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Investment in General Equilibrium

• Old debate: does lumpy i shape the behavior of I?
Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

◦ Yes in PE: recession = fewer adjusters = less elastic I demand

◦ Maybe in GE: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: financial frictions/uncertainty shocks
Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …

︸ ︷︷ ︸
This paper: theory & measurement for strength of GE aggregation

1



Investment in General Equilibrium

• Old debate: does lumpy i shape the behavior of I?
Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

◦ Yes in PE: recession = fewer adjusters = less elastic I demand

◦ Maybe in GE: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: financial frictions/uncertainty shocks
Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …

︸ ︷︷ ︸
This paper: theory & measurement for strength of GE aggregation

1



Investment in General Equilibrium

• Old debate: does lumpy i shape the behavior of I?
Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

◦ Yes in PE: recession = fewer adjusters = less elastic I demand

◦ Maybe in GE: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: financial frictions/uncertainty shocks
Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …

︸ ︷︷ ︸
This paper: theory & measurement for strength of GE aggregation

1



Investment in General Equilibrium

• Old debate: does lumpy i shape the behavior of I?
Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

◦ Yes in PE: recession = fewer adjusters = less elastic I demand

◦ Maybe in GE: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: financial frictions/uncertainty shocks
Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …

︸ ︷︷ ︸
This paper: theory & measurement for strength of GE aggregation

1



Investment in General Equilibrium

• Old debate: does lumpy i shape the behavior of I?
Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

◦ Yes in PE: recession = fewer adjusters = less elastic I demand

◦ Maybe in GE: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: financial frictions/uncertainty shocks
Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …

︸ ︷︷ ︸
This paper: theory & measurement for strength of GE aggregation

1



Our Contributions

1. Theory: GE aggregation = price-elastic investment

◦ Formal result: investment is highly elastic around fixed eq’m price path

◦ Previous work disagreed because price elasticity wasn’t targeted
E.g.: β ≡ ∂ log I

∂r
β ≡ ∂ log I

∂rβ ≡ ∂ log I
∂r

is -500% in Khan & Thomas (2008), vs. -10% in Winberry (2018)

2. Measurement: experimental evidence to learn about βββ

◦ Estimate cross-sectional tax stimulus regressions [à la Zwick-Mahon (2017)]

log(ijt) = βZM︸︷︷︸
≈−7%≈−7%≈−7%

× cost of capitaljt + controls + error

◦ Interpretation: give sufficient conditions for |β| ≤ |βZM ||β| ≤ |βZM ||β| ≤ |βZM |

3. Applications: state dependence in monetary & fiscal policy transmission
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Roadmap

• Today’s focus: lumpy investment

◦ Well-established: fraction of firms willing to adjust k is procyclical
Caballero-Engel (1995), Khan-Thomas (2008), Winberry (2018), …

◦ Q: Does this imply that the response of I to macro shocks is procyclical?︸ ︷︷ ︸
Where we’re going: limit case where dI

dshock ⊥ # of adjusters

• At the end of the talk: extension to financial frictions

◦ Similar result: limit case where dI
dshock ⊥ # of borr.-constrained firms
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Environment

• Setting: discrete-time, infinite-horizon, aggregate TFP shocks

• Production block: competitive intermediate goods producer j ∈ [0, 1]

max E0

[ ∞∑
t=0

(
t−1∏
s=0

1

1 + r bs

)
djt

]
such that

djt = xtyjt − wtℓjt − qt ijt −ϕ(kjt , kjt−1)ϕ(kjt , kjt−1)ϕ(kjt , kjt−1)+bjt − (1 + r bt )bjt−1
yjt = ztejt(k

α
jt−1ℓ

1−α
jt )

ν

ijt = kjt − (1− δ)kjt−1 Distribution µ0 over
s f = (e, k) ∈ Sf

→ With fixed costs: shifts in µ0 = changes in # of adjusters

• Rest: representative household, sticky prices & wages, Taylor rule, …
Smets-Wouters (2007), Justiniano-Primiceri-Tambalotti (2010), …
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Experiment

Q: µ0 is s.t. few firms adjust k . Does I respond less to z?

• Notation: Boldface is path, hat indicates IRF. Will characterize Îµ0(z).

R1 First-order perturbation around perfect foresight transition path

→ Equivalently: perfect foresight for zzz given arbitrary initial state µ0

R2 Only for simplicity: eq’m = market clearing in one market

Assumption Nested Models

Let p = (r, x,w, q) denote a price path. There exists a function P(•),
independent of the production block, s.t. an equilibrium is a path C with

Ct = Yt(p; z) − It(p; z) ≡ Cst , for t = 0, 1, 2, . . .

where p = P(C).
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Exact Aggregation

◦ R3 To build intuition: reduced-form model of lumpy investment

→ Special adjustment costs: fraction ξ ∈ (0, 1) of firms has infinite adjustment
costs, the rest zero

→ 1− ξ = # of adjusters is reduced-form stand-in for changes in µ0

• Q: Does Îξ(z) change with ξ?

◦ Yes in PE: fewer adjusters = less investment demand

Îξ(p; z)− Î0(p; z) = −ξ × Î0(p; z), for any (p, z)

◦ Not necessarily in GE

Proposition
Impose R1 - R3, and let ν → 1 or r̄ + δ → 0. Then the equilibrium price
paths p and the investment path I are independent of ξ. vs. House (2014)
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Exact Aggregation

• Q: How does p respond to changes in ξ?

Y(P(C); z)− I(P(C); z) = C

• Heuristic argument – pretend it’s static:

p̂ξ − p̂0 =
PC

1− Csp · PC︸ ︷︷ ︸
price elasticities

×
[
Ĉsξ (p0; z)− Ĉ

s
0(p0; z)

]
︸ ︷︷ ︸

net excess supply

8
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Ĉsξ (p0; z)− Ĉ
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Interpreting Previous Work

Same eq’m characterization with general fixed costs:

p̂µ0 − p̂µ̄0 = HHH ×
[
Ĉsµ0(pµ̄0 ; z)− Ĉ

s
µ̄0(pµ̄0 ; z)

]

GE adjustment: no direct estimation target = disagreement Details

1. Khan & Thomas (2008): β ≡ ∂ log I(p̄;µ̄0)
∂q

≈ −500%

→ Focal point RBC: linear firm side (= firms adjust), small ∆r and large smoothing

→ Thus: I is highly elastic around eq’m price path of rep.-firm economy

2. Winberry (2018): β ≡ ∂ log I(p̄;µ̄0)
∂q

≈ −10%

→ 10% cyclical asymmetry needs 1% ∆r → large ∆C demand→ large ∆rGE︸ ︷︷ ︸
Distinguish using response of rrr to zzz? Here instead: measure βββ!
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Measurement

How can we learn about β?

• Ideal candidate: firm-level quasi-experiment

◦ Interpretation: β = slope of investment demand curve

◦ Thus: time series variation is not useful, cross-sectional variation is

• Our approach: bonus depreciation stimulus Details

◦ Policy: ability to temporarily write-off/tax-deduct investment at a faster rate

◦ Research design: DiD using heterogeneity in treatment by δj [Zwick-Mahon]

log(ijt) = αj + δt + βZM × qjt(δj) + error︸ ︷︷ ︸
βZM ≈ −7%βZM ≈ −7%βZM ≈ −7%. What does that tell us?
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A1 Investment is equally price-elastic at all (adjusting) firms.

A2 All firms respond identically to the movements in p induced by the policy.

Proposition
Extend the baseline model to allow for permanent heterogeneity in {δj}. Let

β̃ ≡
∫
s:it (s)>0

∂ log(it(s))

∂qt
dµ̃(s)

where q is the cost of capital and µ̃ is the truncated firm state distribution.
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Results

log(ijt) = αj + δt + βZM × qjt(δj) + error

• Headline number: βZM ≈ −7% Details, Robustness & Extensions

◦ Estimation details: “universe” (corporate tax return data), pool two bonus
depreciation episodes, bjt at 4-digit industry level

◦ Extensions/robustness: Compustat, dynamics, GDP & trend interactions,
extensive margin, bjt at firm level …

• Interpretation: |β| ≤ |βZM |

1. Back-of-the-envelope (Model + A1): β = βZM ≈ −7%

2. Indirect inference (Model + ≈ A2): β ≈ −5%

→ Add βZM as estimation target (“identified moment”) in rich het.-firm model with
two depreciation types, persistent z shocks, aggregate effects, in recession, …

→ Upward bias due to selection effect, GE exposure effect is small
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Monetary Policy: Pushing on a String

Q: Why does monetary policy seem to “push on a string” in recessions?

• Possible mechanism: procyclical price elasticity of investment demand

• Our approach: NK model + lumpy investment + βZM Details

1. “PE calibration”: E(i), σ(i), spike rate, inaction rate

2. “GE calibration”: βZM plus standard non-production block

• Find: pushing-on-a-string in PE & GE

◦ i is 70% more responsive given prices, and 40% more responsive in GE

◦ Without βZM targeted: asymmetry disappears [Smets-Wouters + Khan-Thomas]
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Fiscal Policy & Firm Cash Flow

• In paper: theory & measurement with financial frictions Details

• Experiment: fiscal stimulus with cash flow-sensitive investment Details

1. “PE calibration”: earnings-based borr. constraint, initial entrant size/debt

2. “GE calibration”: βZM plus standard non-production block
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Conclusions

1. Investment price elasticities are central to GE aggregation

◦ Applies to smoothing for lumpy investment/durables & financial frictions

◦ Reduces disagreement in previous work to measurable “sufficient statistic”
Khan-Thomas (2008), Bachmann-Caballero-Engel (2013), Winberry (2018)

2. Preferred direct measurement suggests weak GE price effects

3. Implications: µ0µ0µ0 matters – but in which direction?

◦ Pro- or counter-cyclical? lumpiness vs. cash-flow effects

◦ Matters because investment takes center stage in (monetary) policy stimulus
[e.g. Christiano-Eichenbaum-Evans, Kaplan-Moll-Violante, …]
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Model Closure

• Explicit closure: medium-scale NK-DSGE model
close to Smets-Wouters (2007) and Justiniano-Primiceri-Tambalotti (2010)

• With mild additional restrictions this model satisfies R2:

Lemma
Suppose that:

1. Labor disutility is linear.
2. The coefficient on output in then Taylor rule is 0.
3. There are no aggregate capital adjustment costs.

Then, to first order, the full structural model satisfies R2. If prices and wages
are flexible, then R2 is satisfied globally.

back
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Relation to House (2014)

• Flat investment curve logic is related to House (2014)

◦ He shows: in investment re-set model with δ → 0 investment timing is
infinitely elastic w.r.t. q

◦ Implies: in eq’m model of investment market distribution µ0 is irrelevant

• How does our result generalize this?

1. Rich GE model closure, rather than just investment market

2. Aggregation not just for long-lived capital goods, also for linear revenue f’n

3. Result is generic: infinite elasticity around rep.-firm eq’m price path, doesn’t
matter what friction delivers a gap given prices

back
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General Equilibrium Adjustment H

• H combines supply and demand price elasticities:

H =
∂P
∂C
× (I − G)−1

where

G ≡
(
∂Cs

∂r
∂Cs

∂pI
∂Cs

∂w
∂Cs

∂q

)
︸ ︷︷ ︸

Supply Elasticity

×
(
∂r
∂C

∂pI

∂C
∂w
∂C

∂q
∂C

)
︸ ︷︷ ︸
Inverse Demand Elasticity

◦ Note: unique left-inverse of (I − G) is guaranteed if eq’m is unique

• R1-R3: for ν = 1 or r̄ + δ = 0, the map H is column rank-deficient, with{
Ĉsξ(p0; z)− Ĉs0(p0; z) ∈ null(H)

}
back
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Khan-Thomas (2008) vs. Winberry (2018)

What do PE price elasticities look like in previous work?

back
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Khan-Thomas (2008) vs. Winberry (2018)

The implied GE adjustment matrices look dramatically different:

(a) Khan & Thomas (2008) (b) Winberry (2018)

back
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Standard Calibration Targets

• Investment lumpiness

◦ All previous work matches E(i), σ(i), spike rate, inaction rate

◦ Implies: price elasticity ⊥ lumpiness

• Aggregate prices

◦ Winberry (2018): real rate is acyclical

◦ Concerns
1. Cyclicality conditional on z is ill-measured
2. Theory: arbitrary rate cyclicality is consistent with aggregation

• Investment rate dispersion

◦ Dispersed e + high elasticity⇒ dispersed i

◦ Direct evidence on e suggests large dispersion⇒ need small elasticities

back
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Bonus Depreciation

• What is bonus depreciation?
◦ In general: for every $ of investment reduce future tax liabilities
◦ With bonus depreciation: tax reductions come earlier = PV benefit

• Computation of exposure term:

qjt(δj) =

∞∑
t=0

ζt

( ∞∏
q=0

1

1 + r bq−1

)
τbt (δj)

• Formal equivalence to reduction in price of capital:

Lemma
The paths of all aggregates in response to an unexpected bonus depreciation
shock with firm-specific schedules {τbjt}∞t=0 are identical to response paths
after a period-0 firm-specific investment subsidy shock with

τ ij0 = τ
b
j0 +

∞∑
t=1

ζt

( ∞∏
q=1

1

1 + r bq−1

)
τbjt

back
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Estimation Details

• We extend the baseline analysis of Zwick & Mahon (2017):
1. Compustat sample: larger firms, arguably less financially constrained
2. Quarterly, dynamics: less time aggregation, learn about all entries of H
3. More controls: partial out heterogeneous exposure to aggregate conditions

back
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Monetary Policy Application

• Standard NK parameterization for non-production (demand) block
→ Robustness: habits, ϕy > 0, non-linear labor disutility

back
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Monetary Policy Application

• Firm block: target PE moments + GE price sensitivity

back
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Fiscal Policy Application

• Standard NK parameterization for non-production (demand) block
→ Robustness: habits, ϕy > 0, non-linear labor disutility

back
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Financial Frictions

• Theory

◦ Allow for constraints on borrowing & dividend issue:

bjtbjtbjt ≤≤≤ Γ(qtkjt−1, πjt)Γ(qtkjt−1, πjt)Γ(qtkjt−1, πjt)

djtdjtdjt ≥≥≥ ddd

◦ Aggregation theorem for fringe ξ of firms relying on retained earnings

• Measurement

◦ Problem: qjt(δj) ceases to be a sufficient statistic for stimulus policy

◦ Approach: model simple form of bonus depreciation without additional state
variable, then implement indirect inference

back
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Fiscal Policy Application

• Firm block: target PE moments + GE price sensitivity

back
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