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Abstract

We model listing decisions in the housing market, and structurally estimate
household preference and constraint parameters using comprehensive Danish data.
Sellers optimize expected utility from property sales, subject to down-payment con-
straints, and internalize the effect of their choices on final sale prices and time-on-
the-market. The data exhibit variation in the listing price-gains relationship with
“demand concavity;” bunching in the sales distribution; and a rising listing propen-
sity with gains. Our estimated parameters indicate reference dependence around
the nominal purchase price and modest loss aversion. A new and interesting fact
that the canonical model cannot match is that gains and down-payment constraints
have interactive effects on listing prices.
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1 Introduction

Housing is typically the largest household asset, and mortgages, typically the largest li-

ability (Campbell, 2006, Badarinza et al. 2016, Gomes et al. 2020). Decisions in the

housing market are highly consequential, and are therefore a rich and valuable source of

field evidence on households’ underlying preferences, beliefs, and constraints. An influen-

tial example is the finding that listing prices for houses rise sharply when their sellers face

nominal losses relative to the initial purchase price, originally documented by Genesove

and Mayer (2001), and reconfirmed and extended in subsequent literature (see, e.g., En-

gelhardt (2003), Anenberg, 2011, Hong et al. 2019, and Bracke and Tenreyro 2020). This

finding has generally been accepted as prima facie evidence of reference-dependent loss

aversion (Kahneman and Tversky, 1989, Köszegi and Rabin, 2006, 2007).

Mapping these facts back to underlying preference parameters requires confronting

challenges not fully addressed by the extant literature. A rigorous mapping permitting

quantitative assessment of parameter magnitudes requires an explicit model of reference-

dependent sellers. A plausible model would incorporate additional realistic constraints,

such as the fact that optimizing sellers’ listing decisions may be disciplined by demand-side

responses.1 Moreover, such a model would predict the behavior of a range of observables

in addition to prices—which can be harnessed to accurately pin down parameters. For

example, recent work assessing reference dependence in the field extracts information

from transactions quantities (see, e.g., Kleven, 2016 and Rees-Jones, 2018), suggesting

new moments to match in the residential housing market setting.

In this paper, we develop a new model of house selling decisions incorporating realistic

housing market frictions. We structurally estimate the parameters of the model using a

large and granular administrative dataset which tracks the entire stock of Danish housing,

and the universe of Danish listings and housing transactions between 2009 and 2016,

1Recent progress has been made on documenting the shape of housing demand (e.g., Guren, 2018),
but it is important to understand how this affects inferences about the relationship between listing prices
and sellers’ “potential gains”.
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matched to household demographic characteristics and financial information. These rich

data also yield several new facts about household decisions that we cannot match using

canonical model features, making them targets for future theoretical work.

In our model, sellers face an extensive margin decision of whether to list, as well as an

intensive margin choice of the listing price. Sellers maximize expected utility both from

the final sale price of the property as well as (potentially asymmetrically) from any gains

or losses relative to a fixed reference price, which we simply set to the nominal purchase

price of the property. We adopt a standard piecewise linear formulation of reference-

dependent utility, characterized by two parameters: η captures how gains are weighed

relative to the utility of the final sale price, and λ captures the asymmetric disutility of

losses, i.e., conventionally, when λ > 1, sellers are loss averse. Sellers enjoy additional

“gains from trade” from successful sales, receive an outside option utility level otherwise,

and face down-payment constraints à la Stein (1995). Sellers take into account how their

choices affect outcomes, i.e., the probability of sale as well as the final sale price, given

housing demand.

We summarize a few important insights from the model here. When sellers exhibit

“linear reference dependence” (η > 0, i.e., gains and losses matter to sellers, but λ = 1, i.e.,

there is no asymmetry between gains and losses), optimal listing premia decline linearly

with “potential gains” (the difference between the expected sale price and the reference

price) accrued since purchase. Intuitively, such linearly reference-dependent sellers facing

losses require a greater final sales price to elevate the total utility received from a successful

sale above that of the outside option. This leads them to raise (lower) listing prices in the

face of potential losses (gains).2 In addition, if sellers are loss averse, with λ > 1, then

optimal listing premia slope up more sharply when sellers face potential losses than when

they face potential gains, reflecting the asymmetry in underlying preferences.

These predictions on listing premia are mirrored in the behavior of quantities. With

2In the trivial case of no reference dependence, i.e., when η = 0, the model predicts that optimal
listing premia are simply flat in potential gains.
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linear reference dependence, completed transactions more frequently occur at realized

gains (when the final sales price exceeds the reference price) than at realized losses. Put

differently, η > 0 implies a shift of mass to the right in the distribution of transactions

along the realized gains dimension, relative to the distribution when η = 0. With loss

aversion, there is, in addition, sharp bunching of transactions precisely at realized gains

of zero, and a more pronounced shift of mass of transactions away from realized losses.

Reference dependence and loss aversion also affect the extensive margin. The model

predicts that the propensity to list rises in potential gains if η > 0. When λ > 1, there is

also a pronounced decline over the domain of potential losses. Accounting for the extensive

margin decision additionally helps to clean up inferences on the intensive margin, which

can otherwise be biased by the drivers of selection into listing.

This discussion suggests that mapping reduced-form facts to underlying preference

parameters is straightforward, but several key confounds can interfere. For one, the

model reconfirms an issue recognized in prior work (e.g., Genesove and Mayer, 1997,

2001), that downsizing aversion à la Stein (1995) is difficult to separate from loss aver-

sion. Down-payment constraints on mortgages create an incentive for households to “fish”

with higher listing prices, since household leverage magnifies declines in collateral value,

severely compressing the size of houses into which households can move. This effect of

household leverage strongly manifests itself in listing prices in the data, but we document

significant independent variation with potential gains, allowing us to cleanly identify loss

aversion.

Second, accurate measurement of sellers’ “potential gains” is important for our ex-

ercise. We confirm that the hedonic model that we employ to predict house prices in

our main analysis fits the data with high explanatory power (R2 = 0.86), and that our

empirical work is robust to alternative house price prediction approaches. Third, relat-

edly, as Genesove and Mayer (2001), Clapp et al. (2018), and others note, variation in

the unobservable property quality and potential under- or over-payment at the time of
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property purchase are important sources of measurement error. As we describe later, we

adopt a wide range of strategies to check robustness to this possible confound.3

Fourth, the shape of demand is very important for model outcomes. If sale probabili-

ties respond linearly and negatively to higher listing prices (“linear demand”), there are

material incentives to set low list prices to induce quick sales. However, Guren (2018)

shows that U.S. housing markets are characterized by “concave demand,” i.e., past a

point, lowering list prices does not boost sale probabilities, but does negatively impact

realized sale prices; we confirm this finding in the Danish data.4 The model reveals that

this can generate a nonlinear optimal listing price schedule even without any underlying

loss aversion. Intuitively, in the face of linear demand, a seller with η > 0 and λ = 1

linearly lowers list prices with potential gains, focusing on inducing a swift sale. However,

when facing concave demand, lowering list prices past a point is unproductive, leading

to an observed “flattening out” in the optimal listing price schedule, which is then non-

linear even though λ = 1. A related and important observation from the model is that

sharp demand responses to raising listing prices are associated with weaker listing price

responses to losses, and vice versa.

Keeping these potential confounds in mind, we outline the main facts in the data.

First, the listing price schedule has the characteristic “hockey stick” shape first identified

by Genesove and Mayer (2001), rising substantially as expected losses mount, and virtually

flat in gains. Our estimates are similar in magnitude to those in that paper despite the

differences in location, sample period, and sample size.5 Second, listing premia vary

considerably across regional housing markets in Denmark which exhibit varying degrees

3This includes estimation with property-specific fixed effects, applying bounding strategies previously
proposed in the literature (Genesove and Mayer, 2001), utilizing an instrumental variables approach
proposed by Guren (2018), and employing a Regression Kink Design (Card et al., 2015b)

4We also show using these data that there are substantial increases in the volatility of time on the
market associated with higher listing premia, a new and important observation.

5In the original Genesove and Mayer sample of Boston condominiums between 1990 and 1997
[N=5,792], list prices rise between 2.5 and 3.5% for every 10% nominal loss faced by the seller. We
find rises of 4.4 and 5.4% for the same 10% nominal loss in the Danish data of apartments, row houses,
and detached houses between 2009 and 2016 [N=173,065].
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of demand concavity. This variation is consistent with the model: steep listing premia

responses to losses are observed in markets with weaker demand concavity, and vice versa.

These regional moments provide additional discipline to our structural estimation exercise

and help account for the demand-concavity confound. Third, we see sharp bunching in the

sales distribution at realized gains of zero, and a significant shift in mass in the distribution

of sales towards realized gains and away from realized losses. Fourth, we estimate listing

propensities for the entire Danish housing stock of over 5.5 million housing units as a

function of potential gains. There is a visible increase in the propensity to list houses

on the market as potential gains rise, and the slope appears more pronounced over the

potential loss domain than the potential gain domain.

Taken together, these facts appear consistent with underlying preferences that are

both reference dependent and loss averse around the original nominal purchase price of

the house. To more rigorously map these facts back to the model, we structurally estimate

seven model parameters using seven selected moments from the data (including those

described above) using classical minimum distance estimation in this exactly identified

system. The resulting point estimates yield η = 0.948 (s.e. 0.344), meaning that gains

count about as much as final prices for final utility, and λ = 1.576 (s.e. 0.570), a modest

degree of loss aversion, lower than early estimates between 2 and 2.5 (e.g., Kahneman

et al. 1990, Tversky and Kahneman, 1992), but closer to those in more recent literature

(e.g., Imas et al. 2016 find λ = 1.59). The role of concave demand is important for

these parameter estimates—in a restricted model in which we assume that demand is

(counterfactually) linear, estimated η = 0.750 (s.e. 0.291) and λ = 3.285 (s.e. 0.867).6

This strongly reinforces a broader message (see, e.g., Blundell, 2017) that realistic frictions

need to be incorporated when mapping reduced-form facts from the data to inferences

about deeper underlying parameters, strengthening the case for applying a structural

6This also highlights that frictions in matching in the housing market are another important part
of the explanation for the positive correlation between volume and price observed in housing markets,
an original motivation for the mechanisms identified by both Stein (1995) and Genesove and Mayer
(2001)—both of which our model incorporates.
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behavioral approach (DellaVigna (2009, 2018)) to field evidence. Finally, the estimated

parameters also reveal strong evidence of the down-payment channel originally identified

by Stein (1995), reveal significant “gains from trade” from successful house listings, and

highlight that there are substantial (psychological and transactions) costs associated with

listing.

The model does a good job of matching the selected moments with plausible preference

parameters. However as an out-of-sample exercise, we conduct a broader evaluation of

how the model matches the entire surface of the listing premium along the home equity

and gains dimensions. A novel pattern that we uncover, and that our model cannot

match, is that home equity and expected losses have interactive effects on listing prices

in this market. To be more specific, when home equity levels are low, i.e., when down-

payment constraints are tighter, households set high listing prices that vary little around

the nominal loss reference point. In contrast, households that are relatively unconstrained

set listing prices that are significantly steeper in expected losses. Households’ listing

price responses to down-payment constraints are also modified by their interaction with

nominal losses. Mortgage issuance by banks in Denmark is limited to an LTV of no

greater than 80%,7 and for households facing nominal losses since purchase, listing prices

rise visibly as home equity falls below this down-payment constraint threshold of 20%. But

for households expecting nominal gains, there is a strong upward shift in this constraint

threshold (i.e., to values above 20%) in the level of home equity at which they raise listing

prices. We discuss these findings and conjecture mechanisms to explain them towards the

end of the paper; we view them as potential targets for future theoretical work.

The paper is organized as follows. Section 2 introduces the model of household list-

ing behavior. Section 3 discusses the construction of our merged dataset, and provides

descriptive statistics about these data. Section 4 introduces the moments that we use

for structural estimation and uncovers new facts about the behavior of listing prices and

7We later describe the precise institutional features of the Danish setting, which permits additional
non-mortgage borrowing at substantially higher rates for higher LTV mortgages.
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listing decisions. Section 5 describes our structural estimation procedure, and reports

parameter estimates. Section 6 describes validation exercises, and highlights areas where

the model falls short in explaining features of the data. Section 7 concludes.

2 A Model of Household Listing Behavior

We develop a model in which a household (the “seller”), optimally decides on a listing price

(the “intensive margin”), as well as whether or not to list a house (the “extensive margin”).

The model framework can flexibly embed different preferences and constraints that have

commonly been used to explain patterns in listing behavior. In this section we describe the

main features and specific predictions of the model, which we later structurally estimate

to recover key preference and constraint parameters from the data.

2.1 General Framework

The market consists of a continuum of sellers and buyers of residential property. There

are two periods in the model: in period 0, some fraction of property owners receive a

shock θ ∼Uniform(θmin, θmax), and decide (i) whether or not to put their property up for

sale, and (ii) the optimal listing price in case of listing. This “moving shock” θ can be

thought of as a “gain from trade” (Stein, 1995), i.e., a boost to lifetime utility which

sellers receive in the event of successfully selling and moving, which captures a variety of

reasons for moving, including labor market moves to opportunity, or the desire to upsize

arising from a newly expanded family. In period 1, buyers visit properties that are up

for sale. If the resulting negotiations succeed, the property is transferred to the buyer for

a final sale price. If negotiations fail, the seller stays in the property, and a receives a

constant level of utility u.

We seek to uncover the structural relationship between listing decisions and seller pref-

erences and constraints. To sharpen this focus, we model buyer decisions and equilibrium
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negotiation outcomes in reduced-form, and focus on recovering seller policy functions

from this setup. In particular, let L denote the listing price set by the seller; P̂ be a

measure of the “expected” or “fundamental” property value;8,9 ` = L− P̂ be termed the

listing premium; let α denote the probability that a willing buyer will be found; and P

denote the final sale price resulting from the negotiation between buyer and seller where

P (`) = P̂ + β(`).

A typical seller’s decision in period 0 can be written as:

max
s∈{0,1}

(s) max
`

[α(`) (U (P (`), ·) + θ) + (1− α(`))u− ϕ]︸ ︷︷ ︸
EU(`)

+(1− s)u

 (1)

The seller decides on the extensive margin of whether (s = 1) or not (s = 0) to list, as

well as the listing premium `, to maximize expected utility from final sale of the property.

For a listed property, there are two possible outcomes in period 1, which depend on `.

With probability α(`) the negotiation succeeds, and the seller receives utility from selling

the property for an equilibrium price P (`) = P̂ + β(`). With probability 1 − α(`) the

listing fails, in which case the seller falls back to their outside option level of utility u. In

addition, owners who decide to list incur a one-time cost ϕ, which is sunk at the point of

listing—all utility costs associated with listing (e.g., psychological “hassle factors”, search,

listing and transaction fees) are captured by this single parameter.

When making these listing decisions, the seller takes α(`) and β(`), i.e., the “demand”

8Guren (2018) assumes that the buyer’s expected value is given by the average listing price in a given
zip code and year. This allows for more flexibility, allowing listing prices to systematically deviate from
hedonic/fundamental property values across time and locations. We begin with a simpler benchmark,

setting P̂ to the fundamental/hedonic value of the house in the interests of internal consistency of the
model. As we show later, this distinction does not play a significant role in our empirical work, as
Denmark has a relatively homogenous and liquid housing market, and we show that the listing premium
based on hedonic prices more strongly predicts a decrease in the probability of sale than the alternative
based on average listing prices in a direct comparison in the online appendix.

9In the model solution and calibration exercise, we normalize P̂ to 1. All model quantities can
therefore be thought of as being expressed in percentages (which we later map to logs, relying on the
usual approximation), to be consistent with the definitions of gains/losses and home equity employed in
our empirical work.
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functions, as given; we estimate these functions in the data as a reduced-form for equilib-

rium outcomes in the negotiation process in period 1, which the seller internalizes when

optimizing utility. As in Guren (2018), we note that sufficient statistic formulas (Chetty,

2009) for equilibrium outcomes are mappings between sale probabilities α(`), final sale

prices P (`) = P̂ + β(`), and listing premia `. In particular, the realized premium β(`)

of the final sales price P over the expected property value P̂ , and the probability of a

quick sale α(`) arise from the seller’s listing behavior, and the subsequent negotiation

process with the buyer. This assumption simplifies the model, and allows us to more

closely focus on our goal, namely, extracting the underlying parameters of seller utility

and constraints.10

The functions α(`) and β(`) restrict the seller’s action space, and capture the basic

tradeoff that sellers face: a larger ` can lead to a higher ultimate transaction price, but

decreases the probability that a willing buyer will be found within a reasonable time

frame.11 These points capture the link between listing premia, final realized sales premia,

and time-on-the-market or TOM originally detected by Genesove and Mayer (2001). In

the remainder of the paper, we refer to these two functions α(`) and β(`) collectively

as concave demand, following Guren (2018), who documents using U.S. data that above

average list prices increase TOM (i.e., they reduce the probability of final sale), while below

average list prices reduce seller revenue with little effect on TOM. We find essentially the

same patterns in the Danish data.

We next describe the components of U (P (`), ·) = u(P (`), ·)− κ(P (`), ·), which allows

us to nest a range of preferences u(P (`), ·), including reference-dependent loss-aversion

à la Kahneman and Tversky (1979) and Köszegi and Rabin (2006, 2007), as well as

down-payment constraints κ(P (`), ·) à la Stein (1995).

10As we describe later, we do allow for the seller to perceive α(`) differently from the (ex-post)
estimated mapping function in the data by adding a parameter δ to the model, i.e., the seller maximizes
subject to their perceived (α(`) + δ) probability.

11In our estimation, we define a period as equal to six months. In this case, the function α(`) captures
the probability that the transaction goes through within a time frame of six months after the initial
listing.
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2.2 Reference-Dependent Loss Aversion

We adopt a standard formulation of reference-dependent loss averse preferences, writing

u(P (`), ·) as:

u(P (`), R) =

P (`) + ληG(`), if G(`) < 0

P (`) + ηG(`), if G(`) ≥ 0
. (2)

In equation (2), the seller’s reference price level is R, which we simply assume is

fixed, and in our empirical application, we set R to the original nominal purchase price

of the property.12 Realized gains G(`) relative to this reference level are then given by

G(`) = P (`)−R.

The parameter η captures the degree of reference dependence. Sellers derive utility

both from the terminal value of wealth (i.e. the final price P realized from the sale), as

well as from the realized gain G relative to the reference price R.

The parameter λ > 1 governs the degree of loss aversion. This specification of the

problem assumes that utility is piecewise linear in nominal gains and losses relative to the

reference point, with a kink at zero, and has been used widely to study and rationalize

results found in the lab (e.g., Ericson and Fuster, 2011), as well as in the field (e.g., Anagol

et al., 2018).

2.2.1 State Variables

In the model, seller decisions are determined by four state variables, namely, the moving

shock θ, the hedonic value of the property P̂ , the reference point R, and the outside

option level u. To map model quantities more directly to estimates in the data, and to

make our setup more directly comparable to extant empirical and theoretical literature,

we calculate the seller’s expected or “potential” gains Ĝ = P̂ −R as a transformation of

12While this is a restrictive assumption, we find strong evidence to suggest the importance of this
particular specification of the reference point in our empirical work. We follow Blundell (2017), trading
off a more detailed description of the decision-making problem in the field against stronger assumptions
that permit measurement of important underlying parameters.
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two of the state variables.13 Realized gains G(`) arise from their “potential” level Ĝ plus

the markup/premium β(`), i.e.:

G(`) = Ĝ+ β(`).

The remaining two state variables θ and u are unobserved, but only the wedge between

them (u− θ) is relevant for the seller’s decision. Without loss of generality, we therefore

set the outside option u = P̂ , which implies that absent any additional reasons to move

(θ = 0), and with costless and frictionless listings, the seller will be indifferent between

staying in their home and receiving the hedonic value in cash. This assumption can

equivalently be mapped onto a specification in which the seller does not receive any gains

from moving, but experiences a −θ shock in the event of a failed sale (i.e. the outside

option is then rewritten as u = P̂ − θ).

We also note that the model implicitly specifies conditions on the relationship between

u and R. In the online appendix, we discuss this issue in detail. We show there that (i)

assuming that R enters (or equals) the outside option (i.e., the consumption utility of

households in the event of no sale) generates implausible predictions that we can reject in

the data, (ii) if R is used by the seller to “rationally” forecast P̂ (given our normalization

of u = P̂ ), the result is innocuous, and doesn’t affect any inferences from the model,

and (iii) it is potentially possible to reinterpret the model as one of non-rational belief

formation (i.e., the seller might view R as the “correct” outside option value), but it is

potentially more difficult to rationalize several of the patterns we find in the data (i.e.,

bunching at just positive gains) with such a model of beliefs.

We next discuss selected predictions of the model to build intuition, and to guide our

13We capture listing behavior by studying the listing premium ` = L − P̂ , which is an innocuous
normalization of the listing price L. One way to see this is to note that the regression L− P̂︸ ︷︷ ︸

`

= ρ (P̂ −R)︸ ︷︷ ︸
Ĝ

is equivalent to L = (1 + ρ)P̂ − ρR. We estimate a version of this regression in the online appendix and
verify the original inferences of Genesove and Mayer (2001) using our sample.

11



choice of key moments of the data with which to structurally estimate key parameters.

2.2.2 Optimal Listing Premia

To begin with, consider only the intensive margin decision of the optimal choice of listing

premium, and assume that U (P (`), ·) = u(P (`), ·):

max
`

[α(`) (u(P (`), ·) + θ) + (1− α(`))u] (3)

The first-order condition which determines the optimal `∗ balances the marginal utility

benefit of a higher premium (conditional on a successful sale) against the marginal cost

of an increased chance of the transaction failing, and the consequent fall to the outside

option utility level.

To aid interpretation, we analytically solve a version of the simple model in equation

(3), under the assumption that demand functions α(`) = α0−α1` and β(`) = β0 +β1` are

linear in ` (this is an assumption that we later relax to account for concave demand). In

this case, the model yields an optimal listing premium schedule which is piecewise linear:

`∗(Ĝ) =


1
2

(
α0

α1
− β0

β1
− 1

β1
θ

1+η

)
− 1

2β1

η
1+η

Ĝ, if Ĝ ≥ Ĝ0

−β0
β1
− 1

β1
Ĝ, if Ĝ ∈ (Ĝ1, Ĝ0)

1
2

(
α0

α1
− β0

β1
− 1

β1
θ

1+λη

)
− 1

2β1

λη
1+λη

Ĝ, if Ĝ ≤ Ĝ1,

(4)

where Ĝ0 and Ĝ1 are levels of potential gains determined by underlying model parame-

ters.14

Figure 1 illustrates how equation (4) varies with the underlying parameters character-

izing preferences.

In the case of no reference dependence (η = 0), utility derives purely from the terminal

house price. In this case, the top left-hand plot shows that `∗ is unaffected by the reference

14We derive the equation explicitly in the online appendix.
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price R.

In the case of linear reference dependence (η > 0, λ = 1), there is a negatively-sloped

linear relationship between `∗ and Ĝ. In this case, R does not affect the marginal benefit

of raising `∗, but it does affect the marginal cost, as it affects the distance between u

and the achievable utility level in the event of a successful transaction. Intuitively, if the

household can realize a gain (i.e., when R is sufficiently low), the utility from a successful

sale rises. The resulting `∗ will therefore be lower, as the household seeks to increase the

probability that the sale goes through. The opposite is true when the household faces a

loss in the event of a completed sale (i.e., when R is sufficiently high), which consequently

results in a higher `∗.15

In the case of (reference dependence plus) loss aversion (η > 0, λ > 1), the kink in

the piecewise linear utility function leads to a more complex piecewise linear pattern in

`∗, which determines the gains that sellers ultimately realize. There is a unique level of

potential gains, Ĝ0, which maps to a realized gain of exactly zero (recall that G(`∗) =

Ĝ+ β(`∗)). Sellers with potential gains below Ĝ0 want to avoid realizing a loss, meaning

that they adjust `∗ upwards. However, this upward adjustment increases the probability

of a failed sale. Beyond some lower limit Ĝ1, the costs in terms of the failure probability

become unacceptably high relative to the benefit of avoiding a loss, and it becomes sub-

optimal to aim for a realized gain of zero. The seller has no choice but to accept the loss

at levels of Ĝ < Ĝ1, but still sets a marginally higher listing premium for each unit loss

beyond this point.

15As mentioned earlier, it is important to assume that households do not receive utility from simply
living in a house that has appreciated relative to their reference point R, i.e. they do not enjoy utility
from “paper” gains until they are realized. If this condition does not hold, the model is degenerate in
that R is irrelevant both for the choice of the listing premium (intensive margin) and the decision to list
(extensive margin). We demonstrate this result analytically in the online appendix.
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2.2.3 Bunching Around Realized Gains of Zero

The model reveals that household listing behavior also has material implications for quan-

tities. Loss-averse preferences show up in non-linearities in the schedule of `∗ along the

Ĝ dimension, as well as on the likelihood of transaction completion, and the final price

at which these transactions occur. This shows up as shifts in mass in the distribution of

completed transactions along the G dimension, additional moments which allow us to pin

down underlying utility parameters. In the simple version of the model (assuming linear

demand) discussed above, the equation relating potential gains Ĝ with final realized gains

G is:

G(Ĝ) =



β0 + β1
2

(
α0

α1
− β0

β1
− 1

β1
θ

1+η

)
+
(

1− 1
2

η
1+η

)
Ĝ if Ĝ > Ĝ0,

0 if Ĝ ∈ [Ĝ1, Ĝ0],

β0 + β1
2

(
α0

α1
− β0

β1
− 1

β1
θ

1+λη

)
+
(

1− 1
2

λη
1+λη

)
Ĝ if Ĝ < Ĝ1.

(5)

The two bottom panels of Figure 1 illustrate how this relationship varies with under-

lying utility parameters.

When η = 0, sellers choose a constant listing premium `∗, which results in a constant

realized premium β(`∗) of actual gains G over potential gains Ĝ (bottom left plot), mean-

ing that the distribution of G is a simple parallel shift of the distribution of Ĝ (bottom

right plot, the black dotted line becomes the purple line).

In the linear reference dependence model (η > 0, λ = 1), sellers with Ĝ < 0 choose

relatively higher `∗. This lowers the likelihood that willing buyers will be found, meaning

that the likelihood of observing transactions in this domain of Ĝ is lower. However, if

these transactions do go through, the associated G will be higher, shifting mass in the

final sales distribution towards G > 0 (bottom right plot, the black dotted line becomes

the green line).
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The effect mentioned above is especially pronounced if sellers are loss averse, i.e., when

λ > 1, in which case the model predicts bunching (F (Ĝ0)−F (Ĝ1)) in the final distribution

of house sales precisely at G = 0 (bottom left plot, black line and bottom right plot black

solid line), and greater mass in the distribution when G > 0, coming from even less mass

when G < 0 (bottom right plot, the black dotted line becomes the black solid line).

In the discussion thus far, to build intuition about the effect of the underlying pa-

rameters characterizing preferences, we focused on the intensive margin, made several as-

sumptions about the shape of demand, and assumed away other frictions and constraints.

We next outline the predictions of the model in the broader case when we consider the

extensive margin decision, and then turn to discussing two important potential confounds,

namely, concave demand, and the effect of financial constraints.

2.2.4 Extensive Margin

In the discussion thus far, we ignored the seller’s decision of whether or not to list. In the

model, any force inducing a wedge between the expected utility from a successful listing

and the outside option u affects decisions along the intensive margin, but can also push

the seller towards deciding that listing is sub-optimal. In particular, the model predicts

that sellers with lower Ĝ are less likely to list. This clear prediction allows us to exploit the

relationship of the listing propensity and Ĝ as an additional moment to inform structural

estimation of underlying preference parameters.16

Another important observation here here is that modeling the extensive margin de-

cision is also important to account for any selection effects that may drive patterns of

observed intensive margin listing premia in the data, an issue that the prior literature

(e.g., Genesove and Mayer, 1997, 2001, Anenberg, 2011, Guren, 2018) has been unable

to control for as a result of data limitations. For example, if sellers that decide not to

16Bunching in the distribution of realized house sales captures ex post-negotiation outcomes, and ex-
tensive margin decisions capture sellers’ ex ante listing behaviour, i.e., these two moments are informative
about different phases in the listing/selling decision.
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list are more conservative (i.e., they set lower listing premia), and those who decide to

list are more aggressive (i.e., setting higher listing premia) the resulting selection effect

would lead to a higher observed non-linearity in listing premia around reference points

that would bias parameter estimates and inferences conducted only using the intensive

margin.17

The moving shock θ (which alters the distance between the outside option and the

utility from a successful listing) is a key model component that helps to capture such

selection effects. Conditional on the moving shock, the listing decision is a simple binary

choice. This means that accounting for the distribution of shocks, as we do in the model,

allows us to capture the variation in listing decisions and to calculate average listing premia

in the population. These average listing premia incorporate the endogenous first-stage

selection effects and can be mapped directly back to the data.

There are more subtle implications of the model linking the extensive and the intensive

margins. High realizations of θ affect the listing decision, and push the seller towards

setting higher listing premia. However, this force can move ` into regions of concave

demand (which we discuss in detail in the next subsection) in which the response of buyers

is more (or less) pronounced, because of nonlinearities in α(`). This in turn means that

θ variation can affect the observed magnitude of the seller’s responses to Ĝ, smoothing

and blurring the kinks in the model-implied `∗ profile. The online appendix illustrates

this with a specific example, showing that the characteristic “hockey stick” shape of the

average listing premium profile can result from averaging the three-piece-linear form of

the listing premium profile in the case of λ > 1 across the distribution of θ.

2.3 Concave Demand

The demand functions α(`) and β(`) are a critical determinant of listing behavior and the

expected shape of `∗ in this model. This can be seen even in the simple case of the linear

17We thank Jeremy Stein for useful discussions on this issue.
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demand functions posited earlier. Equation (4) shows that when the probability of sale

is less sensitive to ` (i.e., when α1 is lower), the marginal cost of choosing a larger listing

premium is lower, and therefore the optimally chosen `∗ is higher. This intuition carries

over to a case in which α(`) has the concave shape first identified by Guren (2018), and

has important implications for the relationship between `∗ and Ĝ. Figure 2 graphically

illustrates this mechanism, positing a concave shape for α(`) and considering the effect

of varying α(`) around ` = 0, i.e., the point at which L = P̂ (solid and dashed red lines,

right-hand plot).

The left-hand plot in Figure 2 documents the relationship between the optimal listing

premium `∗ and Ĝ in the presence of concave demand. When Ĝ > 0, the seller’s incentive

is to set `∗ low, since they are motivated to successfully complete a sale and capture gains

from trade θ. However, in the presence of concave demand (i.e., as illustrated in the

right-hand plot, horizontal α(`) when ` < `; combined with P (`) = β0 + β1`), lowering `

below ` does not boost the sale probability α(`), but doing so does negatively impact the

realized sale price P (`). It is thus optimal for `∗ to “flatten out” at the level `.

The tradeoff faced by sellers facing losses Ĝ < 0 is different—raising `∗ helps to offset

expected losses, but lowers the probability of a successful sale. When demand concavity

increases, i.e., α(`) is more steeply negative, the probability of a successful sale falls at

a faster rate with increases in `. Figure 6 illustrates this force—moving from the dashed

α(`) schedule to the solid α(`) schedule in the right-hand plot in turn leads to dampening

of the slope of `∗ in the left-hand plot. In the extreme case in which concave demand has

an infinite slope around some level of the listing premium, rational sellers’ `∗ collapses

to a constant—which would be observationally equivalent to the case in which sellers are

not reference dependent at all (η = 0).

The main predictions from the model in this case are: First, the optimal `∗ in a linear

reference-dependent model (η > 0, λ = 1) in the presence of concave demand exhibits

a flatter slope in the domain Ĝ > 0 relative to the case of linear demand. This means
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that the graph of `∗ against Ĝ can exhibit a characteristic “hockey stick” shape of the

type detected by Genesove and Mayer (2001) even if there is no loss aversion, i.e., λ = 1.

Second, the model predicts a tight link between the shape of α(`) and the slope of `∗.

We later use this insight to exploit cross-sectional variation in the concavity of demand

across different segments of the Danish market to aid structural parameter identification.18

Third, while we have focused our discussion on how concave demand can generate a non-

linear listing premium profile, it will also result in effects on transactions volume. That is,

concave demand can result in additional shifts of mass towards positive values of realized

gains, depending on the level of `, though it will not be associated with sharp bunching

of the type associated with loss aversion.

A subtle point here is that any change in the precise specification of the reference

point R in the presence of loss aversion will change the location at which bunching is

observed. Indeed, heterogeneity in reference points will make it hard to observe the

precise location of bunching. To complicate matters further, variations in the level of `

are a confound, potentially rendering it difficult to distinguish models with heterogeneous

reference points from models with spatial or temporal variation in `, the point at which

demand concavity kicks in. We avoid this complexity in our setup by simply taking the

stance that R is the nominal purchase price of the property and evaluating the extent to

which we see bunching given this assumption. As we will later see, this turns out to be

a reasonable assumption—we observe significant evidence in the data of bunching using

this assumption about R, confirming its relevance to sellers.

2.4 Down-payment Constraints

A well-known confound for the estimation of preference parameters from listing premia

(see, e.g., Genesove and Mayer (1997, 2001)) is the effect of down-payment constraints,

18For example, if η = 0 in this model, demand concavity does not affect the slope of the `∗ profile
along the G dimension. In contrast, a high η leads to a high “pass-through” of demand concavity into
optimal listing premia.
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which we account for in the model through the function κ(P (`), ·) (recall that U (P (`), ·) =

u(P (`), ·)− κ(P (`), ·)). Let M denote the level of the household’s outstanding mortgage,

and γ the required down-payment on a new mortgage origination. For a given price level

P (`), the “realized” home equity position of the household is H(`) = P (`) −M . Under

the assumption that H is put towards the down payment on the next home, we can

distinguish between constrained (i.e., downsizing-averse) households for which H(`) < γ,

and unconstrained households for which H(`) ≥ γ.

In the face of binding down-payment constraints, only unconstrained sellers can move

to another property of the same or greater value. However, there are several ways in which

households could relax these constraints despite legal restrictions on LTV at mortgage

initiation (which, as we discuss later, are strictly set at 20% in Denmark). The first is

for households to downsize to a less expensive home than P (`), or indeed, to move to the

rental market—either decision might incur a utility cost. The second is that households

can engage in non-mortgage borrowing to fill the gap γ −H(`). A common approach in

Denmark is to borrow from a bank or occasionally from the seller of the property to bridge

funding gaps between 80% and 95% loan-to-value (LTV); this is typically expensive.19 A

third (usually unobservable) possibility is that households can bring additional funds to

the table by liquidating other assets.20 We therefore assume that violating the down-

payment constraint does not lead the seller to withdraw the sale offer, assuming instead

that the seller incurs a monetary penalty of µ per unit of realized home equity below the

19Danish households can borrow using “Pantebreve” or “debt letters” to bridge funding gaps above
LTV of 80%. Over the sample period, this was possible at spreads of between 200 and 500 bp over the
mortgage rate. For reference, see categories DNRNURI and DNRNUPI in the Danmarks Nationalbank’s
statistical data bank.

20In Stein (1995), M represents the outstanding mortgage debt net of any liquid assets that the
household can put towards the down payment. The granular data that we employ allow us to measure
the net financial assets that households can bring to the table to supplement realized home equity. We
later verify using these data that our inferences are sensible when taking these additional funds into
account.

19



constraint threshold:21

κ(P (`)) =

µ(γ −H(`)), if H(`) < γ

0, if H(`) ≥ γ
. (6)

We turn next to describing the data and key estimated moments as a precursor to

more rigorous structural estimation of the underlying parameters of the model.

3 Data

Our data span all transactions and electronic listings (which comprise the overwhelming

majority of listings) of owner-occupied real estate in Denmark between 2009 and 2016. In

addition to listing information, we also acquire information on property sales dates and

sales prices, the previous purchase price of each sold or listed property, rich hedonic char-

acteristics of each property, and a range of demographic characteristics of the households

engaging in these listings and transactions, including variables that accurately capture

households’ financial position at each point in time. Furthermore, we merge the data on

the entire housing stock captured in the Danish housing register with the listings data

to assess the determinants of the extensive margin listing decision for all properties in

Denmark over the sample period. This allows us to assess the fraction of the total hous-

ing stock that is listed, and to condition observed listing propensities on functions of the

predicted sales price, such as the prospective seller’s potential gains relative to the original

purchase price, or the prospective seller’s potential level of home equity in the property.

Our data link administrative datasets from various sources; all data other than the

listings data are made available to us by Statistics Denmark. We briefly describe these

data below; the online appendix contains detailed information about data sources, con-

21i.e.,

U(P (`)) =

{
u(P (`)− µ(γ −H(`)), if H(`) < γ

u(P (`)), if H(`) ≥ γ .
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struction, filters, and the process of matching involved in assembling the dataset.

3.1 Property Transactions and other Property Data

We acquire comprehensive administrative data on registered properties, property trans-

actions, property ownership, and hedonic characteristics of properties from the registers

of the Danish Tax and Customs Administration (SKAT) and the Danish housing register

(Bygnings-og Boligregister, BBR). These data are available from 1992 to 2016. In our he-

donic model, described later, we also include the (predetermined at the point of inclusion

in the model) biennial property-tax-assessment value of the property that is provided by

SKAT, which assesses property values every second year.22,23

Loss aversion and down-payment constraints were originally proposed as explanations

for the puzzling aggregate correlation between house prices and measures of housing liq-

uidity, such as the number of transactions, or the time that the average house spends on

the market. In the online appendix, we show the price-volume correlation in Denmark

over a broader period containing our sample period. The plot looks very similar to the

broad patterns observed in the US.

3.2 Property Listings Data

Property listings are provided to us by RealView (http://realview.dk/en/), who attempt

to comprehensively capture all electronic listings of owner-occupied housing in Denmark.

We link these transactions to the cleaned/filtered sale transactions in the official property

registers. 76.56% of all sale transactions have associated listing data.24 For each property

22As we describe later, this is the same practice followed by Genesove and Mayer (1997, 2001); it does
not greatly affect the fit of the hedonic model, and barely affects our substantive inferences when we
remove this variable.

23Tax-assessed property values are used for determining tax payments on property value. The appendix
describes the property taxation regime in Denmark in greater detail including inheritance taxation; we
simply note here that there is the usual “principal private residence” exemption on capital gains on real
estate, and that property taxation does not have important effects on our inferences.

24We more closely investigate the roughly 25% of transactions that do not have an associated electronic
listing. 10% of these transactions can be explained by the different (more imprecise) recording of addresses
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listing, we know the address, listing date, listing price, size, and time of any adjustments

to the listing price, changes in the broker associated with the property, and the sale or

retraction date for the property.

3.3 Mortgage Data

To establish the predicted/potential level of the owner’s home equity in each property at

each date, we obtain data on the mortgage attached to each property from the Danish

central bank (Danmarks Nationalbank), which collects these data from mortgage banks.

The data are available annually for each owner from 2009 to 2016, cover all mortgage

banks and all mortgages in Denmark and contain information on the mortgage principal,

outstanding mortgage balance each year, the loan-to-value ratio, and the mortgage interest

rate. If several mortgages are outstanding for the same property, we simply sum them,

and calculate a weighted average interest rate and loan-to-value ratio for the property

and mortgage in question.25

3.4 Owner/Seller Demographics

We source demographic data on individuals and households from the official Danish Civil

Registration System (CPR Registeret). In addition to each individual’s personal identifi-

cation number (CPR), gender, age, and marital history, the records also contain a family

identification number that links members of the same household. This means that we

in the listing data relative to the registered transactions data. The remaining 15% of unmatched transac-
tions can be explained by: (a) off-market transactions (i.e., direct private transfers between friends and
family, or between unconnected households); and (b) broker errors in reporting non-publicly announced
listings (“skuffesager”) to boligsiden.dk. We find that on average, unmatched transactions are more ex-
pensive than matched transactions. Sellers of more expensive houses tend to prefer the skuffesalg option
for both privacy and security reasons.

25The online appendix provides a detailed description of several features of the Danish mortgage
market including the conditions under which mortgages are assumable, as well as the effects of the
Danish refinancing system (studied in greater detail in Andersen et al. (2020)) on sale and purchase
incentives. These features do not materially impact our inferences.
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can aggregate individual data on wealth and income to the household level.26 We also

calculate a measure of households’ education using the average length of years spent in

education across all adults in the household. These data come from the education records

of the Danish Ministry of Education. We source individual income and wealth data from

the official records at SKAT, which hold detailed information by CPR numbers for the

entire Danish population.

3.5 Final Merged Data

We only keep transactions for which we can measure both nominal losses and home equity,

and since the mortgage data run from 2009 to 2016, this imposes the first restriction on the

sample. The sample is further restricted to properties for which we know both the ID of

the owner, as well as that of the owner’s household, in order to match with demographic

information. Transactions data are available from 1992 to the present, meaning that

we can only measure the purchase price of properties that were bought during or after

1992.27 We exclude foreclosures (both sold and unsold),28 properties with a registered

size of 0, and properties that are sold at prices which are unusually high or low (below

100,000 DKK and above 20MM DKK in 2015, accounting for roughly 0.05% of the total

housing stock in Denmark).29 For listings that end in a final sale, we also drop within-

family transactions, transactions that Statistics Denmark flag as anomalous or unusual,

and transactions where the buyer is the government, a company, or an organization.30

26Households consist of one or two adults and any children below the age of 25 living at the same
address.

27In Appendix Table A.2 and Appendix Figure A.39 we further examine properties traded before 1992.
Since these properties have no known purchase price, we match them to otherwise similar properties for
which we know the purchase price, using two approaches that we describe in the online appendix, with a
reasonable success rate. Figure A.39 shows that the main relationships that we find in the main dataset
essentially hold in the matched sample using this approach.

28The online appendix describes the Danish foreclosure process in detail.
29We apply this filter to reduce error in our empirical work, because the market for such unusually

priced properties is extremely thin, meaning that predicting the price using a hedonic or other model is
particularly difficult.

30We apply this filter, as company or government transactions in residential real estate are often
conducted at non-market prices—for tax efficiency or evasion purposes in the case of corporations, and
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We also restrict our analysis to residential households, in our main analysis dropping

summerhouses and listings from households that own more than three properties in total,

as they are more likely property investors than owner-occupiers.31

In the online appendix, we describe the data construction filters and their effects on

our final sample in more detail. Once all filters are applied, the sample comprises 214, 508

listings of Danish owner-occupied housing in the period between 2009 and 2016, for both

sold (70.4%) and retracted (29.6%) properties, matched to mortgages and other household

financial and demographic information.32 These listings correspond to a total of 191, 843

unique households, and 179, 262 unique properties. Most households that we observe in

the data sell one property during the sample period, but roughly 9% of households sell

two properties over the sample period, and roughly 1.5% of households sell three or more

properties. In addition, we use the entire housing stock, filtered in the same manner

as the listing data, comprising 5, 540, 376 observations of 807, 666 unique properties to

understand sellers’ extensive margin decision of whether or not to list the properties for

sale.

3.6 Hedonic Pricing Model

To calculate potential gains Ĝ (and potential home equity Ĥ), we require a measure of

the expected sale price P̂ for each property-year in the data. To arrive at this measure,

we estimate a standard hedonic pricing model on our sample of sold listings and use it to

predict prices for the full sample of listed properties, including those that are not sold.33

for eminent domain reasons in the case of government purchases, for example.
31Genesove and Mayer (2001) separately estimate loss aversion for these groups of homeowners and

speculators. We simply drop the speculators in this analysis, choosing to focus our parameter estimation
in this paper on the homeowners.

32The data comprises 173, 065 listings that have a mortgage, and 41, 443 listings with no associated
mortgage (i.e., owned entirely by the seller)—we later utilize these subsamples for various important
checks.

33Later in the paper, we also assess the extent to which gains, losses, and home equity determine the
decision to list. We estimate a separate hedonic model on a larger data set, including unlisted properties,
in order to conduct these additional tests.
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The hedonic model predicts the log of the sale price Pit of all sold properties i in each

year t:

ln(Pit) = ξtm + βft1i=f1t=τ + βXit

+ βfx1i=fXit + Φ(vit) + 1i=fΦ(vit) + εit, (7)

where Xit is a vector of property characteristics, namely ln(lot size), ln(interior size),

number of rooms, bathrooms, and showers, a dummy variable for whether the property

was unoccupied at the time of sale or retraction, ln(the age of the building), dummy

variables for whether the property is located in a rural area, or has been marked as

historic, and ln(distance of the property to the nearest major city). (Most property

characteristics in Xit are time-varying, which contributes to the accuracy of the model).

ξtm are year cross municipality fixed effects (there are 98 municipalities in Denmark),

and 1i=f is an indicator variable for whether the property is an apartment (denoted by

f for flat) rather than a house.34 Φ(vit) is a third-order polynomial of the previous-year

tax assessor valuation of the property.35 We interact the apartment dummy with time

dummies, as well as with the hedonic characteristics and the tax valuation polynomial,

to allow for a different relationship between hedonics and apartment prices.

When we estimate the model, the R2 statistic equals 0.88 in the full sample.36 The

34In the online appendix, we also include cohort effects ξc in the hedonic regression, and continue
to find robust evidence of all patterns uncovered in our empirical analysis, showing that intra-cohort
variation in gains and losses is also associated with changes in listing premia.

35Genesove and Mayer (1997, 2001) also consider tax assessment data in their hedonic model. Im-
portantly, the tax assessment valuation is carried out before the time of the transaction, in some cases
even many years before. Until 2013, the tax authority re-evaluated properties every second year. The
assessment, which is valid from January 1st each year, is established on October 1st of the prior year.
In the years between assessments, the valuation is adjusted by including local-area price changes. This
adjustment has been frozen since 2013, recording such price changes as of 2011. Only in the case of
significant value-enhancing adjustments to a house or apartment would a re-assessment have taken place
thereafter—and once again, is pre-determined at the point of property sale.

36The online appendix contains several details about the hedonic model and estimates. We also
estimate the model in levels rather than logs, with an R2 of 0.89. Moreover, the R2 when we eliminate
the tax assessor valuation from the hedonic characteristics is 0.77. To check the robustness of our results
to the specification of the hedonic model, we also amend it in various ways as outlined in the appendix.
Our results are qualitatively, and for the most part, quantitatively unaffected by these amendments.
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large sample size allows us to include many fixed effects in the model, helping to deliver

a better fit. This helps to ameliorate concerns of noise or unobserved quality in the

measure P̂ , an important concern when estimating the effects of both loss aversion and

home equity (e.g., Genesove and Mayer, 1997, 2001, Anenberg, 2011, Clapp, et al., 2018).

We also adopt a number of alternative approaches to deal with the important issue of

unobserved quality and its effects on our inferences, as we later describe.

4 First Inferences about Model Parameters

In this section, we document patterns in listing premia and sales transactions volumes

in the data in relation to measured G and Ĝ, and informally discuss how these patterns

relate to the predictions of the model, especially regarding the primary parameters of

interest η and λ. We also explore how the patterns in the data and possible inferences

about underlying parameters vary when we account for three important factors. These

are: (i) sellers’ down-payment constraints, (ii) concave demand, and (iii) robustness to

changes in measurement. Before turning to structural estimation that takes the model’s

predictions to the data more rigorously in the next section, we discuss the robustness of

the patterns seen in the data to various estimation approaches and controls.

4.1 Listing Premia in the Data

Armed with the hedonic pricing model, we estimate listing premia in the data as ` =

lnL − l̂nP , where L is the reported initial listing price observed in the data.37 Mean

(median) ` is 12.7% (11.3%), and ` > 0 (< 0) for 75% (25%) of the sample. We also

estimate potential gains Ĝ = l̂nP − lnR, where R is set to the nominal purchase price of

the property. Mean (median) Ĝ estimated in this way is 36% (28%), and 23% (77%) of

37We confirm, estimating Genesove and Mayer’s (2001) specifications on our data (see online appendix),

that the coefficient on l̂nP in our data using ther regression, controlling for a range of other determinants,
is close to 1. We discuss below how our results are robust to using the alternative approach of Genesove
and Mayer (2001), and discuss identification and measurement concerns in greater detail below as well.
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property-years have Ĝ < 0 (Ĝ > 0). The online appendix plots the distributions of these

and other variables.

In Figure 3 we plot the average observed listing premium (on the vertical axis) for

each percentage bin of potential gains (on the horizontal axis). Sellers who hold properties

that have appreciated (declined in value) since the initial purchase choose lower (higher)

listing premia. Importantly, this negative relationship is visible not only in the potential

loss domain (i.e., Ĝ < 0), but also across different values in the potential gain domain

(i.e., Ĝ > 0). This is consistent with the predictions of a model with reference dependence

η > 0. Moreover, as we move from the gain to the loss domain, the slope becomes much

more pronounced, i.e., sellers react much more aggressively to every unit decrease in

potential returns when Ĝ < 0. For potential gains in the neighbourhood of zero, this

“hockey stick” pattern is consistent with the predictions of a model with loss aversion

λ > 1. However, in the piecewise linear formulation that we consider, loss aversion also

predicts a flattening out of the listing premium profile deeper into the loss domain, which

is not visible in the plot.

While these patterns provide prima facie evidence of the underlying parameters of the

seller’s utility, we must be wary of such inferences given the influence of three impor-

tant confounding factors discussed above, namely: (i) concave demand, (ii) the extensive

margin, which smooths out the locations of kinks, and can lead to selection effects, and

(iii) sellers’ financial/down-payment constraints. Keeping these issues in mind, we next

discuss additional evidence available from the analysis of transactions volumes.

4.2 Bunching of Realized Sales

Figure 4 plots the distribution of property sales across the dimension of realized gains

(lnP − lnR)—each dot shows the empirical frequency of sales (y-axis) occurring in each

1 percentage point bin of realized gains (x-axis). We overlay on this plot (as a dotted

line) the empirical frequency of realized sales (i.e., the same y-axis) occurring in each 1
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percentage point of potential gains l̂nP − lnR (i.e., a different x-axis). Observing the

counterfactual is difficult in most settings which attempt to estimate loss aversion using

bunching estimators (e.g., Rees-Jones 2018 cleverly extracts evidence of loss aversion from

U.S. tax returns data, where it is difficult to measure “expected tax avoidance costs and

benefits”). The distribution of sales with respect to pre-listing potential gains can serve

as one possible counterfactual, as we describe in greater detail below.38

Figure 4 shows significant bunching of transactions in the positive domain of realized

gains G, with a sharp “spike” around G = 0, and with significant mass extending further

into the domain G > 0.39 While the spike is clearly evident, more information can be

extracted about model parameters from the broader distribution of sales across realized

gains, especially when we compare it to the distribution of sales across potential gains

Ĝ. This is because in the model when η > 0, as mentioned earlier, the mapping between

Ĝ and G occurs through the choice of `∗, and the associated probability of sale. This

mapping results in mass in the final sales distribution shifting towards sales with realized

G > 0. In contrast, when η = 0, the model predicts that the distribution of G is simply

a constant linear transformation of the distribution of Ĝ. The precise position of the

pronounced jump in the distribution at G = 0%, and the distribution of mass to the left

and right of this point relative to the counterfactual are also informative about λ. When

λ > 1, the model predicts a jump in the final distribution of house sales precisely at

G = 0, additional mass in this distribution just to the right of this point, and relatively

lower mass in the loss domain, to the left of G = 0. The pronounced bunching that we

observe precisely at the point G = 0 also offers empirical support (which is essentially

38We also use alternative approaches to measure this counterfactual density, following Chetty et al.
(2011) and Kleven (2016), and fitting a flexible polynomial to the empirical frequency distribution. When
doing so, we exclude bins near the threshold, and extrapolate the fitted distribution to the threshold,
excluding one bin on each side of the zero gain bin, i.e. j ∈ {−1%, 1%}, with a polynomial order of 7.
The results, reported in the Online Appendix, are robust to other polynomial orders and to variations
of the excluded range, and generate similar (but less cleanly estimated) results on the excess bunching
mass.

39The plot also reveals a small but visible “hole” just to the left of G = 0, that may be evidence of a
notch in preferences—an important additional feature of the data that we are currently investigating.
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non-parametric, since it does not require reliance on a hedonic or other model) for the

choice of R as the nominal purchase price (see Kleven, 2016, for a discussion of bunching

at reference points).

4.3 Extensive Margin: Probability of Listing

As discussed earlier, understanding the seller’s decision of whether or not to list is im-

portant for at least two reasons. First, the model makes predictions about this decision,

in addition to predicting patterns of listing premia and transactions volumes. Second,

accounting for this decision helps to correct for possible selection effects that may drive

patterns of observed intensive margin listing premia in the data. This is an issue that the

prior literature (e.g., Genesove and Mayer, 1997, 2001, Anenberg, 2011, Guren, 2018) has

been unable to control for as a result of data limitations.

To understand the decision to list, we turn to data on the total housing stock in

Denmark, corresponding to 12, 565, 190 property-years in the data, once merged with the

listings data. We compute the unconditional average annual listing propensity, which is

3.75% of the housing stock (corresponding to between 2% and 4% of the housing stock

listed across sample years).40 Figure 8 plots the listing propensity at each level of Ĝ,

which comes from estimating l̂nP for all properties in Denmark for which we have data

on the nominal purchase price R. The figure shows a mild, but visible increase in the

probability of listing as Ĝ increases, which is evident when Ĝ > 0, but more pronounced

when Ĝ < 0. This pattern is once again apparently consistent with levels of η > 0 and

λ > 1.

40We do not attempt to use the model to explain the average propensity to list, as this exercise is
beyond the scope of this paper. It would require us to take a strong stance on the factors that drive the
moving decision, which we currently summarize using our estimates of θ.
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4.4 Confounding Factors

4.4.1 Down-payment Constraints and Home Equity

To account for the role of down-payment constraints, for each observation in the data, we

calculate the seller’s potential home equity level Ĥ = l̂nP − lnM , where l̂nP is estimated

using our hedonic model as before, and M is the outstanding mortgage balance reported

by the household’s mortgage bank each year.41 Mean (median) Ĥ is 27% (25%), and

77% (23%) of property-years have Ĥ < 0 (Ĥ ≥ 0). Modal Ĥ is around 22%, which is

to be expected, as Denmark has a constraint on the issuance of mortgages—the Danish

Mortgage Act specifies that LTV at issuance by mortgage banks is restricted to be 80%

or lower.42 Clearly, Ĝ and Ĥ are jointly dependent on l̂nP , but there are multiple other

factors that influence this correlation, including the LTV ratio at origination (i.e., variation

in initial down payments), and households’ post-initial-issuance remortgaging decisions.

In the online appendix, we plot the joint distribution of Ĝ and Ĥ, and show that there

is substantial variation in the four regions defined by Ĝ ≶ 0 and Ĥ ≶ 0, which permits

identification of their independent impacts on listing decisions.43

To assess the extent to which any variation in ` attributed to Ĝ might be confounded

41The online appendix plots the distributions of Ĝ and Ĥ in the data. Both Ĝ and Ĥ are winsorized at
the 1 percentile point; Ĝ is also winsorized at the 99 percentile point. We winsorize Ĝ because of several
large values of given the substantial time elapsed since the purchase of some properties in the data. We
set Ĥ to 100% in cases in which households have substantial home equity (� 60%), meaning that we
consider households to be essentially unconstrained at high levels of home equity. This is necessary to
avoid Ĥ levels greater than 1, given the log difference approach that we use to compute it. These filters
make no material difference to our results—we confirm that our structural estimates are unaffected by
these choices.

42This constraint does not change over our sample period, though it must be noted that as mentioned
earlier, households can engage in non-mortgage borrowing to effectively increase their LTV, but at sub-
stantially higher rates. The online appendix documents the changes in the Danish Mortgage Act over
the 2009 to 2016 sample period. While the constraint does not move during this period, there are a
few changes in the wording of the act, a change in the maximum maturity of certain categories of loans
in February 2012 from 35 to 40 years, and the revision of certain stipulations on the issuance of bonds
backed by mortgage loans. None of these materially affect our inferences.

43The online appendix also contains a fuller discussion of additional evidence that we uncover which
is consistent with households exhibiting aversion to downsizing. We are able to link sale transactions
with future purchase transactions for a subset of households, and show that the future purchase is almost
always of higher value than the sale.

30



by simultaneous variation in Ĥ, the top left plot in Figure 5 shows a 3-D representation

of ` against both Ĝ and Ĥ in the data, averaged in bins of 3 percentage points. The plot

reveals that ` declines in both Ĝ and Ĥ, consistent with the patterns previously identified

in the literature. Unusually, given the large administrative dataset that we have access

to, the plot captures the variation ` along both dimensions simultaneously, and clearly

reveals both independent and interactive variation along both dimensions. To better see

the independent variation, the dotted lines on the 3-D surface indicate two cross-sections

in the data (G = 0% and H = 20%), which we also use later for structural estimation.

Clearly, the “hockey stick” profile of ` along the Ĝ dimension survives, controlling for Ĥ,

and there is also a pronounced downward slope in ` along the Ĥ dimension, controlling

for Ĝ. In terms of the interactive variation, Panel B of Figure 9 plots how the “marginals”

of the listing premium vary as we vary the control variable in each case (i.e., Ĥ in the

left plot and Ĝ in the right plot); we discuss these in more detail towards the end of the

paper, where we also evaluate the extent to which we can match these relationships using

the model.44

4.4.2 Concave Demand

Using the underlying data on the time-on-the-market (TOM) that elapses between sale

and listing dates, the left plot in Figure 6 calculates the probability of a house sale within

six months (this maps to α(`) in the model), which we plot on the y-axis, as a function

of ` on the x-axis.45 To smooth the average point estimate at each level of `, we use

a simple nonlinear function which is well-suited to capturing the shape of α(`), namely,

the generalized logistic function or GLF (Richards, 1959, Zwietering et al., 1990, Mead,

44The online appendix reports sale transaction
frequencies (to show the degree of bunching) in a similar 3-D fashion. We confirm that regardless of

the level of Ĥ, there is a visible shift of mass from the Ĝ < 0 domain to the Ĝ > 0 domain.
45Mean (median) TOM in the data is 37 weeks (25 weeks). We pick six months in the computation of

α(`) to match the median TOM observed in the sample. The online appendix shows the distribution of
TOM, which is winsorized at 200 weeks, meaning that we view properties that spend roughly 4 years on
the market as essentially retracted.
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2017).46 The solid line corresponds to this set of smoothed point estimates.

The right-hand plot in Figure 6 shows how lnP (`)− l̂nP , i.e., the “realized premium”

of the final sales price over the hedonic value (which corresponds to the “markup” β(`)

in the model) varies with `. The plot shows that β(`) rises virtually one-for-one with `

when ` is low, but flattens out as ` rises. The solid line shows a simple polynomial fit of

this relationship that we use in the model.

From the two plots, we can see that in Denmark low list prices appear to reduce seller

revenue with little corresponding decline in time-on-the-market. This is virtually identical

to the patterns detected by Guren (2018) in three U.S. markets, which he terms “demand

concavity”.47

This evidence of demand concavity serves as a confound for estimating λ, as described

earlier. This is because the model predicts two possible and distinct sources of the differ-

ential slopes of `∗ across gains and losses. One is that in the presence of loss aversion (i.e.,

λ > 0), there are kinks in `∗ around Ĝ = 0, which can be smoothed into a differential slope

by variation in θ. The second is buyer sensitivity to `, i.e. the degree of demand concavity

α(`). The top panel of Figure 6 illustrates this second mechanism in the model, which

predicts that sellers set a steeper `∗ slope when Ĝ < 0 in markets where α(`) demand is

less steeply sloped and vice versa. This predicts a tight correlation between the slope of

α(`) and the slope of ` when Ĝ < 0, which cannot be seen in Figure 6, which is estimated

using the entire dataset. To estimate the impact of demand concavity on the shape of the

listing premium “hockey stick,” we therefore exploit regional variation across sub-markets

of the Danish housing market.

To illustrate the predicted correlation between the shape of the listing premium

46We describe the GLF in more detail in the online appendix. It is useful for our purposes as it is
(i) bounded both from above and below, and it (ii) allows us to easily capture the degree of concavity
observed in the data in a convenient way, through a single parameter. In our estimation of the parameters,
we restrict the lower bound of the GLF to be equal to zero, to impose that the probability of sale
asymptotically converges to 0 for arbitrary high levels of `.

47These plots also show that Danish sellers who set high ` suffer longer TOM, but ultimately achieve
higher prices (i.e., high realized premia) on their house sales, confirming the original finding of Genesove
and Mayer (2001), who analyze the Boston housing market between 1990 and 1997.
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“hockey stick” and the degree of demand concavity (i.e., the shape of α(`)) in the data, we

separately estimate the slope of ` in the domain Ĝ < 0, as well as separate α(`) functions

(in particular, the slope of α(`) when ` ≥ 0) in different local housing markets, namely,

different municipalities of Denmark.48

The bottom panel of Figure 7 shows results when we sort municipalities by their

estimated demand concavity (i.e., the slope of α(`) when ` ≥ 0). The right-hand panel

of the plot illustrates that there is indeed substantial variation in demand concavity

across municipalities, showing municipalities in the top and bottom 5% of estimated

demand concavity. The slope for municipalities with strong demand concavity (top 5%)

lies between−1.4 and−1.1, while the slope for municipalities with weak demand concavity

(bottom 5%) lies between−0.1 and−0.3. The left-hand plot in Figure 7 Panel A shows the

corresponding figure for the relationship between ˆ̀and Ĝ for these municipalities. Indeed,

as the model predicts, markets with strong demand concavity exhibit a substantially

weaker slope of ` in the domain Ĝ < 0 (−0.1 to −0.4) than markets with weak demand

concavity (−0.5 to −0.9).49 Towards the end of the paper, we describe a validation

analysis that we undertake to confirm the model-predicted mechanism in the data using

instruments for demand concavity.

48Municipalities are a natural local market unit—there are 98 in Denmark, each of around 60,000
inhabitants, and with roughly 1,800 listings on average. We also re-do this exercise using shires, which
are a smaller geographical delineation covering 80 listings on average as a cross-check.

49For the purposes of our current investigation, we focus on the slope differentials, and to show
these, Figure 7 normalizes sub-markets to have the same level of the listing premium. We also observe
important differences between the levels of α(`) across these markets i.e., there are both “hot” and “cold”
municipalities à la Ngai and Tenreyro (2014). Un-normalized plots in the online appendix reveal that the

level of ` is lower when the level of α(ˆ̀) is higher and vice versa; and consistent with Ngai and Tenreyro
(2014), the levels of α(`) and P (`) are strongly positively correlated across sub-markets.
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4.5 Robustness

4.5.1 Time-series Variation

While it is reassuring that Ĝ and Ĥ exhibit independent variation in the data, it could

well be the case that this variation is confined to one particular part of the sample period,

i.e., driven by time-variation in aggregate Danish house prices. To check this, in the

online appendix we plot the shares of the data in each of four groups of properties defined

by Ĝ ≶ 0 and Ĥ ≶ 0, in each of the years in our sample. We find that aggregate

price variation does shift the relative shares in each group across years, with price rises

increasing the fraction of unconstrained winners (Ĝ > 0 and Ĥ > 0) relative to losing

and constrained groups. However, the relative shares of all four groups are substantial

and fairly stable over the sample period, alleviating concerns that different groups simply

come from different time periods, i.e., the plots is reassuring that identification of any

effects is likely to arise mainly from the cross-section rather than the time-series. We

also verify that the inclusion of cohort and cohort-cross-municipality fixed effects in the

hedonic model does not affect our inferences materially.

4.5.2 Bunching: Round Numbers and Holding Periods

In the online appendix, we verify that the bunching patterns documented earlier are

robust to commonly expressed concerns in this literature (e.g., Kleven 2016, Rees-Jones

2018). We find that the spike in sales volumes at G = 0 and the patterns of excess mass

relative to the counterfactual do not appear to be driven by bunching at round numbers,

as they remain striking and visible when we exclude sales at prices ending in multiples

of 10, 000, 50, 000, 100, 000, and 500, 000 DKK, which (cumulatively) affect roughly 20%,

17%, 5%, and 2% of all observations, respectively. We also show that these bunching

patterns are robust when we split the sample into five groups (< 3, 3− 6, 6− 9, 9− 12,

> 12 years) based on the time between sale and purchase, i.e., the holding period of the
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property. Except for the sub-sample with the longest holding period (> 12 years, 20%

of the data), we find strong evidence of bunching. Finally, we also find strong evidence

of bunching in all cases when we split the sample into quintiles based on the level of R,

with quintile cutoffs ranging from around 658, 000 DKK to 1.9MM DKK. Together, these

checks assuage concerns that bunching could result from differences in the underlying

characteristics of properties—for instance these tests suggest that it is implausible that

bunching results from a combination of small properties with shorter holding periods

clustering around G = 0, and larger properties with longer holding periods showing up at

values of G > 0.

4.5.3 Unobserved Quality

An important and often-repeated concern in the literature is that the relationships that

we observe between ` and Ĝ (and indeed α(`) and `), can be spuriously affected by

measurement error in the underlying model for P̂ . In particular, if properties with Ĝ < 0

are deemed to be such as a result of underestimated P̂ , we would also see higher listing

premia for such properties, resulting in the hockey-stick shape that we observe. Moreover,

such an issue could also upwardly bias the true (decreasing) relationship between the

probability of a quick sale and `, especially when ` > 0, as houses with mismeasured high

listing premia would be expected to transact faster.

We assess the robustness of our results to these concerns in a number of ways, all of

which we describe in detail in the online appendix. First, we show that the relationships

between `, Ĝ, and α(`) are robust to a battery of changes to the underlying model used to

estimate P̂ . We do so in several ways. We employ a repeat sales model to difference out

time-invariant unobserved property quality; we instrument variation in P̂ using regional

house price indices; we control for demographics, financial wealth, and further interactions

in the hedonic model using granular data that have previously been unutilized in this

manner, and which are potentially informative about the seller’s response to earlier under-
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or over-payment on the property; we use the external tax assessor value of the property

instead of our estimated hedonic model; and finally, we verify that our inferences hold

even when we use out-of-sample estimated hedonic coefficients.50

Second, we implement the bounding approach proposed in Genesove and Mayer (2001)

to account for unobserved quality, and confirm that our inferences are robust to doing so.

Third, while the tests just described focus on showing robustness of the magnitudes

of the nonlinear relationships observed in the data between `, Ĝ, and α(`), we also doc-

ument evidence in line with the key predictions from the model. That is, we are able to

demonstrate that the observed nonlinearities are in fact discontinuous and sharp around

the respective thresholds of Ĝ < 0 and ` > 0, using a regression kink design (RKD) orig-

inally suggested by Card et al. 2015b and implemented e.g., by Landais, 2015, Nielsen et

al. 2010, and Card et al. 2015a. In line with the identifying assumptions of this research

design, we also show that property-and household-specific observable characteristics are

smooth around the respective thresholds.

5 Structural Estimation

5.1 Moments in the Model

To match the data moments inside the model, we make a few assumptions. First, we

simply use the estimated demand concavity α(`) and P (`) shown in Figure 6 as two of

these inputs. Second, we set γ = 20% according to Danish law. Third, we normalize all

quantities in the model, setting the property’s fundamental value P̂ = 1 and we set the

outside option u = P̂ . Fourth, we define the variables Ĝ = P̂ −R and Ĥ = P̂ −M as the

model equivalents of potential gains and home equity in the data.

50This last variation helps to assuage concerns of overfitting or mechanical correlation arising from
our hedonic model being estimated using the sample of sold listings. The model fits relatively precisely
out of sample, with R2’s ranging between 0.80 to 0.88 when predicting between 1% to 50% of the data
out-of-sample, and the patterns in the relationships between `, Ĝ, and α(`) are robust to using the oos
coefficient estimates.
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Next, consider the set of parameters from the model:

x =

[
η, λ, δ, µ, θmin, θmax, ϕ

]′
. (8)

To obtain policy functions of state variables and parameters, we solve the model

numerically, inputting grids of Ĝ and Ĥ, and yielding:

[
s∗(Ĝ, Ĥ, θ,x), `∗(Ĝ, Ĥ, θ,x)

]
= arg max

s∈{0,1}

{
(s) max

`

{
EU(`, Ĝ, Ĥ, θ,x)

}
+ (1− s)u

}
.

(9)

We then compute aggregates, i.e., averages in the population of listing probabilities,

and average listing premia which account for the extensive margin decision:

S∗(Ĝ, Ĥ,x) =

∫
s∗(Ĝ, Ĥ, θ,x)dθ, (10)

L ∗(Ĝ, Ĥ,x) =

∫
s∗=1

`∗(Ĝ, Ĥ, θ,x)dθ. (11)

These functions then allow us to compute the set of seven model-implied moments

Mm(x)7×1 corresponding to the moments in the data Md
7×1 described above.

The first moment is the average listing premium L ∗(Ĝ = 0%, Ĥ = 20%,x). The

second is a slope from regressing L ∗(Ĝ, Ĥ = 20%,x) on the grid of Ĝ for Ĝ < 0. The

third is a slope from regressing L ∗(Ĝ = 0%, Ĥ,x) on the grid of Ĥ for Ĥ < 20%.

We next propose a simple procedure to approximate the regional correlation moments

(i.e., the relationship between variation in demand concavity and the slope of the listing

premium) inside the model. Let κĜ<0 be the slope from a regression of L ∗(Ĝ, Ĥ = 20%,x)

on the grid of Ĝ for Ĝ < 0, and κĜ≥0 the analogous slope for Ĝ ≥ 0 (κĜ<0 and κĜ≥0

simply capture the slopes of the listing premium above and below potential gains of zero).

Now consider a change δ̃ in demand concavity. We re-compute each of the κ slopes for

δ − δ̃
2

and δ + δ̃
2
, which is a first-order approximation of the degree to which a change in
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concave demand “passes through” to the slopes of L ∗ above and below Ĝ = 0%. The

fourth and fifth moments inside the model are then given by
κ+
Ĝ<0
−κ−

Ĝ<0

δ̃
and

κ+
Ĝ≥0
−κ−

Ĝ≥0

δ̃
.

The sixth moment measures bunching of transactions around realized gains of zero.

To calculate this measure, we begin with a randomly generated sample of N = 1, 000

draws of Ĝ from a uniform distribution with limits (−50%,+50%). For each observation

in the sample, we obtain the optimal aggregate listing premium L ∗ for a level of home

equity equal to 20% and the average level of the moving shock, and calculate realized

gains as G = P (L ∗)−R. In addition, we model the likelihood that the transaction goes

through by drawing a random number ε from a uniform distribution and including the

observation in the final sample of transactions if ε < α(L ∗). The measure of bunching is

then given by the relative density of transactions in the positive vs. the negative domain,

in the interval [−5%,+5%].51

Finally, the seventh moment is given by the slope from a regression of S∗(Ĝ, Ĥ =

20%,x) on the grid of Ĝ, to match the corresponding extensive margin moment in the

data.

5.2 Classical Minimum Distance Estimation

From the moments in the data and in the model, we calculate:

g(x) = Mm(x)−Md.

Since the system is exactly identified, i.e., seven moments and seven parameters, we

can estimate the structural parameters x̂ simply as:

x̂ = arg min
x
g(x)′g(x).

51We choose this slightly wider interval than in the data to avoid situations in which our results may
be influenced by the grid sizes.
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The asymptotic variance of the parameters is given by:

avar(x̂) =

[
∂g(x)

∂x
W
∂g(x)

∂x′

]−1
,

where we set W to the inverse of the normalized covariance matrix of moments x. We

consider both a simple (diagonal) case: W ii = (σ2
i /Ni)

−1, as well as the (shire-clustered)

bootstrap full covariance matrix. Finally, we make inferences about the parameter esti-

mates using the asymptotic relationship:

x̂→d N(x, avar(x̂)).

5.3 Parameter Estimates

Table 2 shows the estimated parameters and associated standard errors. The data favor

a model of reference dependence with η = 0.948 with a degree of loss aversion λ = 1.576.

This λ estimate is lower than that commonly considered in the early literature, which lies

between 2 and 2.5 (e.g., Kahneman et al. 1990, Tversky and Kahneman, 1992), but is

closer to estimates reported in more recent literature (e.g., Imas et al. 2016 finds a value

of λ = 1.59).52

The parameter µ = 1.060 best matches the average ˆ̀ slope with respect to Ĥ, i.e.,

there is an 106 bp penalty (expressed as a fraction of the mortgage amount) for every

percent that H drops below γ = 20%. This parameter can be contrasted with an average

rate increase of roughly 50 bp on the whole loan if the household were to borrow an

additional 10% in the unsecured Danish lending market.53 The relatively larger number

52Given how close the estimated η is to 1, we re-estimated a restricted version of the model where
η = 1. Further details are discussed in the online appendix. We obtained similar estimates of λ = 1.522
(s.e. 0.479), µ = 1.158 (s.e. 0.218), δ = −0.093 (s.e. 0.0183), θmin = 0.235 (s.e. 0.148), θmax = 1.052 (s.e.
0.131) and ϕ = 0.039 (s.e. 0.025).

53Households in this market face between 200-500 basis points increases in interest rates for every
percentage point of borrowing in this market between 80 and 95 LTV over our sample period. Taking
450 bp as the point estimate within this range, at an 80% LTV an additional ten percent borrowing adds
roughly 50 bp to the overall loan.
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suggests that households in Denmark faced financial constraints preventing them from

borrowing. In support of this, we find that the median household in our sample has

negative net liquid financial wealth of roughly −9%, i.e., their unsecured debt is greater

than their liquid financial assets (stocks, bonds, cash) by this amount.

We find that δ = −0.097, which corresponds to a perceived relative reduction of the

probability of sale of 9.7%, for a household listing at ` = 10%, and that the distribution

θ ∼Uniform(θmin, θmax) has parameters θmin = 0.217 and θs = 1.005. These “moving

shocks” correspond to the present discounted value of future benefits from successfully

selling and/or moving, and are on the order of 21.7% of the hedonic price for a household

at the minimum of the distribution, and approximately equal to the entire hedonic value

for a household at the maximum of the distribution. Finally, we find that the estimated

“all-in” cost of listing is 3.7% of the hedonic value of the house.

Andrews et al (2017) argue that in method-of-moments estimation of the type that we

use, it is often useful to understand the mapping from moments to estimated parameters.

In the online appendix we propose a simple and less formal application of this idea, de-

scribing how each moment varies when we re-compute the model-implied moments varying

each of the structural parameters by two standard deviations. This also provides useful

intuition on the sources of identification in the data for each of the model’s parameters.

We also evaluate the importance of correctly modelling demand concavity. We do so by

adopting a näıve approach to estimation that eschews this important feature and simply

assumes that demand is linear. To do so, we preserve the P (`) function, but simply es-

timate a linear α(`) function, and re-estimate the parameters (apart from δ) under this

assumption. We find that in the case of this restricted model, we estimate η = 0.750 with

a degree of loss aversion λ = 3.285, a radical departure from the more realistic estimates

that we extract when demand is permitted to be concave.
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6 Validation and Open Questions

6.1 Interactions

The top panel of Figure 9 compares the 3-dimensional patterns of optimal listing premia

in the data (left-hand plot) and the model (right-hand plot). The model matches the

pronounced increase in ˆ̀ for G < 0, and the similar increase in ˆ̀ when Ĥ declines. A

striking feature of this plot is that it seems to indicate that the position of any reference

point is not uniquely determined by Ĝ or Ĥ alone. As we briefly mentioned earlier, there

is considerable variation in the slope of the relationship between ˆ̀ and both Ĝ and Ĥ

that depends on the level of the other variable. Put differently, both in the data and in

the model, it appears as if the effects of losses and constraints interact with one another,

and that the factors affecting household behavior are neither one nor the other variable

in isolation.

The bottom panel of Figure 9 explores these interaction effects in more detail. We plot

selected cross-sections of the listing premium surface in the data, using a smooth function

of the bins for ease of visualization as dashed lines, alongside their model equivalents

as solid lines.54 The left-hand plot in the bottom panel shows that there is a change

in the slope of the ` - Ĝ relationship as Ĥ varies, and the right-hand plot, that there

seems to be a change in the inflection point in the ` - Ĥ relationship as Ĝ varies. Note

that the average level of ` in the data declines substantially as households become less

constrained, and increases substantially as households become more constrained—this

is simply the unconditional relationship between ` and Ĥ, seen in a different way in

the left-hand plot. What is more interesting is that controlling for this change in level,

the slope of ` as a function of Ĝ is affected by the level of Ĥ. The important new fact is

that down-payment-unconstrained households exhibit seemingly greater levels of reference

54We simply use the GLF function for this purpose. The online appendix shows a plot of the actual
bins in the data alongside the model-implied listing premia.
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dependence along the gain/loss dimension, exhibiting a pronounced increase in the slope

to the left of Ĝ = 0. In contrast, down-payment constrained households exhibit a flatter `

along the Ĝ dimension. The right-hand plot in the bottom panel of the figure shows the `

- Ĥ relationship, where again, the level differences reflect the ` - Ĝ relationship. Another

interesting fact emerges—along the Ĥ dimension, while the slope around the threshold

does not change, the position of the kink in ` increases with the level of past experienced

gains.

These new facts appear to require a more intricate model of preferences and/or con-

straints than the literature has thus far proposed, which cannot be rationalized by our

canonical model, which captures many of the forces thus far proposed in the literature.

We briefly speculate on the possible types of models that may rationalize these findings

here, with a view towards motivating theoretical work on a broader class of preference

and constraint specifications.

One possible rationalization of the variation in the ` - Ĝ relationship with Ĥ is that the

luxury of being unconstrained appears to cause more psychological motivations such as loss

aversion to come to the fore. Put differently, unconstrained households seem constrained

by their loss aversion à la Genesove and Mayer (2001), while constrained households

respond to their real constraints by engaging in “fishing” behavior à la Stein (1995).

It may also be that this finding can be rationalized by a more complex specification of

reference points such as expectations-dependent reference points (e.g., Köszegi and Rabin,

2006, 2007, and Crawford and Meng, 2011).

Turning to the change in the position of the kink in the ` - Ĥ relationship as Ĝ varies,

it appears as if a household’s propensity to engage in “fishing” behavior kicks in at a level

of Ĥ that is strongly influenced by their expected Ĝ. One possible rationalization of this

is that households facing nominal losses feel constrained at levels of home equity (i.e.,

H = 20%) that would force them to downsize, while those expecting nominal gains may

have in mind a larger “reference” level of housing into which they would like to upsize

42



(or indeed, a larger fraction of home equity in the next house). To achieve this larger

reference level of housing, they begin “fishing” at levels of H > 20% in hopes of achieving

the higher down payment on the new, larger house. To provide suggestive evidence on

this story, in the online appendix we focus on a sample of 14, 440 households for which we

can find two subsequent housing transactions and mortgage down payment data. For this

limited subsample, we show a binned scatter plot of the ` on the subsequently sold listing

against the realized down payment on the subsequent house, controlling for the level of

Ĥ on the subsequently sold listing. We find evidence that the down payment on the new

house is correlated with `, which, given our evidence of Ĝ predicting `, is consistent with

the idea that households shifting their reference level of housing on the basis of expected

gains.

6.2 Demand Concavity, Housing Stock Homogeneity, and List-

ing Premia

Earlier, we documented how regional variation in demand concavity correlates with re-

gional variation in the shape of the listing premium schedule. This relationship could be

driven by a number of different underlying forces. For instance, demand may respond

to primitive drivers of supply rather than the other way around—i.e., some markets may

be populated by more loss-averse sellers, and buyer sensitivity to `∗ might simply accom-

modate this regional variation in preferences. Another possibility is that this regional

relationship simply captures the different incidence of common shocks to demand and

market quality.

Our model is partial equilibrium, and describes a different underlying mechanism for

this correlation, namely, that sellers are optimizing in the presence of the constraints

imposed by demand concavity. In order to understand whether the left-hand plot of

Panel B of Figure 7 is potentially consistent with sellers responding to such incentives, we
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implement an instrumental variables (IV) approach. Our IV approach is driven by the

intuition that the degree of demand concavity is related to the ease of value estimation

and hence price comparison for buyers. Intuitively, a more homogeneous “cookie-cutter”

housing stock can make valuation more transparent, and should therefore increase buyers’

sensitivity to `. That is, this intuition predicts that markets with high homogeneity should

exhibit more pronounced demand concavity.

Our main instrument is the share of apartments and row houses listed in a given

sub-market. Row houses in Denmark are houses of similar or uniform design joined by

common walls, and apartments have less scope for unobserved characteristics such as

garden sheds and annexes than regular detached houses.55 As an alternative, we also use

the distance (computed by taking the shire-level distance to the closest of the four cities,

averaged over all shires in a given municipality) to the four largest cities in Denmark

(Copenhagen, Aarhus, Odense, and Aalborg) as a measure of how rural a given market

is, and how far away from cities people live on average. This alternative relies on the

possibility that homogeneous housing units are more likely to be built in suburbs or in

cities, rather than in the countryside.

In the case of both instruments, the identifying assumption is that these measures of

homogeneity of the housing stock only affect the slope of ˆ̀with respect to Ĝ through their

effect on α(ˆ̀). To account for cross-market differences in model-predicted demand-side

factors affecting the slope of ` with respect to Ĝ and Ĥ, we also include specifications

which control for the average age, education length, financial assets, and income of sellers

in a given sub-market.

Figure 7 on the right-hand side of Panel B shows strong evidence of the “first-stage”

correlation, i.e., demand concavity on the y-axis against homogeneity measured by the

share of apartments and row-houses in a given municipality on the x-axis, with each dot

representing a municipality (more negative values of demand concavity mean a sharper

55In the online appendix, we show pictures of typical row houses in Denmark.
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slope of α(`) to the right of ` = 0). Table 3 reports the results of the more formal IV

exercise. Column 1 shows the simple OLS relationship between the slope of ` for Ĝ < 0 on

demand concavity slope (slope of α(`) for ` ≥ 0) across municipalities,56 with a baseline

level of −0.407. Column 2 uses the apartment-and row-house share as an instrument

for demand concavity, and the just identified two-stage least squares (2SLS) specification

yields a coefficient estimate of −0.520. With both instruments (i.e., including the distance

to the largest cities as well), the overidentified 2SLS specification gives a result of −0.504

without, and −0.346 with controls for average household characteristics in the munic-

ipality. The first-stage F-statistics are between 17 and 25, assuaging weak-instrument

concerns (Stock and Yogo, 2002) and we cannot reject the null of the Hansen overiden-

tification test of a correctly specified model and exogenous instruments at conventional

significance levels.57 These results appear to validate the mechanism that we propose in

the model.

7 Conclusion

We structurally estimate a new model of house listing decisions on comprehensive Dan-

ish housing market data, and acquire new estimates of key behavioral parameters and

household constraints from this high-stakes household decision. Underlying preferences

seem well characterized by reference dependent around the nominal purchase price plus

modest loss aversion, and there is also evidence of the important role of down-payment

constraints on household behavior.

The model cannot completely match some new facts which we identify in the data,

which we view as a new target for behavioral economics theory. Nominal losses and down-

56Municipalities are required to have at least 30 observations where Ĝ < 0, leaving 95 out of 98
municipalities, but results are robust to keeping all municipalities.

57These results are robust to using a logit model, different cutoffs (` ≥ 5, 10, 15%) for the demand
concavity estimation, cuts of the data such as excluding the largest cities Copenhagen and Arhus, and
regressions at the shire level. These robustness checks are all available in the online appendix.
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payment constraints interact with one another, in the sense that reference-dependent

behavior is less evident when households are facing more severe constraints, and most

pronounced for unconstrained households. Home equity constraints also appear to loom

larger for households facing nominal losses. However, for households facing nominal gains,

there is evidence consistent with an upward shift in the point at which they feel con-

strained. This could be explained by households resetting their desired size or quality of

housing upwards in response to experienced gains.

In micro terms, this interaction between reference dependence and constraints could

have implications for the way we model behavior. We tend to assume that agents optimize

their (potentially behavioral) preferences subject to constraints, and in numerous models,

agents may also wish to impose constraints on themselves to “meta-optimize” (Gul and

Pesendorfer, 2001, 2004, Fudenberg and Levine, 2005, Ashraf et al. 2006, DellaVigna and

Malmendier 2006). However, if constraints affect the incidence of behavioral biases, or

indeed, if being in a zone that is more prone to bias affects the response to constraints,

our models must of necessity become more complicated to accommodate such behavior.

From a more macro perspective, reference dependence appears important for understand-

ing aggregate housing market dynamics. The housing price-volume correlation tends to

fluctuate, and especially during housing market downturns, prices and liquidity can move

in lockstep. This has important implications for labor mobility, which responds strongly

to housing “lock” (Ferreira et al., 2012, Schulhofer-Wohl, 2012). Interaction effects such

as the effect of expected losses on the household response to constraints could also help

to make sense of the seemingly extreme reactions of housing markets to apparently small

changes in underlying prices, and help to inform mortgage market policy (Campbell, 2012,

Piskorski and Seru, 2018).
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Figure 1
Reference dependence and loss aversion

The figure illustrates how each specification of utility function is reflected in the sellers’ optimal choice

of listing premia. We plot a stylized version of listing premium profiles, for the case in which demand

functions α(`) and β(`) are linear and the household is not facing financing constraints. In the online

appendix, we describe and solve an analytical version of this model.
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Figure 2
Concave demand

This figure illustrates the link between concave demand and the choice of optimal listing premia. We plot

a stylized listing profile resulting from a case of pure reference dependence with no loss aversion (η > 0

and λ = 1). Since the probability of sale does not respond to listing premia set below a certain level `,

it is rational for sellers to not respond to the exact magnitude of the expected gain. A steeper slope of

demand translates into a general flattening out of the listing premium profile.
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Figure 3
Listing premia and potential gains

The figure reports binned average values (in 1 percentage point steps) for the listing premium (`) for

different levels of potential gains (Ĝ). The green line corresponds to a polynomial of order three, fitted

in the positive domain of potential gains. The red line corresponds to an equivalent polynomial fit in the

potential loss domain.
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Figure 4
Bunching around realized gains of zero

The figure reports binned frequencies of observations (in 1 percentage point steps) for different levels of

realized gains (G). The dotted line shows the counterfactual corresponding to the distribution of potential

gains (Ĝ) in the sample of realized sales.
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Figure 5
Gains vs. home equity

The figure reports binned average values (in 3% steps) for the listing premium (`) along both levels of

potential gains and home equity, and the observed frequency of sales along levels of realized gains and

home equity. The dotted lines show the binned values for two cross-sections, where we condition on

a home equity level of 20%, and a level of gains of 0%, respectively. We use these two representative

cross-sections to generate the empirical moments used in structural estimation.

Potential home equity (H)
-40%

-20%
0%

20%
40%

Potential gains (G)

-40%
-20%

0%
20%

40%

Listing prem
ium

 ( )

0%

10%

20%

30%

40%

50%

G = 0%
H = 20%

55



Figure 6
Concave demand in the data

The left-hand side of the figure reports the average probability of sale within six months α(`) across

1 percentage point bins of the listing premium in the sample. The solid line indicates fitted valued

corresponding to a generalized logistic function (GLF). The right-hand side of the figure shows the

average realized premium β(`) across bins of the listing premium. The solid line indicates fitted values

corresponding to a polynomial of order three.
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Figure 7
Listing premium-gain slope and demand concavity

Panel A shows the listing premium over gains (left-hand side) and demand concavity (right-hand side)

patterns. We sort municipalities by the estimated demand concavity, using municipalities in the top

and bottom 5% of observations. Demand concavity is estimated as the slope coefficient of the effect

of the listing premium on the probability of sale within six months, for ` > 0. For better illustration

of the main effect, we adjust the quantities measured to have the same level at G = 0% and ` = 0%

respectively. The left-hand side of Panel B shows the correlation between the estimated listing premium

slope and demand concavity across municipalities using a binned scatter plot with equal-sized bins. The

right-hand side of Panel B shows a binned scatter plot of the correlation between the main instrument,

the share of listed apartments and row houses in a given municipality, and demand concavity in a binned

scatter plot with equal-sized bins.
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Figure 8
Extensive margin

The figure reports the average yearly probability of listing a property for sale. We first calculate the

potential gain level for each unit in the stock of properties in Denmark, for each year covered by our

sample of listings. We then divide the number of properties which have been listed for sale by the

number of total property × year observations in the stock of properties, for each 1 percentage point bin

of potential gains.
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Figure 9
Model fit

Panel A reports listing premia by potential gains and home equity, both in the data and in the model. We

use the set of seven estimated parameters to evaluate average quantities in the model, accounting for the

extensive margin decision of whether to list the property for sale or not. Panel B illustrates the model fit

for conditional listing premia profiles, conditioning on different levels of potential gains and home equity.

Dotted lines indicate observations in the data (for which we report fitted values using generalized logistic

functions) and solid lines their model-implied counterparts.

Panel A

Potential home equity (H)
-40%

-20%
0%

20%
40%

Potential gains (G)

-40%
-20%

0%
20%

40%

Listing prem
ium

 ( )

0%

10%

20%

30%

40%

50%

Potential home equity (H)

-40%
-20%

0%
20%

40%

Potential gains (G)

-40%
-20%

0%
20%

40%

Listing prem
ium

 ( )

0%

10%

20%

30%

40%

50%

Panel B

-40 -20 0 20 40
Potential gains (G)

10

20

30

40

Lis
tin

g 
pr

em
iu

m
 (%

)

H = -20%
H = 0%
H = 20%
H = 40%

-40% -20% 0% 20% 40%
Potential home equity (H)

5%

10%

15%

20%

25%

30%

35%

40%

Lis
tin

g 
pr

em
iu

m
 (%

)

G = -20%
G = 0%
G = 20%
G = 40%

59



Table 1
Overview of moments and other estimates from the data

The table reports estimated empirical moments in the data. The first two capture the level and the slope

of the listing premium with respect to the seller’s level of potential gains, for Ĝ > 0%, conditional on a

home equity level of Ĥ = 20%. The third moment is the slope of the listing premium with respect to

potential home equity, for Ĥ < 20%, conditional on gains of Ĝ = 0%. The fourth and fifth moments are

obtained as slope coefficients from cross-sectional regressions by municipality. For each municipality, we

compute the slope ` − Ĝ for Ĝ < 0% and Ĝ ≥ 0% respectively, as well as the concavity of demand (i.e.

the slope α − ` for ` > 0). The sixth moment is the slope of the listing probability with respect to the

potential gains, conditional on a home equity level of Ĥ = 20%. The final moment captures the bunching

of transactions around realized gains of 0%, calculated as the relative frequency of transactions in the

[0,3%] interval of realized gains, relative to the [-3%,0) interval. In parentheses, we report bootstrap

standard errors, clustered at the shire level. *, **, *** indicate statistical significance at the 10%, 5%

and 1% confidence levels, respectively.

1. Level of ` for Ĝ = 0% 0.106∗∗∗ (0.005)

2. Slope `–Ĝ for Ĝ < 0% -0.490∗∗∗ (0.047)

3. Slope `–Ĥ for Ĥ < 20% -0.333∗∗∗ (0.030)

4. Cross-sectional slope `–Ĝ–α for Ĝ < 0% -0.407∗∗∗ (0.065)

5. Cross-sectional slope `–Ĝ–α for Ĝ ≥ 0% -0.122∗∗ (0.043)

6. Slope of list. prob. by Ĝ 0.005∗∗ (0.002)

7. Bunching above G = 0% 0.302∗∗∗ (0.050)
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Table 2
Estimated parameters

The table reports structural parameter estimates obtained through classical minimum distance estimation.

We recover concave demand α(`) and P (`) from the data and set the down-payment constraint γ = 20%.

In parentheses, we report standard errors based on the estimated bootstrap variance-covariance matrix

in the data, clustered at the shire level. *, **, *** indicate statistical significance at the 10%, 5% and

1% confidence levels, respectively.

η = 0.948∗∗∗ (0.344)

λ = 1.576∗∗∗ (0.570)

µ = 1.060∗∗∗ (0.107)

δ = −0.097∗∗∗ (0.009)

θmin = 0.217 (0.165)

θmax = 1.005∗∗∗ (0.197)

ϕ = 0.037 (0.011)
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Table 3
Listing premium-slope over gains and demand concavity slope regressions

This table reports regression results for the relationship between the listing premium slope over gains and

demand concavity. The dependent variable in all regressions is the slope of the listing premium over Ĝ < 0

across municipalities.58 Column 1 reports the baseline correlation with the demand concavity slope across

municipalities using OLS. Column 2 reports the 2-stage least squares regression instrumenting demand

concavity with the apartment- and row-house share. Columns 3 and 4 report the overidentified 2SLS

regression with both instruments, row-house and apartment share and average distance to city, without

and with household controls (age, education length, net financial assets and log income), respectively.

In parentheses, we report bootstrap standard errors, clustered at the shire level. *, **, *** indicate

statistical significance at the 10%, 5% and 1% confidence levels, respectively.

OLS 2SLS

(1) (2) (3) (4)

Single IV Overidentified

Demand concavity -0.407∗∗∗ -0.520∗∗∗ -0.504∗∗∗ -0.346

(0.067) (0.111) (0.087) (0.259)

Household controls X

Observations 95 95 95 95

R2 0.432

First-stage F-stat 35.96 16.94 25.376

Hansen J-stat (p-val) 0.175 0.199
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