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Abstract

Behavioral interventions are a popular tool for encouraging socially desirable
behavior and are expressly designed to seize people’s attention. However, little
consideration has been given to the costs of seizing attention. We estimate
these costs in the context of an increasingly common highway traffic safety
campaign that displays roadside fatality counts on highway dynamic message
signs (DMSs). We exploit detailed data on DMS and crash locations, DMS
log files, and a unique setting in Texas where fatality messages are shown
only during one week each month. We find that this behavioral intervention
significantly increases the number of traffic crashes. The increase in crashes is
immediate, dissipates over longer distances, and increases with the displayed
fatality count. Furthermore, drivers do not habituate to these messages, even
after five years, and the effects do not persist beyond the treated weeks. Crashes
increase statewide during treated weeks, inconsistent with any benefits. Our
results show that behavioral interventions, designed to be salient, can crowd out
more important considerations, causing interventions to backfire with costly
consequences.
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1 Introduction

There is growing interest among academics and policy makers in using behavioral
interventions as a low-cost and easy-to-implement way of encouraging socially
desirable behaviors. Reflecting this interest, such interventions are used by over
200 governments and institutions to address a wide variety of issues, including
voter turnout, charitable giving, retirement savings, water conservation, energy
conservation, hand-washing, caloric intake, diarrhea, and risky sexual behavior
(Byrne et al., 2018).1 Many of these interventions are expressly designed to “seize
people’s attention” at a time when they can make the desired action (OECD, 2019, p.
29); however, little consideration has been given to individuals’ cognitive constraints,
and that seizing one’s attention may crowd out other, more important, considerations.
This paper shows, in a high-stakes context, that crowding out can occur and cause
even a simple intervention to backfire with costly individual and social consequences.

Our context is a seemingly innocuous behavioral campaign with the stated
objective of reducing traffic crashes, the leading cause of death of 5- to 45-year olds
in the U.S. and worldwide (CDC 2018, WHO 2018). This campaign displays the
year-to-date count of roadside fatalities on already available dynamic message signs
(DMSs) (e.g., “1669 deaths this year on Texas roads,” see Figure 1). These fatality
messages are expressly designed to be salient, with official statements expressing the
“hope” that these “in your face” safety messages will “motivate motorists to exercise
caution behind the wheel” and that a “sobering new message. . . will [hopefully] help
save lives.”2 Because of its low cost and ease of implementation, this campaign has
spread to at least 27 states since 2012 and affected at least 90 million drivers.3

1 For a list of governments using behavioral interventions see Afif et al. (2018) and https://www.
oecd.org/gov/regulatory-policy/behavioural-insights.htm. Academic research examples include
Duflo and Saez (2003), Frey and Meier (2004), Allcott (2011), Kremer et al. (2011), Costa and
Kahn (2013), Beshears et al. (2015), and Allcott and Kessler (2019).

2 Cunningham, Kailey, and Suzanne Stratford. 2015. “ODOT to display amount of traffic deaths on
digital boards along Ohio Highways.” Fox 8 Cleveland, July 1, 2015; CBS DFW. 2012. “TxDOT
Signs To Regularly Display Traffic Death Numbers.” CBSDFW.COM, August 21, 2012.

3 See Appendix Table A.1 for a list of states that have shown a fatality message. Data on the number
of drivers per state comes from U.S. Department of Transportation (2019b). Fatality messages
have also been used in at least one other country (South Korea).

1

https://www.oecd.org/gov/regulatory-policy/behavioural-insights.htm
https://www.oecd.org/gov/regulatory-policy/behavioural-insights.htm
https://fox8.com/2015/07/01/odot-to-display-amount-of-traffic-deaths-on-digital-boards-along-ohio-highways/
https://fox8.com/2015/07/01/odot-to-display-amount-of-traffic-deaths-on-digital-boards-along-ohio-highways/
https://dfw.cbslocal.com/2012/08/21/txdot-signs-to-regularly-display-traffic-death-numbers/
https://dfw.cbslocal.com/2012/08/21/txdot-signs-to-regularly-display-traffic-death-numbers/


This campaign is widely believed to be effective. For instance, in Illinois,
the decision to start showing fatality messages was unanimously supported by the
Department of Transportation, State Police, and Department of Public Health.4
Drivers also believe that fatality statistics make safety messages more effective (Boyle
et al., 2014). Belief in the effectiveness of these messages is likely an additional
factor in their rapid spread. We find, in sharp contrast to these expectations, that this
campaign is increasing the number of traffic crashes.

One key challenge when measuring the effect of fatality messages is that they are
frequently displayed during safer times when the DMS is not being used for more
pressing concerns (e.g., travel times, crash alerts), biasing any naïve analysis towards
finding a lower frequency of crashes when fatality messages are displayed.

The state of Texas provides a unique setting to overcome this challenge. Unlike
in most states, the Texas Department of Transportation (TxDOT) displays the current
fatality count only one week each month: the week prior to the monthly meeting
of the Texas Transportation Commission. Since August 2012, TxDOT broadcasts
the fatality message on as many DMSs as possible during this week. While other
messages can pre-empt the fatality message, traffic engineers are instructed that along
corridors with a large number of DMSs “the fatality message should be displayed on
a few [DMSs].”5 We confirm that fatality messages concentrate in the designated
weeks and use this assignment to treatment to estimate the effect of fatality messages
on traffic crashes.

We estimate the effect of showing fatality messages, relative to the status quo
usage of DMSs, by comparing how the number of crashes downstream of a DMS
(i.e., road “segments”) differs the week prior to a meeting of the Texas Transportation
Commission (“board meeting”) relative to the same segment the rest of the month.
We conduct our analysis at the segment-hour level, and include an extensive fixed
effect structure to control for inherent variation across different segments over time
and throughout each day. As such, our estimates compare, for example, the number
of crashes within 10 km downstream of a DMS from 2 to 3pm on Thursday, July

4 Brandel, Jennifer. 2013. “What’s The Deal with Illinois’ Traffic Death Highway Signs?” WBEZ
91.5 Chicago, April 9, 2013.

5 See Figure A.1 for the instructions sent to traffic engineers.
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18, 2013 (which occurs during the week prior to a board meeting), to the number
of crashes on the same segment from 2 to 3pm on the other three Thursdays in July
2013. We find that during treated weeks there are on average 1.8% more crashes
over the first kilometer after DMSs, diminishing to 0.8% more crashes over 8–10 km
after DMSs.

We conduct two placebo tests to address the possibility that the weeks prior to
TxDOT board meetings are inherently more dangerous than other weeks within the
same month. First, we estimate the change in crashes occurring upstream of DMSs.
As a segment can be upstream of one DMS and downstream of another, we restrict
this test to those DMSs where the nearest upstream DMS is more than 10 km away.
Second, we estimate a placebo effect using data from the pre-treatment period. Both
tests produce statistically and economically insignificant placebo effects.

Our main results are difference-in-differences estimates that exploit both within-
month variation in when fatality messages are instructed to be displayed and
differences between the pre-treatment (January 2010–July 2012) and treatment
(August 2012–December 2017) periods. We find that during treated weeks there
are 1.36% more crashes over the 10 km after DMSs. Further, it is likely that the
true effect of displaying fatality messages is even larger since fatality messages
are regularly turned on 1–3 days early. Redefining treatment as beginning one day
earlier increases the estimated treatment effect to 2.17%. These results suggest that,
inconsistent with the policy’s stated objective, increasing awareness of the risks of
driving via fatality messages increases the number of traffic crashes.

The magnitude of the effect is large given the simplicity of the intervention. The
above estimates measure the effect of the assignment to show a fatality message.
Due to imperfect compliance, we use instrumental variables to estimate the effect of
displaying a fatality message.6 We find that displaying a fatality message increases
the number of crashes over the 10 km downstream by 4.5–7.9%. Based on prior
research, this is comparable to raising the speed limit by 3–9 miles per hour (van
Benthem, 2015) or reducing the number of highway troopers by 12–24% (DeAngelo
and Hansen, 2014). Our back-of-the-envelope calculations suggest that fatality

6 Because we only have log files for a subsample of DMSs, we use two sample 2SLS.
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messages cause an additional 2,600 crashes and 16 fatalities per year in Texas alone,
with a total social cost of $377 million per year.

Our proposed explanation for this surprising finding is that fatality messages add
to drivers’ cognitive loads, crowding out their capacity to drive safely. We provide
several pieces of evidence that support this hypothesis. First, we find that fatality
messages are more harmful when they report a larger number of fatalities (i.e., a
plausibly more shocking and distracting number). In a related test, we find that as the
year progresses, and the number of displayed fatalities increases, the effect worsens,
with the largest number of additional crashes occurring in January (when the fatality
number is the highest).7 We also find that the increase in crashes concentrates in
areas where drivers’ cognitive loads are already high, as proxied for by annual vehicle
kilometers traveled, downstream lane kilometers, downstream centerline kilometers,
or the presence of multiple DMSs. Finally, we find that fatality messages increase
the number of multi-vehicle crashes, but not single-vehicle crashes, consistent with
increased cognitive loads causing drivers to make small mistakes such as drifting out
of their lane, rather than large errors such as driving off the road.

In contrast, when cognitive loads are low or the message is less distracting, fatality
messages plausibly help or have no effect. We find that showing a fatality message
helps when fatality counts are below the 25th percentile or when our measures of
complexity are more than a standard deviation below their means.

It is possible that fatality messages distract drivers in the moment, but then lead
them to drive more safely either elsewhere or later in the month. We provide evidence
suggesting that this is not the case. First, drivers do not drive more safely the days
immediately following campaign weeks. Second, drivers are not getting used to
the messages. Fatality messages are associated with an increase in crashes every
year, except one, between 2013 and 2017. Finally, drivers do not drive more safely
elsewhere during treated weeks. We estimate that during treated weeks there are
2.0% more crashes statewide, primarily driven by increased highway crashes.

We rule out several alternative explanations, including the possibility that reading
a message (rather than the content of the message) causes the crash and the possibility

7 The fatality count resets in February so that it is not trivially low in January.
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that the reported number of fatalities is less than drivers expect, so that drivers
respond rationally by driving more recklessly.

This paper makes four contributions. First, we show that behavioral interventions
can be too salient, causing them to backfire. In doing so, we build on research
that documents other policies that backfired, including policies designed to reduce
discrimination in labor markets that increase discrimination (Behaghel et al., 2015,
Agan and Starr, 2018), and expanded rent controls in San Francisco in 1994 that
ultimately lead to higher rents (Diamond et al., 2019). Perhaps most closely related,
Byrne et al. (2018) find that behavioral interventions which compare an individual’s
and peer’s usage of electricity can result in some individuals increasing their
consumption. We build on this work by documenting a new mechanism by which
behavioral interventions can backfire: they can increase individuals’ cognitive load,
crowding out more important considerations.

This result matters for three reasons. First, it helps inform the design of other
behavioral interventions by showing it is important to: (1) consider individuals’
cognitive loads when interventions will occur, (2) be careful interventions are not
too salient, and (3) measure the effect of the intervention, ideally building evaluation
into the intervention’s design. Second, it warns that the growing practice of sending
reminders can be taken too far and may crowd out other desirable activities.8 Third,
it shows that because individuals face cognitive constraints, a full accounting of the
welfare effects of an intervention should consider whether adding to participants’
cognitive loads has spillover effects outside of the targeted domain.9

Second, we also contribute by providing evidence that individuals do not always
habituate to behavioral interventions nor do their effects necessarily persist after
treatment stops.10 A large literature measures whether the effects of behavioral
interventions persist after treatment stops. While there are some notable exceptions,

8 For examples of successful reminder campaigns, see Karlan et al. (2016), Calzolari and Nardotto
(2017), and York et al. (2018).

9 For examples of excellent papers evaluating the welfare effects of behavioral interventions see
Bernheim et al. (2015), Allcott and Kessler (2019), Butera et al. (2019), and Farhi and Gabaix
(Forthcoming).

10 For a summary of research on the design and effectiveness of behavioral interventions, see Rogers
and Frey (2015).
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such as Allcott and Rogers (2014) and Bernedo et al. (2014), this literature typically
finds little persistence (Brandon et al., 2017). We find no evidence that fatality
messages affect behavior outside the designatedweeks. Amuch smaller literature tests
whether individuals habituate to behavioral interventions, as budget considerations
make it difficult to test long-run effects. One exception is Allcott and Rogers (2014),
who using the Opower “home energy report” find that individuals appear to largely
habituate after only four reports. In contrast, we find that drivers do not habituate to
fatality messages, with the treatment effect remaining virtually unchanged five years
after the initial implementation.

Third, we contribute to a large literature spanning economics, accounting, finance,
and psychology on how to best disclose risks as well as how individuals respond
to these disclosures.11 Although risk disclosures are common in many markets,
many tend to be generic rather than specific (e.g., “driving is dangerous” vs. “sharp
turn ahead”).12 There is concern that generic risk disclosures may be ineffective at
reducing risk taking due to their lack of specificity, but there is limited empirical
evidence on their effectiveness. Our setting allows us to measure the effectiveness of
a generic risk disclosure. We find that generic yet plausibly shocking risk disclosures
can affect individual behavior, albeit not necessarily as intended by policy makers.

Finally, we contribute to the large literature on traffic safety.13 We show, contrary
to drivers’ and policy makers’ expectations, that increasing awareness of the risk of
driving via fatality messages causes additional traffic crashes. This suggests that an
easy way to improve road safety is to stop displaying these messages on DMSs. As
discussed earlier, the magnitude is comparable to other potential policy changes, such
as reducing speed limits and hiring more police. Existing research on DMS safety

11 For examples, see Forsythe et al. (1999), Jin and Leslie (2003), SEC (2005), Longo (2005), FDA
(2012).

12 Examples of generic risk disclosures include: “past performance provides no guarantee of future
results” (financial markets), “I am aware of the risks associated or related to indoor rock climbing”
(sports), and “the Department of State alerts US citizens to the continued threat of terrorist attacks
throughout Europe” (travel). Many mandatory disclosures in public firms’ 10-K filings are also
generic.

13 See, for instance, Levitt and Porter (2001), Abouk and Adams (2013), Anderson and Auffhammer
(2014), Kapoor and Magesan (2014), Hansen (2015), Francesconi and James (2019), Ang et al.
(2020), and Gallagher and Fisher (forthcoming).
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messages by transportation engineers finds evidence that messages about speeding,
fog, or slippery roads are effective at reducing drivers’ speeds (Rämä and Kulmala,
2000, Al-Ghamdi, 2007, Chaurand et al., 2015). In contrast, we find that fatality
messages reduce driver safety.

2 Data, Summary Statistics, and Research Design

2.1 Data

We collect data on traffic crashes, DMS locations and messages shown, the meeting
schedule of the TxDOT board, weather, the Texas road network, and US federal
holidays. Table 1 summarizes the full period, January 2010–July 2012 “pre-treatment”
period (i.e., the time period before TxDOT began displaying fatality messages), and
August 2012–December 2017 “treatment” period. We have data on 886 DMSs. The
treatment sample covers 65 calendar months and 40,070,893 hourly observations,
whereas the pre-treatment sample covers 31 calendar months and 20,047,441 hourly
observations.

Our data on traffic crashes comes from the TxDOT Crash Records Information
System (CRIS) and includes all reported crashes occurring on Texas roads.14 This
dataset includes the GPS coordinates and the number of fatalities for each crash.15

We collect DMS location data from the TxDOT website and lists provided by
TxDOT of all DMSs in 2013 and 2015. We combine this location data, and validate
and correct it using Google Maps.16 Figure 2 plots the locations of these DMSs
within the entire state and Figure 3 plots those in the Houston area. These maps
show that DMSs are located primarily within urban areas, and, within urban areas

14 By law, crashes must be reported if the apparent damage exceeds $1,000 or if the crash resulted in
an injury or death (http://www.txdot.gov/driver/laws/crash-reports.html).

15 For 23% of the observations, GPS coordinates are recorded at the site of the crash, while in
remainder TxDOT geocodes it from the reported address.

16 We correct 18% of the DMS locations. We update the direction of travel for 26 DMSs. We drop
174 DMSs which are portable, test DMSs, or smaller than standard. These smaller DMSs are often
just able to display a few characters and are used for showing travel times or tolls. The largest
DMS we drop for being too small can show two lines of 12 characters, while standard DMSs can
show three lines of 15 or 18 characters. Finally, we drop four DMSs located on local roads rather
than highways.
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are spaced fairly evenly apart, with a median driving distance of 5.3 km between
consecutive DMSs. Our main results assume all DMSs that exist during our sample,
exist for the entire sample.17

We gather data on the messages displayed on DMSs from two sources. First, we
obtain log files for the DMSs located in the Houston area for the years 2012–2013,
and second, we collect hourly DMS message content directly from the TxDOT
website for all Texas DMSs for 2016–2017.

We collect the meeting schedule of the Texas Transportation Commission from
the TxDOT website. These board meetings are typically held the last Thursday of
each month, except in November and December when they are held earlier to avoid
conflicting with Thanksgiving and Christmas.

We obtain hourly weather data from the U.S. National Oceanic and Atmospheric
Administration’s Integrated Surface Database (ISD). Figures 2 and 3 also show the
locations of the weather stations we use. The median distance between a DMS and
the nearest weather station is 14 km.18

2.2 Variable Definitions

Our primary outcome variable is the hourly number of crashes on a given road
segment. Road segments begin at DMS locations and continue for x km of highway
driving distance, with x ∈ {−10,−9, ..., 9, 10} and where negative distances denote
segments preceding the DMS (i.e., upstream) and positive distances denote segments
continuing past the DMS (i.e., downstream). Driving distances are calculated using

17 We collect information on when each DMS exists using Google Streetview. This data is limited as
the mean gap between the last time a DMS is known not to exist and the first time it is known to
exist is 2.9 years and the mean gap between the last time a DMS is known to exist and the first time
it is known to not exist is 1.4 years. From this data we know that at least 24% of DMSs do not exist
over our entire sample. Including DMSs that are not operational biases our results towards zero.

18 As a test of the relevance of this weather data for the road segments they are matched with, we
compare the weather conditions reported in the ISD to those recorded in crash reports. The
probability that a crash report says it was raining increases by 46.6 percentage points (26.7%
vs. 73.3%) when the associated weather station reports rain during the hour the crash occurred.
Furthermore, the probability that a crash report says there were clear skies decreases by 94.4
percentage points (97.2% vs. 2.8%) when the associated weather station reports rain during the
hour.
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the Open Source Routing Machine and Open Street Maps data for the Texas highway
network.19 Figure 4 depicts segments of 1, 3, 5, and 10 km downstream of a sample
DMS near Aledo, Texas and the crashes associated with each segment. Because
we allow road segments to merge and diverge onto other highways, road segments
of length x + 1 km typically contain more than an additional 1 km of road surface
area and thus have a more than proportional increase in the number of crashes. We,
therefore, scale hourly crash counts for segments of length x by the average number
of crashes occurring over all segments of length x over the entire sample period to
create a standardized measure of crashes that is easier to interpret. We label this
variable Crash (%)s(x),d,h, where the subscripts index segment (s), segment length
(x), day (d), and hour (h). See Appendix Table A.2 for detailed variable definitions.

We define treatment status using the schedule of Texas TransportationCommission
board meetings. Since August 2012, TxDOT traffic engineers have been instructed
to display the fatality message beginning “after morning peak” on the Monday a
week prior to a board meeting and ending “before morning peak” on the following
Monday. Exact times are not provided, as “morning peak” varies by highway and
direction of travel. As Figure 5 shows, we observe from our sample of DMS log files
that a fatality message is displayed for approximately 8% of the DMS-hours between
midnight and 7 am on the Monday a week prior to board meetings (designated first
day), increasing to 12%, 18%, and 29% during the 7, 8, and 9 am hours, respectively,
and then displaying on roughly 30–42% of DMS hours during the safety campaign.
Percentages less than 100% are consistent with instructions that fatality messages,
“should not pre-empt needed traffic messages, incident-related messages, Emergency
Operation Center messages (EOC), or Amber/Silver/Blue alerts[.]” Fatality messages
also gradually begin to disappear at the end of the safety campaign, with the fatality
message showing for 21%, 16%, and 12% of DMS-hours messages during the 6, 7,
and 8 am hours of the final Monday, respectively. Thus, although there is leakage into
hours immediately before and after the intended display period, we find that fatality
messages are concentrated during the designated week, with increased presence

19 Our network includes all roads classified as motorways, motorway links, trunk roads, and primary
roads. This is the smallest set of classifications which includes all highways, but also includes
some roads that are not highways.
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beginning around the 9 am hour of the designated first day and decreased presence
by the 7 am hour of the designated last day. We define an indicator variable for the
week prior to a board meeting, Board meetingd,h, which equals one for all days d

and hours h between 9 am on the Monday 10 days prior to a scheduled board meeting
and 7 am the following Monday.

Figure 6 shows how the share of DMS-hours displaying the fatality message
(based on the DMS message sample) has evolved over time, and plots the mean
as well as 25th and 75th percentiles for both safety campaign weeks (left panel)
and other weeks (right panel). The 25th percentile during a safety campaign is
often zero, as some DMSs never display a fatality message within a month. The
share of DMS-hours displaying a fatality message outside of the assigned week
has also remained low. Table A.3 tabulates additional details for the 41 safety
campaigns covered by our DMS message sample, and demonstrates that for most
safety campaigns, 60–80% of DMSs display a fatality message at some point.20

To control for variation in weather conditions we define two indicators for
whether the weather station closest to DMS s reported precipitation during hour h

of day d. Specifically, Trace precipitations,d,h is set equal to one if the weather
station reported less than 1 millimeter of precipitation, and zero otherwise; and
Precipitations,d,h is set equal to one if the weather station reported 1 millimeter or
more of precipitation, and zero otherwise.

Table 2 reports summary statistics for our data. As discussed earlier, due to the
increasing surface area covered by segments of larger lengths, the number of crashes
per hour is increasing more than proportionally in segment length, with 7.5 times
more crashes within 10 km of a DMS than within 3 km.21

20 There are two months where the safety campaign occurred during the week of the board meeting.
According to TxDOT, this was due to human error.

21 We measure the length of roadway within segments, and find that the ratio of the length of roadway
within x and 1 km is very similar to the ratio of the number of crashes within x and 1 km for
x ∈ {3, 5, 10} (see Table A.4).
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2.3 Research Design

To estimate the effect of fatality messages on the number of traffic crashes, we exploit
within-month variation of fatality messages while controlling for weather, holidays,
and idiosyncratic segment characteristics. To control for unobservable within-month
fixed segment characteristics (e.g., idiosyncratic elements of the season, time of day,
and day of the week specific to each DMS highway segment), we include segment-
year-month-day-of-week-hour fixed effects. Because fatality messages are only
instructed to be displayed for one week each month, we can contrast, for each DMS
highway segment, year-month-day-of-week-hours when the message was instructed
vs. not instructed to be displayed.22 We also include controls for precipitation (both
Trace precipitation and Precipitation) and holiday fixed effects. We estimate the
following OLS regression using all hourly observations from Aug 1, 2012, through
Dec 31, 2017:

Crash (%)s(x),d,h = δ · Board meetingd,h + β1 · Trace precipitations,d,h

+ β2 · Precipitations,d,h + γs,m(d),dow(d),h + ζholiday + εs,d,h. (1)

In regression (1) δ is our estimated treatment effect, γ is a fixed effect for each
segment-year-month-day-of-week-hour, and ζ is a fixed effect for each holiday.

We also estimate the treatment effect using a difference-in-differences speci-
fication that exploits both within-month variation in when fatality messages are
instructed to be displayed and differences between treatment periods. Specifically,
we estimate the following regression:

Crash (%)s(x),d,h = δ · Board meetingd,h · Postd + β1 · Board meetingd,h+

+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · Postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h, (2)

22 We do not compare year-month-day-of-week-hours where a fatality message is displaying vs. not
displaying because whether a fatality message is displaying is endogenous. We provide evidence
of this endogeneity in Appendix A.2.
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which is equivalent to taking the difference between δ from regression (1) for the
August 2012–December 2017 sample and δ from the same regression for the January
2010–July 2012 sample. In regression (2), δ is the coefficient of interest. In our
analyses we find no difference during the pre-treatment period in downstream crashes
between the week prior to a board meeting and other weeks, so the primary difference
between regressions (1) and (2) is that the second has larger standard errors.23

As a conservative approach, we cluster standard errors by geography-year-month,
where geography refers to bins of size x2 square kilometers that contain the DMS
segment of length x. Thus, fewer clusters (geographic bins larger in area) are used
for segments of greater length, as crashes over those longer lengths may be linked to
multiple DMSs.24

2.4 Fatality message verification

Our research design exploits TxDOT’s “intention to treat” by displaying fatality
messages only over certain hours each month. The lack of DMS log files for most
of the sample precludes us from using either the actual or instrumented content of
the DMS for the full sample. Regressions (1) and (2) thus constitute reduced form
regressions of the outcome of interest (crashes) on the source of exogenous variation
(board meetings).

Before continuing with the empirical analyses, we verify an increased propensity
to disclose fatality messages during the expected week using our restricted sample of
DMS log files. Figures 5 and 6, discussed previously, provide initial evidence of an

23 This is because regression (1) presumes the treated week would be exactly the same as the other
weeks in the absence of treatment while regression (2) acknowledges uncertainty about whether
treated weeks would be the same in the post period in the absence of treatment.

24 To define geographic bins, we use the latitudes and longitudes that constitute the North, South,
East, and West edges of the state of Texas. Using the absolute difference in these latitudes and
longitudes, we assign latitudes and longitudes to create square bins of size x2 square kilometers
that cover the entire state of Texas and assign each DMS to one of these bins. We note that the full
sample covers 3,184,899 crashes within 10 km of a DMS, yet because a crash can be associated
with multiple DMSs there are only 849,623 distinct crashes in the full sample within 10 km of any
DMS, representing 38% of the 2,220,441 total highway crashes reported statewide for the same
period. This feature of the data motivates our decision to cluster standard errors by geographic
bins.
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increase in the display of fatality messages during the designated week. To more
fully explore this relation, we estimate the following regression:

Fatality messages,d,h = δ · Board meetingd,h + β1 · Trace precipitations,d,h

+ β2 · Precipitations,d,h + γs,m(d),dow(d),h + ζholiday + εs,d,h

(3)

where Fatality messages,d,h is the percent of hour h on day d that the DMS at
the start of segment s displayed a fatality message and the remaining variables are
previously defined.25 We tabulate coefficient estimates of equation (3) in Table 3.
Consistent with the instructions provided by TxDOT to its traffic engineers, we
document that the percent of hours a fatality message is displayed increases by 30.2
percentage points during the week prior to a board meeting.

Equation (3) estimates the effect of being assigned to show the fatality message
relative to the status quo usage of DMSs rather than relative to the DMS being
blank. This is the policy-relevant treatment effect but also means it is important to
understand what messages the fatality message is replacing. We tabulate summary
statistics for DMS message types during the treated period in Table 4. During
non-treatment weeks, fatality messages display for an average of 1.2 minutes each
hour, increasing substantially to 19.3 minutes during safety campaign weeks. This
increase comes at a 10.7 minute reduction in non-safety messages, a 1.1 minute
reduction in travel time messages, and a 7.5 minute decrease in blank DMSs during
the hour. We find a statistically but non-economically significant 0.1 minute increase
in Amber alert minutes, consistent with instructions that DMS messages are not to
replace high-priority messages.

Overall, we conclude that the use of fatality messages significantly and meaning-
fully increases during safety campaign weeks both by using the DMS more and by
reducing other types of non-essential messages. In the following section, we use the

25 From our 2012–2013 DMS log data for Houston we can calculate Fatality messages,d,h precisely.
In the 2016–2017 web scraped data we only observe the sign status at the start of each hour and
assume that if a sign’s status changes that the change occurred halfway between the two hours.
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increased presence of fatality messages during the week preceding board meetings
to estimate the effect of these messages on highway crashes.

3 Results

This section reports our main results. We begin with univariate analysis indicating
an increase in crashes the week prior to a board meeting (when fatality messages
are displayed) relative to other weeks. We then show that these results hold in
first-difference and difference-in-differences multivariate analyses after controlling
for weather, holidays, as well as segment and time-of-day/day-of-week differences.
We conclude this section by showing that there is no evidence this effect has dissipated
over time.

3.1 Univariate results

In Figure 7 we show that the mean number of crashes downstream of DMSs during
the week prior to a board meeting is greater than the mean number of crashes in
other weeks. Specifically, the circles plot the percentage difference in the average
number of crashes occurring during safety campaign weeks vs. other weeks over the
segments [0,1], (1–4], (4–7], and (7–10] kilometers downstream of DMSs. We find
there are more crashes during safety campaign weeks, with the largest effect a 2.8%
increase over the first kilometer. This effect slightly diminishes to a 1.8% increase
over the (7-10] km interval.

Figure 7 provides suggestive evidence that while the estimated effect diminishes
over longer distances, they do not decay to zero. We conjecture that the increase in
crashes over distances farther away from DMSs is due to subsequent treatment by
downstream DMSs. To map out the impact of fatality messages in the absence of
subsequent treatments, the hollow squares in Figure 7 plot univariate differences in
crash rates for the subset of DMSs where there are no downstream DMSs within
x kilometers. We find that for DMSs with no downstream DMS within 7 or 10
kilometers, the effect over the distances (4,7] and (7,10] km become statistically
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insignificant, respectively.26 These results suggest the immediate increase in crashes
in response to the fatality message is short lived and concentrated after DMSs.

We next conduct two placebo tests to address the possibility that the week prior
to board meetings is inherently more dangerous than other weeks. First, we examine
the change in crashes upstream of DMSs. Because a segment that is upstream of one
DMS may be downstream of another, we limit this test to DMSs where the nearest
upstream DMS is more than 10 km away (reducing our sample by 75%). In Figure
8 Panel A we find no effect upstream for this restricted sample. All but one of the
downstream estimates is above zero, with a statistically significant increase over the
8-10 kilometers downstream of DMSs. The lack of a significant upstream effect for
this subsample of DMSs is consistent with fatality messages driving the increase in
crashes, although we caution that we have less power to measure an effect on this
non-random sample of DMSs, which mostly include DMSs on the edge of cities or
in rural areas. Second, we estimate the change in crashes during the week prior to a
TxDOT board meeting for the pre-treatment period. We find no downstream effect
in the pre-treatment period. We also find no positive upstream effect. These results
are inconsistent with driving conditions being inherently more dangerous the week
prior to board meetings.

3.2 Multivariate results

We next show that these results hold when using more rigorous specifications
that adjust for weather, holidays, as well as segment and time-of-day/day-of-week
differences. We start with first-difference estimates from equation (1), plotted in
Figure 9 using circles, for incremental distances after DMSs. Similar to the univariate
results depicted in Figure 7, we find an increase in the number of crashes downstream
of DMSs (significant at the 5% level over the (4-7] km distance and at the 10% level
over the [0,1], (1,3], and (7,10] km distances). We estimate that fatality messages
increase the number of crashes by 1.8% over the first kilometer, decreasing to a 0.8%

26 Figure A.3 Panel A also shows a positive but insignificant effect over the first kilometer, followed
by insignificant downstream effects if we limit the sample to only those DMSs with no downstream
DMS within 10 km (25% of the treatment period observations).
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increase over the (7,10] kilometers after DMSs. The hollow squares in Figure 9 plot
coefficient estimates when the sample is restricted to segments where there are no
downstream DMSs within x kilometers. Within these samples, we find the increase
in crashes decays much faster, although we caution that mapping out the duration of
any effect is limited due to the non-random nature of each of these sample subsets.27

We repeat our two placebo tests using the first-differencemultivariate specification
in Figure A.2. Panel A reports the results of estimating equation (1) on the restricted
sample where the nearest upstream DMS is more than 10 km away. We find no
evidence of additional crashes upstream during treated weeks. Panel B reports the
results of estimating the first-difference regression using the pre-treatment sample.
We again find that the difference in the number of crashes during the week prior to a
board meeting is both economically and statistically insignificant across all distances,
both upstream and downstream of DMSs.

Table 5 columns (1)–(3) report our main results: difference-in-differences
estimates of equation (2) that account for the uncertainly in whether the week prior
to a board meeting is inherently more dangerous. Each column in Table 5 reports
results for different highway segment lengths. The first row, Board meeting × post,
estimates the treatment effect of fatality messages. We find that within 5 km of a
DMS there is a 1.54% increase in the number of crashes per hour (column (2)),
slightly diminishing to a 1.36% increase over the 10 km after DMSs (column (3)).
Both effects are statistically significant at 5% confidence levels. Within 3 km the
effect is positive but not statistically significant (column (1)).28 The second row,
Board meeting, estimates the change in the number of crashes one week before board
meetings from January 2010–August 2012. As this period pre-dates the fatality
safety campaigns, we expect and find no effect (consistent with Figure A.2 panel B),
with these estimates both small and statistically insignificant,

The true treatment effect is likely larger than the 1.2–1.5% documented in Table
5 columns (1)–(3). As shown in Figure 5, fatality messages regularly begin to appear

27 Figure A.3 Panel B maps out the decay for only those DMSs with no downstream DMS within 10
km and finds generally insignificant downstream effects.

28 Table A.5 of the online appendix presents separate analysis of both pre-treatment and treatment
periods.
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1–3 days prior to the official Monday morning “start date,” although we caveat
that we do not have DMS log files for the full sample and thus have an imperfect
measure of the amount of leakage. We define an alternative treatment measure,
Board meeting-Sunday, where treatment begins Sunday morning at midnight rather
than Monday at 9 a.m. As shown in Table 5 columns (4)–(6), our estimated treatment
effects increase by 154-200% using this alternative measure. This substantial increase
results from moving a day with a large treatment effect (i.e., the Sunday eleven
days prior to a board meeting) from the control group to the treatment group. The
magnitude of this change is large relative to the amount of leakage documented
in Figure 5 (e.g., 7–8% of DMSs showing a fatality message the Sunday prior to
campaign weeks). One interpretation is that Figure 5 underestimates how frequently
fatality messages are displayed prior to the designated start time (leakage), since
Figure 6 shows that the amount of leakage declines over time and 82% of our DMS
log data is from 2016–2017.

Our estimated magnitudes are large given the intervention’s simplicity. We use
two-sample instrumental variables to estimate the effect of displaying a fatality
message on the number of crashes downstream of a DMS. The first-stage regression
is run on the subsample for which we have DMS log files, and the second-stage
regression is run on the full sample. We bootstrap standard errors. The results,
using both Board meeting and Board meeting-Sunday, are reported in Table 6.
We find that displaying a fatality message results in a positive but insignificant
increase in crashes over the first three kilometers using Board meeting as the
instrument in the first stage (i.e., defining treatment to begin Monday at 9 a.m.).
Board meeting-Sunday, in contrast, results in an economically and statistically
significant 8.96% increase in crashes over the first three kilometers. Consistent with
the pattern in Figures 7, 9, and Table 5, we find these magnitudes decrease over
longer distances, with a total increase in the number of crashes of 4.5–7.9% over 10
kilometers when fatality messages are displayed. These magnitudes are comparable
to increasing the speed limit by 3–9 miles per hour (van Benthem, 2015) or reducing
the number of highway troopers by 12–24% (DeAngelo and Hansen, 2014).

17



3.3 Effect over time

We find no evidence that the effect of displaying a fatality message has dissipated over
time. Figure 10 plots the coefficient estimates from a modified version of equation
(1) that allows the treatment effect to vary each year. Consistent with the evidence
in Figure A.2 panel B, we find an insignificant change in crashes the week prior to
board meetings during 2010–2012 (generally the pre-treatment period). For all years
after 2012 except 2016, the estimated coefficient is positive, and in three of those
years statistically significant.

4 Mechanism

We find that displaying the year-to-date count of fatalities on DMSs increases the
number of crashes. In this section, we investigate the mechanism for this increase in
crashes. A large body of research documents that increased cognitive loads distract
individuals, causing them to have longer response times, make more mistakes, and
fail to process available information.29 We hypothesize that by showing a potentially
shocking and morbid statistic, fatality messages increase drivers’ cognitive loads,
distracting them, and crowding out their capacity to drive safely.30 We provide six
pieces of evidence supporting this hypothesis. We also rule out five alternative
hypotheses, including the possibility that the fatality messages help in the long run.
To save space, where relevant we focus in this section on the treatment effect on
crashes within 10 km of a DMS.

29 For examples, see Gilbert et al. (1988), Berggren et al. (2011), and Strayer et al. (2013).
30 Fatality messages may add to drivers’ cognitive loads more than a typical DMS message by

inducing anxiety. Since Yerkes and Dodson (1908), psychologists have documented that high
levels of anxiety or arousal can worsen performance on a variety of tasks by causing individuals to
focus on the risk rather than the task, reducing individuals’ ability to process new information, and
causing people to overthink their actions, overriding faster automatic responses (Staal, 2004). In
all of these cases, drivers are distracted and paying attention to the wrong things.
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4.1 Shocking fatality messages distract drivers

We start with the evidence supporting our hypothesis that fatality messages distract
drivers. Our first piece of evidence is that the harm done by the safety message is
increasing in the reported number of deaths, suggesting that bigger fatality numbers
are more distracting than smaller ones. We estimate a modified version of (2) that
allows the effect of the safety campaign to vary by the quartile of reported deaths.31
Figure 11 plots these results. When the number of reported deaths is small, displaying
a fatality message decreases the number of crashes. However, as the number of
reported deaths increases, the effect of showing a fatality message on crashes grows
more harmful. The harm done when the number of deaths is in the highest quartile
is nearly double the benefit when the number of deaths is in the smallest quartile.

Second, and closely related, the harm done by the safety message is increasing
throughout the year. Because the number of deaths reported is mechanically climbing
throughout the year,32 this is an alternate way of showing that increases in the
displayed number of deaths lead to more crashes. Figure 12 plots our difference-
in-differences estimates of the treatment effect by calendar month. We find that
displaying a fatality message helps in February (-3.6%, statistically significant at the
10% level), when the number of deaths displayed resets (January shows the prior

31 Because we do not observe the displayed death count in every month, we impute the year-to-date
fatality count for each month using the actual number of year-to-date fatalities. From the DMS log
files we find that the reported fatality number is reported with a median lag of 22 days, and we use
this lag when imputing the number of fatalities for each month.

32 Appendix Figure A.4 displays, for all DMSs in our log file sample, both the mode year-to-date
death count displayed within a given month (black diamonds), and all other death counts displayed
within the month (gray circles, with sizes corresponding to their relative frequencies). The number
resets in February and the prior year’s fatality count is displayed in January so as not to display a
trivially low number. Due to human error we note some limited within-month variation in the
reported number of deaths: DMSs occasionally display the reported number of deaths from the
previous month or reverse a digit (e.g., 841 deaths vs. 814 deaths).
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year’s total), and then its effect worsens throughout the year.33 From October through
January the effect is positive and statistically significant.

Third, as Figure 12 shows, the effect of displaying a fatality message drops
11 percentage points between January and February, when the displayed number
of deaths resets. This significant change supports the hypothesis that the number
displayed matters and the message distracts drivers, and is inconsistent with the
variation over the year simply being due to seasonal weather or driving patterns.

Fourth, the increase in crashes is larger in areas that place high cognitive loads
on drivers. We use three related measures for whether a road segment is complex
and would require high cognitive loads: centerline kilometers, lane kilometers, and
average daily vehicle kilometers traveled (VKT).34 We normalize these measures to
have a mean of zero and a standard deviation of one, and interact with our treatment
variable. As columns (1)–(3) of Table 7 show, we find that all three measures of
complexity are associated with the fatality message causing more crashes. The
first row shows that a one standard deviation increase in any of our measures of
complexity leads to 2.3–3.1% more crashes during treated weeks. The second row
shows that for road segments of average complexity, displaying a fatality message

33 June, July, and August are notable exceptions to this trend. A possible explanation is that these
months are when children are out of school, reducing the amount of traffic, with July explained by
large increases in vacation travel. Since tourists, both from out-of-state or elsewhere in Texas, are
in a new area and so have higher cognitive loads, we expect fatality messages will have a larger
effect on them. We have three pieces of evidence for there being more tourists in July. First, Figure
A.5 shows that the share of drivers who are from out-of-state, as proxied by the statewide share of
drivers in crashes from out-of-state, is higher in July than any other month. Second, according to
the 2016 Travel Texas Marketing Plan, summer is the most popular season for non-resident visits to
the state (https://gov.texas.gov/travel-texas). Third, Waco, the only major Texas city that provides
monthly tourism totals, has the highest number of tourist visits in July for the years 2016–2019
(https://wacoheartoftexas.com/tourism-research-and-statistics/). Unfortunately, due to a lack of
power, we are unable to determine whether out-of-state drivers react more strongly to treatment
than in-state drivers.

34 Lane kilometers and average daily vehicle kilometers traveled are measured from the Highway
Performance Monitoring System annually and centerline kilometers are measured using Open
Street Maps. All three are measured over each segment. Consider the following three examples of
a 10 km segment to contrast centerline and lane kilometers: (a) a straight road with four lanes,
(b) a Y-shaped road that splits halfway, with all parts having four lanes, and (c) a Y-shaped road
that splits halfway where the trunk is four lanes and each branch is two lanes. Segment (a) has 10
centerline km and 40 lane km, segment (b) has 15 centerline km and 60 lane km, and (c) has 15
centerline km and 40 lane km.
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causes more crashes (statistically significant when complexity is measured using
centerline kilometers). The third and fourth rows show that, as expected, these
measures are not associated with an increase in crashes during the week prior to a
board meeting in the pre-treatment period.35

Fifth, and closely related, the increase in crashes is higher on segments with
nearby upstream DMSs. We measure the distance (on the road network) to the nearest
upstream DMS, standardize this measure to have a mean of zero and a standard
deviation of one, and multiply by minus one so that the measure is increasing in
proximity to an upstream DMS. As column (4) of Table 7 shows, fatality messages on
DMSs with the average proximity to an upstream DMS are associated with a 1.36%
increase in crashes, and that increasing the closeness of the nearest upstream DMS
by one standard deviation is associated with an incremental 0.6% increase in crashes.
This finding is consistent with three explanations. First, it is consistent with fatality
messages having larger effects when drivers face high cognitive loads, as drivers have
likely seen multiple DMS messages on these segments. Second, it is consistent with
an effect due to repeated exposures, either because it means more drivers have seen
the message at least once, distracting multiple drivers, or because seeing a fatality
message repeatedly in quick succession increases the salience (and effect) of the
message.36 Finally, an increase in crashes on segments with nearby upstream DMSs
is also consistent with treatment mattering, as at least one of these DMSs is likely to
have displayed a fatality message, per TxDOT instructions that, even when there are
higher priority messages, the fatality message should be displayed on a few DMSs
along corridors with a large number of DMSs.37

Sixth, fatality messages increase multi-vehicle crashes but not single-vehicle
crashes. In Table 8, we separately examine whether multi- and single-vehicle

35 Appendix Table A.6 reports results using an indicator for whether each complexity measure is
above or below the median, rather than using a continuous measure of complexity, and produces
similar results.

36 The probability that a DMS is showing a fatality message conditional on the nearest upstream
DMS showing a fatality message is 61%. In comparison, during campaign weeks DMSs show
fatality messages 32% of the time.

37 During campaign weeks, it is 31% more likely that a fatality message is showing on either a DMS
or its nearest upstream neighbor, than on just a given DMS.
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crashes change the week prior to a board meeting. We find a 1.61% increase in
crashes involving multiple vehicles, and an insignificant change in crashes involving
single vehicles. As single vehicle crashes are likely a result of large mistakes (e.g.,
driving off the road), the increase in multi-vehicle crashes suggests that more small
driving mistakes occur when fatality messages are shown that are plausibly related
to distracted driving (e.g., drifting out of lane), rather than driving off the road. An
increase in multi-vehicle crashes is also consistent with fatality messages inducing
more anxiety, and so being more distracting, when driving conditions could be
perceived as more dangerous (i.e., when other vehicles are nearby).38

4.2 Alternate hypotheses

There are at least five alternate hypotheses for how fatality messages affect traffic
safety. Below we provide evidence inconsistent with each of these alternative
hypotheses.

4.2.1 Fatality message helps in the long run

The first alternate hypothesis is that although fatality messages cause more crashes
when displayed, they may eventually lead to safer driving. That is, the signs could be
similar to a vaccine, with a little immediate harm leading to eventual large benefits.
We provide four pieces of evidence that are inconsistent with this hypothesis.

First, if the messages cause individuals to drive safer after they recover from
an initial shock, then the worst effects should occur at the start of each campaign
week, and the days after the safety campaign should be unusually safe. To test this
possibility, we estimate a modified version of equation (2) that allows the effect
of the safety campaign to vary by event day i, where i = 0 reflects the Monday
a week prior to a board meeting (i.e., the first official day of a safety campaign
during the treatment period). Figure 13 plots the difference-in-differences coefficient
estimates for fourteen event days (-3 through 10), with the dotted lines indicated

38 Relatedly, a higher incidence of multi-vehicle crashes also suggests that fatality messages impose
significant externalities on drivers who are not directly distracted by fatality messages, as these
drivers are at risk of being in a crash due to the actions of drivers distracted by the fatality message.
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the official first and last day of safety campaign weeks.39 While the estimates do
not rule out the possibility that the treatment effect is declining throughout the
week, the estimated treatment effect on Friday is (slightly) higher than on the first
Monday. Most importantly, the estimates do not become significantly negative once
a campaign week concludes.40

Second, if the message “sticks” and encourages safer driving, then repeated
exposure to fatality messages (even with extended breaks between viewings) should
eventually lead to fewer crashes. We, however, find that the fatality messages continue
to increase crashes five years after the launch of this safety campaign (see Figure
10). Furthermore, the increase in crashes that occurs during the year (i.e., from
February to January) occurs consistently in each year of our sample period. Figure 14
plots estimates of the effect of the safety campaign by modified calendar quarters.41
In the leftmost section we find either an insignificant or negative effect of fatality
messages on traffic crashes during the first quarter of the year (Feb–Apr) for the years
2013–2017. The pattern is similar for the second quarter. In the third section of
Figure 14 we find that all but one of the point estimates are positive during the third
quarter, albeit insignificant. The notable exception is that fatality messages resulted
in a 4.2% decrease in crashes during the first quarter they were first displayed (i.e.,
the third quarter of 2012). In the rightmost section we find that the point estimates
are positive and statistically significant during the fourth quarter for five of the six
years in our sample. Figures 10 and 14 suggest that drivers are repeatedly surprised

39 The effects presented in Figure 13 are relative to the baseline average change in crashes over the
remaining days in the month. Because treatment is supposed to end before rush hour the Monday
immediately preceding a board meeting, this day is only assigned to treatment in the early morning
hours.

40 In Figure 13 we find economically large effects immediately prior to the start of a safety campaign
week (e.g., a 5.9% increase in crashes on the Sunday 11 days prior to a board meeting). This
finding is consistent with the evidence of leakage of the fatality message to earlier days and that
including this Sunday as part of the safety campaign week significantly increases the estimated
effect of fatality messages (see Figure 5 and Table 5). As discussed earlier, this increase seems
large relative to the amount of leakage documented in Figure 5. Our interpretation is that Figure 5
underestimates the amount of leakage since Figure 6 shows that the amount of leakage declines
over time and 82% of DMS log data is from 2016–2017.

41 We modify the calendar quarters so that the first quarter starts in February, when the displayed
death count resets.
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and distracted by fatality messages, particularly messages shown in the last quarter,
which contain the largest fatality numbers.

Third, if the message leads people to drive better after the initial shock, then
it is possible that while the fatality message causes more crashes near the DMS,
there could be a plausible reduction in crashes elsewhere. To test this possibility, we
estimate whether the fatality message affects the statewide total number of crashes.
We use a difference-in-differences specification similar to (2), where the outcome is
the statewide total number of crashes in a given hour and we include a fixed effect
for each year-month-day-of-week-hour. Given that our outcome is a statewide total
number of crashes during a particular hour, we are unable to control for precipitation.
Column (1) of Table 9 reports that during the week prior to a board meeting there are
1.98% more crashes statewide. Further, as columns (2) and (3) show, this effect is
concentrated in the number of highway crashes (as opposed to off-highway crashes),
although the difference between the two estimates is not statistically significant.42

Figure 15 shows that the effect of a campaign week on the statewide crash count
follows the same pattern of climbing throughout the year, and that this pattern holds
for both on- and off-highway crashes. Appendix Table A.7 shows that these statewide
results are robust to winsorizing, quantile regression, taking the inverse hyperbolic
sine of the number of crashes, and Poisson regression. Appendix Figure A.6 shows
that the increase in statewide crashes is generally present each year since 2012.

Finally, if the fatality message eventually leads to safer driving, then the effect
is small relative to other trends. The number of fatalities per vehicle mile trav-
eled increased by 6.2% between 2011 and 2017 (TxDOT Texas Department of
Transportation, Texas Department of Transportation).

4.2.2 Additional alternate hypotheses

We consider four other alternate hypotheses for why fatality messages cause more
crashes. First, it is possible that any message is distracting and causes crashes,

42 The statewide effect is driven almost entirely by the fact that the week prior to a board meeting was
unusually safe in the pre-treatment period. This is in contrast to our main analysis using DMSs,
where we found no difference between the week prior to a board meeting and other weeks in the
pre-treatment period (see Figure 8 and Table 5).
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reflecting a more general concern faced by traffic engineers about displaying non-
essential messages on DMSs. Evidence that the treatment effect varies with the
number of reported deaths, however, suggests that the increase in crashes is unlikely
a result of displaying any message. Furthermore, we test whether Amber and Silver
alerts, whose timing is plausibly exogenous to underlying traffic risk, affect the
number of crashes. We find an insignificant increase of 0.50%, further evidence that
the content of the fatality message matters.

Second, safety messages may result in more crashes by increasing the variance in
drivers’ speeds, as research suggests that greater variance in speeds causes crashes.43
If only some drivers notice the messages and these drivers respond by slowing down,
then the variance in speeds would increase and result in more crashes. Without
data on drivers’ speeds we cannot completely rule out this proposed mechanism,
however, given the relatively quick decay of the treatment effect, those who respond
by slowing down only do so for a few minutes.

Third, while some drivers may respond to fatality messages by driving more
safely, other drivers may decide they can drive faster because some drivers are being
more careful (akin to Peltzman (1975)). While we again cannot completely rule out
this mechanism, we note that it is inconsistent with the relatively quick decay of the
treatment effect.

Finally, it is possible that the reported number of deaths is less than people expect,
and that they rationally respond by driving more recklessly. However, several of our
findings are inconsistent with drivers rationally updating their beliefs about the risk
involved in driving. First, the relatively quick decay of the treatment effect suggests
the messages only affect behavior for a short time. Second, the treatment effect
persists after five years of treatment, even though there is little new information in
the messages.

43 See Theofilatos and Yannis (2014) for a review, although there is an ongoing debate over this
finding.
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5 Discussion

The prior section presents evidence that fatality messages are too salient and distract
drivers. Part of this evidence includes documenting heterogeneous treatment effects,
with larger treatment effects when the message is plausibly more salient or when
drivers’ cognitive loads are higher. This same evidence suggests that there are times
and places where showing fatality messages help. Specifically, fatality messages
reduce the number of crashes when the number of reported fatalities is in the bottom
quartile and in places where the road network complexity is at least a standard
deviation below its respective mean. While these benefits do not outweigh the harm
done, they show that behavioral interventions can help if the intervention is not too
salient and if they are delivered when individuals’ cognitive loads are low.

6 Robustness

We report several robustness tests of our difference-in-differences estimates in
Appendix Table A.8. In particular, we show that clustering by segment-year-month
reduces the standard error in half, that controlling for rain more flexibly does not
affect our results, that not controlling at all for rain doubles our estimated treatment
effect, and that not controlling for holidays increases our estimate slightly. Further,
we show that the estimated treatment effects are larger when using alternate outcome
measures; specifically, using an indicator variable for whether there is any crash or
using the log of the number of crashes plus one.44

All our estimates so far have assumed that any DMS that exists during our sample,
exists for the entire sample. We also test whether our results are robust to limiting
the sample to those DMS-months where each DMS exists. To do so, we collect
information on when each DMS exists using Google Streetview. As discussed in
footnote 17, this data has large gaps, and so for each DMS-month we either know

44 We do not use count data models (e.g., Poisson regression) because they are incompatible with our
extensive fixed effect structure. These models require variation in the outcome within each fixed
effect. With our fixed effect structure there are 4–5 observations per fixed effect and so for many
fixed effects there is no variation in the outcome.
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a DMS exists, know it does not exist, or are unsure. To deal with this uncertainty
over when DMSs exist we conduct two robustness tests. First, we limit our sample
to those DMS-months where we know the DMS exists, and second, we limit our
sample to those DMS-months where the DMS might exist (i.e., we don’t know that it
doesn’t exist). As expected, we find that including DMS-months where there is not
an operational DMS attenuates our estimates, with the “must exist” sample leading
to a higher point estimate than the “may exist” sample, which itself leads to a higher
point estimate than our full sample.

We also test for an effect of the fatality message on fatal crashes. However, as only
0.58% of crashes have a fatality, we are underpowered to detect any effect. Appendix
Table A.9 reports our difference-in-differences estimates. The 95% confidence
intervals for 3, 5, and 10 km all stretch well past -10 to 10% and Appendix Figure
A.7 shows how these estimates vary by quarter, likewise showing large confidence
intervals.

We highlight three possible threats to external validity. First, we find that most of
the damage is done the first few days the message is displayed (see Figure 13). This
implies that in places, like Illinois, where the fatality message is displayed all the
time (unless there is a more important message), the effects could be more benign;
and in places, like Colorado, where fatality messages are displayed one day per week,
the effects could be worse. Second, we find that fatality messages only hurt when the
displayed fatality count is large (see Figure 11). Given that Texas leads the nation in
traffic fatalities, no other states display such large numbers. If the negative effect of
the fatality message depends on the absolute number shown, then it will not have
the same negative effect in other states. However, if the negative effect depends on
the number shown relative to a state’s population, then our results are generalizable
to other states. Third, we estimated the effect of being assigned to show a fatality
message relative to the status quo usage of DMSs. States vary in how they use DMSs
and this could affect the magnitude of the effect. As documented in Table 4, Texas
uses its DMSs relatively intensively. If showing any message causes some level of
distraction, then the effect of showing a fatality message in another state that typically
leaves their signs blank could be even larger.
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7 Conclusion

This paper shows that salient, generic, in-your-face safety messages delivered to
individuals in the act of driving crowds out more pressing safety concerns, yielding
immediate negative and socially undesirable outcomes. Our evidence suggests
that even after several years, drivers do not habituate to an intervention that is
delivered one week each month. Further, the negative effects of these messages
appear contained to the immediate vicinity and time where delivered, inconsistent
with any persistence effects.

The effect of displaying a fatality message on crashes is large relative to the
simplicity of the intervention. We estimate that showing a fatality message increases
the number of crashes over the next 10 km of roadway by 4.5–7.9%. Our estimates
suggest that displaying these messages causes an additional 2,600 crashes per year
in Texas alone.45 Furthermore, while we are underpowered to detect an effect on
fatal crashes, if we assume a similar percentage change in fatal crashes, then fatality
messages cause an additional 16 fatalities per year. Using estimates from Blincoe et
al. (2015), these additional crashes have a total social cost of $380 million per year.
It is difficult to extrapolate these estimates to other states given varying treatment
intensities. However, if we scale the effect by the number of licensed drivers in the 27
treated states, this suggests that across the United States, displaying these messages
causes an additional 16,000 crashes and 98 fatalities per year, with a total social cost
of $2.3 billion per year.

This evaluation of fatality messages highlights five key lessons. First, and most
directly, fatality message campaigns increase the number of crashes, and so ceasing
these campaigns is a low-cost way to improve traffic safety. Second, measuring the
results of interventions is important, even for simple interventions, as good intentions
need not imply good outcomes. Third, individuals do not necessarily habituate to
behavioral interventions, increasing confidence that estimated short-run benefits
in other studies may persist in the long run. Fourth, generic risk disclosure can
affect individual behavior, albeit not necessarily as intended. Finally, behavioral

45 Appendix A.3 documents how we calculate the number of additional crashes, fatal crashes, and
their total social cost.
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interventions can fail if they increase individuals’ cognitive load to the extent that
they crowd out more important considerations. Thus, given behavioral interventions
are intentionally designed to be salient and seize attention, the message, delivery,
and timing must be carefully designed to avoid the intervention backfiring.
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Figure 1
DMS showing safety message as part of safety campaign
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Figure 2
Map of DMSs and weather stations in Texas

Notes: This figure plots the location of DMSs (triangles) and weather stations (circles) in our sample.
It also shows our road network.
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Figure 3
Map of DMSs and weather stations in Houston

Notes: This figure plots the location of DMSs (triangles, pointing in direction of travel; blue for roads
traveling south or west, and red for roads traveling north or east) and weather stations (circles) within
the Houston area. It also shows our road network.
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Figure 4
Example of a DMS segment

Notes: This figure depicts four road segments of lengths 1, 3, 5, and 10 kilometers and the location of
all crashes (circles) occurring on these road segments associated with the DMS on I-20E near Aledo,
TX.
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Figure 5
DMS hours displaying fatality messages around campaign weeks

Notes: This figure depicts the percentage of dynamic message signs (DMSs) displaying a fatality message each hour of the day relative to a safety
campaign. Day 0 is defined as the Monday the week prior to the TxDOT monthly board meeting. We define rush hour as 7 am to 9 am. TxDOT
traffic engineers are instructed to run the fatality message beginning after morning peak on Monday and ending before morning peak on the
following Monday (see Figure A.1 for one of these official emails). The sample includes DMS log files that cover 41 safety campaigns between
August 2012 and December 2017 (see Table 1 Panel B and Table A.3). Darker shaded areas represent a greater percentage of DMSs displaying a
fatality message.
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Figure 6
Proportion of hours that DMSs display fatality messages by month

Notes: This figure plots the mean proportion of hours (black circles) and interquartile range (gray bars) that a fatality message was displayed on a
DMS within a month during both safety campaign hours (left graph) and non-safety campaign hours (right graph). The data for 2012–2013 is only
for the Houston area, while the data for 2016–2017 are for all of Texas (see Table 1 Panel B).
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Figure 7
Effect of fatality message on crashes by distance from DMS: univariate

Notes: This figure depicts the percent change in the number of crashes on Texas highways during
weeks that precede TxDOT board meetings relative to all other weeks. Highway crashes are measured
over hour h of day d over the distances x (relative to DMS s) indicated on the x-axis. The circles plot
the difference in the average number of crashes between Monday 9 am–Monday 7 am the week prior
to a TxDOT board meeting (when fatality messages are instructed to be displayed) and all other hours
and the associated 95% confidence intervals (bars). The hollow squares plot the difference in the
average number of crashes for the sample to DMSs with no downstream DMS within x kilometers
(i.e., for the distance (1, 4] the closest downstream DMS is four or more kilometers away). We scale
crash counts by the population average for all segments of the same distance x and multiply by 100.
Standard errors are clustered by geography-year-month and are in parentheses, where geography
indicates a bin of size x2 square kilometers that contains the DMS. The sample period is August
2012–December 2017.
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Figure 8
Univariate placebo tests

Notes: This figure depicts the percent change in the number of crashes on Texas highways during
weeks that proceed TxDOT board meetings relative to all other weeks. Highway crashes are measured
over hour h of day d over the distances x (relative to DMS s) indicated on the x-axis. We scale crash
counts by the population average for all segments of the same distance x and multiply by 100. We plot
the difference in the average number of scaled crashes between Monday 9 am–Monday 7 am the week
prior to a TxDOT board meeting and all other hours (circles) and the associated 95% confidence
intervals (bars). Standard errors are clustered by geography-year-month and are in parentheses, where
geography indicates a bin of size x2 square kilometers that contains the DMS. Panel A drops all
DMSs that are preceded by a DMS within 10 km of driving distance for the sample period August
2012–December 2017, and Panel B analyzes the pre-treatment period January 2010–July 2012.
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Panel A: No upstream DMS within 10 km driving distance
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Figure 9
Effect of fatality message on crashes by distance from DMS: multivariate

Notes: This figure depicts estimates of the effect of a campaign week on number of crashes over four
distances from a DMS. The dependent variable, Crash(%)s(x),d,h , is the number of crashes occurring
on date d during hour h over the distance x (relative to DMS s) indicated on the x-axis. We scale
crash counts by the population average for all segments of the same distance x and multiply by 100.
The circles plot the δ coefficient on Board meetingd,h, an indicator variable for whether day d and
hour h fall within Monday 9 am–Monday 7 am the week prior to a board meeting, for the full sample.
The hollow squares plot the δ coefficient from a regression which restricts the sample to DMSs
with no downstream DMS within x kilometers (i.e., for the distance (1, 4] the closest downstream
DMS is four or more kilometers away). The bars show 95% confidence intervals. We also include
but do not plot indicators for whether either trace precipitation or more than trace precipitation
was measured on segment s during hour h, using data from the closest weather station, as well as
segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors are clustered by
geography-year-month, where geography indicates a bin of size x2 square kilometers that contains the
DMS. The sample period is August 2012–December 2017.

Crash (%)s(x),d,h = δ · Board meetingd,h + β1 · Trace precipitations,d,h
+ β2 · Precipitations,d,h + γs,m(d),dow(d),h + ζholiday + εs,d,h
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Figure 10
Effect of fatality messages on crashes by year

Notes: This figure depicts the δi coefficient estimates (circles) and the associated 95% confidence
intervals (bars) from the regression below which allows the treatment effect to vary by year for
the period January 2010–December 2017. The dependent variable, Crash (%)s(10 km),d,h, is the
scaled number of crashes occurring on day d during hour h over the 10 km downstream of DMS
s; Board meetingd,h is an indicator variable for whether day d and hour h fall within Monday 9
am–Monday 7 am the week prior to a board meeting; and Yeard,i is an indicator variable if day d is in
year i, i ∈ {2010, 2011, . . . , 2016, 2017}. We also include but do not plot indicators for whether either
trace precipitation or more than trace precipitation was measured on segment s during hour h as well
as segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors are clustered by
geography-year-month bins, where geography bins are defined as the 102 square kilometers containing
the DMS. The dotted vertical line indicates that treatment started in August 2012.
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Figure 11
Effect of fatality messages on crashes by YTD death quartile

Notes: This figure depicts the δi coefficient estimates (circles) and the associated 95% confidence
intervals (bars) from the regression below which allows the treatment effect to vary by the year-to-date
(YTD) number of deaths on Texas roads. The dependent variable, Crash (%)s(10 km),d,h, is the
scaled number of crashes occurring on day d during hour h over the 10 km downstream of DMS
s; Board meetingd,h is an indicator variable for whether day d and hour h fall within Monday 9
am–Monday 7 am the week prior to a board meeting; YT D quartiled,i is an indicator if on day
d the YTD number of deaths was in quartile i; and postd is an indicator for observations after
August 1, 2012. We also include but do not plot indicators for whether either trace precipitation or
more than trace precipitation was measured on segment s during hour h (and their interactions with
postd), as well as segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors
are clustered by geography-year-month bins, where geography bins are defined as the 102 square
kilometers containing the DMS. The sample period is January 2010–December 2017.
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Figure 12
Effect of fatality messages on crashes by calendar month

Notes: This figure depicts the δi coefficient estimates (circles) and the associated 95% confidence
intervals (bars) from the regression below which allows the treatment effect to vary by calendar month.
The dependent variable, Crash (%)s(10 km),d,h, is the scaled number of crashes occurring on day d
during hour h over the 10 km downstream of DMS s; Board meetingd,h is an indicator variable for
whether day d and hour h fall within Monday 9 am–Monday 7 am the week prior to a board meeting;
monthd,i as an indicator if day d occurs during calendar month i; and postd is an indicator for
observations after August 1, 2012. We also include but do not plot indicators for whether either trace
precipitation or more than trace precipitation was measured on segment s during hour h (and their
interactions with postd), as well as segment-year-month-day-of-week-hour and holiday fixed effects.
Standard errors are clustered by geography-year-month bins, where geography bins are defined as the
102 square kilometers containing the DMS. The sample period is January 2010–December 2017.
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Figure 13
Effect of fatality messages on crashes by event day

Notes: This figure depicts the δi coefficient estimates (circles) and the associated 95% confidence
intervals (bars) from the regression below which allows the treatment effect to vary by event day.
The dependent variable, Crash (%)s(10 km),d,h, is the scaled number of crashes occurring over the
10 kilometers after DMS s on day d during hour h; Board meeting 2weekd is an indicator variable
for whether day d falls within the two week period ending on a board meeting day; Event dayi is an
indicator for each of the fourteen days during the Board meeting 2weekd,h window (where i = 0 is
the Monday a week prior to a board meeting and i ∈ {−3,−2, . . . , 9, 10}); and postd is an indicator for
observations after August 1, 2012. We also include but do not plot indicators for whether either trace
precipitation or more than trace precipitation was measured on segment s during hour h (and their
interactions with postd), as well as segment-year-month-day-of-week-hour and holiday fixed effects.
Standard errors are clustered by geography-year-month bins, where geography bins are defined as the
102 square kilometers containing the DMS. The sample period is January 2010–December 2017.
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Figure 14
Effect of fatality messages on crashes by calendar quarter

Notes: This figure depicts the δi coefficient estimates (circles, grouped by quarter) and the associated
95% confidence intervals (bars) from the regression below which allows the treatment effect to vary
by calendar quarter. The dependent variable, Crash (%)s(10 km),d,h , is the scaled number of crashes
occurring on day d during hour h over the 10 km downstream of DMS s; Board meetingd,h is an
indicator variable for whether day d and hour h fall within Monday 9 am–Monday 7 am the week
prior to a board meeting; and Qtrd,i as an indicator variable for whether day d occurs during the
modified calendar quarter i (starting with the three-month period August through October 2012 and
ending with the two-month period November through December 2017). We also include but do not
plot indicators for whether either trace precipitation or more than trace precipitation was measured on
segment s during hour h as well as segment-year-month-day-of-week-hour and holiday fixed effects.
Standard errors are clustered by geography-year-month bins, where geography bins are defined as the
102 square kilometers containing the DMS. The sample period is August 2012–December 2017.
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Figure 15
Effect of fatality messages on statewide crashes by calendar quarter

Notes: This figure depicts the δi coefficient estimates (circles, diamonds, and squares) and standard
error bars from the regressions below which allow the effect of campaign weeks to vary by calendar
quarter. Specifically, the dependent variable is the number of crashes occurring statewide (circles),
statewide on the highway system (diamonds), or statewide off the highway system (squares) during
hour h of day d, scaled by the population average and multiplied by 100. Board meetingd,h is an
indicator variable for whether day d and hour h fall within Monday 9 am–Monday 7 am the week
prior to a board meeting; Qtrd,i are indicator variables equal to one if day d occurs during calendar
quarter i; and postd is an indicator for observations after August 1, 2012. We include but do not plot
year-month-day-of-week-hour and holiday fixed effects. Standard errors are clustered by year-month.
The sample period is January 2010–December 2017.

Statewide crash (%)d,h =
∑

i∈{Q1,...,Q4}
δi · Board meetingd,h · Qtrd,i · postd

+
∑

i∈{Q1,...,Q4}
βi · Board meetingd,h · Qtrd,i

+ γm(d),dow(d),h + ζholiday + εd,h
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Table 1: DMS sample composition

Notes: This table presents sample summary statistics for key aspects for the entire sample of Texas
DMS data. Column (1) presents info for the “full” sample from January 1, 2012 through December
31, 2017; column (2) for the “pre-treatment” sample from Jan 1, 2012 through July 31, 2012; and
columns (3) and (4) for the “treatment” sample from Aug 1, 2012 through Dec 31, 2017. Column
(4) presents info for the subsample for which we have DMS message log files during the treatment
sample.

Full Pre-treatment Treatment

All DMS messages
(1) (2) (3) (4)

Texas districts 23 23 23 22

Highways 74 74 74 73

DMSs 886 886 886 830

Year-Months 96 31 65 41

DMS-Year-Months 85,056 27,466 57,590 21,438

Date-Hours 70,113 22,627 47,486 29,816

Observations 62,118,334 20,047,441 42,070,893 15,108,198
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Table 2: Summary statistics

Notes: This table reports summary statistics measured at the hourly level for the entire sample period.
The last three rows are statewide variables while all others are segment specific. See Appendix Table
A.2 for detailed variable definitions.

N Mean Median SD

DMS-hour measures
No precipitation 62,118,334 0.92 1 0.27
Trace precipitation 62,118,334 0.04 0 0.19
Precipitation 62,118,334 0.04 0 0.20
Crashes 3 km (10−3) 62,118,334 6.23 0 81.04
Crashes 5 km (10−3) 62,118,334 14.54 0 124.99
Crashes 10 km (10−3) 62,118,334 51.27 0 242.22
Fatal crashes 3 km (10−3) 62,118,334 0.04 0 5.93
Fatal crashes 5 km (10−3) 62,118,334 0.08 0 9.05
Fatal crashes 10 km (10−3) 62,118,334 0.30 0 17.25
Multi-vehicle crashes 10 km (10−3) 62,118,334 44.41 0 224.84
Single vehicle crashes 10 km (10−3) 62,118,334 6.86 0 84.64
Fatality message (% of hour) 16,208,397 0.08 0 0.27
Centerline km 62,118,334 42.48 33.89 31.91
Lane km 54,017,004 102.91 78 87.43
VKT (103) 54,017,004 1,373 925 1,308
Nearest upstream DMS km 62,048,221 13.87 6 29.08

Statewide measures (per hour)
Crashes statewide 70,127 62.04 57 38.74
Highway crashes statewide 70,127 31.66 28 20.72
Off highway crashes statewide 70,127 30.38 28 19.16
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Table 3: Effect of safety campaign on probability of showing a fatality message

Notes: This table estimates the determinants of displaying a fatality message. The dependent variable,
Fatality messages,d,h, is the percent of hour h on day d that the DMS at the start of segment s
displayed a fatality message. We regress this variable on Board meetingd,h , an indicator equal to one
if the date-hour observation occurs during the week prior to a Texas Department of Transportation
board meeting (where the week prior is defined as starting at 9 am on Monday and ending at 7 am on
the following Monday). We also include as a control an indicator if trace precipitation or precipitation
was measured during on segment s during hour h, using data from the closest weather station. We
also include segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors are
clustered by segment-year-month and are in parentheses, and *, **, *** indicate 10%, 5%, and 1%
two-tailed statistical significance, respectively.

Fatality messages,d,h = δ · Board meetingd,h + β1 · Trace precipitations,d,h
+ β2 · Precipitations,d,h + γs,m(d),dow(d),h + ζholiday + εs,d,h

Fatality message

Board meeting 0.302∗∗∗
(0.002)

Trace precipitation -0.004∗∗∗
(0.001)

Precipitation -0.014∗∗∗
(0.001)

Observations 15,108,198
Adj R-squared 0.25
S-Y-M-D-H FE Yes
Holiday FE Yes
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Table 4: DMS messages summary statistics

Notes: This table reports summary statistics on DMS messages over hourly (sixty minute) intervals.
Columns (1)–(3) show means for the group specified by the column headings, and column (4) reports
the differences during weeks prior to a scheduled board meeting (“No” and “Yes” groups). See
Appendix Table A.2 for detailed variable definitions. Standard deviations are in brackets, standard
errors are in parentheses, and *, **, *** indicate differences that are statistically significant at the
10%, 5%, and 1% level, respectively.

Treatment period

Board meeting

All No Yes Difference
(1) (2) (3) (4)

Fatality message minutes 5.2 1.2 19.3 18.2∗∗∗
[16.7] [8.2] [27.5] (0.02)

Non-safety message minutes 36.4 38.8 28.1 -10.7∗∗∗
[28.8] [28.2] [29.3] (0.02)

Travel time minutes 12.2 12.4 11.3 -1.1∗∗∗
[23.4] [23.6] [22.7] (0.01)

Blank minutes 18.4 20.1 12.6 -7.5∗∗∗
[27.2] [27.9] [24.0] (0.02)

Amber alert minutes 2.9 2.9 3.0 0.1∗∗∗
[12.6] [12.5] [12.7] (0.01)

Observations 15,108,198 11,716,999 3,391,199 15,108,198
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Table 5: Effect of fatality messages on crashes

Notes: This table reports estimates of the effect of campaign weeks on traffic crashes. The sample period is Jan 1, 2010 through Dec 31, 2017.
The dependent variable is the number of crashes occurring on highway segment s of length x kilometers on date d during hour h, scaled by the
population average for all segments of length x and multiplied by 100. Highway segments begin at each dynamic message sign (DMS) located on a
highway and continue for x kilometers of highway driving distance, where x ∈ {3, 5, 10}, and are denoted in the column headers. In columns
(1) through (3) we use as our primary right-hand side variable Board meetingd,h, an indicator variable for whether day d and hour h fall within
Monday 9 am–Monday 7 am the week prior to a board meeting. In columns (4) through (6) we use Board meeting-Sunday, an indicator variable
where campaign weeks are defined to begin Sunday at 12 am and end the following Monday at 7 am. Postd indicates observations after August 1,
2012. We include but do not tabulate indicators for whether either trace precipitation or more than trace precipitation was measured on segment
s during hour h, using data from the closest weather station (Trace precipitations,d,h and Precipitations,d,h, respectively), and interactions
between these measures and postd . We also include segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors are clustered
by geography-year-month and are in parentheses, where geography indicates a bin of size x2 square kilometers that contains the DMS, and *, **,
*** indicate 10%, 5%, and 1% two-tailed statistical significance, respectively.

Crash (%)s(x),d,h = δ · Board meetingd,h · Postd + β1 · Board meetingd,h
+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · Postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Crashes per hour (%)

Board meeting Board meeting–Sunday

3 km 5 km 10 km 3 km 5 km 10 km
(1) (2) (3) (4) (5) (6)

Board meeting × post 1.19 1.54∗∗ 1.36∗∗ 2.46∗∗∗ 2.37∗∗∗ 2.17∗∗∗
(0.86) (0.68) (0.60) (0.82) (0.64) (0.56)

Board meeting 0.35 -0.25 -0.33 -0.34 -0.59 -0.54
(0.63) (0.48) (0.43) (0.60) (0.47) (0.41)

Observations 62,118,334 62,118,334 62,118,334 62,118,334 62,118,334 62,118,334
Adj R-squared 0.02 0.03 0.08 0.02 0.03 0.08
Rain & interactions Yes Yes Yes Yes Yes Yes
S-Y-M-D-H FE Yes Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes Yes
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Table 6: Effect of fatality messages on crashes: instrumental variables results

Notes: This table reports two-sample instrumental variables estimates of the effect of showing a fatality message on traffic crashes. We use
campaign weeks as an instrumental variable for showing a fatality message. Columns (1) through (3) show results when campaign weeks are
defined to begin on Monday at 9 am, and columns (4) through (6) show results when campaign weeks are defined to begin Sunday at 12 am.
The dependent variable is the number of crashes occurring on highway segment s of length x kilometers on date d during hour h, scaled by the
population average for all segments of length x and multiplied by 100. The first stage is estimated in the treatment period only using segments for
which we have message data. The second stage is run on the entire sample (including the sample used in the first stage). The first- and second-stage
regressions are below, where �Fatality message is the predicted values from the first stage. Standard errors are calculated by bootstrapping 200
times and are clustered by geography-year-month, where geography indicates a bin of size x2 square kilometers that contains the DMS. The entire
process of normalizing the dependent variable, estimating the first stage, generating the predicted values, and estimating the second stage is redone
for each bootstrap iteration. Standard errors are in parentheses; *, **, *** indicate 10%, 5%, and 1% two-tailed statistical significance, respectively.

Fatality messages,d,h = β1 · Board meetingd,h + β2 · Trace precipitations,d,h
+ β3 · Precipitations,d,h + γs,m(d),dow(d),h + ζholiday + εs,d,h

Crash (%)s(x),d,h = δ · �Fatality messages,d,h · Postd + β1 · �Fatality messages,d,h
+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · Postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Crashes per hour (%)

Board meeting Board meeting–Sunday

3 km 5 km 10 km 3 km 5 km 10 km
(1) (2) (3) (4) (5) (6)�Fatality message × post 3.92 5.08∗∗ 4.50∗∗ 8.96∗∗∗ 8.65∗∗∗ 7.93∗∗∗

(2.78) (2.25) (1.98) (2.90) (2.28) (2.32)�Fatality message 1.16 -0.84 -1.08 -1.25 -2.16 -1.95
(2.05) (1.52) (1.44) (2.06) (1.66) (1.48)

Observations 62,118,334 62,118,334 62,118,334 62,118,334 62,118,334 62,118,334
Rain & interactions Yes Yes Yes Yes Yes Yes
Y-M-D-H FE Yes Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes Yes
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Table 7: Effect of fatality messages on crashes: segment characteristics

Notes: This table estimates how effect of campaign weeks on traffic crashes varies by segment
characteristics. The dependent variable is the number of crashes occurring over the 10 kilometers
downstream of DMS s on date d during hour h, scaled by the population average for all segments
and multiplied by 100. Board meetingd,h indicates whether day d and hour h falls within Monday
9 am–Monday 7 am the week prior to a board meeting, Postd indicates observations after August
1, 2012, and Measure is one of the following characteristics of segment s (as indicated in column
header): Centerline km, Lane km, VKT , and Upstream ∗ (−1). See Table 5 for additional details
and Appendix Table A.2 for detailed variable definitions. We include segment-year-month-day-of-
week-hour and holiday fixed effects. Standard errors are clustered by geography-year-month and are
in parentheses, where geography indicates a bin of size x2 square kilometers that contains the DMS,
and *, **, *** indicate 10%, 5%, and 1% two-tailed statistical significance, respectively.

Crash (%)s(10),d,h = δ1 · Board meetingd,h ·Measures · Post
+ δ2 · Board meetingd,h · Post
+ β1 · Board meetingd,h ·Measures
+ β2 · Board meetingd,h
+ β3 · Trace precipitations,d,h + β4 · Trace precipitations,d,h · Postd
+ β5 · Precipitations,d,h + β6 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Crashes per hour over 10 km (%)

Centerline km Lane km VKT DMS proximity
(1) (2) (3) (4)

Board meeting × measure × post 2.26∗∗∗ 2.80∗∗∗ 3.05∗∗∗ 0.60∗∗
(0.85) (0.98) (0.94) (0.27)

Board meeting × post 1.36∗∗ 1.05 1.03 1.36∗∗
(0.60) (0.68) (0.69) (0.60)

Board meeting × measure 0.25 0.38 0.13 0.05
(0.55) (0.71) (0.67) (0.20)

Board meeting -0.33 -0.03 -0.02 -0.33
(0.43) (0.55) (0.55) (0.43)

Observations 62,118,334 54,017,004 54,017,004 62,048,221
Adj R-squared 0.08 0.08 0.08 0.08
Rain & interactions Yes Yes Yes Yes
S-Y-M-D-H FE Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes
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Table 8: Effect of fatality messages by crash types

Notes: This table estimates the effect of campaign weeks on single- and multi-vehicle crashes. The
dependent variable is the number of crashes occurring over the 10 kilometers downstream of DMS
s on date d during hour h of a specific type, scaled by the population average for all segments of
that type and multiplied by 100. See Table 5 for additional details. Standard errors are clustered by
geography-year-month and are in parentheses, where geography indicates a bin of size 102 square
kilometers that contains the DMS, and *, **, *** indicate 10%, 5%, and 1% two-tailed statistical
significance, respectively.

Crash (%)s(10),d,h = δ · Board meetingd,h · Postd + β1 · Board meetingd,h
+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · Postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Crashes per hour over 10 km (%)

Multi-vehicle Single vehicle
(1) (2)

Board meeting × post 1.61∗∗∗ -0.26
(0.62) (1.59)

Board meeting -0.65 1.75
(0.44) (1.13)

Observations 62,118,334 62,118,334
Adj R-squared 0.08 0.01
Rain & interactions Yes Yes
S-Y-M-D-H FE Yes Yes
Holiday FE Yes Yes
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Table 9: Effect of fatality messages on statewide crashes

Notes: This table estimates the effect of campaign weeks on statewide crashes. The dependent
variable is the number of crashes occurring statewide (column (1)), statewide on the highway system
(column (2)), or statewide off the highway system (column (3)), on date d during hour h, scaled by
the population average and multiplied by 100. We include year-month-day-of-week-hour and holiday
fixed effects. Standard errors are clustered by year-month and are in parentheses, and *, **, ***
indicate 10%, 5%, and 1% two-tailed statistical significance, respectively.

Statewide Crash (%)d,h = δ · Board meetingd,h · Postd + β1 · Board meetingd,h
+ γm(d),dow(d),h + ζholiday + εd,h

Total On-highway Off-highway
(1) (2) (3)

Board meeting × post 1.98∗∗ 2.77∗∗ 1.16
(0.96) (1.19) (0.95)

Board meeting -1.61∗∗ -2.39∗∗∗ -0.79
(0.72) (0.89) (0.75)

Observations 70,127 70,127 70,127
Adj R-squared 0.87 0.82 0.84
Y-M-D-H FE Yes Yes Yes
Holiday FE Yes Yes Yes
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A Online Appendix

A.1 Additional figures and tables
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Figure A.1
Safety campaigns

From: Carol Rawson (Carol.Rawson@txdot.gov)  
Sent: Friday, June 14, 2013 1:02 PM 
To: !DDO DIST REGION 
Cc: #Traffic Engineers; !DDO ADM; Robin Frisk; Brian Burk; Penny Buller; James Moore 
Subject: June Fatality Message - Dynamic Message Signs 
  
Improving the safety of the traveling public is the number one goal of TxDOT.   Our permanent dynamic message 
signs (DMS) provide an excellent opportunity to get our traffic safety messages out to the public.   
 
 We continue to have traffic fatalities on Texas roadways.  In order to bring this critical issue to the public's attention, 
we are continuing an awareness campaign that displays the year to date fatalities on all Texas roadways.  We will be 
displaying this message with an alternating safety message for one week each month.  This month the safety message 
relates to drinking and driving.  Please display the message attached and shown below beginning after the morning 
peak on Monday, June 17th, and ending before the morning peak on Monday, June 24th.     
       
 As always, this DMS message should not pre-empt needed traffic messages, incident-related messages, Emergency 
Operation Center (EOC) messages, or Amber/Silver/Blue alerts.  In areas with a large number of DMS, the fatality 
message should be displayed on a few signs along the corridor even during peak times when travel times are being 
displayed. 
     
 DMS Message  
 Phase 1 
 1332 DEATHS 
THIS YEAR ON  
TEXAS ROADS  
  
Phase 2  
 DRINK 
DRIVE 
GO TO JAIL 
 However, there are many rural areas that do not have DMS.  If you have any portable changeable message signs 
(PCMS) available for use, you may want to display the fatality PCMS message on roadways of concern.  The message 
for the PCMS is shown below.  The safety message corresponds to the message that we have developed for our new 
safety campaign.  This message should be displayed during the same time period as the permanent DMS message.   
PCMS Message 
  
Phase 1 
  
1332 
TRAFFIC 
DEATHS 
  
Phase 2 
  
BE SAFE 
DRIVE 
SMART 
  
Your assistance in this effort is greatly appreciated. 
  
Thanks,  
Carol 
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Figure A.2
Multivariate placebo tests

Notes: This figure depicts δ coefficient estimates (circles) and the associated 95% confidence intervals
(bars) from the regression below for segments of length x. The dependent variable is the number of
crashes occurring on highway segment s of length x kilometers on date d during hour h, scaled by
the population average for all segments of length x and multiplied by 100. We plot the coefficient
on Board meetingd,h, an indicator variable for whether day d and hour h fall within Monday 9
am–Monday 7 am the week prior to a board meeting. See Figure 9 for additional details. Panel A
drops all DMSs that are preceded by any DMS within 10 km of driving distance, and Panel B analyzes
the pre-treatment period (January 2010–July 2012).

Crash (%)s(x),d,h = δ · Board meetingd,h + β1 · Trace precipitations,d,h
+ β2 · Precipitations,d,h + γs,m(d),dow(d),h + ζholiday + εs,d,h
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Panel A: No upstream DMS within 10 km driving distance, treatment period
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Figure A.3
Limit downstream constant sample

Notes: This figure depicts univariate (Panel A) and multivariate (Panel B) estimates of the effect of
a campaign week on number of crashes over four distances from a DMS. The dependent variable,
Crash(%)s(x),d,h, is the number of crashes occurring on date d during hour h over the distance
x (relative to DMS s) indicated on the x-axis. We scale crash counts by the population average
for all segments of the same distance x and multiply by 100. The circles plot the δ coefficient
on Board meetingd,h, an indicator variable for whether day d and hour h fall within Monday 9
am–Monday 7 am the week prior to a board meeting, for the full sample. The hollow squares
plot the δ coefficient from a regression which restricts the sample to DMSs with no downstream
DMS within 10 kilometers. The bars show 95% confidence intervals. In Panel B we also include
but do not plot indicators for whether either trace precipitation or more than trace precipitation
was measured on segment s during hour h, using data from the closest weather station, as well as
segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors are clustered by
geography-year-month, where geography indicates a bin of size x2 square kilometers that contains the
DMS. The sample period is August 2012–December 2017.

Panel A: Univariate, no downstream DMS within 10 km driving distance
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Panel B: Multivariate, no downstream DMS within 10 km
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Figure A.4
Fatality counts displayed on DMSs by month

Notes: This figure plots the mode death count (black diamonds) and all other death counts (gray
circles, frequency weighted) displayed each calendar month across all segment hours for the sample
of DMS log files.
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Figure A.5
Share of crashes involving an out-of-state driver relative to July

Notes: This figure shows how the share of statewide crashes that involve an out-of-state driver varies
across the year. Specifically, the dependent variable is the log of the share of crashes where at least
one driver’s zip code is from outside of Texas. We regress this share on fixed effects for each month
and year, with July as the base month and 2010 as the base year. Thus, the coefficients are the
percentage difference in the share of crashes involving an out-of-state driver in the given month and
July. Standard errors are clustered by month. We run the regression below and plot the βi coefficient
estimates, scaled by 100 to be a percentage change:

log
(
Share out-of-statem,y

)
=

∑
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βi ·monthi,m +
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Figure A.6
Effect of fatality message by year: statewide

Notes: This figure depicts the coefficient estimates (circles, diamonds, and squares) and standard error
bars from regressions allowing the effect of campaign weeks on the number of statewide crashes to
vary by year for the 2010–2017. Specifically, the dependent variable is the number of crashes occurring
statewide (circles), statewide on the highway system (diamonds), or statewide off the highway system
(squares) scaled by the population average and multiplied by 100. Board meetingd,h is an indicator
variable for whether day d and hour h fall within Monday 9 am–Monday 7 am the week prior to a
board meeting, yeard,i are indicator variables for years. We include year-month-day-of-week-hour
and holiday fixed effects. Standard errors are clustered by month. We run the regression below and
plot the δi coefficient estimates:

Crash (%)d,h =
∑

i∈{2010,...,2017}
δi · Board meetingd,h · yeard,i

+ γm(d),dow(d),h + ζholiday + εd,h
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Figure A.7
Effect of fatality messages on fatal crashes by calendar quarter

Notes: This figure depicts the δi coefficient estimates (circles) and standard error bars from the
regression below which allows the treatment effect on the number of fatal crashes to vary by calendar
quarter. The dependent variable, Fatal crash (%)s(10 km),d,h, is the scaled number of fatal crashes
occurring over the 10 kilometers downstream of DMS s on day d during hour h; Board meetingd,h is
an indicator variable for whether day d and hour h fall within Monday 9 am–Monday 7 am the week
prior to a board meeting; Qtrd,i are indicator variables equal to one if day d occurs during calendar
quarter i; and postd is an indicator for observations after August 1, 2012. We also include but do not
plot indicators for whether either trace precipitation or more than trace precipitation was measured on
segment s during hour h (and their interactions with postd), as well as segment-year-month-day-of-
week-hour and holiday fixed effects. Standard errors are clustered by geography-year-month bins,
where geography bins are defined as the 102 square kilometers containing the DMS. The sample
period is January 2010–December 2017.

Fatal crash (%)s(10 km),d,h =
∑

i∈{Q1,...,Q4}
δi · Board meetingd,h · Qtrd,i · postd

+
∑

i∈{Q1,...,Q4}
β1,i · Board meetingd,h · Qtrd,i

+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h
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Table A.1: States showing fatality messages

Confirmed showing Licensed drivers
State Start date in May 2020 in 2018 Source

Alaska ≤ September 2017 No 536,033 ATSSA
Arizona† ≤ September 2017 No 5,284,970 ATSSA
Colorado January 2016 Yes 4,244,713 Official website
Connecticut ≤ September 2017 No 2,605,612 ATSSA
Delaware ≤ September 2017 Yes 786,504 ATSSA
Georgia ≤ January 2015 Yes 7,168,733 News article
Hawaii March 2018 Yes 948,417 Official website
Illinois July 2012 Yes 8,714,788 News article
Iowa August 2013 Yes 2,260,271 News article
Michigan July 2013 Yes 7,153,645 Official website
Minnesota July 2013 No 3,391,057 News article
Missouri ≤ September 2017 Yes 4,272,960 ATSSA
Montana ≤ August 2019 Yes 806,204 Author’s observation
Nebraska May 2016 1,420,317 News article
Nevada May 2013 1,983,453 Press release
New Hampshire ≤ September 2017 Yes 1,161,665 ATSSA
Ohio July 2015 Yes 8,032,665 News article
Oklahoma April 2016 2,504,253 Official website
Pennsylvania ≤ September 2017 8,991,370 ATSSA
South Carolina ≤ September 2017 Yes 3,846,069 ATSSA
South Dakota August 2018 Yes 638,428 Email
Tennessee April 2012 Yes 5,422,429 News article
Texas August 2012 Yes 17,370,383 News article
Utah‡ June 2014 Yes 2,030,644 Author’s observation
Vermont April 2016 Yes 564,892 News article
Wisconsin ≤ 2014 No 4,288,171 News article
Wyoming August 2016 Yes 419,256 News article

Notes: To confirm which states were still showing fatality messages in May 2020, we reached out
to state Departments of Transportation as well as to friends and colleagues directly, and via Twitter
and Facebook. Data on the number of licensed drivers in each state comes from U.S. Department of
Transportation (2019b).
† The ATSSA reports that Arizona only showed a fatality message once.
‡ Utah’s messages have been a little different, including “61 lives lost last summer on Utah roads,” the
number of fatalities in the previous month, and the number of days since the last fatality.
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Table A.2: Definition of variables

This table describes the calculation of variables used in the main analyses.
Variable Definition

Crash x km (10−3)s,d,h The number of crashes occurring on the highway segment that
begins with DMS s and continues for x kilometers of highway
driving distance on calendar day d during hour h, multiplied by
1,000.

Crash (%) s(x),d,h The number of crashes occurring on the highway segment that
begins with DMS s and covers x kilometers of highway driving
distance on calendar day d during hour h, scaled by the population
average for all segments of length x and multiplied by 100.

Multi-vehicle crash (%) s(10),d,h The number of crashes involving multiple vehicles on segment
s of length 10 kilometers on day d during hour h, scaled by the
population average for all segments and multiplied by 100.

Single vehicle crash (%) s(10),d,h The number of crashes involving a single vehicle on segment s
of length 10 kilometers on day d during hour h, scaled by the
population average for all segments and multiplied by 100.

Fatal crash (%)s(x),d,h The number of fatal crashes (crashes involving a fatality) occurring
on the highway segment that begins with DMS s and covers x
kilometers of highway driving distance on calendar day d during
hour h, scaled by the population average for all segments of length
x and multiplied by 100.

Statewide crash (%)d,h The number of crashes occurring statewide during hour d of day
d, scaled by the population average.

Board meetingd,h Indicator equal to one if hour h of day d occurs during the week
prior to a Texas Department of Transportation board meeting
(where the week prior is defined as starting at 9 am on the Monday
10 days prior to the board meeting and ending at 7 am on the
following Monday).

Board meeting-Sundayd,h Indicator equal to one if the hour h of day d occurs during the
week prior to a Texas Department of Transportation board meeting
(where the week prior is defined as starting at 12 am on the Sunday
11 days prior to the board meeting and ending at 7 am on the
following Monday)

Postd Indicator equal to one if the day d occurs on or after August 1,
2012

72



Table A.2 (continued)

Variable Definition
Trace precipitations,d,h Indicator equal to one if the weather station closest to DMS s

reported less than one millimeter of precipitation during hour h
of day d.

Precipitations,d,h Indicator equal to one if the weather station closest to DMS s
reported more than one millimeter of precipitation during hour h
of day d.

YTD quartiled,i Indicator equal to one if on day d the year-to-date count of crash-
related fatalities falls into quartile i, with quartiles Q1–Q4 defined
as <=882, 883–1736, 1737–2621, and > 2,621 fatalities. Fatality
counts at the start of each awareness campaign week are derived
from the actual number of fatalities reported in CRIS with a 22
day lag.

Qtrd,i Indicator equal to one if day d occurs during calendar quarter i,
with calendar quarters Q1–Q4 defined as February—April, May—
July, August—October, and November—January, respectively.

Yeard,i Indicator equal to one if day d occurs during calendar year i, with
i ∈ {2010, 2011, ... 2016, 2017}.

Board meeting 2 weekd Indicator equal to one if day d occurs during the two week
period ending on a board meeting of the Texas Department of
Transportation (always held on a Thursday).

Event dayd,i Indicator equal to one if day d occurs on day i during the two
week period ending on a board meeting of the Texas Department
of Transportation, with i ∈ {−3,−2, ..., 9, 10} and where i = 10 is
the date of the board meeting, and i = 0 is the Monday a week
prior to the board meeting when fatality awareness campaigns
officially being.

Fatality messages,d,h The percent of hour h on day d that the DMS at the start of
segment s displayed a fatality message.

Fatality message minutess,d,h The number of minutes during hour h of day d that DMS s
displayed a fatality message.

Non-safety message minutess,d,h The number of minutes during hour h of day d that DMS s
displayed a non-safety related message, where safety-related
messages include fatality messages.

Travel time minutess,d,h The number of minutes during hour h of day d that DMS s
displayed a travel time.

Blank minutess,d,h The number of minutes during hour h of day d that DMS s was
blank.

Amber alert minutess,d,h The number of minutes during hour h of day d that DMS s
displayed an amber alert.
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Table A.2 (continued)

Variable Definition
Centerline km The length of road within a given distance downstream, regardless

of how many lanes there are. Standardized to have a mean of zero
and standard deviation of one.

Lane km The centerline length times number of lanes within a given
distance downstream. Standardized to have a mean of zero and
standard deviation of one.

VKT Average daily vehicle kilometers traveled over a given segment.
Standardized to have a mean of zero and standard deviation of
one.

Upstream DMS * (-1) Kilometers to the nearest upstream DMS, multiplied by -1 and
standardized to have a mean of zero and standard deviation of
one.
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Table A.3: Dates of campaign weeks in DMS message sample

This table lists the 41 safety campaign weeks in our sample of DMS log files. We tabulate the mode
fatality number displayed that week (column (1)), our proxy for the official number of fatalities as
of that week based on reported fatalities with a reporting lag of 22 days (the median lag based on
comparison of the actual and displayed fatality counts, column (2)), the number DMSs that displayed
a fatality message at least once during the week (column (3)), the count of DMSs displaying any
message during the week (column (4)), the percent of DMSs displaying a fatality message during the
week (column (5)), and the average percent of total possible hours the fatality message was displayed
across all DMSs that week (column (6)). * indicate safety campaign weeks that occur during the
week of the TxDOT board meeting, rather than the week prior.

75



Campaign Mode fatality Proxy DMSs DMSs Percent Average percent
week displayed fatality cnt fatality msg online DMSs msg hours

(1) (2) (3) (4) (5) (6)
20-Aug-12 1,785 1,938 142 220 65% 32%
17-Sep-12 2,058 2,225 137 220 62% 33%
15-Oct-12 2,321 2,491 146 220 66% 34%
5-Nov-12 2,545 2,691 169 220 77% 31%
3-Dec-12 2,795 2,984 158 220 72% 37%
21-Jan-13 3,258 3,447 159 220 72% 29%
18-Feb-13 211 245 170 220 77% 30%
18-Mar-13 436 471 173 220 79% 49%
15-Apr-13∗ 786 726 0 220 0% 0%
20-May-13 1,102 1,079 173 220 79% 51%
17-Jun-13 1,332 1,340 172 220 78% 43%
15-Jul-13 1,620 1,650 169 220 77% 54%
19-Aug-13 1,965 1,994 171 220 78% 51%
16-Sep-13 2,214 2,262 170 220 77% 40%
21-Oct-13 2,528 2,590 176 220 80% 42%
11-Nov-13 2,697 2,769 174 220 79% 53%
9-Dec-13∗ 3,061 3,021 1 220 0% 0%
18-Jan-16 3,479 3,594 242 434 56% 45%
15-Feb-16 240 220 494 628 79% 35%
21-Mar-16 631 595 487 646 75% 40%
18-Apr-16 908 882 428 636 67% 30%
16-May-16 1,118 1,167 470 623 75% 38%
20-Jun-16 1,545 1,551 439 632 69% 36%
18-Jul-16 1,842 1,856 455 646 70% 37%
15-Aug-16 2,142 2,128 505 656 77% 38%
19-Sep-16 2,466 2,481 440 665 66% 38%
17-Oct-16 2,752 2,756 173 658 26% 15%
7-Nov-16 2,983 2,984 480 669 72% 35%
5-Dec-16 3,318 3,331 408 672 61% 37%
16-Jan-17 3,722 3,801 487 677 72% 34%
13-Feb-17 232 218 503 686 73% 42%
20-Mar-17 555 507 477 692 69% 37%
17-Apr-17 854 829 500 702 71% 39%
15-May-17 1,139 1,116 507 700 72% 40%
19-Jun-17 1,456 1,456 454 712 64% 25%
17-Jul-17 1,730 1,736 400 718 56% 27%
21-Aug-17 2,124 2,124 408 716 57% 13%
18-Sep-17 2,376 2,409 407 715 57% 24%
16-Oct-17 2,664 2,667 445 738 60% 28%
6-Nov-17 2,906 2,904 498 738 67% 31%
4-Dec-17 3,158 3,210 465 731 64% 31%
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Table A.4: Crash exposure risk by distance

Notes: This table reports estimates of the ratio of the exposure risk to crashes on segments extending
x kilometers from a DMS to that on segments extending 1 kilometer from a DMS, for x ∈ {3, 5, 10}.
The first column reports estimates based on hourly crashes. The second column reports estimates
based on the lane kilometers within the segment. The third column reports estimates based on the
average annual vehicle kilometers traveled over the segment. The second and third columns are based
on data from U.S. Department of Transportation (2019a) for 2011–2017.

Crashes Lane KM VKT
(1) (2) (3)

3 km:1 km 4.22 3.82 3.67
5 km:1 km 9.85 8.57 7.95
10 km:1 km 34.72 30.16 25.99
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Table A.5: Effect of fatality messages by sample period

Notes: This table estimates the effect of campaign weeks on traffic crashes. The sample period is Jan
1, 2010–July 30, 2012 in columns (1)–(3) and August 1, 2012–Dec 31, 2017 in columns (4)–(6). The
dependent variable is the number of crashes occurring on highway segment s of length x kilometers on
date d during hour h, scaled by the population average for all segments of length x. Highway segments
begin at each dynamic message sign (DMS) located on a highway and continue for x kilometers of
highway driving distance, where x ∈ {3, 5, 10} as indicated in the column header. Board meetingd,h
is an indicator variable for whether day d and hour h fall within Monday 9 am–Monday 7 am the
week prior to a board meeting. We include indicators for whether either trace precipitation or more
than trace precipitation was measured on segment s during hour h, using data from the closest
weather station (Trace precipitations,d,h and Precipitations,d,h, respectively). We also include
segment-year-month-day-of-week-hour and holiday fixed effects. Standard errors are clustered by
geography-year-month and are in parentheses, where geography indicates a bin of size x2 square
kilometers that contains the DMS, and *, **, *** indicate 10%, 5%, and 1% two-tailed statistical
significance, respectively.

Crash (%)s(x),d,h = δ · Board meetingd + β1 · Trace precipitations,d,h + β2 · Precipitations,d,h
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Pre-treatment Treatment

(1) (2) (3) (4) (5) (6)
3 km 5 km 10 km 3 km 5 km 10 km

Board meeting 0.60 -0.06 -0.13 1.43∗∗ 1.21∗∗ 0.96∗∗
(0.63) (0.49) (0.43) (0.59) (0.48) (0.43)

Trace precipitation 28.79∗∗∗ 28.09∗∗∗ 27.73∗∗∗ 26.96∗∗∗ 27.55∗∗∗ 26.77∗∗∗
(2.15) (1.72) (1.57) (1.58) (1.25) (1.09)

Precipitation 53.26∗∗∗ 53.27∗∗∗ 52.26∗∗∗ 80.50∗∗∗ 79.90∗∗∗ 76.45∗∗∗
(2.04) (1.62) (1.67) (1.89) (1.65) (1.73)

Observations 20,047,441 20,047,441 20,047,441 42,070,893 42,070,893 42,070,893
Adj R-squared 0.01 0.02 0.05 0.02 0.03 0.09
S-Y-M-D-H FE Yes Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes Yes
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Table A.6: Effect of fatality messages on crashes: segment characteristics

Notes: This table estimates how effect of campaign weeks on traffic crashes varies by segment
characteristics. The dependent variable is the number of crashes occurring over the 10 kilometers
downstream of DMS s on date d during hour h, scaled by the population average for all segments
and multiplied by 100. Board meetingd,h indicates whether day d and hour h falls within Monday 9
am–Monday 7 am the week prior to a board meeting, and Postd indicates observations after August
1, 2012. High (Low) are indicators for the following characteristics of segment s (as indicated in
column header): above (below) median centerline km, above (below) median lane km, above (below)
median VKT, and an upstream DMS within (not within) 5 km upstream. See Appendix Table A.2
for detailed variable definitions. We include segment-year-month-day-of-week-hour and holiday
fixed effects. Standard errors are clustered by geography-year-month and are in parentheses, where
geography indicates a bin of size 102 square kilometers that contains the DMS, and *, **, *** indicate
10%, 5%, and 1% two-tailed statistical significance, respectively.

Crash (%)s(10),d,h = δ1 · Board meetingd,h · Highs · Post
+ δ2 · Board meetingd,h · Lows · Post
+ δ3 · Board meetingd,h · Highs
+ δ4 · Board meetingd,h · Lows

+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · Postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Crashes per hour over 10 km (%)

Centerline km Lane km VKT Upstream DMS
(1) (2) (3) (4)

Board meeting × high × post 2.53∗∗ 3.06∗∗∗ 3.28∗∗∗ 2.66∗∗∗
(1.05) (0.96) (0.96) (1.00)

Board meeting × low × post 0.19 -0.13 -0.50 0.31
(0.43) (0.48) (0.50) (0.46)

Board meeting × high 0.01 -0.22 -0.29 -0.39
(0.73) (0.56) (0.57) (0.71)

Board meeting × low -0.66∗∗ -0.57 -0.42 -0.28
(0.34) (0.40) (0.42) (0.34)

Observations 62,118,334 62,118,334 62,118,334 62,118,334
Adj R-squared 0.08 0.08 0.08 0.08
Rain & interactions Yes Yes Yes Yes
S-Y-M-D-H FE Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes
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Table A.7: Statewide crashes: robustness tests

Notes: This table reports robustness tests of the effect of campaign weeks on statewide crashes.
Column (1) reproduces the results in Table 9. Column (2) reports results when the dependent variable
is winsorized by clipping values above the 99th percentile and below the 1st percentile. Column (3)
reports results from quantile regressions following Machado and Santos Silva (2019). Column (4)
reports results when the dependent variable in the inverse hyperbolic sine of the count of crashes.
Column (5) report results using a Poisson regression on the count of crashes. While our data is
overdispersed, we use a Poisson regression due to its robustness (Wooldridge, 1999). In columns (3)
and (5) standard errors are calculated by bootstrapping. Standard errors are clustered by year-month
and are in parentheses, and *, **, *** indicate 10%, 5%, and 1% two-tailed statistical significance,
respectively.

(1) (2) (3) (4) (5)
Main Winsorized Quantile IHS Poisson

Panel A: Total crashes

Board meeting × post 1.981∗∗ 1.952∗∗ 1.975∗∗ 0.0190∗ 0.0207∗∗
(0.962) (0.936) (0.911) (0.00981) (0.0101)

Board meeting -1.605∗∗ -1.582∗∗ -1.551∗∗ -0.0146∗ -0.0176∗∗
(0.723) (0.720) (0.698) (0.00804) (0.00831)

Observations 70,127 70,127 70,127 70,127 70,127
Y-M-D-H FE Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes

Panel B: On-highway crashes

Board meeting × post 2.766∗∗ 2.646∗∗ 2.716∗∗ 0.024∗ 0.030∗∗
(1.190) (1.137) (1.099) (0.012) (0.013)

Board meeting -2.386∗∗∗ -2.315∗∗∗ -2.285∗∗∗ -0.019∗ -0.027∗∗
(0.887) (0.870) (0.824) (0.010) (0.011)

Observations 70,127 70,127 70,127 70,127 70,127
Y-M-D-H FE Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes

Panel C: Off-highway crashes

Board meeting × post 1.162 1.165 1.165 0.014 0.011
(0.951) (0.930) (0.920) (0.010) (0.011)

Board meeting -0.791 -0.780 -0.769 -0.009 -0.008
(0.746) (0.744) (0.766) (0.008) (0.009)

Observations 70,127 70,127 70,127 70,127 70,127
Y-M-D-H FE Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes
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Table A.8: Effect of fatality messages on crashes: robustness tests

Notes: This table tabulates robustness tests of the main result in Table 5. In Panel A, column (1)
reproduces the main specification estimating the effect of fatality messages on the number of crashes
within 10 km of DMSs, controls for trace precipitation and more than trace precipitation as well
as segment-year-month-day-of-week-hour and holiday fixed effects and clustering standard errors
by geography-year-month bins. In column (2) we use the same specification, but cluster standard
errors by segment-year-month (S-Y-M). In column (3) we include controls for additional levels of
precipitation intensity (using precipitation cutoffs of 0, 2.5, 7.6, and 50 millimeters per hour listed
on https://en.wikipedia.org/wiki/Rain), in column (4) we drop all controls for precipitation, and in
column (5) we drop the holiday fixed effects. In Panel B, in columns (1)–(2) we use an indicator
variable for the occurrence of a crashes as the dependent variable, and cluster standard errors by
either geography-year-month or segment-year-month. In columns (3)–(4) we use the natural log of the
number of hourly crashes plus one as the dependent variable, and again cluster standard errors two
different ways. In column (5) we include DMS-months that we confirm exist using Google Streetview,
and in column (6) we include only those DMS-months that we confirm might exist (i.e., we do not
know they do not exist). *, **, *** indicate 10%, 5%, and 1% two-tailed statistical significance,
respectively.

Panel A

Crashes per hour over 10 km (%)

(1) (2) (3) (4) (5)

Board meeting × post 1.36∗∗ 1.36∗∗∗ 1.35∗∗ 2.98∗∗∗ 1.49∗∗
(0.60) (0.29) (0.60) (0.61) (0.60)

Board meeting -0.33 -0.33 -0.37 -1.05∗∗ 0.58
(0.43) (0.21) (0.43) (0.43) (0.43)

Observations 62,118,334 62,118,334 62,118,334 62,118,334 62,118,334
Adj R-squared 0.08 0.08 0.08 0.08 0.08
Cluster standard errors G-Y-M S-Y-M G-Y-M G-Y-M G-Y-M
S-Y-M-D-H FE Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes No
Baseline precipitation Yes Yes No No Yes
Add’l precipitation No No Yes No No
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Table A.8 Robustness tests–continued

Panel B

Crashes per hour over 10 km Crashes per hour over 10 km (%)

Dummy Log Must exist May exist

(1) (2) (3) (4) (5) (6)

Board meeting × post 0.06∗∗ 0.06∗∗∗ 0.04∗∗ 0.04∗∗∗ 1.52∗∗ 1.38∗∗
(0.03) (0.01) (0.02) (0.01) (0.76) (0.64)

Board meeting -0.02 -0.02∗ -0.01 -0.01∗ -0.36 -0.30
(0.02) (0.01) (0.01) (0.01) (0.60) (0.48)

Observations 62,118,334 62,118,334 62,118,334 62,118,334 41,877,330 54,997,588
Adj R-squared 0.08 0.08 0.08 0.08 0.09 0.08
Cluster standard errors G-Y-M S-Y-M G-Y-M S-Y-M G-Y-M G-Y-M
Rain & interactions Yes Yes Yes Yes Yes Yes
S-Y-M-D-H FE Yes Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes Yes
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Table A.9: Effect of fatality messages on fatal crashes

Notes: This table estimates the effect of campaign weeks on fatal crashes. The dependent variable is
the number of fatal crashes occurring on segment s of length x kilometers on date d during hour h,
scaled by the population average for all segments of length x and multiplied by 100. See Table 5 for
additional details. Standard errors are clustered by geography-year-month and are in parentheses,
where geography indicates a bin of size x2 square kilometers that contains the DMS, and *, **, ***
indicate 10%, 5%, and 1% two-tailed statistical significance, respectively.

Fatal crash (%)s(x),d,h = δ · Board meetingd,h · Postd + β1 · Board meetingd,h
+ β2 · Trace precipitations,d,h + β3 · Trace precipitations,d,h · Postd
+ β4 · Precipitations,d,h + β5 · Precipitations,d,h · Postd
+ γs,m(d),dow(d),h + ζholiday + εs,d,h

Deaths per hour (%)
3 km 5 km 10 km
(1) (2) (3)

Board meeting × post 9.529 4.985 -1.454
(11.609) (9.245) (7.958)

Board meeting -2.660 6.966 14.920∗∗
(9.122) (7.425) (6.483)

Observations 62,118,334 62,118,334 62,118,334
Adj R-squared -0.00 -0.00 -0.00
Rain & interactions Yes Yes Yes
S-Y-M-D-H FE Yes Yes Yes
Holiday FE Yes Yes Yes
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A.2 Endogeneity of fatality message

This section presents evidence that the presence of a fatality message at a particular
time on any given DMS is endogenous with respect to crash risk at that location
and time. First, we provide evidence that when a crash occurs near where a fatality
message is being displayed, district engineers often replace the fatality message
with a message warning of a crash ahead. Second, we provide evidence that district
engineers sometimes make these changes prior to the reported crash time, likely a
result of measurement error in reported crash times.

First, when a crash occurs, district engineers frequently replace a fatality message
with a message warning about a crash up ahead. To show this, we estimate how the
probability that a DMS continues to display a fatality message changes when a crash
occurs using the following regression:

Ys,d,h+1 = δ · Crashs,d,h + γs,y(d),dow(d),h + εs,d,h
�� Fatality messages,d,h = 1, (A.1)

where Ys,d,h is an indicator for whether DMS s was displaying message
Y ∈ {Fatality message, Crash message} at the start of hour h on day d, Crashs,d,h is
an indicator for whether there was a crash on the 10 kilometer segment starting at
DMS s during hour h of day d, and γs,y(d),dow(d),h is a DMS-year-day of week-hour
fixed effect. Including this fixed effect means we are estimating how a crash changes
the probability of continuing to show a fatality message holding constant the DMS,
year, day of week, and hour. Doing so is important because, as Figure 5 shows,
DMSs are less likely to show a fatality message during the peak traffic hours and
peak traffic hours are also more likely to have crashes.46 Panel A of Table A.10
reports the results from estimating (A.1). We find that if there is a crash during hour
h, then a DMS is 2.82 percentage points less likely to display a fatality message at the
end of the hour, and 2.66 percentage points more likely to warn of a crash up ahead.

Second, district engineers regularly replace a fatality message with another
message before a crash occurs. To show this, we estimate how, conditional on a DMS

46 Indeed, without this fixed effect we estimate that a crash occurring reduces the probability that a
DMS continues to display a fatality message by 5.67 percentage points.
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displaying a fatality message at the start of hour h − 1, the probability that the DMS
displays a fatality message or crash message at the start of hour h changes if there is
an crash during hour h. Specifically, we estimate the following regression:

Ys,d,h = δ · Crashs,d,h + γs,y(d),dow(d),h + εs,d,h
�� Fatality messages,d,h−1 = 1. (A.2)

Panel B of Table A.10 shows these results. We find that that the probability a DMS
displays a fatality message at the start of hour h, conditional on showing one at the
start of hour h − 1, decreases by 0.48 percentage points if there is a crash during hour
h. When DMSs cease displaying fatality messages, half the time the fatality message
is replaced with a message warning of a crash up ahead.

The finding that engineers replace a fatality message with another message prior
to a crash occurring is likely the result of errors in recorded crash times. There are at
least two sources of error. First, police officers fill out their report when they arrive
at the scene of the crash, and there is likely error in what they report as the time of
the crash. Second, there is significant rounding in what times are reported. Figure
A.8 plots the distribution of the minute during an hour when crashes are reported to
occur. The true distribution is likely close to uniform, and so the large spikes on the
hour, half hour, and at 5-minute intervals are evidence of police officers rounding
reported crash times. Figure A.8 suggests that at least three percent of crashes occur
during the hour prior to their reported hour.
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Table A.10: Message transition probabilities

Notes: Panel A reports estimates of the probability a DMS displays a given message type at the end of
an hour, conditional on displaying a fatality message at the start of the hour, and how this probability
differs if there was a crash within 10 kilometers of the DMS during the hour. Panel B reports estimates
of the probability of displaying a given message at the start of an hour, conditional on displaying
a fatality message at the start of the previous hour, and how this probability differs if there was a
crash within 10 kilometers of the DMS during the hour. Let Ys,d,h be an indicator for whether DMS s
displays message type Y ∈

{
Fatality, Crash

}
at the start of hour h on day d. A fatality message gives

the year-to-date number of fatalities on Texas roads (column (1)) and a crash message warns of a
crash downstream (column (2)). Also let Crashs,d,h be an indicator for whether there was a crash on
the 10 kilometer segment starting at DMS s during hour h of day d. We include a DMS-year-day of
week-hour fixed effect. Standard errors are clustered by DMS-year-month and are in parentheses, and
*, **, *** indicate 10%, 5%, and 1% two-tailed statistical significance, respectively.

Panel A: Ys,d,h+1= δ · Crashs,d,h + γs,y(d),dow(d),h + εs,d,h
�� Fatality messages,d,h = 1

Panel B: Ys,d,h = δ · Crashs,d,h + γs,y(d),dow(d),h + εs,d,h
�� Fatality messages,d,h−1 = 1

Fatality Crash
(1) (2)

Panel A: Current hour transition probability
Crash within 10 km -0.0282∗∗∗ 0.0266∗∗∗

(0.0012) (0.0009)

Observations 1,281,774 1,281,774
S-Y-D-H FE Yes Yes

Panel B: Prior hour transition probability
Crash within 10 km -0.0048∗∗∗ 0.0025∗∗∗

(0.0010) (0.0005)

Observations 1,281,774 1,281,774
S-Y-D-H FE Yes Yes
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Figure A.8
Distribution of the minutes at which reported crashes occur
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A.3 Number of additional crashes and their social cost

This section documents our calculations of the number of additional crashes per year
due to showing a fatality message, and their total social cost.

We wish to know the additional number of crashes caused statewide as a result
of these fatality messages, ∆. Let y1 be the actual annual number of crashes, y0

the counterfactual number of crashes in the absence of the fatality message, f the
fraction of hours in the year assigned to treatment, and δ the increase in crashes due
to being assigned to treatment. Then

∆ = y0 · f · δ, and

∆ = y1 − y0.

Solving this system of equations yields

∆ = y1
f · δ

1 + f · δ
.

Given our assumption about which hours are assigned to treatment, f = 12 · (24 ·
7 − 2)/(365 · 24) = 83/365. During the fully treated years (2013–2017) there were
an average of 585,340 crashes per year, so y1 = 585, 340. We obtain δ = .0198 from
column (1) of Table 9. Thus, ∆ = 2, 624.

To calculate the number of additional fatalities per year, we replace y1 with the
average number of fatalities per year during 2013–2017, which is 3,650. Thus, the
fatality messages cause an additional 16.4 fatalities per year. Likewise, there were
3,285 fatal crashes per year during 2013–2017, and so the fatality messages cause an
additional 14.7 fatal crashes.

To put a dollar value on these additional crashes and deaths, we use estimates
from a National Highway Traffic Safety Administration report (Blincoe et al., 2015).
This report finds that in 2010 the total social cost of police-reported crashes was
747,540 million 2010 dollars (Table 1-12) and there were 6,077,362 police-reported
crashes (Table 1-3). Thus, the average total social cost of a police-reported crash is
123,004 2010 dollars. Using the CPI to adjust to 2019, this is $145,000. Thus, the
estimated total cost is 377 million dollars per year.
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To extrapolate these numbers to all treated states, we multiple them by the number
of licensed drivers in all treated states divided by the number of licensed drivers in
Texas.
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