

Accounting for cross-country income differences: New evidence from multinational firms

Vanessa Alviarez¹ Javier Cravino² Natalia Ramondo³

¹UBC Sauder and IADB

²University of Michigan and NBER

³Boston University and NBER

NBER SI Economic Growth 2020

Why are some countries so much richer than others?

- Development accounting: contribution of factors vs TFP
 - TFP measured as a residual
- What drives TFP?
 - Country-embedded factors
 - Institutions, geography, quality of workers
 - Immobile across countries, common across firms
 - Firm know-how
 - Innovation, know-how, intangible capital, management practices
 - Internationally mobile within firm boundaries
 - Burstein & Monge-Naranjo ('09)

Why are some countries so much richer than others?

- Development accounting: contribution of factors vs TFP
 - TFP measured as a residual
- What drives TFP?
 - Country-embedded factors
 - Institutions, geography, quality of workers
 - Immobile across countries, common across firms
 - Firm know-how
 - Innovation, know-how, intangible capital, management practices
 - Internationally mobile within firm boundaries
 - Burstein & Monge-Naranjo ('09)

This paper: new development accounting framework

- Provides a *direct measure of aggregate firm know-how*
- Uses firm-level data on MNEs that operate simultaneously in multiple countries
- Idea: MNEs use same know-how but different country-embedded factors
 - Differences in MNE performance driven only by country-embedded factors
 - Differences in TFP driven both by firm know-how & country factors
 - Hendricks & Schoellman ('18)
- Aggregate firm know-how contributes to 30% of cross-country TFP differences

This paper: new development accounting framework

- Provides a *direct measure of aggregate firm know-how*
- Uses firm-level data on MNEs that operate simultaneously in multiple countries
- Idea: MNEs use same know-how but different country-embedded factors
 - Differences in MNE performance driven only by country-embedded factors
 - Differences in TFP driven both by firm know-how & country factors
 - Hendricks & Schoellman ('18)
- Aggregate firm know-how contributes to 30% of cross-country TFP differences

This paper: new development accounting framework

- Provides a *direct* measure of aggregate firm know-how
- Uses firm-level data on MNEs that operate simultaneously in multiple countries
- **Idea:** MNEs use same know-how but different country-embedded factors
 - Differences in MNE performance driven only by country-embedded factors
 - Differences in TFP driven both by firm know-how & country factors
 - Hendricks & Schoellman ('18)
- Aggregate firm know-how contributes to 30% of cross-country TFP differences

This paper: new development accounting framework

- Provides a *direct* measure of aggregate firm know-how
- Uses firm-level data on MNEs that operate simultaneously in multiple countries
- **Idea:** MNEs use same know-how but different country-embedded factors
 - Differences in MNE performance driven only by country-embedded factors
 - Differences in TFP driven both by firm know-how & country factors
 - Hendricks & Schoellman ('18)
- Aggregate firm know-how contributes to 30% of cross-country TFP differences

Stylized framework

- Tradable final good: $Y_n^{\frac{\rho-1}{\rho}} = \sum_i \int_{\omega \in \Omega_{in}} [Q(\omega) Y_{in}(\omega)]^{\frac{\rho-1}{\rho}} d\omega$
 - Firms from different source countries indexed by i
 - $Q(\omega)$: quality idiosyncratic to good ω
- Non-tradable intermediate goods: $Y_{in}(\omega) = Z_n X(\omega) L_{in}(\omega)$
 - $X(\omega)$: productivity idiosyncratic to producer ω
- Z_n : "Country-embedded productivity"
- $A(\omega) \equiv Q(\omega) \times X(\omega)$: "Firm know-how"

Stylized framework

- Tradable final good: $Y_n^{\frac{\rho-1}{\rho}} = \sum_i \int_{\omega \in \Omega_{in}} [Q(\omega) Y_{in}(\omega)]^{\frac{\rho-1}{\rho}} d\omega$
 - Firms from different source countries indexed by i
 - $Q(\omega)$: quality idiosyncratic to good ω
- Non-tradable intermediate goods: $Y_{in}(\omega) = Z_n X(\omega) L_{in}(\omega)$
 - $X(\omega)$: productivity idiosyncratic to producer ω
- Z_n : "Country-embedded productivity"
- $A(\omega) \equiv Q(\omega) \times X(\omega)$: "Firm know-how"

Stylized framework

- Tradable final good: $Y_n^{\frac{\rho-1}{\rho}} = \sum_i \int_{\omega \in \Omega_{in}} [Q(\omega) Y_{in}(\omega)]^{\frac{\rho-1}{\rho}} d\omega$
 - Firms from different source countries indexed by i
 - $Q(\omega)$: quality idiosyncratic to good ω
- Non-tradable intermediate goods: $Y_{in}(\omega) = Z_n X(\omega) L_{in}(\omega)$
 - $X(\omega)$: productivity idiosyncratic to producer ω
- Z_n : "Country-embedded productivity"
- $A(\omega) \equiv Q(\omega) \times X(\omega)$: "Firm know-how"

Aggregates

- Aggregate production function

$$Y_n = Z_n \Phi_n L_n$$

- Aggregate firm know-how

$$\Phi_n \equiv \left[\sum_i \int_{\omega \in \Omega_{in}} A(\omega)^{\rho-1} d\omega \right]^{\frac{1}{\rho-1}}$$

- TFP and output per worker (lowercase denotes logs)

$$y_n = z_n + \phi_n$$

- Contribution of firm know-how to cross-country TFP variance

$$\frac{\text{cov}(tfp_n, \phi_n)}{\text{var}(tfp_n)} + \frac{\text{cov}(tfp_n, z_n)}{\text{var}(tfp_n)} = 1$$

Aggregates

- Aggregate production function

$$Y_n = Z_n \Phi_n L_n$$

- Aggregate firm know-how

$$\Phi_n \equiv \left[\sum_i \int_{\omega \in \Omega_{in}} A(\omega)^{\rho-1} d\omega \right]^{\frac{1}{\rho-1}}$$

- TFP and output per worker (lowercase denotes logs)

$$y_n = z_n + \phi_n$$

- Contribution of firm know-how to cross-country TFP variance

$$\frac{\text{cov}(tfp_n, \phi_n)}{\text{var}(tfp_n)} + \frac{\text{cov}(tfp_n, z_n)}{\text{var}(tfp_n)} = 1$$

Aggregates

- Aggregate production function

$$Y_n = Z_n \Phi_n L_n$$

- Aggregate firm know-how

$$\Phi_n \equiv \left[\sum_i \int_{\omega \in \Omega_{in}} A(\omega)^{\rho-1} d\omega \right]^{\frac{1}{\rho-1}}$$

- TFP and output per worker (lowercase denotes logs)

$$y_n = z_n + \phi_n$$

- Contribution of firm know-how to cross-country TFP variance

$$\frac{\text{cov}(tfp_n, \phi_n)}{\text{var}(tfp_n)} + \frac{\text{cov}(tfp_n, z_n)}{\text{var}(tfp_n)} = 1$$

Measurement with revenue data

- Revenue share of firm ω in country n :

$$S_{in}(\omega) \equiv \frac{P_{in}(\omega) Y_{in}(\omega)}{\sum_i \int_{\omega \in \Omega_{in}} P_{in}(\omega) Y_{in}(\omega) d\omega} = \left[\frac{A(\omega)}{\Phi_n} \right]^{\rho-1}$$

- In logs:

$$s_{in}(\omega) = [\rho - 1] [a(\omega) - \phi_n]$$

⇒ *Within-firm* differences in revenue shares pin-down differences in ϕ_n

Measurement with revenue data

- Revenue share of firm ω in country n :

$$S_{in}(\omega) \equiv \frac{P_{in}(\omega) Y_{in}(\omega)}{\sum_i \int_{\omega \in \Omega_{in}} P_{in}(\omega) Y_{in}(\omega) d\omega} = \left[\frac{A(\omega)}{\Phi_n} \right]^{\rho-1}$$

- In logs:

$$s_{in}(\omega) = [\rho - 1] [a(\omega) - \phi_n]$$

⇒ *Within-firm* differences in revenue shares pin-down differences in ϕ_n

Imperfect transfer of firm know-how across countries

- Assumption:

$$A_{in}(\omega) = A(\omega) \times \exp(-\kappa_{in}(\omega)) \quad \text{with} \quad \kappa_{ii}(\omega) = 0$$

- Aggregate firm know how:

$$\Phi_n \equiv \left[\sum_i \int_{\omega \in \Omega_{in}} A_{in}(\omega)^{\rho-1} d\omega \right]^{\frac{1}{\rho-1}}$$

- Modified revenue share equation:

$$s_{in}(\omega) = [\rho - 1] [a(\omega) - \phi_n - \kappa_{in}(\omega)]$$

Quantitative framework: multiple sectors and factors

- Many sectors: $j = 1, \dots, J$
 - Final output: $Y_n = \prod_j [Y_n^j]^{\theta_n^j}$
 - Aggregate firm know-how: $\Phi_n \equiv \prod_j [\Phi_n^j]^{\theta_n^j}$
 - Sectoral firm-level revenues: $s_{in}^j(\omega) = [\rho - 1] \left[a^j(\omega) - \phi_n^j - \kappa_{in}^j(\omega) \right]$
- Factors: labor, human capital, and physical capital
 - TFP different from output per-worker

Quantitative framework: multiple sectors and factors

- Many sectors: $j = 1, \dots, J$
 - Final output: $Y_n = \prod_j [Y_n^j]^{\theta_n^j}$
 - Aggregate firm know-how: $\Phi_n \equiv \prod_j [\Phi_n^j]^{\theta_n^j}$
 - Sectoral firm-level revenues: $s_{in}^j(\omega) = [\rho - 1] \left[a^j(\omega) - \phi_n^j - \kappa_{in}^j(\omega) \right]$
- Factors: labor, human capital, and physical capital
 - TFP different from output per-worker

Data

- Firm-level revenue shares: $s_{in}^j(\omega) = r_{in}^j(\omega) - r_n^j$
 - $r_{in}^j(\omega)$: (log) revenues of an MNE in a country-sector, ORBIS (2016)
 - r_n^j : (log) sectoral revenues from EU-KLEMS
 - 336 sectors (NAICS 4); 26 countries
 - Compare *same* MNE-sector across locations
- Aggregate data: TFP from Penn World Table (9.1)

Estimation

$$s_{in}^j(\omega) = [\rho - 1] \left[a^j(\omega) - \phi_n^j - \kappa_{in}^j(\omega) \right]$$

- Assumptions:

1. Gravity: $\kappa_{in}^j(\omega) = O_i^j + D_n^j + b_1^j \text{dist}_{in} + b_2^j \text{lang}_{in} + \varepsilon_{in}^j(\omega)$
2. Selection on country-sector or firm-sector characteristics, not on $\varepsilon_{in}^j(\omega)$

- Estimating equation:

$$s_{in}^j(\omega) = \delta^j(\omega) + \mathbb{A}_n^j + \mathbb{P}_n^j + \beta_d^j \text{dist}_{in} + \beta_c^j \text{lang}_{in} + u_{in}^j(\omega)$$

 - o $\mathbb{A}_n^j = 1$ if firm operates in n and $n \neq i$

 - o $\mathbb{P}_n^j = 1$ if firm operates in n and $n = i$

Estimation

$$s_{in}^j(\omega) = [\rho - 1] \left[a^j(\omega) - \phi_n^j - \kappa_{in}^j(\omega) \right]$$

- Assumptions:

1. Gravity: $\kappa_{in}^j(\omega) = O_i^j + D_n^j + b_1^j \text{dist}_{in} + b_2^j \text{lang}_{in} + \varepsilon_{in}^j(\omega)$
2. Selection on country-sector or firm-sector characteristics, not on $\varepsilon_{in}^j(\omega)$

- Estimating equation:

$$s_{in}^j(\omega) = \delta^j(\omega) + \mathbb{A}_n^j + \mathbb{P}_n^j + \beta_d^j \text{dist}_{in} + \beta_c^j \text{lang}_{in} + u_{in}^j(\omega)$$

- $\mathbb{A}_n^j = 1$ if firm operates in n and $n \neq i$

- $\mathbb{P}_n^j = 1$ if firm operates in n and $n = i$

Estimation

$$s_{in}^j(\omega) = [\rho - 1] \left[a^j(\omega) - \phi_n^j - \kappa_{in}^j(\omega) \right]$$

- Assumptions:

1. Gravity: $\kappa_{in}^j(\omega) = O_i^j + D_n^j + b_1^j \text{dist}_{in} + b_2^j \text{lang}_{in} + \varepsilon_{in}^j(\omega)$
2. Selection on country-sector or firm-sector characteristics, not on $\varepsilon_{in}^j(\omega)$

- Estimating equation:

$$s_{in}^j(\omega) = \delta^j(\omega) + \mathbb{A}_n^j + \mathbb{P}_n^j + \beta_d^j \text{dist}_{in} + \beta_c^j \text{lang}_{in} + u_{in}^j(\omega)$$

- $\mathbb{A}_n^j = 1$ if firm operates in n and $n \neq i$

- $\mathbb{P}_n^j = 1$ if firm operates in n and $n = i$

Estimation

$$s_{in}^j(\omega) = [\rho - 1] \left[a^j(\omega) - \phi_n^j - \kappa_{in}^j(\omega) \right]$$

- Assumptions:

- Gravity: $\kappa_{in}^j(\omega) = O_i^j + D_n^j + b_1^j \text{dist}_{in} + b_2^j \text{lang}_{in} + \varepsilon_{in}^j(\omega)$
- Selection on country-sector or firm-sector characteristics, not on $\varepsilon_{in}^j(\omega)$

- Estimating equation:

$$s_{in}^j(\omega) = \delta^j(\omega) + \mathbb{A}_n^j + \mathbb{P}_n^j + \beta_d^j \text{dist}_{in} + \beta_c^j \text{lang}_{in} + u_{in}^j(\omega)$$

- $\mathbb{A}_n^j = 1$ if firm operates in n and $n \neq i$
- $\mathbb{P}_n^j = 1$ if firm operates in n and $n = i$

Estimation

$$s_{in}^j(\omega) = \delta^j(\omega) + \mathbb{A}_n^j + \mathbb{P}_n^j + \beta_d^j \mathbf{dist}_{in} + \beta_c^j \mathbf{lang}_{in} + u_{in}^j(\omega)$$

- Differences with respect to France: $\Delta x_n^j \equiv x_n^j - x_{FR}^j$

$$\Delta \mathbb{A}_n^j = [1 - \rho] [\Delta \phi_n^j + \Delta D_n^j] \quad \text{and} \quad \Delta \mathbb{P}_n^j = [1 - \rho] [\Delta \phi_n^j - \Delta O_n^j]$$

- Aggregation across sectors: $\Delta x_n \equiv \sum \theta_n^j \Delta x_n^j$

$$\Delta \mathbb{A}_n = [1 - \rho] [\Delta \phi_n + \Delta D_n] \quad \text{and} \quad \Delta \mathbb{P}_n = [1 - \rho] [\Delta \phi_n - \Delta O_n]$$

Estimation

$$s_{in}^j(\omega) = \delta^j(\omega) + \mathbb{A}_n^j + \mathbb{P}_n^j + \beta_d^j \mathbf{dist}_{in} + \beta_c^j \mathbf{lang}_{in} + u_{in}^j(\omega)$$

- Differences with respect to France: $\Delta x_n^j \equiv x_n^j - x_{FR}^j$

$$\Delta \mathbb{A}_n^j = [1 - \rho] [\Delta \phi_n^j + \Delta D_n^j] \quad \text{and} \quad \Delta \mathbb{P}_n^j = [1 - \rho] [\Delta \phi_n^j - \Delta O_n^j]$$

- Aggregation across sectors: $\Delta x_n \equiv \sum \theta_n^j \Delta x_n^j$

$$\Delta \mathbb{A}_n = [1 - \rho] [\Delta \phi_n + \Delta D_n] \quad \text{and} \quad \Delta \mathbb{P}_n = [1 - \rho] [\Delta \phi_n - \Delta O_n]$$

Recovering aggregate firm know-how

$$\Delta \mathbb{A}_n = [1 - \rho] [\Delta \phi_n + \Delta D_n] \quad \text{and} \quad \Delta \mathbb{P}_n = [1 - \rho] [\Delta \phi_n - \Delta O_n]$$

1. Waugh ('10): $\Delta D_n = 0$

$$\frac{\Delta \mathbb{A}_n}{1 - \rho} = \Delta \phi_n$$

2. Eaton-Kortum ('02): $\Delta O_n = 0$

$$\frac{\Delta \mathbb{P}_n}{1 - \rho} = \Delta \phi_n$$

If costs are larger in low-TFP countries:

$$\text{cov} \left(\Delta \text{tfp}_n, \frac{\Delta \mathbb{A}_n}{1 - \rho} \right) \leq \text{cov} (\Delta \text{tfp}_n, \Delta \phi_n) \leq \text{cov} \left(\Delta \text{tfp}_n, \frac{\Delta \mathbb{P}_n}{1 - \rho} \right)$$

Recovering aggregate firm know-how

$$\Delta \mathbb{A}_n = [1 - \rho] [\Delta \phi_n + \Delta D_n] \quad \text{and} \quad \Delta \mathbb{P}_n = [1 - \rho] [\Delta \phi_n - \Delta O_n]$$

1. Waugh ('10): $\Delta D_n = 0$

$$\frac{\Delta \mathbb{A}_n}{1 - \rho} = \Delta \phi_n$$

2. Eaton-Kortum ('02): $\Delta O_n = 0$

$$\frac{\Delta \mathbb{P}_n}{1 - \rho} = \Delta \phi_n$$

If costs are larger in low-TFP countries:

$$\text{cov} \left(\Delta \text{tfp}_n, \frac{\Delta \mathbb{A}_n}{1 - \rho} \right) \leq \text{cov} (\Delta \text{tfp}_n, \Delta \phi_n) \leq \text{cov} \left(\Delta \text{tfp}_n, \frac{\Delta \mathbb{P}_n}{1 - \rho} \right)$$

Recovering aggregate firm know-how

$$\Delta \mathbb{A}_n = [1 - \rho] [\Delta \phi_n + \Delta D_n] \quad \text{and} \quad \Delta \mathbb{P}_n = [1 - \rho] [\Delta \phi_n - \Delta O_n]$$

1. Waugh ('10): $\Delta D_n = 0$

$$\frac{\Delta \mathbb{A}_n}{1 - \rho} = \Delta \phi_n$$

2. Eaton-Kortum ('02): $\Delta O_n = 0$

$$\frac{\Delta \mathbb{P}_n}{1 - \rho} = \Delta \phi_n$$

If costs are larger in low-TFP countries:

$$\text{cov} \left(\Delta \text{tfp}_n, \frac{\Delta \mathbb{A}_n}{1 - \rho} \right) \leq \text{cov} (\Delta \text{tfp}_n, \Delta \phi_n) \leq \text{cov} \left(\Delta \text{tfp}_n, \frac{\Delta \mathbb{P}_n}{1 - \rho} \right)$$

Estimating the elasticity of substitution

$$\Delta \text{tfp}_n = \Delta \phi_n + \Delta z_n$$

- Estimating equation:

$$\Delta \text{tfp}_n = b_0 + b_1 \Delta \mathbb{A}_n + b_2 C_n + u_n$$

- $b_1 = \frac{1}{\rho-1}$
 - OLS is biased if $\text{cov}(\phi_n, z_n) \neq 0 \implies$ Add controls (C_n) for omitted variables
-
- $\rho = 10$:
 - In paper, estimates using sectoral data and output per worker

Estimating the elasticity of substitution

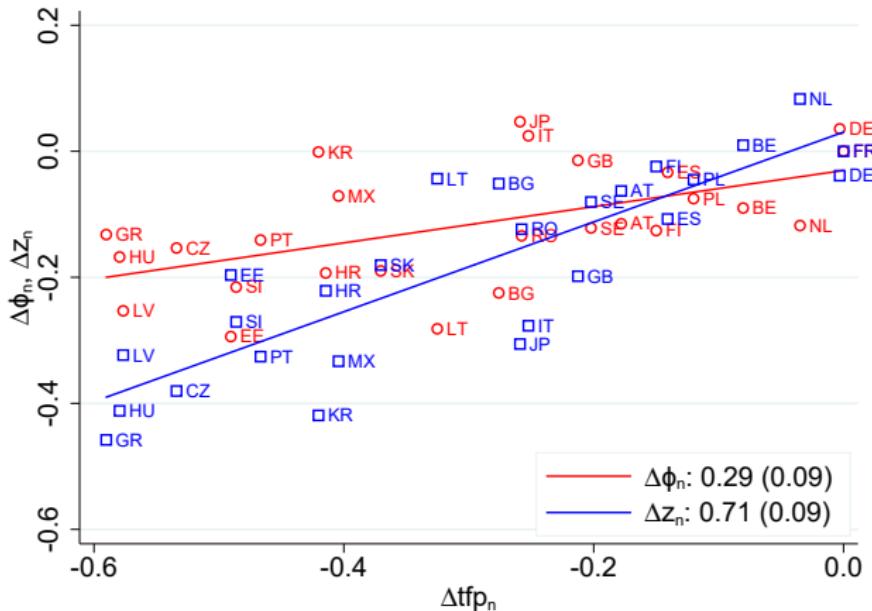
$$\Delta \text{tfp}_n = \Delta \phi_n + \Delta z_n$$

- Estimating equation:

$$\Delta \text{tfp}_n = b_0 + b_1 \Delta \mathbb{A}_n + b_2 C_n + u_n$$

- $b_1 = \frac{1}{\rho-1}$
- OLS is biased if $\text{cov}(\phi_n, z_n) \neq 0 \implies$ Add controls (C_n) for omitted variables
- $\rho = 10$:
 - In paper, estimates using sectoral data and output per worker

Estimating the elasticity of substitution


$$\Delta \text{tfp}_n = \Delta \phi_n + \Delta z_n$$

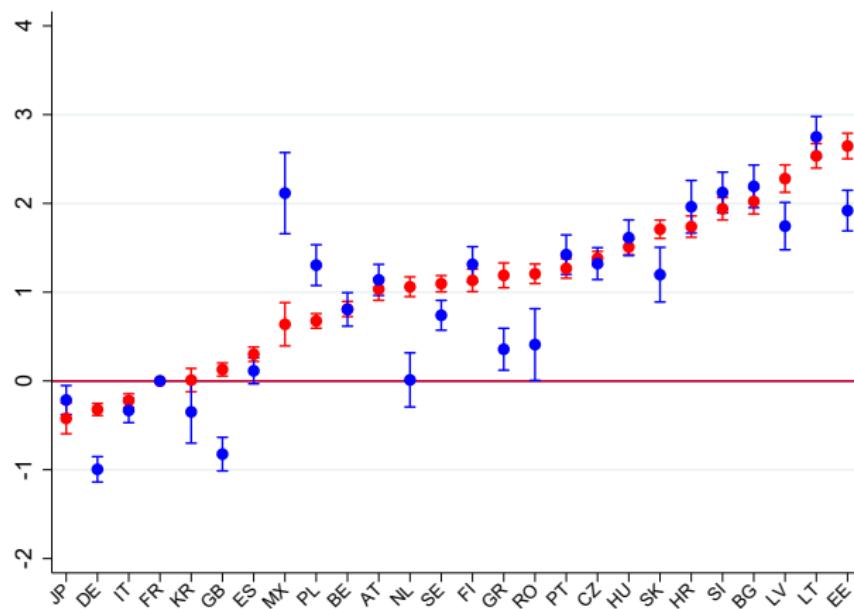
- Estimating equation:

$$\Delta \text{tfp}_n = b_0 + b_1 \Delta \mathbb{A}_n + b_2 C_n + u_n$$

- $b_1 = \frac{1}{\rho-1}$
 - OLS is biased if $\text{cov}(\phi_n, z_n) \neq 0 \implies$ Add controls (C_n) for omitted variables
-
- $\rho = 10$:
 - In paper, estimates using sectoral data and output per worker

Development accounting: TFP

- Average country (relative to France): $\Delta\phi_n = -0.12$ vs $\Delta tfp_n = -0.30$
 - Fraction of TFP variance accounted by $\Delta\phi_n$: 0.29 (upper bound is 0.31)


More results and robustness in paper

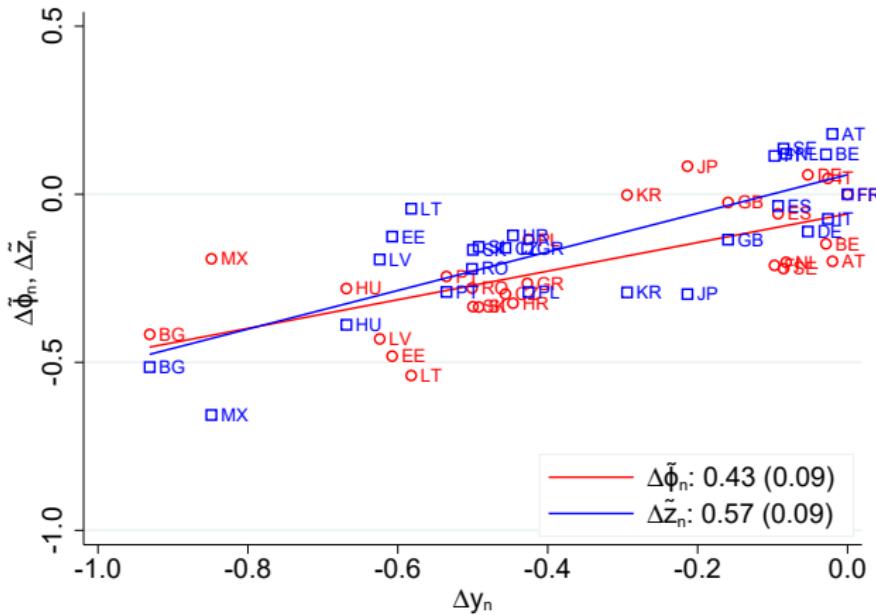
- Contribution of aggregate firm know-how to differences in output per-worker
- Results by 2-digit sectors (Manufacturing and Services)
- Results using employment and value-added data
- Robustness to address selection and other measurement issues
- Contribution of foreign vs domestic firms
- Extensions to include intermediate inputs and inefficiencies

Final remarks

- **New development accounting framework**
 - Based on data on MNEs producing in different countries
 - Estimate (a component of) TFP directly, not as residual
- **Main finding: Large differences in aggregate firm know-how**
 - Account for about 30% of cross-country differences in TFP
 - Driven mainly by differences in domestic firms (in paper)

OLS estimates

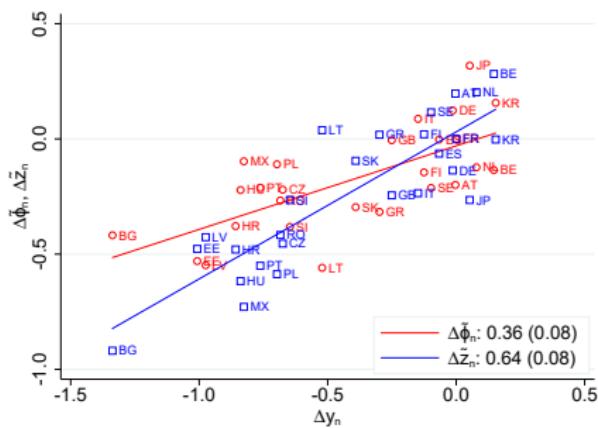
Red is A_n . Blue is P_n .

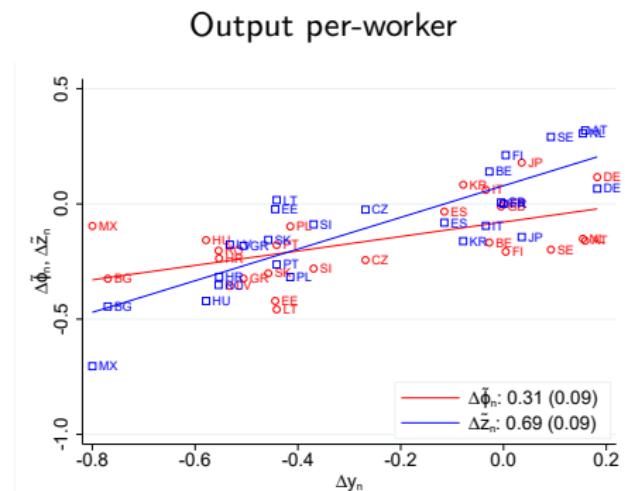
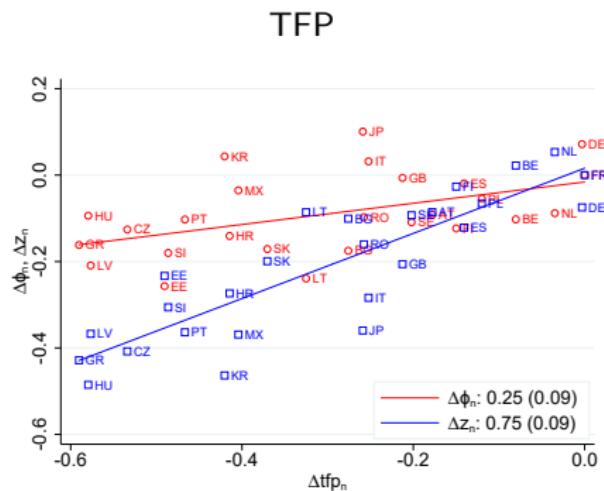

Estimates of elasticity of substitution

	All sectors			Manufacturing sectors			Service sectors		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\Delta A_n^j / [1 - \omega^j]$	-0.120*** [0.0170]	-0.118*** [0.0165]	-0.107*** [0.0181]	-0.119*** [0.0236]	-0.121*** [0.0250]	-0.103*** [0.0234]	-0.118*** [0.0252]	-0.116*** [0.0241]	-0.107*** [0.0240]
k_n / y_n		0.365*** [0.123]	0.226 [0.157]		0.483** [0.186]	0.206 [0.175]		0.174 [0.128]	0.103 [0.136]
h_n		0.0935 [0.385]	-0.339 [0.473]		0.544 [0.496]	-0.261 [0.649]		-0.203 [0.249]	-0.437 [0.368]
Rule of law			0.234* [0.134]			0.415** [0.154]			0.124 [0.104]
Observations	430	430	430	151	151	151	154	154	154
R-squared	0.315	0.361	0.398	0.361	0.451	0.568	0.382	0.405	0.423
Implied ρ	9.33	9.47	10.36	9.44	9.29	10.68	9.48	9.65	10.38
s.e ρ	1.18	1.18	1.59	1.68	1.72	2.19	1.81	1.80	2.11

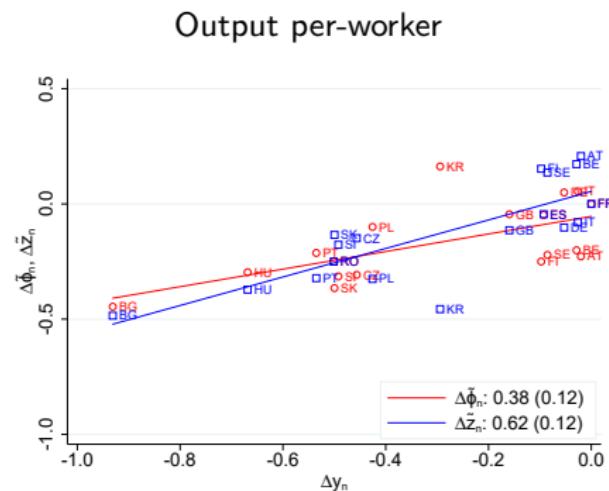
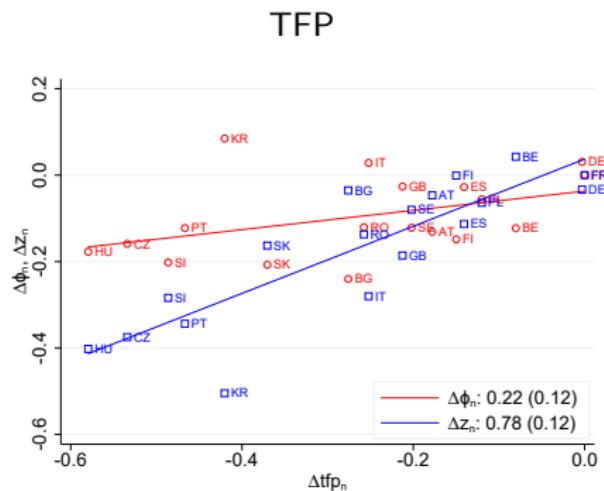
Estimates of elasticity of substitution, by sector

	Implied ρ	S.E
Other goods		
Agriculture and Mining	19.19	9.25
Construction	10.28	1.81
Electricity	25.5	9.25
Manufacturing		
Food and Beverage	9.31	1.66
Textiles, Apparel and Wood	5.68	0.77
Chemicals, Petroleum and Plastic	7.25	1.06
Basic Metals	12.07	2.24
Electrical Equipment and Machinery	9.49	1.31
Transport Equipment and Other Manufacturing	7.45	0.79
Services		
Wholesale Trade and Retail Trade	8.03	1.69
Transportation and Storage	45.17	53.47
Information	6.27	0.88
Financial and Insurance Services	68.98	90.01
Support Services	12.36	2.00
Accommodation and Recreation	9.36	2.02

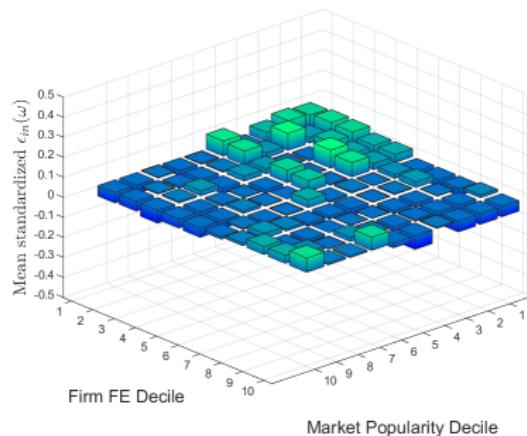

Development accounting: output per-worker



- $\tilde{\phi}_n = \frac{1}{1-\alpha_n} \phi_n$ where $\alpha_n = \sum_j \theta_n^j \alpha^j$
- Average country (relative to France): $\Delta \tilde{\phi}_n = -0.21$ vs $\Delta y_n = -0.31$
- Fraction of y_n variance accounted by $\Delta \tilde{\phi}_n$: 0.43 (upper bound is 0.59)

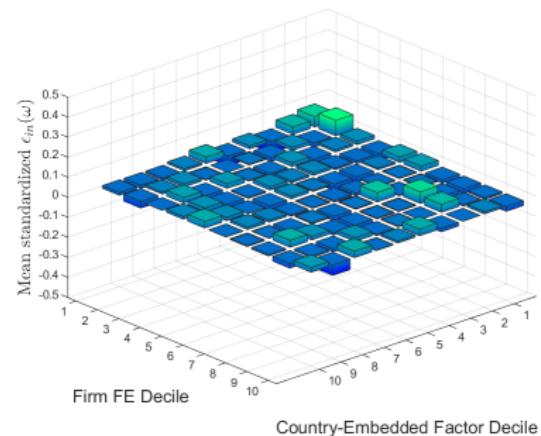
Development accounting: Manufacturing vs Services



Manufacturing

Development accounting: employment data



Development accounting: value-added data

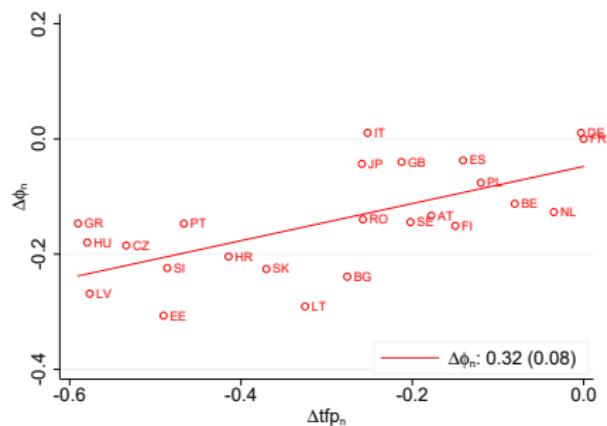


Selection issues: OLS residuals

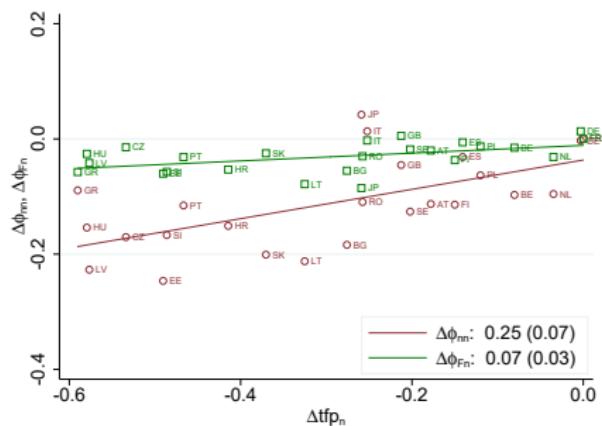
By firm-sector and market popularity

By firm-sector and country-embedded factor

Robustness


	$\frac{cov(\Delta t f p_n, \Delta \phi_n)}{var(\Delta t f p_n)}$	$\frac{cov(\Delta y_n, \Delta \tilde{\phi}_n)}{var(\Delta y_n)}$
Baseline	0.29 (0.09)	0.43 (0.09)
2nd to 9th Decile	0.27 (0.08)	0.40 (0.09)
3rd to 8th Decile	0.28 (0.09)	0.38 (0.10)
4th to 7th Decile	0.28 (0.09)	0.37 (0.10)
5th to 6th Decile	0.32 (0.12)	0.49 (0.14)

Robustness


	$\frac{\text{cov}(\Delta t f p_n, \Delta \phi_n)}{\text{var}(\Delta t f p_n)}$	$\frac{\text{cov}(\Delta y_n, \Delta \phi_n)}{\text{var}(\Delta y_n)}$
Baseline	0.29 (0.09)	0.43 (0.09)
I. Dropping firms:		
below 50th pc size	0.23 (0.08)	0.31 (0.08)
above 50th pc size	0.33 (0.10)	0.46 (0.11)
above 20th pc size	0.35 (0.12)	0.53 (0.14)
below 80th pc size	0.17 (0.07)	0.28 (0.08)
II. Keeping firms operating in at least		
3 countries	0.26 (0.08)	0.37 (0.09)
5 countries	0.22 (0.07)	0.32 (0.08)
10 countries	0.16 (0.07)	0.34 (0.08)
III. Narrow industries:		
4-digit SIC	0.32 (0.10)	0.48 (0.10)

Development accounting: foreign vs domestic firms

All

Foreign vs Domestic

