metric (Athey, 2018). In our context, we found that such tools
struggled to form groupings that coalesced around the economic attributes we sought
to analyze. This problem cannot be resolved through the analysis of larger samples.

Standard supervised machine learning tools take as inputs a feature space generated
from the entirety of each document’s text. We find that these tools struggled to overcome
the problems of synonymy and polysemy.3® For supervised machine learning tools, we
find that the performance of existing algorithms improved, to varying degrees, as we
expanded the size of our training set. It is thus possible that these algorithms would
reach tolerable accuracy thresholds on training samples of sufficient size. Our analysis
is suggestive, however, that generating training samples of sufficient size may be be-
yond many research projects’ scope. Closely reading thousands of patent texts or other
context-relevant documents is a resource-intensive process.

We find that simple keyword searches performed quite well in our setting. Notably,
the development of our lists of keywords benefited from our experimentation with ma-
chine learning. At our project’s early stages, we attempted keyword searches based on a
combination of intuition and close readings of a small set of patents. This “procedure”
performed poorly. The accuracy of our keyword searches increased substantially as we
learned more about our domain through close readings of 1,200 patent documents in
total. Success with either keyword searches or our modified machine learning approach

will tend to require substantial knowledge of the domain one is attempting to analyze.3”

3This may stem from the fact that even after processing the text data (removing stop words, word
fragments, etc.), the full sample of patent texts contained over 18,000 features. In a simulation analysis
using synthetic data, Hua, Xiong, Lowey, Suh, and Dougherty (2004) simulate error rates across alternative
feature space sizes, sample sizes, and algorithms. In their context, they find that the optimal feature
size is N — 1 for uncorrelated features (where N is the sample size) and that the optimal feature size
becomes proportional to v/N for highly correlated features. Although these findings are not necessarily
generalizable, in our case the number of features (when using the full processed patent texts) was 15N,
suggesting that the relatively high number of features is plausibly linked to suboptimal performance.

37The success of our modified machine learning tool depended on a combination of manually gathered
keywords through close readings and data-driven synonym determination. Although this form of feature
selection required extensive domain knowledge, feature selection can be effectively executed using entirely
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Both sets of approaches provide ample evidence of the idiom “garbage in, garbage out.”

Although keyword searches ultimately performed quite well for our task, their gen-
eral limitations are worth emphasizing. A keyword search does not, by construction,
allow context to inform a word’s meaning. This can lead to false-positive errors. In
general, it should thus be possible to improve upon keyword searches by allowing con-
textual clues to inform a word’s true meaning within each text.

Our preferred, modified approach connects the knowledge we obtained reading
patent documents to the Gradient Boosted Machines algorithm (Friedman, 2001).3> When
constructing this model we directly targeted the issues of synonymy and polysemy.
First, while reading 1,200 patent documents, we compiled a non-comprehensive list of
keywords that indicate each characteristic. To gather each keyword’s synonyms, we
mapped all our considered patent text corpora to a vector space.3® This allows us to
model the degree of contextual similarity between words using spatial word proximity,
resulting in spatial groupings of keywords and their most relevant synonyms. After
adding keywords and their synonyms into the feature space, we then include a flexible
neighborhood of text surrounding these words to provide contextualization.4® We then

train the machine learning algorithm with this reduced feature space to obtain more

data-driven algorithms (see Guyon, Weston, Barnhill, and Vapnik (2002) and Guyon and Elisseeff (2003)).
In our case, however, these purely data-driven approaches selected features that induced worse perfor-
mance than simply using the full patent text. Accuracy gains only occurred when we used a combination
of hand-picked and data-driven feature selection.

38This is a “boosted” version of Random Forests (Breiman, 2001) where error terms from previous
decision tree predictions inform the construction of subsequent trees.

39We use Word2Vec (Mikolov, Sutskever, Chen, Corrado, and Dean, 2013) to construct these word
embeddings. Wordzvec uses shallow neural networks to map words within text documents to a vector
space that captures word relationships through a distance metric. Words within this space are mapped as
being close together if they occur in similar contexts in the text corpora.

4°These steps are well described as a type of “feature selection.” Feature selection has been shown to
help at “improving the prediction performance of the predictors, providing faster and more cost-effective
predictors, and providing a better understanding of the underlying process that generated the data”
(Guyon and Elisseeff, 2003),
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accurate and efficient results.#*

Relative to alternative machine learning methods, our modified approach generated
accuracy gains when predicting each of our economic characteristics. Improvements
relative to machine learning approaches that attempt to learn from the entirety of each
patent’s text were quite large. The relative success of our modified approach, when
compared to other pure machine learning methods, is driven by the amount of extra-
neous information in patents” full texts, figure descriptions, and detailed claims. The
presence of extraneous features reduced these algorithms” ability to pinpoint specific,
economically relevant patent characteristics. Constraining the feature space to include
only keywords, their synonyms, and neighboring contexts allows the machine learning
algorithm to learn more efficiently.

Relative to a keyword search, our algorithm’s greatest improvements in accuracy
were gains of three percentage points for the quality-oriented traits we term “comfort”

7

and “appearance.” The improvement in accuracy comes entirely from gains in speci-
ficity: The modified approach learns to discriminate keywords whose context nullifies
their meaning. Although a three percentage point gain in accuracy is modest, researchers

will tend to realize larger gains for text analysis problems with greater degrees of poly-

semy.

B.6 Lessons for Implementing Best Practice Text Analysis

In this section, we illustrate several key inputs to best practice text analysis. While
text analysis tasks necessarily confront many setting-specific challenges, the dimensions
of best practice we discuss should apply quite generally. They include an approach

for assessing the optimal size of a training set, the importance of generating a training

HComputation time was dramatically reduced using our approach when compared to other machine
learning algorithms. This stems from the reduced feature space, allowing quicker model training.
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set that covers all contexts that a researcher targets, and an approach for assessing the
implications of inaccurate predictions for the estimates in which a study is ultimately

interested.

B.6.1 Determining Optimal Sample Size

We conducted a systematic analysis of how the performance of various algorithms
evolved as we expanded the size of our training data set. Text analysis tasks may differ
substantially with respect to the complexity of each piece of text and with respect to
the severity of setting-specific sources of polysemy and synonymy. Consequently, it is
not possible to prescribe a “rule-of-thumb” size for a training set. One can nonetheless
use the relationship between accuracy and sample size to make inferences regarding the
returns to further expansions of the training set.

Using our preferred modified approach, the size of the training set required to reach
tolerable balanced accuracy scores varied across traits. For the trait we term simplicity,
for example, our balanced accuracy score exceeded go percent with training sets contain-
ing fewer than 200 observations. For the trait we term comfort, by contrast, the accuracy
score approached 9o percent as training sets contained roughly 700 observations. For
the trait we term materials, the accuracy score remained below go percent even on our
full training set of 1,200 observations.

On what basis should the size of the training set be determined? Expanding a training
set requires project resources. On the margin, the key question is whether increases in
the size of the training set yield non-trivial returns. As a way to gauge the relevant
returns, we recommend constructing “learning curves,” like those displayed in figure
B.3. We constructed these figures by evaluating our model’s accuracy when trained
and tested on samples of varying sizes. More specifically, we executed a bootstrap

estimation of our model’s balanced accuracy score when trained on different sample
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sizes from our manually coded data, with the remaining un-sampled data forming the
test set. The solid green line in each panel traces the mean of the balanced accuracy score
across 400 iterations of this procedure at ascending sample sizes. The shaded green
area extends from the 10th to the goth percentiles of the distribution of results. The
bootstrap approach assures that our estimate for any given sample size is not skewed by
particularly “favorable” or “unfavorable” draws, meaning draws on which the algorithm
happens to have a particularly easy or difficult time with its prediction task.

Panel A of figure B.3 shows that the balanced accuracy score for “comfort” is rel-
atively low with small samples. Further, the score for comfort exhibits non-trivial im-
provement as the training set expands to include as many as 1,000 patents. The band
extending from the 10th to the goth percentiles of the distribution is quite large in com-
parison with the band presented in panel B, for the trait we term simplicity.

Panel B of figure B.3 shows that the balanced accuracy score for “simplicity” is high
with small samples. Further, the score asymptotes quickly. It exhibits no further im-
provement once the training set includes 400 observations. Notably, the band extending
from the 10th to the goth percentiles of the distribution is relatively tight. This further
supports the point that the performance of the algorithm is not particularly dependent
on the patent documents used to train it.

Our analysis of alternative machine learning algorithms provides additional evidence
that performance can depend crucially on sample size. On samples of the sizes we con-
sider, we found that non-neural network machine learning algorithms perform better
than deep learning algorithms and that our modified machine learning approach per-
forms better than both deep learning and non-neural network machine learning models

trained on the entire text of each patent.+?

4+*These results are fairly consistent across the economic traits we analyze. All machine learning hyper-
parameters are tuned using randomized grid-search methods (Bergstra and Bengio, 2012). Deep learning
models we considered were Bidirectional Encoder Representations from Transformers (Devlin, Chang,
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B.6.2 Assessing the Stability of Economic Estimates

What constitutes an acceptable accuracy threshold? Alternatively, how can one gauge
the implications of incremental changes in model accuracy for the primary estimates of
an analysis? We shed light on this question through a simulation of how our estimates
evolve as we systematically reduce the accuracy of our preferred algorithm’s estimates.

The procedure we conduct is straightforward. Starting with the data generated by
our preferred modified approach, we inject noise by altering the coding of a given frac-
tion of the observations for an outcome variable of interest. We do this for fractions
ranging from 1 percent to 50 percent. We select the observations we miscode at random,
then estimate B; from equation (6). As in our analysis of “learning curves,” we imple-
ment a bootstrap-style procedure. That is, for each degree of noise, we repeat the basic
procedure 40 times to generate a range of new estimates. Figure B.4 reports the resulting
means and distributions.43

Panel A of figure B.4 presents estimates for the trait we term “comfort” during the
World War I period. Our baseline estimate for comfort is -0.14, indicating that wartime
prosthetic device patents were 14 percentage points less likely than pre-war prosthetic
device patents (net of the equivalent change for the synthetic control group) to empha-
size comfort. As we reduce the accuracy of our comfort variable’s coding, this estimate
quite rapidly converges towards zero. The magnitude of the estimate for comfort was

halved before we had reduced accuracy by 10%.44

Lee, and Toutanova, 2018), Convolutional Neural Networks (Kim, 2014), Recurrent Neural Networks with
long short-term memory(Hochreiter and Schmidhuber, 1997), and Multi-Layer Perceptrons (Rosenblatt,
1961).

43Note that the estimate we produce using the data generated from our preferred model serves as the
benchmark. Since our modified approach does not predict with perfect accuracy, the current observations
already have a small amount of measurement error corresponding to the error associated with the model’s
performance in predicting “comfort.”

#As the accuracy of the data approaches 50%, the estimate converges to zero. As the algorithm’s
accuracy dips below 50% the estimate will begin to converge to the opposite sign of the true estimate. To
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Panel B of figure B.4 presents the sensitivity of estimates of B; from equation (6)
for “simplicity.” Our baseline estimate for simplicity is 0.13, indicating that wartime
prosthetic device patents were 13 percentage points more likely than pre-war prosthetic
device patents (net of the equivalent change for the synthetic control group) to empha-
size simplicity. Interestingly, the rate of convergence to zero differs non-trivially when
comparing the estimates for comfort and simplicity. Estimates for simplicity converge
more slowly, as the magnitude of the estimate is halved when we had reduced accuracy
by roughly 20%.

Coding accuracy is clearly important for generating unbiased estimates in analyses of
both comfort and simplicity. In both cases, 20% reductions in accuracy would render the
estimates from our analyses much smaller economically. In addition to being econom-
ically smaller, the attenuated estimates are less likely to be statistically distinguishable
from zero. Differences in the rate of convergence towards zero suggest that the tolerabil-
ity of error may be higher in the case of simplicity than in the case of comfort. It is not
obvious why this is the case. A natural hypothesis, into which more research is needed,
is that estimates” sensitivity to reductions in accuracy may depend in part on a trait’s

baseline prevalence within both the treatment and control groups.

B.6.3 Context Specificity

The performance of a trained model may be limited outside the context of its train-
ing data. We term this concept “context specificity.” Limitations on a model’s validity
outside of its training set can result from variations in word meanings and usage across
domains and across time. In our case, a model trained to recognize the traits in artificial

limb patents may perform poorly when applied to patents from classes we use as con-

see why note that altering the coding of 100% of the observations would yield a variable that is the inverse
of the original variable.
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trols. A model’s performance might be impaired if the training set lacks sufficient data
from all considered domains.

To illustrate this point, we conduct the following exercise. Our data can be described
as consisting of four contexts, namely Civil War-era prosthetic devices, Civil War era
control categories, World War I-era prosthetic devices, and World War I era control cate-
gories. We train our model on a single context, then asses its accuracy in all four contexts.
Doing this for each of the contexts separately generates a total of sixteen balanced ac-
curacy scores, four of which involve applying the model to the context on which it was
trained. To ensure that differences in accuracy scores across contexts are not driven by
differences in sample size, we constrain the size of the training set to be equal in all
cases.

The results of conducting this exercise for our “comfort” and “simplicity” traits can
be found in table B.1. In each panel, the main diagonal of the matrix of balanced accuracy
scores corresponds to our model being applied to the context on which it is trained. This
is done using cross-validation within the given domain and time period. The antidiago-
nal entries correspond to our model being trained on a different patent class (prosthetic
devices vs. the control classes) and historical episode (Civil War vs. World War I) than
the corresponding left-out test data set. Differences in the average value of the balanced
accuracy scores along the main diagonal relative to the antidiagonal provide information
on the relevance of context-specificity.

Consistent with our priors, we find that context-specificity is more important for
traits for which the problems of polysemy and synonymy are relatively severe. In the
examples presented in table B.1, we find that the difference in accuracy scores when
comparing the main diagonal to the antidiagonal is greater for “comfort” than it is for
“simplicity.” The differences in accuracy scores for comfort are non-trivial. On average,

the score along the main diagonal is 92.5 percent, while the average score along the
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antidiagonal is 86.5. The difference of 7 percentage points is non-trivial when put in the
context of our analysis from the previous section. For comfort, injecting a 7 percentage
point reduction in accuracy led our estimate of 1 from equation (6) to decline by nearly
half.

More generally, we find that it is important to account for context specificity when
predicting attributes whose meaning is domain- and time-dependent. In our setting,
attributes that exhibited this time- and domain-dependence include “appearance”, “ma-
terials”, and “comfort.” By contrast, accuracy scores were relatively insensitive to the

i

training set’s context for the traits we term “cost,” “simplicity,” and “adjustability.”

B.6.4 Acknowledging Limitations

In some cases, even a well-chosen algorithm trained using a large data set may yield
low accuracy scores. Even with our preferred algorithm, for example, we obtained an
accuracy score of 87 percent when predicting the trait we term materials. What drives
this result and how should it shape our presentation of the evidence?

“Materials” was a difficult trait to predict because keywords that describe the intro-
duction of novel materials tend to have no previous mentions. When few observations
contain a keyword, an algorithm’s opportunities to learn how best to classify out-of-
sample observations with that keyword are limited. Keywords that were consistently
used to describe new materials—like material, alloy, chemical, composition, or mixture—
also tended to be used in the description of a device’s construction whether or not the
associated materials were new. Further, new material innovations were relatively rare.
They occurred in only six percent of the observations in our sample, resulting in a small
number of reliable positive observations.

As shown earlier, reductions in model accuracy tend to attenuate our estimates. Prop-

erly interpreting our estimates thus requires knowing the accuracy of the model used to
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generate the dependent variable. We recommend presenting two key pieces of informa-
tion. First, analyses of this sort should present readers with an accuracy metric that is
appropriate to the setting.4> In table B.2, for example, we present the full set of balanced
accuracy scores along with the underlying sensitivity and specificity scores. Second,
“stability curves” of the sort we present in section B.6.2 provide valuable information
for inferring the biases associated with inaccurate predictions. We thus recommend
coupling these key pieces of information within a discussion of the implications of pre-
diction errors.

In some cases, predictive accuracy may be sufficiently low that the resulting biases
will lead point estimates to be highly misleading. In such cases, we recommend that
readers be directly warned to interpret the estimates “with caution.” In some cases, it
may be possible to pair this caution with the best estimate of the potential magnitude of
the associated bias. If the only bias is a straightforward form of attenuation bias, then
interpretable estimates can be recovered by applying a correction factor. If a correction
factor cannot be estimated, the best approach may be to describe estimates as being

useful for “illustrative purposes” only.

#While the balanced accuracy score is a sensible metric for our setting, alternative metrics might be
more suitable elsewhere.
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Appendix Figure B.2: Patent Document Example for “Comfort” with Spread = 3

leg
measurement comfortable artiiicial legs

Note: The figure presents a patent document example. We focus the machine learning algorithm’s atten-
tion to the keywords (blue) and the surrounding context (red). In this case spread = 3 and the trait of
interest is “comfort”. We correct spelling errors using a preprocessing procedure.
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Appendix Figure B.3: Learning Curve Balanced Accuracy Score
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Note: The figure presents the “learning curves” for our preferred modified approach using a GBM algo-
rithm when predicting the presence of our traits in patent documents. Panel A shows the learning curve
for “comfort” and panel B shows the learning curve for “simplicity.” The solid green line in each panel
traces the mean of the balanced accuracy score across 400 iterations of a bootstrap cross-validation proce-
dure at ascending sample sizes. Each bootstrap iteration randomly selects a training set of the “training
examples” size to train the model and the model’s accuracy is then tested on the remaining un-sampled
data. The shaded green area extends from the 10th to the goth percentiles of the distribution of results.

200 400 600 800 1000
Training examples

Balanced accuracy is reported in decimals (0.9 = 90% correctly predicted).
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Appendix Figure B.4: Estimate Stability To Reductions in the Accuracy Score
Panel A: Comfort
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Note: The figure shows the simulated stability of our economic estimates as we reduce the accuracy of our
preferred algorithm. Panel A shows the simulated stability for our “comfort” variable and panel B shows
the simulated stability of our “simplicity” variable. Using all the data generated by our preferred modified
approach, we inject noise at random by altering the coding of a given percentage of the observations for
our estimates of interest. We then re-estimate B, from equation (6) using a synthetic control procedure.
We do this 40 times, sampling with replacement, for each percent mislabeled. The red line in each panel
traces the mean of the estimates of §; from equation (6) at each percent mislabeled. The shaded grey area
shows one standard deviation above and below the mean.
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Appendix Table B.1: Balanced Accuracy Scores Across Training and Test Set Contexts

Panel A: Comfort
Test Data
CWP CWC WWP WWC
CWP 939 844 0918 78.4
Training CWC 931 916 918 75.8
Data WWP 936 844 927 78.4
WWC o913 840 90.0 91.6

Panel B: Simplicity

Test Data
CWP CWC WWP WWC
CWP o970 86.0 94.8 89.1
Training CWC 967 948 93.8 93.0
Data WWP 0958 86.0 94.8 89.1

WWC 984 927 954 935

Note: The table shows the ability of our preferred modified approach applied to a GBM model to predict
our traits within and outside the context of the model’s training data. We present balanced accuracy
scores across wars and broad patent technological classes. Panel A shows the balanced accuracy scores
when predicting “comfort” and panel B shows the balanced accuracy scores when predicting “simplicity”.
Balanced accuracy is reported in percentage terms (78.4 = 78.4% correctly predicted). The main diagonal
presents the balanced accuracy means that are obtained through repeated 10-fold cross-validation, using
the same context for training and testing. Off-diagonal entries present the model’s once-calculated bal-
anced accuracy on the given left-out test set of a different context. The (i, j) entry corresponds to using the
data from row header context i in GBM training to predict the left-out data from column header context j.
CWP uses Civil War prosthesis patents, CWC uses Civil War control patents, WWP uses WWI prosthesis
patents, and WWC uses the WWI control patents. To ensure that differences between balanced accuracy
scores across contexts are not driven by differences in sample size, we constrain the size of the training set
to be equal in all cases.
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Appendix Table B.2: Performance of Algorithm Across Attributes Using All Patents

Characteristic Sensitivity Specificity Balanced Accuracy

adjustability 94.8 91.0 92.9
(3-2) (3-3)

comfort 91.8 96.3 94.0
o (56) (23)

simplicity 92.7 94.3 93.5
(5.3) (2.6)

materials 81.6 92.4 87.0
(15.7) (2.6)

appearance 91.8 96.1 93.9
(7.1) (1.7)

cost 94.7 98.9 96.8
(4.3) (1.1)

Note: The table shows the performance of our modified approach applied to a GBM algorithm across our
traits of interest. We present the sensitivity (true-positive rate), specificity (true-negative rate), and the
balanced accuracy (simple average of mean sensitivity and specificity). Sensitivity and specificity means
are taken across repeated 10-fold cross-validation and the corresponding standard errors are reported
below each point estimate in parenthesis. All evaluation metrics and standard errors are reported in
percentage terms (94.8 = 94.8% correctly predicted). All manually coded observations are used in the
cross-validation procedure.
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