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Introduction

I Housing—largest household asset; mortgages—largest liability.
(Campbell, 2006; Badarinza et al., 2016; Gomes et al., 2020)

I Rich source of insights into household preferences and constraints.
(e.g., Piazzesi et al., 2015; Guren, 2018; DeFusco et al., 2018; Bailey et al., 2019; Andersen et al., 2019; Armona et al., 2019)

I Influential field evidence that listing prices rise when sellers face
losses. (Genesove and Mayer, 1997, 2001).

I Prima facie evidence of loss aversion, but raises important issues:
I Mapping facts to parameters requires an explicit model of reference dependence.

I Such a model should incorporate realistic housing market features.

I Harnessing observables in addition to prices (e.g., Kleven, 2016; Rees-Jones, 2018).

I Empirical confounds (unobservable quality, home equity constraints).

I Subsequent literature extends our knowledge, but issues remain open.
(e.g., Engelhardt, 2003; Anenberg, 2011; Bracke and Tenreyro, 2018; Hong et al., 2019; Clapp et al., 2020)
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This paper

I Develops a structural model of house selling which flexibly embeds
preferences and constraints.

I Seller optimizes listing decision and listing price, internalizing effects on
probability of sale and final sale price (i.e., demand).

I Model predicts seller policy functions given parameters and state variables.

I Studies Danish administrative data on housing stock, transactions,
and listings, matched to mortgages and demographics.
I Evaluates prior results using more granular data, and uncovers new facts.

I New moments including bunching in transactions and extensive margin.

I Confronts measurement challenges and controls for numerous confounds.

I Model rationalizes data with reference dependence and modest loss
aversion; exceptions point to future theoretical work.
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Listing premia in the data

I Listing premium (`) = ln(Listing price) - ln(Hedonic price).
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I Potential gains = ln(Hedonic price) - ln(Reference price).
I Assumption: Reference price is nominal purchase price.
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Data and Facts
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Data

I Universe of Danish housing transactions from 2009 to 2016.
I Assessed sale values from the tax registry. Original purchase values post-1992.
I Size, location, hedonics, sale, purchase time from the property registry.

I Matched to owner’s personal ID, using property ID.
I Data on household demographics: Age, education.
I Data on household income, outstanding mortgage debt, net financial assets.

I Property ID used to match to (external) listings data.
I All Danish electronic listings (matched to approx. 75% of all transactions).
I Listing price, time on the market, retracted or sold.

I Merged data: 214,508 listings (70.6% sold, 29.4% retracted) of 181,020
properties by 193,850 households between 2009 and 2016.
I Housing stock (5,540,391 observations of 807,666 unique properties) used to

understand the extensive margin, i.e., propensity to list.
More details
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Hedonic pricing model

I Predict prices using hedonic model:

ln(Pit) =δ + δt + δm + δtm + β f1i= f + β f t1i= f1t=τ

+ βxXit + β f x1i= f Xit + Φ(vit) + εit. (1)

I R2 from estimating this model is 0.86. Results are robust to using a
range of alternative models. More details

I Use predicted prices to calculate:

Potential gains (note contrast with) Realized gains
Ĝ = l̂n P− ln R G = ln P− ln R

Potential home equity (note contrast with) Realized home equity
Ĥ = l̂n P− ln M H = ln P− ln M

Listing premium (note contrast with) Realized premium
` = ln L− l̂n P rp = ln P− l̂n P
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Listing premia, potential gains, and potential home equity

Potential home equity (H)
-40%

-20%
0%

20%
40%

Potential gains (G)

-40%
-20%

0%
20%

40%

Listing prem
ium

 ( )

0%

10%

20%

30%

40%

50%

G = 0%
H = 20%

Summary statistics Moments: Listing premia

Imperial College Business School Imperial means Intelligent Business 6



Bunching

I Loss aversion predicts “bunching” of transactions at prices just above
reference point R. (As sellers aim for realized gain G = 0%.)
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Extensive margin

I Predict prices for the entire housing stock, plot propensity to list as a
function of potential gains.
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Demand: Probability of sale and final prices

Probability of sale within 6 months Realized premium vs. listing premium
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Unobserved quality

Estimated patterns are robust to:

I Alternative pricing models, e.g., property-specific FEs for P̂ (R2 = 0.9).
I OOS hedonic predictions; renovation tax exemptions (in process).

Repeat sales model Out-of-sample simulations Alternative spec. Model fit

I Shire-level house prices as estimate of P̂.
I 2136 shires. Smallest unit: ≈1,500 property-years and ≈45 listings.

More details

I Regressing premium on demographics, municipality, & year FE.
More details

I Genesove and Mayer (2001) bounding approach.
More details

I Regression Kink Design (RKD).
I Significant change in slope in narrow neighbourhood around kink, while other

characteristics smooth around Ĝ = 0 (` = 0 in sale probability).
More details
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Theory
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Reference dependence and loss aversion

I Utility function with reference dependence and loss aversion:

u = P + ηG(λ1G<0 + 1G≥0)

I Note: defined over realized prices P and gains G.
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Optimal listing premia (`∗)
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Bunching

I Distinct implications of reference dependence and loss aversion:
I Excess mass in gain domain when η > 0; bunching at G = 0% when λ > 1, plus

even less mass in loss domain.
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Concave demand

I Concave demand is a confound: Non-linear listing premia even with
no loss aversion.
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I Exploit regional variation in housing markets with differing degrees
of demand concavity for identification.
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Structural estimation: Work in progress
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Model fit and estimated parameters

Potential home equity (H)
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Reference dependence η = 0.948∗∗∗ (0.344)
Loss aversion λ = 1.576∗∗∗ (0.570)
Down-payment constraint µ = 1.060∗∗∗ (0.107)
Distrib. of moving shocks θmin = 0.217 (0.165)

θmax = 1.005∗∗∗ (0.197)
Cost of listing/search ϕ = 0.037 (0.011)
Adjustment to concavity δ = −0.097∗∗∗ (0.009)

I λ in the literature: 2 to 2.5 (Kahneman et al. 1990, Tversky and Kahneman, 1991). When we shut down

concave demand channel: λ = 3.29. Linear demand Identification Sensitivity analysis
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Discussion and Conclusions
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Interactions
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I Model fails to explain lower response to losses when home equity
constraint is tighter.

I Similarly, it appears as if downsizing aversion kicks in at higher
potential home equity levels when potential gains are high.

Discussion
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Conclusions

I We set up a structural model of house listing behavior, and document
the importance of the following ingredients:

I Reference dependence plus loss aversion.

I Seller optimization in the presence of “demand concavity.”

I Penalty for realized home equity less than down-payment constraint thresholds.

I Gains from trade for a successful sale and costs of listing.

I Acquire new estimates of key behavioral parameters from an
important high-stakes household decision in a search and matching
market.

I However, the model cannot completely match some new facts which
we identify in the data.
I Potential new target for behavioral economics theory.
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