Measuring Racial Discrimination in Bail Decisions

Discussion: Matthew Gentzkow
Racial disparities in the judicial system sit at the very top of the policy agenda

Identifying sources of these disparities is an essential step in addressing them

Similar methodological issues arise in many other contexts (health care, education, housing, etc.)
Existing Approaches

• **Gaps in decision rates** (e.g., Gelman et al. 2007; Abrams et al. 2012)

• **Gaps in outcomes** (e.g., Becker 1993; Knowles et al. 2001)

• “Judges design” under strong monotonicity assumption (e.g., Arnold et al. 2018; Marx 2018)
This Paper

- Rich data & clean setting
- Identify discrimination under weak assumptions
- Structural model to further decompose drivers

- Results suggest substantial share of racial gap is due to discrimination, both statistical and preference-based

- Important, convincing, and methodologically rich
Outline

1. Objectives
2. Identification
3. Observables
Objectives
Y^*: Potential outcome
D: Decision
R: Race
ν: Agent’s information
$p(\nu; R)$: Agent’s posterior
X: Observables
Discrimination

$$\Delta = E \left[E[D|Y^*, R = w] - E[D|Y^*, R = b] \right]$$
$Y^* = 1$

$Y^* = 0$
\(Y^* = 1 \)

- **White**
 - Detain

- **Black**
 - Detain

\(Y^* = 0 \)

- **White**
 - Detain

- **Black**
 - Detain
\[Y^* = 1 \]

\[Y^* = 0 \]

White:
- \(70\% \)
- \(30\% \)

Black:
- \(70\% \)
- \(30\% \)

Rate:
- \(0.42 \)
- \(0.5 \)

\[\Delta = 0 \]
\[Y^* = 1 \]

White

\[Y^* = 0 \]

Black

Rate: 0.42 0.55 \(\Delta > 0 \)
\[Y^* = 1 \]

- White: 70%
- Black: 65%

\[Y^* = 0 \]

- White: 30%
- Black: 25%

Rate: 0.42 0.45 \(\Delta < 0 \)
Other Objectives

Discrimination: \[E[D|Y^*, R = w] - E[D|Y^*, R = b] \]

Bias: \[E[D|\mathbf{p}, R = w] - E[D|\mathbf{p}, R = b] \]

Race blindness: \[E[D|\mathbf{v}, R = w] - E[D|\mathbf{v}, R = b] \]

Disparity: \[E[D|\mathbf{X}, R = w] - E[D|\mathbf{X}, R = b] \]
Tradeoffs

• Can’t in general be both non-discriminatory and unbiased
 o Unbiased rule generally leads to different $E(D | Y^*)$
 o See, e.g., Kleinberg et al. 2017
 o Note that efficient \rightarrow unbiased

• Can’t in general be both unbiased and race-blind
 o $p(\nu, R)$ generally differs by R for given ν

• Hard to be both non-discriminatory and race-blind
 o Unless ν effectively orthogonal to R
Legal Standards

Equal protection clause requires “discriminatory intent or purpose”

“Estimation of Δ_j is... a necessary first step to establish unconstitutional behavior, though it may not be sufficient absent proof of discriminatory intent” (p. 6)

Are we sure?

What about a policy that explicitly denied bail to blacks in crimes where white base rate is higher, so as to produce $\Delta = 0$?
Bottom line:

This paper takes a strong stand in favor of non-discrimination as the right objective

I think the difficult ethical / legal / conceptual issues are more complex than the paper suggests
Identification
Classification Matrix

<table>
<thead>
<tr>
<th></th>
<th>$Y^* = 1$</th>
<th>$Y^* = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D = 1$</td>
<td>TP_{jr}</td>
<td>FP_{jr}</td>
</tr>
<tr>
<td>$D = 0$</td>
<td>FN_{jr}</td>
<td>TN_{jr}</td>
</tr>
</tbody>
</table>

$$\Delta_j = f(TP_j, FP_j, FN_j, TN_j)$$
\(Y^* = 1\)

White

\(TP_{jw}\)

\(FN_{jw}\)

\(FP_{jw}\)

\(TN_{jw}\)

\(Y^* = 0\)

Black

\(TP_{jb}\)

\(FN_{jb}\)

\(FP_{jb}\)

\(TN_{jb}\)
One-Sided Selection

\[
\begin{array}{c|cc}
D = 1 & Y^* = 1 & Y^* = 0 \\
\hline
TP_{jr} & FP_{jr} \\
FN_{jr} & TN_{jr} \\
\end{array}
\]

• Only observe true value of \(Y^* \) if not detained
• Thus, observed data identify \(FN_{jr}, TN_{jr} \), and \(\delta_{jr} = TP_{jr} + FP_{jr} \ \forall j, r \)
• 3 moments, 4 unknowns (w/ 1 of each linearly dependent)

• Need 1 more moment for identification
• E.g, sufficient to observe misconduct rates

\[\mu_{jr} = TP_{jr} + FN_{jr} \]

• Random assignment: \(\mu_{jr} = \mu_r \forall j \)

• All we need is an estimate of \(\mu_W, \mu_B \)!
"Identification at infinity"
Observables
Approach

• Partial observed release and misconduct rates for observables X (court \times time, type of crime, etc.)
• Analyze residuals as if they were true release and misconduct rates for a single population, both in reduced-form and structural analysis

• n.b. Chan et al. (2020) take essentially the same approach
• n.b. This is an issue of estimation not identification
Example of an implication:

Release rates below are not actually what is observed
Might be no judge in the data who releases 90% of defendants!
Residuals

Release Rate

0

0.5

1
Assumption (FN 18)

$$E[Y^*|D_{ij} = 1, R_i, X_i] = \psi_{jr} + X_i'\gamma$$
$$E[D_{ij}|R_i, X_i] = \phi_{jr} + X_i'\beta$$

Note that coefficients (γ, β) do not vary by j or i

Rules out judges who treat different X’s differently (e.g., we both release shoplifters but I detain 80% of violent criminals whereas you detain 60%)

Likely to be inconsistent with other assumptions…
Consider a particular

\[E[D_{ij} | r, X_i] = \phi_{jr} + X_i' \beta \]

Let \(\tilde{X} \) be the value such that \(\phi_{jr} + \tilde{X} \beta = 1 \)

Then we must have

\[E[Y_i^* | D_{ij} = 1, r, \tilde{X}] = \psi_{jr} + \tilde{X} \gamma = \mu_r(\tilde{X}) \]

which does not vary by \(j \)

Therefore, we must have \(\psi_{jr} = \psi_{kr} \) whenever \(\phi_{jr} = \phi_{kr} \)
Why I’m Not So Worried in this Case

- Unadjusted release rates are high (mean = 73%)
- Robustness checks fit model separately by location
- And...
An important priority for future work in this space should be to incorporate observables explicitly and coherently.