Aggregation in Heterogeneous-Firm Models
Theory and Measurement

Yann Koby Christian K. Wolf
Brown Chicago/MIT

NBER Monetary Economics, July 2020
Investment in General Equilibrium

• Old debate: does lumpy i shape the behavior of I?

 Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …
Investment in General Equilibrium

• Old debate: does lumpy \(I \) shape the behavior of \(I \)?

 Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

 ○ Yes in PE: recession = fewer adjusters = less elastic \(I \) demand
Investment in General Equilibrium

- Old debate: does lumpy i shape the behavior of I?

 Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …

 - **Yes in PE**: recession = fewer adjusters = less elastic I demand
 - **Maybe in GE**: prices smooth out state dependence = “GE aggregation”
• Old debate: does lumpy \(i \) shape the behavior of \(I \)?

\[\text{Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …} \]

 ○ \textbf{Yes in PE}: recession = fewer adjusters = less elastic \(I \) demand
 ○ \textbf{Maybe in GE}: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: \textbf{financial frictions/uncertainty shocks}

\[\text{Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …} \]
Investment in General Equilibrium

• Old debate: does lumpy \(i \) shape the behavior of \(I \)?
 - Caballero-Engel (1995), Khan-Thomas (2008), Bachmann et al. (2013), Winberry (2018), …
 - **Yes in PE**: recession = fewer adjusters = less elastic \(I \) demand
 - **Maybe in GE**: prices smooth out state dependence = “GE aggregation”

• New questions, same tension: financial frictions/uncertainty shocks
 - Khan-Thomas (2013), Shourideh-Zetlin-Jones (2017), Bloom et al. (2018), …

This paper: theory & measurement for strength of GE aggregation
Our Contributions

1. **Theory**: GE aggregation = *price-elastic investment*

 - Formal result: investment is highly elastic around fixed eq'm price path
 - Previous work disagreed because price elasticity wasn’t targeted
 - E.g.: \[
 \frac{\partial \log I}{\partial \log r} = -500\% \text{ in Khan & Thomas (2008), vs. } -10\% \text{ in Winberry (2018)}
 \]

2. **Measurement**: experimental evidence to learn about
 - Estimate cross-sectional tax stimulus regressions \[\log(i_{jt}) = ZM|\{z\}_{7\%} + \text{cost of capital}_{jt} + \text{controls} + \text{error}\]
 - Interpretation: give sufficient conditions for

3. **Applications**: state dependence in monetary & fiscal policy transmission
Our Contributions

1. **Theory**: GE aggregation = *price-elastic investment*
 - Formal result: investment is highly elastic around fixed eq’m price path

2. **Measurement**: experimental evidence to learn about
 - Estimate cross-sectional tax stimulus regressions
 \[
 \log(i_{jt}) = ZM_7\%
 \]
 - Interpretation: give sufficient conditions for

3. **Applications**: state dependence in monetary & fiscal policy transmission
Our Contributions

1. Theory: GE aggregation = **price-elastic investment**
 - Formal result: investment is highly elastic around fixed eq’m price path
 - Previous work disagreed because price elasticity wasn’t targeted
 \[\beta \equiv \frac{\partial \log \mathit{I}}{\partial \mathit{r}} \text{ is } -500\% \text{ in Khan & Thomas (2008), vs. } -10\% \text{ in Winberry (2018)} \]
Our Contributions

1. **Theory**: GE aggregation = **price-elastic investment**
 - Formal result: investment is highly elastic around fixed eq’m price path
 - Previous work disagreed because price elasticity wasn’t targeted
 \[\beta \equiv \frac{\partial \log I}{\partial r} \] is -500% in Khan & Thomas (2008), vs. -10% in Winberry (2018)

2. **Measurement**: experimental evidence to learn about \(\beta \)
Our Contributions

1. **Theory:** GE aggregation = *price-elastic investment*
 - Formal result: investment is highly elastic around fixed eq’m price path
 - Previous work disagreed because price elasticity wasn’t targeted

 \[\beta \equiv \frac{\partial \log I}{\partial r} \text{ is } -500\% \text{ in Khan & Thomas (2008), vs. } -10\% \text{ in Winberry (2018)} \]

2. **Measurement:** experimental evidence to learn about \(\beta \)
 - Estimate cross-sectional tax stimulus regressions \([\text{à la} \ Zwick-Mahon (2017)]\)

 \[
 \log(i_{jt}) = \beta_{ZM} \times \text{cost of capital}_{jt} + \text{controls} + \text{error}
 \]

 \(\approx -7\% \)
Our Contributions

1. Theory: GE aggregation = price-elastic investment
 - Formal result: investment is highly elastic around fixed eq’m price path
 - Previous work disagreed because price elasticity wasn’t targeted
 \[\beta \equiv \frac{\partial \log I}{\partial r} \text{ is } -500\% \text{ in Khan & Thomas (2008), vs. } -10\% \text{ in Winberry (2018)} \]

2. Measurement: experimental evidence to learn about \(\beta \)
 - Estimate cross-sectional tax stimulus regressions [à la Zwick-Mahon (2017)]
 \[\log(i_{jt}) = \beta_{ZM} \times \text{cost of capital}_{jt} + \text{controls} + \text{error} \approx -7\% \]
 - Interpretation: give sufficient conditions for \(|\beta| \leq |\beta_{ZM}| \)
Our Contributions

1. **Theory**: GE aggregation = **price-elastic investment**
 - Formal result: investment is highly elastic around fixed eq’m price path
 - Previous work disagreed because price elasticity wasn’t targeted
 \[\beta \equiv \frac{\partial \log I}{\partial r} \] is -500% in Khan & Thomas (2008), vs. -10% in Winberry (2018)

2. **Measurement**: experimental evidence to learn about \(\beta \)
 - Estimate cross-sectional tax stimulus regressions [à la Zwick-Mahon (2017)]
 \[
 \log(i_{jt}) = \beta_{ZM} \times \text{cost of capital}_{jt} + \text{controls} + \text{error}
 \approx -7\%
 \]
 - Interpretation: give sufficient conditions for \(|\beta| \leq |\beta_{ZM}| \)

3. **Applications**: state dependence in monetary & fiscal policy transmission
Theory
• Today’s focus: *lumpy investment*
Roadmap

• Today’s focus: **Lumpy investment**

 ○ Well-established: fraction of firms willing to adjust k is procyclical

 Caballero-Engel (1995), Khan-Thomas (2008), Winberry (2018), …

 ○ **Q**: Does this imply that the response of I to macro shocks is procyclical?
• Today’s focus: **lumpy investment**

 - Well-established: fraction of firms willing to adjust k is procyclical

 - **Q:** Does this imply that the response of I to macro shocks is procyclical?

Where we’re going: limit case where \(\frac{dI}{d\text{shock}} \perp \# \text{ of adjusters} \)
• Today’s focus: **lumpy investment**

 ○ Well-established: fraction of firms willing to adjust k is procyclical

 Caballero-Engel (1995), Khan-Thomas (2008), Winberry (2018), …

 ○ **Q**: Does this imply that the response of I to macro shocks is procyclical?

 Where we’re going: limit case where $\frac{dI}{d\text{shock}} \perp \# \text{ of adjusters}$

• At the end of the talk: extension to **financial frictions**

 ○ Similar result: limit case where $\frac{dI}{d\text{shock}} \perp \# \text{ of borr.-constrained firms}$
Environment

- **Setting**: discrete-time, infinite-horizon, aggregate TFP shocks
Environment

- **Setting**: discrete-time, infinite-horizon, aggregate TFP shocks

- **Production block**: competitive intermediate goods producer $j \in [0, 1]$

$$\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t-1} \frac{1}{1 + r_s^b} \right) d_{jt} \right]$$

such that

$$d_{jt} = x_t y_{jt} - w_t l_{jt} - q_t i_{jt} - \phi(k_{jt}, k_{jt-1})$$

$$y_{jt} = z_t e_{jt} (k_{jt-1}^{\alpha} l_{jt}^{1-\alpha})^\nu$$

$$i_{jt} = k_{jt} - (1 - \delta) k_{jt-1}$$
Environment

- **Setting**: discrete-time, infinite-horizon, aggregate TFP shocks

- **Production block**: competitive intermediate goods producer $j \in [0, 1]$

\[
\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t-1} \frac{1}{1 + r_s^b} \right) d_{jt} \right]
\]

such that

\[
\begin{align*}
 d_{jt} &= x_t y_{jt} - w_t l_{jt} - q_t i_{jt} - \phi(k_{jt}, k_{jt-1}) \\
 y_{jt} &= z_t e_{jt} (k_{jt-1}^\alpha l_{jt}^{1-\alpha})^\nu \\
 i_{jt} &= k_{jt} - (1 - \delta) k_{jt-1}
\end{align*}
\]

→ **With fixed costs**: shifts in $\mu_0 = \text{changes in # of adjusters}$
Environment

- **Setting**: discrete-time, infinite-horizon, aggregate TFP shocks

- **Production block**: competitive intermediate goods producer \(j \in [0, 1] \)

\[
\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t-1} \frac{1}{1 + r_s^b} \right) d_{jt} \right]
\]

such that

\[
\begin{align*}
d_{jt} &= x_t y_{jt} - w_t l_{jt} - q_t i_{jt} - \phi(k_{jt}, k_{jt-1}) \\
y_{jt} &= z_t e_{jt} (k_{jt-1}^{\alpha} l_{jt}^{1-\alpha})^{\nu} \\
i_{jt} &= k_{jt} - (1 - \delta) k_{jt-1}
\end{align*}
\]

→ With **fixed costs**: shifts in \(\mu_0 = \) changes in # of adjusters

- **Rest**: representative household, sticky prices & wages, Taylor rule, …

Smets-Wouters (2007), Justiniano-Primiceri-Tambalotti (2010), …
Q: μ_0 is s.t. few firms adjust k. Does l respond less to z?
Experiment

Q: μ_0 is s.t. few firms adjust k. Does l respond less to z?

• Notation: Boldface is path, hat indicates IRF. Will characterize $\hat{I}_{\mu_0}(z)$.
Q: μ_0 is s.t. few firms adjust k. Does I respond less to z?

- Notation: Boldface is path, hat indicates IRF. Will characterize $\hat{I}_{\mu_0}(z)$.

R1 **First-order perturbation** around perfect foresight transition path

→ Equivalently: perfect foresight for z given arbitrary initial state μ_0
Experiment

Q: μ_0 is s.t. few firms adjust k. Does I respond less to z?

- Notation: Boldface is path, hat indicates IRF. Will characterize $\hat{I}_{\mu_0}(z)$.

R1 **First-order perturbation** around perfect foresight transition path

\rightarrow Equivalently: perfect foresight for z given arbitrary initial state μ_0

R2 Only for simplicity: eq’m = market clearing in **one market**
Q: μ_0 is s.t. few firms adjust k. Does l respond less to z?

- **Notation:** Boldface is path, hat indicates IRF. Will characterize $\hat{I}_{\mu_0}(z)$.

 R1 **First-order perturbation** around perfect foresight transition path

 \rightarrow Equivalently: perfect foresight for z given arbitrary initial state μ_0

 R2 Only for simplicity: eq’m = market clearing in **one market**

Assumption

Let $\mathbf{p} = (r, x, w, q)$ denote a price path. There exists a function $\mathcal{P}(\bullet)$, independent of the production block, s.t. an equilibrium is a path \mathbf{C} with

$$C_t = Y_t(p; z) - l_t(p; z) \equiv C_t^s, \quad \text{for } t = 0, 1, 2, \ldots$$

where $\mathbf{p} = \mathcal{P}(C)$.

Nested Models
Exact Aggregation

R3 To build intuition: **reduced-form model of lumpy investment**

→ Special adjustment costs: fraction $\xi \in (0, 1)$ of firms has infinite adjustment costs, the rest zero

→ $1 - \xi = \# \text{ of adjusters is reduced-form stand-in for changes in } \mu_0$
R3 To build intuition: *reduced-form model of lumpy investment*

→ Special adjustment costs: fraction $\xi \in (0, 1)$ of firms has infinite adjustment costs, the rest zero

→ $1 - \xi = \#\text{ of adjusters is reduced-form stand-in for changes in } \mu_0$

• **Q:** Does $\hat{I}_\xi(z)$ change with ξ?
R3 To build intuition: reduced-form model of lumpy investment

→ Special adjustment costs: fraction $\xi \in (0, 1)$ of firms has infinite adjustment costs, the rest zero
→ $1 - \xi = \#\text{ of adjusters}$ is reduced-form stand-in for changes in μ_0

• **Q:** Does $\hat{I}_\xi(z)$ change with ξ?

 ○ **Yes in PE:** fewer adjusters = less investment demand

 \[
 \hat{I}_\xi(p; z) - \hat{I}_0(p; z) = -\xi \times \hat{I}_0(p; z), \quad \text{for any } (p, z)
 \]
R3 To build intuition: **reduced-form model of lumpy investment**

→ Special adjustment costs: fraction $\xi \in (0, 1)$ of firms has infinite adjustment costs, the rest zero

→ $1 - \xi = \#$ of adjusters is reduced-form stand-in for changes in μ_0

Q: Does $\hat{l}_\xi(z)$ change with ξ?

○ **Yes in PE:** fewer adjusters = less investment demand

$$\hat{l}_\xi(p; z) - \hat{l}_0(p; z) = -\xi \times \hat{l}_0(p; z), \text{ for any } (p, z)$$

○ **Not necessarily in GE**

Proposition

Impose R1 - R3, and let $\nu \to 1$ or $\bar{r} + \delta \to 0$. Then the equilibrium price paths p and the investment path l are independent of ξ. ▶ vs. House (2014)
• **Q:** How does \(p \) respond to changes in \(\xi \)?

\[
Y(\mathcal{P}(C); z) - I(\mathcal{P}(C); z) = C
\]
Exact Aggregation

• **Q**: How does \(p \) respond to changes in \(\xi \)?

\[
Y(P(C); z) - I(P(C); z) = C
\]

• Heuristic argument – pretend it’s static:

\[
\hat{p}_\xi - \hat{p}_0 = \frac{P_C}{1 - C^s_p \cdot P_C} \times \left[\hat{C}^s_{\xi}(p_0; z) - \hat{C}^s_0(p_0; z) \right]
\]

- price elasticities
- net excess supply
Exact Aggregation

• **Q**: How does \(p \) respond to changes in \(\xi \)?

\[
Y(\mathcal{P}(C); z) - I(\mathcal{P}(C); z) = C
\]

• Heuristic argument – pretend it’s static:

\[
\hat{\rho}_\xi - \hat{\rho}_0 = \frac{\mathcal{P}_C}{1 - C^s_{\rho} \cdot \mathcal{P}_C} \times \left[\hat{C}^s_\xi(p_0; z) - \hat{C}^s_0(p_0; z) \right]
\]

- Dynamic: supply vector

\[
\text{price elasticities}
\]

net excess supply

\[
\text{supply vector}
\]
Exact Aggregation

- **Q**: How does p respond to changes in ξ?

$$Y(\mathcal{P}(C); z) - I(\mathcal{P}(C); z) = C$$

- Heuristic argument – pretend it’s static:

$$\hat{p}_\xi - \hat{p}_0 = \frac{\mathcal{P}_C}{1 - C^s_\rho \cdot \mathcal{P}_C} \times \left[\hat{C}^s_\xi(p_0; z) - \hat{C}^s_0(p_0; z) \right]$$

○ Dynamic: matrix $\mathcal{H} \times$ supply vector
Exact Aggregation

- **Q:** How does \(p \) respond to changes in \(\xi \)?

\[
Y(\mathcal{P}(C); z) - I(\mathcal{P}(C); z) = C
\]

- Heuristic argument – pretend it’s static:

\[
\hat{p}_\xi - \hat{p}_0 = \frac{P_C}{1 - C^s_\beta \cdot P_C} \times \left[\hat{C}^s_\xi(p_0; z) - \hat{C}^s_0(p_0; z) \right] \]

 - Dynamic: matrix \(\mathcal{H} \) \times supply vector

- As \(\nu \to 1 \) or \(\bar{r} + \delta \to 0 \):

\[
\frac{\partial \tilde{k}_{jt+1}}{\partial \tilde{q}_t} = -\frac{1 - (1 - \alpha)\nu}{1 - \nu} \times \frac{1 + \bar{r}}{\bar{r} + \delta} \to \infty
\]
Exact Aggregation

- **Q**: How does p respond to changes in ξ?

 $$Y(\mathcal{P}(C); z) - I(\mathcal{P}(C); z) = C$$

- Heuristic argument – pretend it’s static:

 $$\hat{p}_\xi - \hat{p}_0 = \frac{\mathcal{P}_C}{1 - C^s_\rho \cdot \mathcal{P}_C} \times \left[\hat{C}^s_\xi(p_0; z) - \hat{C}^s_0(p_0; z) \right]$$

 - Dynamic: **matrix \mathcal{H} × supply vector**

- As $\nu \to 1$ or $\bar{r} + \delta \to 0$:

 $$\frac{\partial \hat{k}_{j+1}}{\partial \hat{q}_t} = -\frac{1 - (1 - \alpha)\nu}{1 - \nu} \times \frac{1 + \bar{r}}{\bar{r} + \delta} \to \infty$$

 $C^s_\rho \to \infty$: “shifting a flat C^s-curve”
Interpreting Previous Work

Same eq’n characterization with general fixed costs:

\[\hat{p}_{\mu_0} - \hat{p}_{\bar{\mu}_0} = \mathcal{H} \times [\hat{C}^s_{\mu_0}(p_{\bar{\mu}_0}; z) - \hat{C}^s_{\bar{\mu}_0}(p_{\bar{\mu}_0}; z)] \]
Interpreting Previous Work

Same eq’m characterization with general fixed costs:

\[\hat{p}_{\mu_0} - \hat{p}_{\tilde{\mu}_0} = \mathcal{H} \times \left[\hat{C}_{\mu_0}^S(p_{\tilde{\mu}_0}; z) - \hat{C}_{\mu_0}^S(p_{\tilde{\mu}_0}; z) \right] \]

GE adjustment: no direct estimation target = disagreement
Interpreting Previous Work

Same eq’m characterization with general fixed costs:

\[
\hat{p}_{\mu_0} - \hat{p}_{\bar{\mu}_0} = \mathcal{H} \times \left[\hat{C}_{\mu_0}^s (p_{\mu_0}; z) - \hat{C}_{\bar{\mu}_0}^s (p_{\bar{\mu}_0}; z) \right]
\]

GE adjustment: no direct estimation target = disagreement

1. Khan & Thomas (2008): \(\beta \equiv \frac{\partial \log I(p; \mu_0)}{\partial q} \approx -500\% \)

 \(\rightarrow \) Focal point RBC: linear firm side (= firms adjust), small \(\Delta r \) and large smoothing

 \(\rightarrow \) Thus: \(I \) is highly elastic around eq’m price path of rep.-firm economy
Interpreting Previous Work

Same eq’m characterization with general fixed costs:

\[\hat{p}_{\mu_0} - \hat{p}_{\bar{\mu}_0} = \mathcal{H} \times \left[\hat{C}^S_{\mu_0} (p_{\bar{\mu}_0}; z) - \hat{C}^S_{\bar{\mu}_0} (p_{\bar{\mu}_0}; z) \right] \]

GE adjustment: no direct estimation target = disagreement

1. **Khan & Thomas (2008)**: \(\beta \equiv \frac{\partial \log I(p; \bar{\mu}_0)}{\partial q} \approx -500\% \)
 - Focal point RBC: linear firm side (= firms adjust), small \(\Delta r \) and large smoothing
 - Thus: \(I \) is highly elastic around eq’m price path of rep.-firm economy

2. **Winberry (2018)**: \(\beta \equiv \frac{\partial \log I(p; \bar{\mu}_0)}{\partial q} \approx -10\% \)
 - 10% cyclical asymmetry needs 1% \(\Delta r \rightarrow \) large \(\Delta C \) demand \(\rightarrow \) large \(\Delta r^{GE} \)
Interpreting Previous Work

Same eq’m characterization with general fixed costs:

\[\hat{p}_{\mu_0} - \hat{p}_{\bar{\mu}_0} = \mathcal{H} \times \left[\hat{C}^S_{\mu_0}(p_{\mu_0}; z) - \hat{C}^S_{\bar{\mu}_0}(p_{\bar{\mu}_0}; z) \right] \]

GE adjustment: no direct estimation target = disagreement

1. **Khan & Thomas (2008)**: \(\beta \equiv \frac{\partial \log I(p; \bar{\mu}_0)}{\partial q} \approx -500\% \)

 → Focal point RBC: linear firm side (= firms adjust), small \(\Delta r \) and large smoothing
 → Thus: \(I \) is highly elastic around eq’m price path of rep.-firm economy

2. **Winberry (2018)**: \(\beta \equiv \frac{\partial \log I(p; \bar{\mu}_0)}{\partial q} \approx -10\% \)

 → 10% cyclical asymmetry needs 1% \(\Delta r \) → large \(\Delta C \) demand → large \(\Delta r^{GE} \)

Distinguish using response of \(r \) to \(z \)? Here instead: **measure \beta**!
Measurement
How can we learn about β?
Measurement

How can we learn about β?

• Ideal candidate: firm-level quasi-experiment
 ○ Interpretation: $\beta = \text{slope of investment demand curve}$
 ○ Thus: time series variation is not useful, cross-sectional variation is
How can we learn about β?

• Ideal candidate: **firm-level quasi-experiment**

 ◦ Interpretation: $\beta =$ slope of investment demand curve
 ◦ Thus: time series variation is not useful, cross-sectional variation is

• Our approach: **bonus depreciation stimulus**

 ◦ Policy: ability to temporarily write-off/tax-deduct investment at a faster rate
 ◦ Research design: DiD using heterogeneity in treatment by δ_j [Zwick-Mahon]

$$\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error}$$
How can we learn about β?

• Ideal candidate: **firm-level quasi-experiment**
 - Interpretation: $\beta = \text{slope of investment demand curve}$
 - Thus: time series variation is not useful, cross-sectional variation is

• Our approach: **bonus depreciation stimulus**
 - Policy: ability to temporarily write-off/tax-deduct investment at a faster rate
 - Research design: DiD using heterogeneity in treatment by δ_j [Zwick-Mahon]

$$\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error}$$

$\beta_{ZM} \approx -7\%$. What does that tell us?
Estimand Interpretation

\[
\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error}
\]
Estimand Interpretation

\[\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error} \]

Proposition

Extend the baseline model to allow for permanent heterogeneity in \(\{\delta_j\} \). Let

\[\hat{\beta} \equiv \int_{s : i_t(s) > 0} \frac{\partial \log(i_t(s))}{\partial q_t} d\tilde{\mu}(s) \]

where \(q \) is the cost of capital and \(\tilde{\mu} \) is the truncated firm state distribution.
Estimand Interpretation

\[\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error} \]

A1 Investment is **equally price-elastic** at all (adjusting) firms.

Proposition

Extend the baseline model to allow for permanent heterogeneity in \{\delta_j\}. Let

\[\tilde{\beta} \equiv \int_{s:it(s)>0} \frac{\partial \log(i_t(s))}{\partial q_t} d\tilde{\mu}(s) \]

where \(q \) is the cost of capital and \(\tilde{\mu} \) is the truncated firm state distribution. Then, under A1 and to first order,

\[\beta_{ZM} \xrightarrow{P} \tilde{\beta} \]
Estimand Interpretation

\[\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error} \]

A1 Investment is equally price-elastic at all (adjusting) firms.

A2 All firms respond identically to the movements in \(p\) induced by the policy.

Proposition

Extend the baseline model to allow for permanent heterogeneity in \(\{\delta_j\}\). Let

\[\tilde{\beta} \equiv \int_{s: i_t(s) > 0} \frac{\partial \log(i_t(s))}{\partial q_t} d\tilde{\mu}(s) \]

where \(q\) is the cost of capital and \(\tilde{\mu}\) is the truncated firm state distribution. Then, under A2 and to first order,

\[\beta_{ZM} \xrightarrow{p} \tilde{\beta} + \frac{\text{Cov}_{\tilde{\mu}(s)} \left(\left(\frac{\partial \log(i_t(s))}{\partial q_t} - \tilde{\beta} \right) q_t(s), q_t(s) \right)}{\text{Var}_{\tilde{\mu}(s)}(q_t(s))} \]

selection effect
\[
\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error}
\]

A1. Investment is equally price-elastic at all (adjusting) firms.

A2. All firms respond identically to the movements in \(p\) induced by the policy.

Proposition

Extend the baseline model to allow for permanent heterogeneity in \(\{\delta_j\}\). Let

\[
\tilde{\beta} \equiv \int_{s:it(s)>0} \frac{\partial \log(i_t(s))}{\partial q_t} \, d\tilde{\mu}(s)
\]

where \(q\) is the cost of capital and \(\tilde{\mu}\) is the truncated firm state distribution.

Then, to first order,

\[
\beta_{ZM} \xrightarrow{p} \tilde{\beta} + \underbrace{\text{Cov}_{\tilde{\mu}(s)} \left(\left(\frac{\partial \log(i_t(s))}{\partial q_t} - \tilde{\beta} \right) q_t(s), q_t(s) \right)}_{\text{selection effect}} + \underbrace{\text{Cov}_{\tilde{\mu}(s)} \left(\frac{\partial \log(i_t(s))}{\partial p} \hat{p}, q_t(s) \right)}_{\text{heterogeneous GE exposure}} + \frac{\text{Var}_{\tilde{\mu}(s)}(q_t(s))}{\text{Var}_{\tilde{\mu}(s)}(q_t(s))}
\]
Results

\[\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error} \]

- **Headline number**: \(\beta_{ZM} \approx -7\% \)

 - Estimation details: “universe” (corporate tax return data), pool two bonus depreciation episodes, \(b_{jt} \) at 4-digit industry level
 - Extensions/robustness: Compustat, dynamics, GDP & trend interactions, extensive margin, \(b_{jt} \) at firm level …
Results

\[\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error} \]

- **Headline number**: \(\beta_{ZM} \approx -7\% \) ▶ Details, Robustness & Extensions
 - Estimation details: “universe” (corporate tax return data), pool two bonus depreciation episodes, \(b_{jt} \) at 4-digit industry level
 - Extensions/robustness: Compustat, dynamics, GDP & trend interactions, extensive margin, \(b_{jt} \) at firm level …

- **Interpretation**: \(|\beta| \leq |\beta_{ZM}|\)
Results

\[\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error} \]

- **Headline number:** \(\beta_{ZM} \approx -7\% \)
 - Estimation details: “universe” (corporate tax return data), pool two bonus depreciation episodes, \(b_{jt} \) at 4-digit industry level
 - Extensions/robustness: Compustat, dynamics, GDP & trend interactions, extensive margin, \(b_{jt} \) at firm level …

- **Interpretation:** \(|\beta| \leq |\beta_{ZM}| \)
 1. Back-of-the-envelope (Model + A1): \(\beta = \beta_{ZM} \approx -7\% \)
$$\log(i_{jt}) = \alpha_j + \delta_t + \beta_{ZM} \times q_{jt}(\delta_j) + \text{error}$$

- **Headline number:** $\beta_{ZM} \approx -7\%$

 - Estimation details: “universe” (corporate tax return data), pool two bonus depreciation episodes, b_{jt} at 4-digit industry level

 - Extensions/robustness: Compustat, dynamics, GDP & trend interactions, extensive margin, b_{jt} at firm level …

- **Interpretation:** $|\beta| \leq |\beta_{ZM}|$

 1. Back-of-the-envelope (Model + A1): $\beta = \beta_{ZM} \approx -7\%$

 2. Indirect inference (Model + \approx A2): $\beta \approx -5\%$

 → Add β_{ZM} as estimation target (“identified moment”) in rich het.-firm model with two depreciation types, persistent z shocks, aggregate effects, in recession, …

 → Upward bias due to selection effect, GE exposure effect is small
Applications
Q: Why does monetary policy seem to “push on a string” in recessions?
Q: Why does monetary policy seem to “push on a string” in recessions?

• Possible mechanism: procyclical price elasticity of investment demand
Q: Why does monetary policy seem to “push on a string” in recessions?

- Possible mechanism: procyclical price elasticity of investment demand
- Our approach: NK model + lumpy investment + β_{ZM}

1. “PE calibration”: $E(i)$, $\sigma(i)$, spike rate, inaction rate
2. “GE calibration”: β_{ZM} plus standard non-production block
Q: Why does monetary policy seem to “push on a string” in recessions?

- Possible mechanism: procyclical price elasticity of investment demand
- Our approach: NK model + lumpy investment + β_{ZM}

1. “PE calibration”: $E(i)$, $\sigma(i)$, spike rate, inaction rate
2. “GE calibration”: β_{ZM} plus standard non-production block

• Find: pushing-on-a-string in PE & GE
 - i is 70% more responsive given prices, and 40% more responsive in GE
 - Without β_{ZM} targeted: asymmetry disappears [Smets-Wouters + Khan-Thomas]
Q: Why does monetary policy seem to “push on a string” in recessions?
• In paper: theory & measurement with financial frictions ▸ Details
Fiscal Policy & Firm Cash Flow

• In paper: theory & measurement with financial frictions

• Experiment: fiscal stimulus with cash flow-sensitive investment

 1. “PE calibration”: earnings-based borr. constraint, initial entrant size/debt
 2. “GE calibration”: β_{ZM} plus standard non-production block
Fiscal Policy & Firm Cash Flow

• In paper: theory & measurement with financial frictions

• Experiment: fiscal stimulus with cash flow-sensitive investment

 1. "PE calibration": earnings-based borr. constraint, initial entrant size/debt
 2. "GE calibration": β_{ZM} plus standard non-production block
Conclusions
Conclusions

1. Investment price elasticities are central to **GE aggregation**

 ○ Applies to smoothing for lumpy investment/durables & financial frictions

 ○ Reduces disagreement in previous work to measurable “sufficient statistic”

 Khan-Thomas (2008), Bachmann-Caballero-Engel (2013), Winberry (2018)
Conclusions

1. Investment price elasticities are central to **GE aggregation**
 - Applies to smoothing for lumpy investment/durables & financial frictions
 - Reduces disagreement in previous work to measurable “sufficient statistic”
 Khan-Thomas (2008), Bachmann-Caballero-Engel (2013), Winberry (2018)

2. Preferred **direct measurement** suggests weak GE price effects
Conclusions

1. Investment price elasticities are central to **GE aggregation**
 - Applies to smoothing for lumpy investment/durables & financial frictions
 - Reduces disagreement in previous work to measurable “sufficient statistic”

2. Preferred **direct measurement** suggests weak GE price effects

3. Implications: μ_0 **matters** – but in which direction?
 - Pro- or counter-cyclical? lumpiness vs. cash-flow effects
 - Matters because investment takes center stage in (monetary) policy stimulus

 [e.g. Christiano-Eichenbaum-Evans, Kaplan-Moll-Violante, …]
Appendix
Model Closure

• Explicit closure: medium-scale NK-DSGE model

 close to Smets-Wouters (2007) and Justiniano-Primiceri-Tambalotti (2010)

• With mild additional restrictions this model satisfies R2:

Lemma

Suppose that:

1. Labor disutility is linear.
2. The coefficient on output in the Taylor rule is 0.
3. There are no aggregate capital adjustment costs.

Then, to first order, the full structural model satisfies R2. If prices and wages are flexible, then R2 is satisfied globally.
• Flat investment curve logic is related to House (2014)
 ○ He shows: in investment re-set model with $\delta \rightarrow 0$ investment timing is infinitely elastic w.r.t. q
 ○ Implies: in eq’m model of investment market distribution μ_0 is irrelevant

• How does our result generalize this?
 1. Rich GE model closure, rather than just investment market
 2. Aggregation not just for long-lived capital goods, also for linear revenue f’n
 3. Result is generic: infinite elasticity around rep.-firm eq’m price path, doesn’t matter what friction delivers a gap given prices
General Equilibrium Adjustment \mathcal{H}

- \mathcal{H} combines supply and demand price elasticities:

$$\mathcal{H} = \frac{\partial \mathcal{P}}{\partial \mathcal{C}} \times (I - \mathcal{G})^{-1}$$

where

$$\mathcal{G} = \mathcal{G} = \left(\begin{array}{cccc} \frac{\partial C_s}{\partial r} & \frac{\partial C_s}{\partial p^I} & \frac{\partial C_s}{\partial w} & \frac{\partial C_s}{\partial q} \end{array} \right) \times \left(\begin{array}{cccc} \frac{\partial r}{\partial \mathcal{C}} & \frac{\partial p^I}{\partial \mathcal{C}} & \frac{\partial w}{\partial \mathcal{C}} & \frac{\partial q}{\partial \mathcal{C}} \end{array} \right)$$

Supply Elasticity \hspace{2cm} Inverse Demand Elasticity

- Note: unique left-inverse of $(I - \mathcal{G})$ is guaranteed if eq’m is unique

- R1-R3: for $\nu = 1$ or $\bar{r} + \delta = 0$, the map \mathcal{H} is column rank-deficient, with

$$\{ \hat{\mathbf{C}}^s_\xi(p_0; z) - \hat{\mathbf{C}}^0_0(p_0; z) \in \text{null}(\mathcal{H}) \}$$
What do PE price elasticities look like in previous work?

![Graph showing comparison between Khan-Thomas (2008) and Winberry (2018) for PE price elasticities over time.](image)
The implied GE adjustment matrices look dramatically different:

(a) Khan & Thomas (2008)
(b) Winberry (2018)
Standard Calibration Targets

• Investment lumpiness
 - All previous work matches $\mathbb{E}(i)$, $\sigma(i)$, spike rate, inaction rate
 - Implies: price elasticity \perp lumpiness

• Aggregate prices
 - Winberry (2018): real rate is acyclical
 - Concerns
 1. Cyclicality conditional on z is ill-measured
 2. Theory: arbitrary rate cyclicality is consistent with aggregation

• Investment rate dispersion
 - Dispersed e + high elasticity \Rightarrow dispersed i
 - Direct evidence on e suggests large dispersion \Rightarrow need small elasticities
Bonus Depreciation

- What is bonus depreciation?
 - In general: for every $ of investment reduce future tax liabilities
 - With bonus depreciation: tax reductions come earlier = PV benefit

- Computation of exposure term:

 \[q_{jt}(\delta_j) = \sum_{t=0}^{\infty} \zeta^t \left(\prod_{q=0}^{\infty} \frac{1}{1 + r^b_{q-1}} \right) \tau^b_t(\delta_j) \]

- Formal equivalence to reduction in price of capital:

 Lemma

 The paths of all aggregates in response to an unexpected bonus depreciation shock with firm-specific schedules \(\{ \tau^b_{jt} \}_{t=0}^{\infty} \) are identical to response paths after a period-0 firm-specific investment subsidy shock with

 \[\tau^i_{j0} = \tau^b_{j0} + \sum_{t=1}^{\infty} \zeta^t \left(\prod_{q=1}^{\infty} \frac{1}{1 + r^b_{q-1}} \right) \tau^b_{jt} \]
Estimation Details

• We extend the baseline analysis of Zwick & Mahon (2017):
 1. Compustat sample: larger firms, arguably less financially constrained
 2. Quarterly, dynamics: less time aggregation, learn about all entries of \mathcal{H}
 3. More controls: partial out heterogeneous exposure to aggregate conditions

| Dependent Variable: | $\log(i_{j,t})$ | $\log(i_{j,t+1})$ | $\log(i_{j,t+2})$ | $\log(i_{j,t+3})$ | $\log(i_{j,t+4})$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_{n,t}$</td>
<td>1.64***</td>
<td>1.19***</td>
<td>0.78***</td>
<td>0.31</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td>(0.28)</td>
<td>(0.29)</td>
<td>(0.29)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>GDP Interaction</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trend Interaction</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Firm & Time FE</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Observations</td>
<td>406,807</td>
<td>401,428</td>
<td>390,561</td>
<td>381,156</td>
<td>372,078</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.86</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Monetary Policy Application

• Standard NK parameterization for non-production (demand) block
 → Robustness: habits, $\phi_y > 0$, non-linear labor disutility

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount rate</td>
<td>1/1.04</td>
</tr>
<tr>
<td>h</td>
<td>Habit formation</td>
<td>0</td>
</tr>
<tr>
<td>γ</td>
<td>CRRA coefficient</td>
<td>1</td>
</tr>
<tr>
<td>φ</td>
<td>Frisch elasticity</td>
<td>∞</td>
</tr>
<tr>
<td>ϵ_p</td>
<td>Goods substitutability</td>
<td>10</td>
</tr>
<tr>
<td>θ_p</td>
<td>Price adjustment cost</td>
<td>40</td>
</tr>
<tr>
<td>ϵ_w</td>
<td>Wage substitutability</td>
<td>10</td>
</tr>
<tr>
<td>θ_w</td>
<td>Wage adjustment costs</td>
<td>100</td>
</tr>
<tr>
<td>κ</td>
<td>Aggregate K adjustment costs</td>
<td>0</td>
</tr>
<tr>
<td>ρ_{tr}</td>
<td>Taylor rule persistence</td>
<td>0.75</td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>Taylor rule inflation coefficient</td>
<td>1.5</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>Taylor rule output coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>
Monetary Policy Application

- Firm block: target **PE moments** + **GE price sensitivity**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - \xi$</td>
<td>Firm exit rate</td>
<td>0.065</td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation rate</td>
<td>0.067</td>
</tr>
<tr>
<td>α</td>
<td>Capital share</td>
<td>0.310</td>
</tr>
<tr>
<td>ν</td>
<td>Returns to Scale</td>
<td>0.870</td>
</tr>
<tr>
<td>ρ</td>
<td>Productivity persistence</td>
<td>0.890</td>
</tr>
<tr>
<td>σ</td>
<td>Productivity dispersion</td>
<td>0.250</td>
</tr>
<tr>
<td>μ_0</td>
<td>Mean initial productivity</td>
<td>-0.375</td>
</tr>
<tr>
<td>σ_0</td>
<td>Initial productivity dispersion</td>
<td>0.330</td>
</tr>
</tbody>
</table>

Targeted Moments

<table>
<thead>
<tr>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price Sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonus depreciation estimand</td>
<td>2.890</td>
<td>2.984</td>
</tr>
<tr>
<td>Micro Investment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average investment rate</td>
<td>0.104</td>
<td>0.087</td>
</tr>
<tr>
<td>Std. of investment rates</td>
<td>0.160</td>
<td>0.147</td>
</tr>
<tr>
<td>Spike rate</td>
<td>0.144</td>
<td>0.108</td>
</tr>
<tr>
<td>Inaction rate</td>
<td>0.237</td>
<td>0.184</td>
</tr>
<tr>
<td>Employment Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment share of age-1 firms</td>
<td>0.016</td>
<td>0.028</td>
</tr>
</tbody>
</table>
Fiscal Policy Application

- Standard NK parameterization for non-production (demand) block
 → Robustness: habits, $\phi_y > 0$, non-linear labor disutility

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount rate</td>
<td>1/1.04</td>
</tr>
<tr>
<td>h</td>
<td>Habit formation</td>
<td>0</td>
</tr>
<tr>
<td>γ</td>
<td>CRRA coefficient</td>
<td>1</td>
</tr>
<tr>
<td>φ</td>
<td>Frisch elasticity</td>
<td>∞</td>
</tr>
<tr>
<td>ϵ_p</td>
<td>Goods substitutability</td>
<td>10</td>
</tr>
<tr>
<td>θ_p</td>
<td>Price adjustment cost</td>
<td>40</td>
</tr>
<tr>
<td>ϵ_w</td>
<td>Wage substitutability</td>
<td>10</td>
</tr>
<tr>
<td>θ_w</td>
<td>Wage adjustment costs</td>
<td>100</td>
</tr>
<tr>
<td>κ</td>
<td>Aggregate K adjustment costs</td>
<td>0</td>
</tr>
<tr>
<td>ρ_{tr}</td>
<td>Taylor rule persistence</td>
<td>0.75</td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>Taylor rule inflation coefficient</td>
<td>1.5</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>Taylor rule output coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>
Financial Frictions

• Theory

 ○ Allow for constraints on borrowing & dividend issue:

 \[b_{jt} \leq \Gamma(q_t k_{jt-1}, \pi_{jt}) \]
 \[d_{jt} \geq d \]

 ○ Aggregation theorem for fringe \(\xi \) of firms relying on retained earnings

• Measurement

 ○ Problem: \(q_{jt}(\delta_j) \) ceases to be a sufficient statistic for stimulus policy

 ○ Approach: model simple form of bonus depreciation without additional state variable, then implement indirect inference
Fiscal Policy Application

- Firm block: target **PE moments** + **GE price sensitivity**

Targeted Moments

<table>
<thead>
<tr>
<th>Parameter Values</th>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Dividend constraint</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fitted Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>Quadratic adjustment costs</td>
<td>1.280</td>
<td></td>
</tr>
<tr>
<td>ϑ</td>
<td>Investment irreversibility</td>
<td>0.790</td>
<td></td>
</tr>
<tr>
<td>$\bar{\xi}$</td>
<td>Upper bound on fixed costs</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Size of region without fixed costs</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>Earnings-based borrowing constraint</td>
<td>3.000</td>
<td></td>
</tr>
<tr>
<td>k_0</td>
<td>Capital of entrants</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>Debt of entrants</td>
<td>0.180</td>
<td></td>
</tr>
</tbody>
</table>