# Should monetary policy care about redistribution? Optimal fiscal and monetary policy with heterogeneous agents

François Le Grand<sup>a</sup>, Alaïs Martin-Baillon<sup>b</sup>, Xavier Ragot<sup>b,c</sup>

<sup>a</sup> EMLyon Business School and ETH Zurich <sup>b</sup>SciencesPo and OFCE <sup>c</sup>CNRS

NBER SI, July 14 2020

#### Introduction

- Monetary policy generates redistributive effects through various channels. (Bewley, 1983; McKay et al. 2016; Gornemann et al. 2016; Kaplan et al. 2018; Nuño and Moll 2018; Auclert 2019)
- Research question: Should monetary policy care about redistribution or only focus on monetary objectives (and leave redistribution to fiscal policy)?
- What we do:
  - Compute optimal fiscal and monetary Ramsey policy with commitment in a quantitative HANK model (het-agent (HA) economy with capital, aggregate shocks and nominal rigidities).
  - Fiscal policy: linear labor and capital taxes, lump-sum transfer and one-period nominal public debt.
  - Monetary policy: nominal interest rate.

Computing Ramsey policies in HANK is challenging. We do so thanks to a methodological contribution.

- Extensive use of the Lagrangian approach (Marcet and Marimon, 2019). Well adapted for HANK model.
- Not enough. To quantify, we derive a "truncated representation" of het-agent model. (LeGrand and Ragot 2020)
- Allows for simple and accurate quantitative investigation.

### Results' preview

#### • Theoretical results.

- Irrelevance result: No redistributive role for monetary policy when linear capital and labor taxes are available, for both TFP shock and public spending shock. (in the spirit of Correia, Nicolini, Teles 2008; and Correia et al. 2013)
- Quantitative results.
  - Fiscal policy: Heterogeneity matters. Optimal capital tax is much less volatile in HA economy compared to RA, public debt is more volatile.
  - Monetary policy: Even with incomplete fiscal tools (no optimal capital tax), inflation has little role to play for redistribution.
- Different from Bhandari, Evans, Golosov and Sargent (2020). Explanation below...

Literature

### Results' preview

#### • Theoretical results.

 Irrelevance result: No redistributive role for monetary policy when linear capital and labor taxes are available, for both TFP shock and public spending shock. (in the spirit of Correia, Nicolini, Teles 2008; and Correia et al. 2013)

#### • Quantitative results.

- 1. **Fiscal policy**: Heterogeneity matters. Optimal capital tax is much less volatile in HA economy compared to RA, public debt is more volatile.
- Monetary policy: Even with incomplete fiscal tools (no optimal capital tax), inflation has little role to play for redistribution.
- Different from Bhandari, Evans, Golosov and Sargent (2020). Explanation below...

Literature

### Results' preview

#### • Theoretical results.

 Irrelevance result: No redistributive role for monetary policy when linear capital and labor taxes are available, for both TFP shock and public spending shock. (in the spirit of Correia, Nicolini, Teles 2008; and Correia et al. 2013)

#### • Quantitative results.

- 1. **Fiscal policy**: Heterogeneity matters. Optimal capital tax is much less volatile in HA economy compared to RA, public debt is more volatile.
- Monetary policy: Even with incomplete fiscal tools (no optimal capital tax), inflation has little role to play for redistribution.
- Different from Bhandari, Evans, Golosov and Sargent (2020). Explanation below...

Literature

### Outline of the presentation

- 1. The environment
- 2. Optimal fiscal-monetary policy
- 3. Truncated representation
- 4. Numerical Simulations

### 1 - The environment- Preferences

- Unit mass of agents facing uninsurable productivity risk
- Idiosyncratic productivity levels y ∈ 𝔅: constant discrete first-order Markov process.
- Aggregate state  $Z_t$  that affects TFP. First-order Markov process.
- GHH utility function over consumption and labor supply:

$$U(c,l) = u\left(c - \chi^{-1} \frac{l^{1+1/\varphi}}{1+1/\varphi}\right).$$

#### Program

$$\begin{split} \max_{ \begin{pmatrix} a_t^i, c_t^i, l_t^i \end{pmatrix}_{t \ge 0}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(c_t^i, l_t^i), \\ c_t^i + a_t^i &= (1+r_t) a_{t-1}^i + w_t y_t^i l_t^i + T_t \\ a_t^i &\ge -\bar{a}(=0), \ c_t^i > 0, \ l_t^i > 0 \end{split}$$

where,

• Labor tax: 
$$w_t = (1 - \tau_t^L) \tilde{w}_t$$

- Capital tax:  $r_t = (1 \tau_t^K) \tilde{r}_t$
- Lumpsum transfer:  $T_t$

#### Production

Standard NK production sector with capital.

- Aggregator of intermediate goods. Elasticity of substitution  $\varepsilon$ .
- Intermediary firms production function :  $y = Z \tilde{k}^{\alpha} \tilde{l}^{1-\alpha}$ .
- Rotemberg adjustment cost, parameter  $\kappa$ .
- Pricing kernel to price profits  $M_t$ .
- Generates a Phillips curve  $(\Pi_t = \frac{P_t}{P_{t-1}})$ ,

$$\Pi_t(\Pi_t - 1) = \frac{\varepsilon - 1}{\kappa} \left( \zeta_t - 1 \right) + \beta \mathbb{E}_t \Pi_{t+1} (\Pi_{t+1} - 1) \frac{Y_{t+1}}{Y_t} \frac{M_{t+1}}{M_t}.$$

#### Asset markets

Three assets:

- Capital shares with pre-tax tax net rate  $\tilde{r}_t^K$ .
- Public debt  $B_{t-1}$  with pre-tax gross real rate  $\tilde{R}^{B,N}_{t-1}/\Pi_t$ , which depends on current inflation.
- Monopoly rents (taxed away).
- Risk-neutral fund collects capital and public debt and issues claims to agents with rate  $\tilde{r}_t$  (and borrowing limits) (Gornemann, Kuester, Nakajima, 2016)
  - $\rightarrow\,$  no actual portfolio choice by agents.

#### Government

Has to finance exogenous  $G_t$  and transfers  $T_t$ . Fiscal tools:

- Distorting taxes on capital and labor  $( au_t^K ext{ and } au_t^L)$
- Public debt issuance  $B_t$
- Corporate tax

Market clearing

### 2 - Optimal fiscal-monetary policy

- Aggregate welfare criterion:  $\sum_{t=0}^{\infty} \beta^t \int_i \omega_t^i U(c_t^i, l_t^i) \ell(di)$ . Additive with weights  $(\omega_t^i)$ .
- Ramsey program: Find fiscal and monetary policy that maximizes aggregate welfare among competitive equilibria. I.e. maximize aggregate welfare subject to all constraints and borrowing limits.
- Monetary-fiscal instruments:

$$\left(\tau_t^L, \tau_t^K, T_t, B_t, \tilde{R}_t^{B, N}\right)_{t \ge 0}$$

See program

#### The Lagrangian approach

- Rich framework for normative questions.
- $\rightarrow$  Rely on Lagrangian approach of Marcet and Marimon (2020): Factorization of the Lagrangian. See factorization
  - Note: Slater's condition raises no problem here (FOCs in our problem = limits of FOCs with infinitely concave penalty functions).
  - Two Lagrange multipliers of interest:
    - $\lambda_t^i:$  on agents' Euler equation.  $\lambda_t^i>0$  when the planner perceives excess savings.
    - $\mu_t$ : on government budget constraint.

#### A transformation

Key concept: social valuation of liquidity for agent i, denoted by  $\psi_t^i$ .

$$\begin{split} \psi_t^i \equiv &\underbrace{\omega_t^i U_c(c_t^i, l_t^i)}_{\text{Direct effect}} - \underbrace{U_{cc}(c_t^i, l_t^i) \left(\lambda_t^i - (1 + r_t)\lambda_{t-1}^i\right)}_{\text{Saving incentives}} \\ - \underbrace{\left(\left(\gamma_t - \gamma_{t-1}\right) \Pi_t \left(\Pi_t - 1\right) - \frac{\varepsilon - 1}{\kappa} \gamma_t \left(\zeta_t - 1\right)\right) Y_t \omega_t^i U_{cc}(c_t^i, l_t^i)}_{\text{Change in pricing kernel}} \end{split}$$

 $\rightarrow$  Benefit, from planner's perspective, of transferring an extra unit of consumption to agent i.

Related concept: net social valuation.

$$\hat{\psi}_t^i = \psi_t^i - \mu_t.$$

Real economy  $\kappa=0$  : Ramsey - FOCs

• Euler equation (unconstrained i) for  $\hat{\psi}^i$ 

$$\hat{\psi}_{t}^{i} = \beta \mathbb{E}_{t} \left[ (1 + r_{t+1}) \hat{\psi}_{t+1}^{i} \right].$$
• Capital tax: 
$$\underbrace{\int_{i} \hat{\psi}_{t}^{i} a_{t-1}^{i} \ell(di)}_{\text{net redistributive effects}} = \underbrace{-\int_{i} \lambda_{t-1}^{i} U_{c}(c_{t}^{i}, l_{t}^{i}) \ell(di)}_{\text{savings distortions}}.$$
• Transfer  $T$ : 
$$\underbrace{\int_{i} \hat{\psi}_{t}^{i} \ell(di)}_{\text{net redistributive effects}} = 0.$$
• Labor tax: 
$$\underbrace{\int_{i} \hat{\psi}_{t}^{i} y_{t}^{i} l_{t}^{i} \ell(di)}_{\text{net redistributive effects}} = \underbrace{\varphi \mu_{t} \left( L_{t} - (1 - \alpha) \frac{Y_{t}}{w_{t}} \right)}_{\text{labor supply distortions}}.$$

LeGrand, Martin-Baillon & Ragot

Optimal fiscal-monetary policy

Real economy  $\kappa=0$  : Ramsey - FOCs

• Euler equation (unconstrained i) for  $\hat{\psi}^i$ 

$$\hat{\psi}_{t}^{i} = \beta \mathbb{E}_{t} \left[ (1 + r_{t+1}) \hat{\psi}_{t+1}^{i} \right].$$
• Capital tax: 
$$\underbrace{\int_{i} \hat{\psi}_{t}^{i} a_{t-1}^{i} \ell(di)}_{\text{net redistributive effects}} = \underbrace{-\int_{i} \lambda_{t-1}^{i} U_{c}(c_{t}^{i}, l_{t}^{i}) \ell(di)}_{\text{savings distortions}}.$$
• Transfer  $T$ : 
$$\underbrace{\int_{i} \hat{\psi}_{t}^{i} \ell(di)}_{\text{net redistributive effects}} = 0.$$
• Labor tax: 
$$\underbrace{\int_{i} \hat{\psi}_{t}^{i} y_{t}^{i} l_{t}^{i} \ell(di)}_{\text{net redistributive effects}} = \underbrace{\varphi \mu_{t} \left( L_{t} - (1 - \alpha) \frac{Y_{t}}{w_{t}} \right)}_{\text{labor supply distortions}}.$$

$$\rightarrow \text{ transporent results thanks to the } \hat{\psi}^{i}$$

Real economy  $\kappa = 0$  : Ramsey - FOCs

• Euler equation (unconstrained i) for  $\hat{\psi}^i$ 

$$\begin{split} \hat{\psi}_t^i &= \beta \mathbb{E}_t \left[ (1+r_{t+1}) \hat{\psi}_{t+1}^i \right]. \\ \bullet \text{ Capital tax:} \quad \underbrace{\int_i \hat{\psi}_t^i a_{t-1}^i \ell(di)}_{\text{net redistributive effects}} &= \underbrace{-\int_i \lambda_{t-1}^i U_c(c_t^i, l_t^i) \ell(di)}_{\text{savings distortions}}. \\ \bullet \text{ Transfer } T : \quad \underbrace{\int_i \hat{\psi}_t^i \ell(di)}_{\text{net redistributive effects}} &= 0. \\ \bullet \text{ Labor tax:} \quad \underbrace{\int_i \hat{\psi}_t^i y_t^i l_t^i \ell(di)}_{\text{net redistributive effects}} &= \underbrace{\varphi \mu_t \left( L_t - (1-\alpha) \frac{Y_t}{w_t} \right)}_{\text{labor supply distortions}}. \\ \to \text{ transparent results thanks to the } \hat{\psi}^i. \end{split}$$

### Nominal economy with all fiscal tools

#### An irrelevance result

With the full menu of fiscal tools, the planner exactly reproduces the real-economy allocation ( $\kappa = 0$ ) and there is no further role for monetary policy.

Intuition. There are sufficient independent instruments to cancel the mark-up wedge of firms. Inflation variations are costly, thus  $\Pi_t = 1$ . (Correia, Nicolini, and Teles, 2008)

**Question.** What happens with missing fiscal instruments? With fixed  $\tau^{K}$ , possible redistributive role for monetary policy. FOCs computed in the paper  $\rightarrow$  need for quantitative investigation. 3 - Truncated representation

$$\{y_{-\infty}, ..., y_{-N}, y_{-N+1}, ..., y_{-1}, y_0\} = y^i$$

3 - Truncated representation

$$\{y_{-\infty}, ..., y_{-N}, \underbrace{y_{-N+1}, ..., y_{-1}, y_0}_{\Gamma^*}\} = y^i$$

3 - Truncated representation

$$\{\underbrace{y_{-\infty},...,y_{-N}}_{\sim\xi_{y^N}},\underbrace{y_{-N+1},..,y_{-1},y_0}_{\Gamma^*}\}=y^i$$

### Truncation (cont'd)

Assume that agents having history  $y^N$ , have period utility (history-specific preference shifters):

 $\xi_{y^N} U(c,l)$ 

#### Construction of the $\xi$ s

The  $\xi$ s can be constructed such that, at the steady-state:

- Allocations of the truncated equilibrium are averages of Bewley allocations (among agents with same truncated history).
- $\rightarrow\,$  Same steady-state aggregate quantities and prices in both equilibria.

Formulation of a Ramsey program. See program See Algorithm See LeGrand and Ragot 2020 for convergence properties.

### 4 - Numerical Simulations

The strategy

- 1. Calibrate a Bewley model with a relevant fiscal system
- 2. Truncate the model, N = 5.
- 3. Find the  $\omega_{y^N}$  such the actual fiscal system is optimal at the *steady-state* (Inverse optimal approach, Bargain and Keane, 2010; Bourguignon and Amadeo, 2015; Heathcote and Tsujiyama, 2017; Chang et al. 2018).
- 4. Optimal dynamics after TFP shocks and G shocks.
  - HA economy with full set of instruments
  - HA economy with constant capital tax
  - Complete-market economy

| Preference and technology |                                 |       |  |  |  |
|---------------------------|---------------------------------|-------|--|--|--|
| β                         | Discount factor                 | 0.99  |  |  |  |
| $\alpha$                  | Capital share                   | 0.36  |  |  |  |
| δ                         | Depreciation rate               | 0.025 |  |  |  |
| $\bar{a}$                 | Credit limit                    | 0     |  |  |  |
| $\chi$                    | Scaling param. labor supply     | 0.068 |  |  |  |
| $\varphi$                 | Frisch elasticity labor supply  | 0.5   |  |  |  |
| Shock process             |                                 |       |  |  |  |
| $\rho_z$                  | Autocorrelation TFP             | 0.95  |  |  |  |
| $\sigma_z$                | Standard deviation TFP shock    | 0.31% |  |  |  |
| $\rho_{u}$                | Autocorrelation idio. income    | 0.99  |  |  |  |
| $\sigma_y$                | Standard dev. idio. income      | 14%   |  |  |  |
| Y                         | Number idio. states             | 5     |  |  |  |
| Tax system                |                                 |       |  |  |  |
| $\tau^{K}$                | Capital tax                     | 36%   |  |  |  |
| $\tau^{L}$                | Labor tax                       | 28%   |  |  |  |
| T                         | Transfer over GDP               | 8%    |  |  |  |
| B/Y                       | Public debt over yearly GDP     | 60%   |  |  |  |
| G/Y                       | Public spending over yearly GDP | 12.4% |  |  |  |
| Monetary parameters       |                                 |       |  |  |  |
| ĸ                         | Price adjustment cost           | 100   |  |  |  |
| ε                         | Elasticity of sub.              | 6     |  |  |  |

We have  $5^5\,=\,3125$  truncated histories.

References

#### Distribution

|                   | Da               | Model |      |
|-------------------|------------------|-------|------|
| Wealth statistics | PSID, 06 SCF, 07 |       |      |
| Q1                | -0.9             | -0.2  | 0.0  |
| Q2                | 0.8              | 1.2   | 0.1  |
| Q3                | 4.4              | 4.6   | 3.5  |
| Q4                | 13.0             | 11.9  | 15.1 |
| Q5                | 82.7             | 82.5  | 81.3 |
| Top 5%            | 36.5             | 36.4  | 37.8 |
| Top 1%            | 30.9             | 33.5  | 10.7 |
| Gini              | 0.77             | 0.78  | 0.77 |
|                   |                  |       |      |

Pareto weights

### Complete markets (negative TFP shock)



#### complete markets vs Full set incomplete markets



#### Full-set incomplete-market economy



#### Missing capital tax vs. full-set (incomplete markets)



#### Second-order moments

|            |                                                                                                    | CM       | Full    | No cap.tax |
|------------|----------------------------------------------------------------------------------------------------|----------|---------|------------|
| С          | Mean                                                                                               | 0.7543   | 0.7542  | 0.7542     |
|            | Std                                                                                                | 0.0259   | 0.0266  | 0.0269     |
| K          | Mean                                                                                               | 11.0557  | 11.0536 | 11.0535    |
|            | Std                                                                                                | 0.0268   | 0.0270  | 0.0288     |
| Y          | Mean                                                                                               | 1.1760   | 1.1759  | 1.1759     |
|            | Std                                                                                                | 0.0264   | 0.0268  | 0.0274     |
| $\tau^{K}$ | Mean                                                                                               | 0.0009   | 0.3600  | 0.3600     |
|            | Std                                                                                                | 0.8855   | 0.0145  | 0.0000     |
| $\tau^{L}$ | Mean                                                                                               | 0.0000   | 0.2800  | 0.2800     |
|            | Std                                                                                                | 0.0000   | 0.0016  | 0.0015     |
| В          | Mean                                                                                               | -10.9327 | 2.8435  | 2.8424     |
|            | Std                                                                                                | 0.0146   | 0.0462  | 0.0541     |
| Т          | Mean                                                                                               | 0.0000   | 0.0941  | 0.0941     |
|            | Std                                                                                                | 0.0000   | 0.0610  | 0.0637     |
| π          | Mean                                                                                               | 0.0000   | 0.0000  | 0.0000     |
|            | Std                                                                                                | 0.0000   | 0.0000  | 0.0007     |
| corr(      | ${\tau}^{K}, Y) \ {\tau}^{L}, Y) \ {\theta}, Y) \ {\theta}, Y) \ {Y}, Y_{-1}) \ {\theta}, B_{-1})$ | -0.2085  | -0.4868 | 0.0000     |
| corr(      |                                                                                                    | 0.9273   | -0.6374 | 0.9249     |
| corr(      |                                                                                                    | -0.8349  | -0.7592 | 0.8291     |
| corr(      |                                                                                                    | 0.9776   | 0.9781  | 0.9785     |
| corr(      |                                                                                                    | 0.9992   | 0.9996  | 0.9994     |

#### Discussion

Why is monetary policy so different compared to Bhandari, Evans, Golosov and Sargent (2020)?

- Different setup. Here, capital and occasionally binding credit constraints.
- Different quantitative exercise. Here, perturbation around a steady state. BEGS: transition between an initial and final stochastic distribution.
- $\rightarrow$  Last channel is the most important. Similar large effects of the capital tax in the transition in Dyrda and Pedroni (2018).

#### Robustness checks

- Validation of the truncation method. Comparison with Reiter See here and Boppart, Krusell, Mitman.
- Public spending shock. See here
- Fixed labor tax and fixed labor and capital taxes.
- Solve optimal policy in the transition.

#### Conclusion : Main take-aways

- 1. **Irrelevance result** for the monetary policy when the full set of fiscal tools is available. Confirmed in simulations.
- 2. **Incomplete markets matter.** Public debt is more volatile and capital tax volatility is reduced by two orders of magnitude.
- Importance of public debt. Even in absence of capital tax, shock is mostly smoothed out by public debt.
- 4. **Monetary policy.** Even in absence of capital tax, monetary policy plays a very little role (though theoretically possible).

#### Literature

#### Go back

- Interactions between monetary and fiscal policies (no idiosyncratic risk): Chari and Kehoe (1999), Aiyagari, Marcet, Sargent, and Seppälä (2002), Bhandari, Evans, Golosov and Sargent (2017), Correia, Nicolini, and Teles (2008) and Correia, et al. (2013).
- Monetary policy in het-agent economies with nominal frictions: Bilbile (2008), McKay, Nakamura and Steinsson (2016), Gornemann, Kuester and Nakajima (2017), Kaplan, Moll, and Violante (2018), Nuño and Moll (2018), Auclert (2019).
- Optimal policy in HA model Acikgoz et al. (2018), Dyrda and Pedroni, (2019), LeGrand and Ragot, (2020)
- Closest paper: Bhandari, Evans, Golosov and Sargent (2020).

#### Ramsey program formulation Goback

$$\begin{split} \max_{\substack{(w_t, r_t, \bar{w}_t, \bar{r}_t^K, \bar{R}_t^{B,N}, \tau_t^K, \tau_t^L, B_t, K_t, L_t, \Pi_t, (a_t^i, c_t^i, l_t^i)_i)_{t \geq 0}} \mathbb{E}_0 \left[ \sum_{t=0}^{\infty} \beta^t \int_i \omega_t^i U(c_t^i, l_t^i) \ell(di) \right], \\ G_t + B_{t-1} + r_t(B_{t-1} + K_{t-1}) + w_t L_t + T_t = B_t + (1 - \frac{\kappa}{2}\pi_t^2)Y_t - \delta K_{t-1}. \end{split}$$
for all  $i \in \mathcal{I}$ :  $a_t^i + c_t^i = (1 + r_t)a_{t-1}^i + w_t y_t^i l_t^i + T_t, \\ a_t^i \geq -\bar{a}, \\ U_c(c_t^i, l_t^i) = \beta \mathbb{E}_t \left[ U_c(c_{t+1}^i, l_{t+1}^i)(1 + r_{t+1}) \right] + \nu_t^i, \\ l_t^{i, 1/\varphi} = \chi w_t y_t^i, \\ \Pi_t(\Pi_t - 1) = \frac{\varepsilon - 1}{\kappa} \left( \zeta_t - 1 \right) + \beta \mathbb{E}_t \Pi_{t+1}(\Pi_{t+1} - 1) \frac{Y_{t+1}}{Y_t} \frac{M_{t+1}}{M_t}, \\ K_t + B_t = \int_i a_t^i \ell(di), L_t = \int_i y_t^i l_t^i \ell(di), \\ r_t = (1 - \tau_t^K) \frac{\tilde{r}_t^K K_{t-1} + (\frac{\tilde{R}_t^{B,N}}{H_t - 1} - 1)B_{t-1}}{K_{t-1} + B_{t-1}} \end{split}$ 

Pricing kernel  $M_t = \int_i \omega_t^i U_c(c_t^i, l_t^i) \ell(di).$ 

LeGrand, Martin-Baillon & Ragot

Appendix 2/10

#### Factorization Go back

The objective of the Ramsey program can be rewritten as maximizing:

$$J = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \int_i \left[ \omega_t^i U(c_t^i, l_t^i) - \left( \omega_t^i \lambda_t^i - (1+r_t) \lambda_{t-1}^i \omega_{t-1}^i \right) U_c(c_t^i, l_t^i) - \left( (\gamma_t - \gamma_{t-1}) \Pi_t \left( \Pi_t - 1 \right) - \frac{\varepsilon - 1}{\kappa} \gamma_t \left( \zeta_t - 1 \right) \right) Y_t M_t \right] \ell(di),$$

with budget constraints (i.e. no expectations in constraints).

$$\begin{split} G_t + B_{t-1} + r_t (B_{t-1} + K_{t-1}) + w_t L_t + T_t &= B_t + (1 - \frac{\kappa}{2} \pi_t^2) Y_t - \delta K_{t-1}. \\ \text{for all } i \in \mathcal{I}: \; a_t^i + c_t^i &= (1 + r_t) a_{t-1}^i + w_t y_t^i l_t^i + T_t, \\ &a_t^i \geq -\bar{a}, \\ &l_t^{i,1/\varphi} &= \chi w_t y_t^i, \\ &K_t + B_t &= \int_i a_t^i \ell(di), \; L_t = \int_i y_t^i l_t^i \ell(di), \end{split}$$

LeGrand, Martin-Baillon & Ragot

#### Projected model Go back

Ramsey problem:

$$\max \mathbb{E}_0 \left[ \sum_{t=0}^{\infty} \beta^t \sum_{y^N \in \mathcal{Y}^N} S_{t,y^N} \omega_{y^N} \xi_{y^N} U(c_{t,y^N}, l_{t,y^N}) \right]$$

subject to individual constraints:

$$\begin{split} \xi_{y^{N}}U_{c}(c_{t,y^{N}},l_{t,y^{N}}) &= \mathbb{E}\sum_{y^{N'}\in\mathcal{Y}^{N}}\Pi_{y^{N},y^{N'},t+1}\xi_{y^{N'}}U_{c}(c_{t+1,y^{N'}},l_{t+1,y^{N'}}) + \nu_{t,y^{N}}, \\ c_{t,y^{N}} + a_{t,y^{N}} &= w_{t}l_{t,y^{N}}y_{y^{N}} + (1+r_{t})\,\tilde{a}_{t,y^{N}} + T_{t}, \\ \tilde{a}_{t,y^{N}} &= \sum_{\tilde{y}^{N}\in\mathcal{Y}^{N}}\Pi_{\tilde{y}^{N}y^{N},t}\frac{S_{t-1,\tilde{y}^{N}}}{S_{t,y^{N}}}a_{t-1,\tilde{y}^{N}}, \\ l_{t,y^{N}} &= \left(\chi y_{y^{N}}w_{t}\right)^{\phi}. \\ a_{t,y^{N}} \geq 0 \end{split}$$

LeGrand, Martin-Baillon & Ragot

Optimal fiscal-monetary policy

Appendix 4/10

#### Pareto weights vs. current productivity



## Public spending shocks

Go back

|          |      | СМ       | Full    | No cap.tax |
|----------|------|----------|---------|------------|
| C        | Mean | 0.7541   | 0.7540  | 0.7540     |
|          | Std  | 0.0105   | 0.0113  | 0.0129     |
| K        | Mean | 11.0541  | 11.0509 | 11.0508    |
|          | Std  | 0.0082   | 0.0089  | 0.0109     |
| Y        | Mean | 1.1758   | 1.1756  | 1.1756     |
|          | Std  | 0.0037   | 0.0047  | 0.0063     |
| L        | Mean | 0.3334   | 0.3333  | 0.3333     |
|          | Std  | 0.0012   | 0.0023  | 0.0037     |
| $\tau^K$ | Mean | 0.0000   | 0.3600  | 0.3600     |
|          | Std  | 22.8698  | 0.0780  | 0.0000     |
| $\tau^L$ | Mean | 0.0000   | 0.2800  | 0.2800     |
|          | Std  | 0.0000   | 0.0017  | 0.0036     |
| В        | Mean | -10.9399 | 2.8441  | 2.8436     |
|          | Std  | 0.0098   | 0.0293  | 0.0543     |
| Т        | Mean | 0.0000   | 0.0941  | 0.0941     |
|          | Std  | 0.0000   | 0.0502  | 0.0546     |
| π        | Mean | 0.0000   | 0.0000  | 0.0000     |
|          | Std  | 0.0000   | 0.0000  | 0.0027     |

## Comparison Reiter vs Truncation

Go back

|                                    |      | Reiter  | Trunc   |
|------------------------------------|------|---------|---------|
| GDP                                | mean | 1.1757  | 1.1757  |
|                                    | std  | 0.0242  | 0.0239  |
| С                                  | mean | 0.7541  | 0.7541  |
|                                    | std  | 0.0240  | 0.0240  |
| к                                  | mean | 11.0514 | 11.0510 |
|                                    | std  | 0.0265  | 0.0261  |
| L                                  | mean | 0.3333  | 0.3333  |
|                                    | std  | 0.0120  | 0.0119  |
| В                                  | mean | 2.8436  | 2.8436  |
|                                    | std  | 0.0000  | 0.0000  |
| $\tau^{L}$                         | mean | 0.2800  | 0.2800  |
|                                    | std  | 0.0086  | 0.0085  |
| corr(C,Y)                          |      | 0.9784  | 0.9904  |
| corr(K,Y)                          |      | 0.8550  | 0.8484  |
| corr(L,Y)                          |      | 0.9998  | 0.9998  |
| corr(B,Y)                          |      | -0.0000 | 0.0000  |
| $\operatorname{corr}(\tau^{L}, Y)$ |      | -0.9978 | -0.9977 |
| $corr(Y, Y_{1})$                   |      | 0.9816  | 0.9812  |

Table: Reiter and Truncation - Constant public debt, labor tax adjust

LeGrand, Martin-Baillon & Ragot

### Ramsey in the truncated model (cont'd) Go back

Resolution algorithm for Ramsey policies in our economy.

- 1. Solve the "true" Bewley model (i.e., without aggregate shocks) for a given fiscal-monetary policy.
- 2. Construct the truncated model, and compute the  $\xi$ s.
- 3. If *truncated* Ramsey optimality conditions hold, stop. Otherwise, go back to Step 1 with updated policy.
- $\rightarrow\,$  Projected model always consistent with a Bewley model.
- $\rightarrow\,$  Perturbation computed around a steady state that exists.

#### Market clearing

Go back

• Governmental budget constraint (Chamley, 1986)

$$G_t + B_{t-1} + r_t \left( B_{t-1} + K_{t-1} \right) + w_t L_t + T_t = B_t + \left( 1 - \frac{\kappa}{2} \pi_t^2 \right) Y_t - \delta K_{t-1}.$$

• Financial market clearing:

$$\int a_t^i \ell(di) = K_t + B_t.$$

• Goods market clearing:

$$\int c_t^i \ell(di) + G_t + K_t = Z_t K_{t-1}^{\alpha} L_t^{1-\alpha} + (1-\delta) K_{t-1}$$

• Labor market clearing  $L_t = \int_i y_t^i l_t^i \ell(di)$ .

**Equilibrium:** For given prices and fiscal policy, individual allocations solve agents' program; factor prices are consistent with firms' behavior; government budget is balanced; markets clear.

LeGrand, Martin-Baillon & Ragot

Optimal fiscal-monetary policy

#### Calibration

#### Go back Standard Calibration (Period = quarter)

- Preferences: Frisch el. labor  $\varphi = 0.5$ , (Chetty, et al. 2011),  $\beta = 0.99$
- Production:  $Z_t = \exp(z_t)$  with  $z_t = \rho_z z_{t-1} + \sigma_z \varepsilon_t^z$ .  $\rho_z = 0.95$  and  $\sigma_z = 0.31\%$ , such that std dev. of z is 1% (den Haan, 2010).
- **Productivity risk:**  $\log y_t = \rho_y \log y_{t-1} + \sigma_y \varepsilon_t^y$  with  $\rho_y = 0.99$  and  $\sigma_y = 0.14$ . (Krueger et al. 2018).
- Taxes:  $\tau^K = 36\%$ ,  $\tau^L = 28\%$ , T/Y = 8%. Yields debt-to-GDP B/Y = 60% and public spending-to-G/Y = 12.4%. (Trabandt and Uhlig, 2011)
- $\rightarrow\,$  Gini for wealth = 0.77, average capital-to-GDP = 2.5.
- $\rightarrow\,$  Using Rouwenhorst (1995), 5 states with constant transitions.