
Should monetary policy care about redistribution? Optimal fiscal
and monetary policy with heterogeneous agents

François Le Grand Alaïs Martin-Baillon Xavier Ragot∗

July 11, 2020

Abstract

We derive optimal monetary and fiscal policies in an heterogeneous-agent economy with
nominal frictions and aggregate shocks, when a rich set of fiscal tools is available. This enables
us to investigate the redistributive role of optimal monetary policy. We determine the optimal
dynamics of nominal interest rate, capital and labor taxes, transfers and public debt. The
role of monetary policy is shown to depend on the fiscal tools that are available. When taxes
on capital and labor are available, then there is no redistributive role for monetary policy.
When fiscal tools are incomplete, we show quantitatively that optimal inflation volatility
is very small: redistribution is mostly a matter of fiscal policy. We provide analytical and
numerical results thanks to a truncated representation and an extensive use of the Lagrangian
approach that enables to derive optimal Ramsey policies in this heterogeneous-agent setting.
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1 Introduction

Monetary policy generates redistributive effects through various channels that have been studied
in a vast empirical and theoretical literature, reviewed below. However, it is not clear how these
channels should change the conduct of monetary policy. It might be possible that monetary
policy should take into account these effects to improve welfare, and thus participate in a function
usually devoted to fiscal policy. On the contrary, monetary policy could only focus on monetary
goals and let fiscal tools either dampen or strengthen the redistributive effects of monetary policy.
To distinguish between these two claims, one must solve for optimal fiscal and monetary policy in
a realistic environment, where heterogeneity among agents generates a concern for redistribution.

The goal of this paper is to investigate the redistributive role of monetary policy. To do so,
we study the joint optimal fiscal and monetary policy in an economy featuring heterogeneous
agents and aggregate shocks, when a relevant set of fiscal instruments is available. Following the
so-called Bewley (1980) literature, we assume incomplete insurance markets for idiosyncratic
risks to be the main source of agents heterogeneity. This framework is known to be general
enough to generate realistic income and wealth distributions. We further add nominal frictions,
modeled as costly price adjustments. This environment has been named HANK following the
seminal paper of Kaplan et al. (2018). Thanks to some methodological contribution explained
below, we derive optimal monetary and fiscal policies with commitment and with four fiscal
instruments: a linear tax on capital income, a linear tax on labor income, lump-sum transfer and
a riskless one-period public debt.

First and foremost, we show that an economy, in which all these instruments are available,
constitutes a meaningful benchmark. Indeed, when the government can levy resources through
both capital and labor taxes, the redistributive effects of monetary policy are shown to be absent,
after both a technology and a public spending shock. In this case, monetary policy solely aims
at ensuring price stability in each period – as in any representative agent economy – and to let
fiscal policy alone deal with redistribution. In this sense, there is a perfect dichotomy between
the objectives of monetary and fiscal policies in such an economy. The redistributive role of
monetary policy only stems from missing fiscal instruments or, more precisely, from non-optimally
time-varying fiscal instruments.

Second, we characterize optimal fiscal policy in this environment with heterogeneous agents
and aggregate shocks. In particular, we compute the optimal dynamics of capital tax and public
debt which are shown to be very different from those in a complete-market economy.

Third, we extend this analysis by considering various assumptions regarding the availability
of fiscal instruments. We assume that the capital tax is not time-varying, which leaves a potential
role for monetary policy to affect inflation and ex-post real interest rate. It turns out that in a
quantitatively relevant economy, inflation volatility remains very small, even though not null. As
a consequence, inflation apprears to optimally have a very minor role for redistributive purposes.
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These effects are identified at a theoretical level, thanks to two methodological contributions.
The first one is the use of a truncated representation of incomplete insurance market economies
that we apply here to a monetary economy. This theory of the truncation is presented in LeGrand
and Ragot (2020). The basic idea of the theory is to design a partial insurance mechanism
guaranteeing that heterogeneity only depends on a finite but arbitrarily large number, denoted
N , of past consecutive realizations of idiosyncratic risk. As a theoretical outcome, agents having
the same idiosyncratic risk history for the previous N periods choose the same consumption and
hold the same wealth. The full-fledged Bewley economy corresponds to the case where N =∞,
which means no partial insurance mechanism. The representative agent is also mapped into this
setup and corresponds to the case where N = 0, where there is full insurance among agents. The
gain of the truncated representation is that the equilibrium features a finite – though possibly
arbitrarily large – number of heterogeneous agents. This allows us to use the same tools as in
representative agent models. Second, we show that the Lagrangian approach, used in Marcet
and Marimon (2019), is particularly well-suited for monetary economies. This allows us to derive
first-order conditions and obtain simple intuition about optimal monetary and fiscal policies.

The effects are also quantified in realistically calibrated economies and the following conclusions
can be drawn. First, market incompleteness affects the optimal behavior of fiscal instruments.
Whereas the capital tax is very volatile in the complete-market economy, it is two orders of
magnitude less volatile in the incomplete-market setup. Indeed, due market incompleteness,
savings are also held for self-insurance motives, which makes capital taxation more costly. Second,
the implication of a less volatile capital tax is a more volatile public debt. Adding market
incompleteness increases the counter-cyclicality of public debt after technology shocks, compares
to the complete market case. Third, the labor tax remains almost constant in the IM economy,
as this tax distorts the labor supply and directly affects output and household revenues. Finally,
we find that monetary policy is mostly concerned by price stability and has little role to play for
redistribution, even in absence of time-varying capital tax.

Related literature. This paper is related to the literature on monetary policy with nominal
frictions and heterogeneous agents. This is a vast literature (including the seminal work of
Bewley, 1980, 1983). The more recent literature, in which our work is embedded, focuses on sticky
prices as the main friction. For instance, McKay et al. (2016), Gornemann et al. (2016), and
Kaplan et al. (2018) study the transmission channels of monetary policy in this setup. McKay
and Reis (2016) investigate the interaction between monetary and fiscal policies. Auclert (2019)
analyzes the transmission channels of monetary policy with heterogeneous agents. Regarding
normative issues, Nuño and Moll (2018) use a continuous-time approach and mean-field games
to characterize optimal monetary policies for economies without aggregate shocks. They do not
consider additional fiscal tools (or public debt neither). As a consequence, their results can be
consider as an upper bound of the redistributive objective of monetary policy.
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Second, the paper is related to the literature studying optimal fiscal policy with distorting
tools and the interactions between monetary and fiscal policy. This literature is developed under
the assumption of complete-market for idiosyncratic risk (Chari and Kehoe, 1999; Aiyagari et al.,
2002; Farhi, 2010; Bhandari et al., 2017a, among others). In this literature, our paper is close
to Correia et al. (2008) and Correia et al. (2013) who derive equivalence results in monetary
economies with optimal fiscal policies.

Finally the closest paper to our contribution is Bhandari et al. (2020). They derive optimal
fiscal and monetary policy when the government has access to non-distorting taxes, labor-income
tax and public debt. They find an important redistributive role for inflation when capital taxes
are constant. The difference with our results comes from the different modeling strategy. Indeed,
they consider an economy without capital and focus on the optimal policy in the transition
from an initial distribution of wealth, where credit constraints are not occasionally binding.
Thanks to our truncation theory we consider optimal policy in an economy with capital and
occasionally-binding credit constraints, around a steady-state with a consistent distribution of
wealth. The introduction of capital and the perturbation around an optimal steady state may
explain the difference between results.

2 The environment

Time is discrete, indexed by t > 0. The economy is populated by a continuum of agents of size 1,
distributed on a segment J following a non-atomic measure `: J(`) = 1. Following Green (1994),
we assume that the law of large number holds.

2.1 Risk

The only aggregate shock affects technology level in the economy. We denote this risk by (zt)t≥0

and we assume that is follows an AR(1) process: zt = ρzzt−1 + uzt with ρz > 0 the persistence
parameter and the shock uzt being a white noise with a normal distribution N (0, σ2

z). The
economy-wide productivity, denoted (Zt)t≥0 is assumed to relate to zt through the following
functional form: Zt = Z0e

zt .
In addition of this aggregate shock, agents face an uninsurable idiosyncratic labor productivity

shock yt ∈ Y. The set Y contains only distrnct values and a larger value for the realization
of yt means a higher productivity. An agent i can adjust her labor supply, denoted by lit and
earns the before-tax hourly wage w̃t (that depends on the aggregate shock). Therefore, her total
before-tax wage amounts to yitw̃tlit. We assume that the productivity process is a first-order
Markov chain with constant transition probabilities. We denote by Πyy′ the probability to switch
from productivity y in one period to productivity y′ in the following period. The share of agents
with productivity y, denoted by Sy, is constant and equal to: Sy =

∑
ỹΠỹySy for all y ∈ Y.

Finally, an history of productivity shock up to date t is denoted by yi,t = {yi0, . . . , yit}. Using
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transition probabilities, we compute the measure µt : Yt+1 → [0, 1], such that µt(yt) represents
the measure of agents with history yt in period t.

2.2 Preferences

In each period, the economy has two goods: a consumption good and labor. Households are
expected utility maximizers and rank streams of consumption (ct)t≥0 and of labor (lt)t≥0 according
to a time-separable intertemporal utility function equal to

∑∞
t=0 β

tU(ct, lt), where β ∈ (0, 1) is
a constant discount factor and U(c, l) is an instantaneous utility function. As is standard in
this class of models, we focus on the case where U is a Greenwood-Hercowitz-Huffman (GHH)
utility function, exhibiting no wealth effect for the labor supply. For any consumption c and
labor supply l, the instantaneous utility U(c, l) can be expressed as:

U(c, l) = u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
,

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and u : R+ → R
is twice continuously derivable, increasing, and concave, with u′(0) =∞.

2.3 Production

The consumption good Yt is produced by a unique profit-maximizing representative firm that
combines intermediate goods

(
yft (j)

)
j
from different sectors indexed by j ∈ [0, 1] using a standard

Dixit-Stiglitz aggregator. Denoting by ε the elasticity of substitution for the goods belonging to
the different sectors, we obtain that the production Yt can be expressed using a CES aggregation
of individual productions:

Yt =
[ˆ 1

0
yft (j)

ε−1
ε dj

] ε
ε−1

.

For any intermediate good j ∈ [0, 1], the production yft (j) is realized by a monopolistic firm.
The profit maximization for the firm producing the final good implies that its demand for the
intermediate good is:

yft (j) =
(
pt(j)
Pt

)−ε
Yt,

where Pt is the price of the consumption good. The zero profit condition of the firm producing
the final good implies that the price Pt can be expressed as:

Pt =
(ˆ 1

0
pt(j)1−εdj

) 1
1−ε

.
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Intermediary firms are endowed with a Cobb-Douglas production technology and use labor and
capital as a production factors. The production technology involves that l̃t(j) units of labor and
k̃t(j) units of capital are transformed into Ztk̃t(j)α l̃t(j)1−α units of intermediate good. At the
equilibrium, this production will exactly cover the demand yft (j) for the good j, that will sold
with the real price pt(j)/Pt. We denote as w̃t the real before-tax wage and r̃Kt the real before-tax
net interest rate on capital – that are both identical for all firms. The capital depreciation is
denoted δ > 0. Since intermediate firms have market power and internalize it, the firm’s objective
is to minimize production cost, including capital depreciation, subject to producing the demand
yt(j). The cost function C(j) of firm j can be therefore be expressed as:

C(j) = min
l̃t(j),k̃t(j)

{
(r̃Kt + δ)k̃t(j) + w̃t l̃t(j)

∣∣∣yft (j) = Ztk̃t(j)α l̃t(j)1−α
}
.

Denoting ζt(j) the Lagrange multiplier of the production constraint, first-order conditions imply:

r̃Kt + δ = ζt(j)α
yft (j)
k̃t(j)

and w̃t = ζt(j)(1− α)y
f
t (j)
l̃t(j)

. (1)

At the optimum, the production constraint yields therefore a common value for all ζt(j) among
all firms j. We denote by ζt this common value, which can be expressed as:

ζt = 1
Zt

(
r̃Kt + δ

α

)α (
w̃t

1− α

)1−α
. (2)

The firm j’s cost becomes then C(j) = ζty
f
t (j), which is linear in the demand yft (j). Following

the literature, we furthermore assume the presence of a subsidy τY on the total cost, that
will compensate for steady-state distortions, such that the total cost supported by firm’s j
is ζtyft (j)(1 − τY ). Furthermore, integrating factor price equations (1) over all firms, lead to
characterize total capital Kt−1 and total labor supply Lt:

Kt−1 = 1
Zt

(
r̃Kt + δ

α

)α−1 (
w̃t

1− α

)1−α
Yt and Lt = 1

Zt

(
r̃Kt + δ

α

)α (
w̃t

1− α

)−α
Yt, (3)

where Yt is the total production, which can also be written under the standard form as:

Yt = ZtK
α
t−1L

1−α
t . (4)

Finally, in this set-up, the usual factor prices relationships do not hold but we still have:

Kt−1
Lt

= α

1− α
w̃t

r̃Kt + δ
. (5)

In a real setup (featuring ζt = 1 for all t), equations (2) and (5) are equivalent to the standard
definitions of factor prices: r̃t + δ = αZt

(
Kt−1
Lt

)α−1
and w̃t = (1− α)Zt

(
Kt−1
Lt

)α
.
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In addition to the production cost, intermediate firms face a quadratic price adjustment cost
à la Rotemberg (1982) when setting their price in the period. The price adjustment cost is
proportional to the magnitude of the firm’s relative price change, which is in other words the
magnitude of the inflation in firm’s price. More formally, the adjustment cost can be expressed as
κ
2

(
pt(j)
pt−1(j) − 1

)2
Yt, where κ ≥ 0 is a scaling factor. We can thus deduce the real profit, denoted

Ωt(j), at date t of firm j:

Ωt(j) =
(
pt(j)
Pt
−
(
r̃t + δ

α

)α( w̃t
1− α

)1−α 1− τY

Zt

)(
pt(j)
Pt

)−ε
Yt −

κ

2

(
pt(j)
pt−1(j) − 1

)2
Yt − tYt .

where tYt is a lump-sum tax financing the subsidy τY . Computing the firm j’s intertemporal
profit requires to define the firm’s pricing kernel. In a heterogeneous agent economy, there is
no obvious choice for the pricing kernel. We discuss the reasons and the several options below.
For the moment, we assume that the firm’s j pricing kernel is independent of its type and we
denote the pricing kernel at date t by Mt

M0
. With this notation, the firm j’s program consisting

in choosing the price schedule (pt(j))t≥0 maximizing the intertemporal profit at date 0, can be
expressed as follows:

max
(pt(j))t≥0

E0

[ ∞∑
t=0

βt
Mt

M0

((
pt(j)
Pt
−
(
r̃t + δ

α

)α ( w̃t
1− α

)1−α 1− τY

Zt

)(
pt(j)
Pt

)−ε
Yt (6)

−κ2

(
pt(j)
pt−1(j) − 1

)2
Yt − tYt

)]
.

Observing that the program (6) is independent of the firm type j, we deduce that in the symmetric
equilibrium, all firms will charge the same price: pt(j) = Pt for all j ∈ [0, 1]. Denoting the gross
inflation rate as Πt = Pt+1

Pt
, we deduce the following first-order condition for the firm’s program:

Πt(Πt − 1) = ε

κ

(
ζt(1− τYt )−

(
1− 1

ε

))
+ βEtΠt+1(Πt+1 − 1)Yt+1

Yt

Mt+1
Mt

,

which the equation characterizing the Phillips curve in our environment. We set τY = 1
ε to

obtain an efficient steady-state. The real profit becomes then:

Ωt =
(

1− ζt −
κ

2π
2
t

)
Yt, (7)

where πt = Πt − 1 is the inflation rate. The Phillips curve becomes:

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

, (8)

Choosing the pricing kernel. As explained above, in a heterogeneous agent economy, there
is no straightforward choice for the firm’s pricing kernel. In a representative agent economy, the
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unique agent’s is necessarily the firm’s owner and there is no possible dispute about the firm’s
pricing kernel, which has to be the representative agent’s pricing kernel. The choice that we
make is to assume that the firm pricing kernel is defined based on the average marginal utility
among agents. We provide a formulation in equation (22) below in the Ramsey program. The
definition of the pricing kernel as a minor effect in the quantitative outcome of the model.

2.4 Assets

Agents have the possibility to trade two assets. The first one is public nominal debt, whose size
is denoted by Bt at date t. Public debt is issued by the government and is assumed to be exempt
of default risk. The nominal debt pays off a nominal gross interest rate that is pre-determined.
In other words, the interest rate between dates t− 1 and t is known at t− 1. We denote this
(gross and before-tax) interest rate by R̃B,Nt−1 . The associated real before-tax (gross) interest rate
for public debt is R̃B,Nt−1 /Πt, where Πt is the gross inflation rate. Note that due to inflation, this
ex-post real rate is not pre-determined anymore. The second asset is capital shares, whose pays
off a (net and before-tax) real interest rate r̃K – as introduced above.

We assume that the whole public debt and the whole capital are held by a risk-neutral fund
and that agents can trade shares of this fund. The interest rate paid by this fund to agents is
denoted by r̃.1 The three interest rates, for public debt, capital and fund, are connected by two
different relationships. The first one reflects the non-profit condition of the fund. We denote by
At the total asset amount in the economy, equal to the sum of public debt and capital, which
verifies At = Kt +Bt. Since the fund holds all the public debt and the capital and sell shares, its
non-profit condition implies:

r̃t =
r̃Kt Kt−1 +

(
R̃B,N

t−1
Πt
− 1

)
Bt−1

At−1
. (9)

The second relationship is the no-arbitrage condition between public debt holdings and capital
shares. This condition states that one unit of consumption invested in each of the two assets
should yield the same expected return. Formally, this condition can be written as:

Et

[
R̃B,Nt

Πt+1

]
= Et

[
1 + r̃Kt+1

]
. (10)

Because of the fund intermediation, households make no actual portfolio choice and we will
denote by at,i their holdings in fund claims. Agents face borrowing constraints, and their fund
holdings must be higher than −ā ≤ 0. Alternatively, this constraint states that agents cannot
borrow more than the amount a. In the rest of the paper, we will focus on the case where the

1The main advantage of this mechanism is that it allows us to have two different asset classes, without portfolio
choice.
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credit limit is above the steady-state natural borrowing limit.2

2.5 Government, fiscal tools and monetary policy

In each period t, the government has to finance an exogenous and possibly stochastic public
good expenditure Gt ≡ Gt(zt), as well as lump-sum transfers Tt, which will be optimally chosen.
The latter transfers can be thought of as social transfers, which can contribute to generate
progressivity in the overall tax system. Indeed, Dyrda and Pedroni (2018) have shown that such
transfers are needed to properly replicate the US fiscal system. The government has several
tools for financing the expenditure. First, the government can levy two distorting taxes. A first
tax τKt is based on payoffs of all interest-rate bearing assets. The second tax τLt concerns labor
income. Second, in addition to these distorting taxes on households, the government can also tax
the firms’ profits. Finally, besides taxation, the government can also issue a one-period public
nominal bond, that is assumed to be riskless. To sum it up, fiscal policy is characterized by four
instruments

(
τLt , τ

K
t , Tt, Bt

)
t=0,...,∞

for an exogenous public spending stream (Gt)t=0,...,∞.

To simplify notation, after-tax quantities are denoted without a tilde. The real after tax
wage wt, as well as the real after-tax interest rates rt, rKt , and RB,Nt (for the fund, the capital
and public debt, respectively) can therefore be expressed as follows:

wt = (1− τLt )w̃t, rt = (1− τKt )r̃t, (11)

rKt = (1− τKt )r̃Kt ,
RB,Nt

Πt
− 1 = (1− τKt )(R̃

B,N
t

Πt
− 1). (12)

Taxes on asset-bearing assets are identical for all asset classes and they are levied on real returns.
Regarding firm taxation, we assume that the government fully taxes profits. This solution

greatly simplifies the question of the distribution of firm profits among the population of
heterogeneous agents. As labor and capital taxes are distorting, this profit policy avoids further
distortion. We can now express the governmental budget constraints at date t:

Gt +
R̃B,Nt−1

Πt
Bt−1 + Tt ≤ τLt w̃tLt + τKt

(
r̃Kt Kt−1 +

(
R̃B,Nt−1

Πt
− 1

)
Bt−1

)

+
(

1− ζt −
κ

2π
2
t

)
Yt +Bt.

The government uses its financial resources, made of labor and asset taxes, firm profits and
public debt issuance, to finance public good, lump-sum transfers and debt repayment.

We now simplify the expression of the government budget constraint, following Chamley
(1986). Using the relationship (4) stating that ζtYt = (r̃Kt +δ)Kt−1 +w̃tLt, as well as the definition

2Aiyagari (1994) discusses the relevant values of ā, called the natural borrowing limit in an economy without
aggregate shocks. Shin (2006) provides a similar discussion in presence of aggregate shocks. A standard value in
the literature is ā = 0, which ensures that consumption remains positive in all states of the world.
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of post-tax rates in equations (11) and (12), the governmental budget constraint becomes:

Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt +
(

1− κ

2π
2
t

)
Yt − δKt−1. (13)

Monetary policy consists in choosing the nominal interest rate R̃B,Nt−1 on public debt (between
t− 1 and t), as well as the inflation rate πt. The choice of optimal monetary-fiscal policy is thus
the choice of the path of the instruments

(
τLt , τ

K
t , Tt, Bt, R̃

B,N
t , πt

)
t=0,...,∞

.

2.6 Agents’ program and resource constraints

We consider an agent i ∈ I. Her savings pay off the post-tax real interest rate rt, but must
remain greater than an exogenous threshold denoted −ā ≤ 0. Formally, the agent’s program can
be expressed, for a given initial endowment ai−1 as:

max
{ci

t,l
i
t,a

i
t}
∞
t=0

E0

∞∑
t=0

βtu

(
cit − χ−1 l

i,1+1/ϕ
t

1 + 1/ϕ

)
(14)

cit + ait = (1 + rt)ait−1 + wty
i
tl
i
t + Tt, (15)

ait ≥ −ā, cit > 0, lit > 0. (16)

where E0 an expectation operator. At date 0, the agent decides her consumption (cit)t≥0, her
labor supply (lit)t≥0, and her saving plans (ait)t≥0 that maximize her intertemporal utility of
equation (14), subject to a budget constraint (15) and the previous borrowing limit (16).

The first-order conditions corresponding to the agent’s program (14)–(16) can be expressed
as – by using the properties of the GHH utility function:

u′(cit − χ−1 l
i,1+1/ϕ
t

1 + 1/ϕ) = βEt

(1 + rt+1)u′(cit+1 − χ−1 l
i,1+1/ϕ
t+1

1 + 1/ϕ)

+ νit , (17)

l
i,1/ϕ
t = χwty

i
t, (18)

where the Lagrange multiplier of the credit constraint of agent i has been denoted βtνit . Of
course, this Lagrange multiplier is null when the agent is not credit-constrained.

We now express the economy-wide constraints. First, the clearing of financial market, labor
market and goods market can be expressed respectively as:

ˆ
i
ait`(di) = At = Bt +Kt,

ˆ
i
yitl

i
t` (di) = Lt, (19)

ˆ
i
cit`(di) +Gt +Kt = Yt +Kt−1 − δKt−1, (20)

We can now formulate our equilibrium definition.
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Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection
of individual allocations

(
cit, l

i
t, a

i
t

)
t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price processes

(wt, rt, rKt , R
B,N
t , w̃t, r̃t, r̃

K
t , R̃

B,N
t )t≥0, of fiscal policies (τKt , τLt , Bt, Tt)t≥0, and of monetary poli-

cies (Πt)t≥0 such that, for an initial wealth distribution
(
ai−1

)
i∈I , and for initial values of capital

stock K−1 =
´
i a
i
−1`(di), of public debt B−1 and of the aggregate shock z−1, we have:

1. given prices,
(
cit, l

i
t, a

i
t

)
t≥0,i∈I solve the agent’s optimization program in equations (14)–(16);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equations (19) and
(20) hold;

3. the government budget is balanced at all dates: equation (13) holds for all t ≥ 0;

4. factor prices (wt, rt, rKt , R
B,N
t , w̃t, r̃t, r̃

K
t , R̃

B,N
t )t≥0 are consistent with condition (5), re-

strictions (9) and (10), as well as with post-tax definitions (11) and (12);

5. the inflation path (Πt)t≥0 is consistent with the dynamics of the Phillips curve: at any date
t ≥ 0, equation (8) holds.

The goal of this paper is to determine the optimal fiscal policy that generates the sequential
equilibrium-maximizing aggregate welfare, using a utilitarian welfare criteria. This is a difficult
question, as the policy is composed of five instruments

(
τLt , τ

K
t , Tt, Bt, R̃

B,N
t

)
whichaffects the

saving decisions and the labor supplies of all agents, the capital stock, and the price dynamics.
We propose a solution that involves three steps. First, we derive the solution of the Ramsey
program in the general case, so as to obtain a general characterization of the role of monetary
policy (Section 3). Second, we introduce the truncation theory in the space of idiosyncratic
histories of LeGrand and Ragot (2019), that enables to provide finite-state representation of the
Ramsey solution (Section 4). Finally, we use this finite state representation to quantitatively
solve the Ramsey problem (Section 5).

3 Optimal fiscal and monetary policies

3.1 The Ramsey problem

We now solve the Ramsey problem in our incomplete-market economy with aggregate shocks.
The Ramsey problem requires the government to jointly choose fiscal and monetary policies
that maximize aggregate welfare. This fiscal policy consists of a path for transfers, labor and
capital taxes, as well as a path of public debt, while the monetary policy consists of an inflation
path. Interestingly, monetary policy has to balance the cost of output destruction (through price
adjustment cost) and nominal debt monetization (as well as a more indirect role on mark-ups).

The aggregate welfare is an additive criterion that depends on the weights, denoted (ωit)i∈It≥0,
on each agent. Weights are normalized such that the total weight of the population is one at
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each date:
´
i ω

i
t`(di) = 1. Loosely speaking, these weights represent the relative importance of

each agent in the planner’s objective. Formally, the aggregate welfare criterion can be expressed
as follows: ∞∑

t=0
βt
ˆ
i
ωitU(cit, lit)`(di). (21)

Those weights will be calibrated in our quantitative exercise of Section 5, so as to match the US
fiscal and monetary policies at the steady-state. We also assume that the pricing kernel Mt is
set consistently with the aggregate welfare criterion and that the pricing kernel is the average
“weighted” marginal utility:

Mt =
ˆ
i
ωitUc(cit, lit)`(di). (22)

We choose this pricing kernel to avoid any inefficiency in the financial sector, that the planner
would like to correct. It appears that the choice of another pricing kernel has minor quantitative
effects. The government has to select the competitive equilibrium associated to the highest
welfare subject to a constraint of balanced governmental budget. We can formalize the Ramsey
program as follows:

max
(wt,rt,w̃t,r̃K

t ,R̃
B,N
t ,τK

t ,τL
t ,Bt,Kt,Lt,Πt,(ai

t,c
i
t,l

i
t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

]
, (23)

Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt +
(

1− κ

2π
2
t

)
Yt − δKt−1. (24)

for all i ∈ I: ait + cit = (1 + rt)ait−1 + wty
i
tl
i
t + Tt, (25)

ait ≥ −ā, (26)

Uc(cit, lit) = βEt
[
Uc(cit+1, l

i
t+1)(1 + rt+1)

]
+ νit , (27)

l
i,1/ϕ
t = χwty

i
t, (28)

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

, (29)

Kt +Bt =
ˆ
i
ait`(di), Lt =

ˆ
i
yitl

i
t` (di) , (30)

rt = (1− τKt )
r̃Kt Kt−1 +

(
R̃B,N

t−1
Πt
− 1

)
Bt−1

At−1
(31)

and subject to several other constraints (that are not reported here for space constraints): the
definition (2) of ζt, the one (4) of Yt, the ones (11) and (12) of after-tax wage wt, the no-arbitrage
constraint (10), the relationship (5) between factor prices, the pricing kernel definition (22), and
the positivity of labor and consumption choices, and initial conditions. The constraints in the
Ramsey program include: the governmental and individual budget constraints (24) and (25),
individual credit constraint (26), Euler equations for consumption and labor (27) and (28), the
Phillips curve (29), market clearing conditions for financial and labor markets (30), and the
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zero profit condition for the fund (31). It is noteworthy that we have modified the zero-profit
condition (9) to express it as a function of rt, R̃B,Nt , and r̃Kt . This enables us to drop r̃t, rKt ,
and RB,Nt from the planner’s program since they do not play any role.

The Ramsey program can be reformulated by integrating in the objective function the
individual Euler equations (27) for consumption as well as the equation for the Phillips curve.
The strategy is to use the methodology of Marcet and Marimon (2019) applied to incomplete
market environments. The general methodology is developed in LeGrand and Ragot (2020),
where we discuss more generally the use of the Lagrangian approach in an environment featuring
incomplete markets and occasionally binding credit constraints (see also Section 4 for a discussion).
We denote by βtλitωit the Lagrange multiplier of the Euler equation of agent i at date t. Similarly,
we denote by βtγt the Lagrange multiplier of the equation (29) of the Phillips curve. With this
notation, the objective of the Ramsey program (23) becomes (see Appendix B for further detail
about the analytical derivation):

J =E0

∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)− E0

∞∑
t=0

βt
ˆ
i

(
ωitλ

i
t − (1 + rt)λit−1ω

i
t−1

)
Uc(cit, lit)`(di) (32)

− E0

∞∑
t=0

βt
(

(γt − γt−1)Πt (Πt − 1)− ε− 1
κ

γt (ζt − 1)
)
YtMt.

With this notation, the Ramsey program (23)–(30) can now be expressed as:

max
(wt,rt,R̃

B,N
t ,w̃t,r̃K

t ,τ
K
t ,τL

t ,Bt,Tt,Kt,Lt,Πt,(ai
t,c

i
t,l

i
t)i)t≥0

J,

subject to the same set of constraints, except the individual Euler equations for consumption
(27) and the Phillips curve (29). Marcet and Marimon (2019) rely on a similar transformation for
individual Euler equations. We here use the same methodology to cope with the Phillips curve.
The main idea of this representation is that minimizing the cost of the constraints is now an
objective.

It is worth mentioning a new difference between real and monetary frameworks. As is
standard in optimal fiscal policy literature and following Chamley (1986), the Ramsey problem in
a real framework can be written in post-tax prices rt, rKt , RB,Nt , and wt. To derive fiscal policy,
the literature usually solves for the post-tax allocation and then derive the value of the taxes
comparing post-tax prices and marginal productivities. This methodology cannot be applied in
a monetary framework when the Phillips curve is a binding constraint (i.e., γt 6= 0), because the
before-tax price now enters into the objective of the planner.

Finally, for simplifying result interpretation, it is useful to introduce a new concept, that we
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call the social valuation of liquidity for agent i denoted by ψit and formally defined as:

ψit ≡ ωitUc(cit, lit)− Ucc(cit, lit)
(
λit − (1 + rt)λit−1

)
(33)

−
(

(γt − γt−1) Πt (Πt − 1)− ε− 1
κ

γt (ζt − 1)
)
Ytω

i
tUcc(cit, lit).

The valuation ψit measures the benefit – from the planer’s perspective – of transferring an extra
unit of consumption to agent i, valued with weight ωit. As can be seen in equation (33), this
valuation consists of three terms. The first one is the marginal utility of consumption ωitUc(cit, lit),
which can be seen as the private valuation of liquidity for agent i. The second and third terms
can been seen as the internalization, by the planner, of the economy-wide externalities of this
extra consumption unit. More precisely, the second term in (33) takes into consideration the
impact of the extra unit consumption on saving incentives from periods t − 1 to t and from
periods t to t+ 1. An extra consumption unit makes the agent more willing to smooth out her
consumption between periods t and t+ 1 and thus makes her Euler equation more “binding”.
This more “binding”constraint reduces the utility by the algebraic quantity Ucc(cit, lit)λit, where
λit is the Lagrange multiplier of the agent’s Euler equation at date t. The extra consumption
unit at t also makes the agent less willing to smooth her consumption between periods t− 1 and
t and therefore “relaxes” the constraint of date t− 1. This is reflected in the quantity λit−1.

These two first effects are present both in a real and a nominal frameworks. This is not the
case of the third effect that is specific to the nominal framework and vanishes in the real one
(when Πt = ζ = 1 for all t). This effect, due to the third and last term of equation (33), reflects
how the extra consumption unit affects the pricing kernel of the agent and thereby the valuation
of monopoly profits.

In addition to ψit, another key quantity is the Lagrange multiplier, µt, on the governmental
budget constraint. The quantity µt represents the marginal cost at period t of transferring one
extra unit of consumption to households. Therefore, the quantity ψit − µt can be interpreted as
the “net” valuation of liquidity: this is from the planner’s perspective, the benefit of transferring
one extra unit of consumption to agent i, net of the governmental cost. We thus define:

ψ̂it = ψit − µt. (34)

3.2 Understanding the role of monetary policy: A decomposition

The previous environment is very general and various effects are at stake. To better understand
the mechanisms, we decompose the investigation in the analysis of four different economies,
which differ according to the tools available to the planner. We consider:

1. the real economy with both time-varying capital and labor taxes, without monetary frictions
(κ = 0);
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2. the monetary economy, with nominal frictions and time-varying capital and labor taxes;

3. the economy without time-varying capital taxes and with only time-varying labor taxes;

4. the economy without time-varying nominal interest rate and time-varying taxes..

The roadmap is the following. The first economy will serve as a benchmark. Our main result will
consist in showing that the allocations of the real economy can be replicated with the full set
of fiscal instruments (second economy). The following two economies (economy 3 and 4) allow
us to identify the distortions implied by a fixed capital tax and a fixed nominal interest rate,
respectively.

3.2.1 The benchmark: The real economy case

To understand the impact of nominal frictions on our results, we compare a monetary economy
with frictions to a frictionless economy. We define the real-economy allocation as a flexible-price
economy, where the government can choose in each period capital and labor taxes, public debt,
and transfers so as to optimize the aggregate welfare. More formally, the real economy allocation
is the solution of the following program:

max
(wt,rt,Bt,Kt,Lt,Tt,(ai

t,c
i
t,l

i
t)i)

J, (35)

with κ = 0 for all t (real economy, which means no Phillips curve), ζt = 1 (because no price-
setting inefficiency), Πt = 1 (no inflation), and subject to budget constraints (24) and (25), Euler
equations (27) and (28), and aggregation equations (30), and the relationships between rt, rKt ,
(equations (9) and (10) for post-tax interest rates). The before-tax rates w̃t and r̃Kt can then be
deduced from equations (2) and (5) – with ζt = 1. Taxes τL and τK are then obtained from the
relationships between pre-tax and post-tax rates (11) and (12). Finally, the nominal rate R̃B,Nt

can be deduced from relationship (31).
A solution to Ramsey program is characterized by five first-order conditions. The first one,

with respect to individual savings can be written as:

ψ̂it = βEt
[
(1 + rt+1)ψ̂it

]
, (36)

for non-constrained agents i. Constrained agents i face λit = 0. Equation (36) states that the net
social value of liquidity should be smoothed out over time. It can be interpreted as a Euler-like
equation for the planner and generalizes the standard individual Euler equation by taking into
account the externalities of saving choices on interest rate.

The second first-order condition concerns the role of public debt and is written as follows:

µt = βEt
[
µt+1

(
1 + r̃Kt+1

)]
. (37)
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We recall that µt is the Lagrange multiplier on the governmental budget constraint – and that
therefore represents the shadow cost of one unit of consumption for the planner. Equation (37)
therefore states that the shadow cost of resources should be smoothed out through time. Again,
as equation (36), equation (37) can be interpreted as a Euler-like equation, with one difference:
the interest rate is the before-tax interest rate on capital (r̃K) instead of the post-tax interest
rate of the fund (r) in equation (36).

The third first-order condition deals with the post-tax interest rate rt and can be written as:
ˆ
i
ψ̂ita

i
t−1`(di) = −

ˆ
i
λit−1Uc(cit, lit)`(di). (38)

In absence of any side effect, the planner would chose the interest rate so as to set to zero
the aggregate net value of liquidity among all agents – weighted by agents’ asset holdings,
such that

´
i ψ̂

i
ta
i
t−1`(di) = 0, or equivalently to equalize social liquidity valuation to its cost:´

i ω
i
tψ

i
ta
i
t−1`(di) = µt

´
i ω

i
ta
i
t−1`(di). However, this is not possible since the planner needs to

account for the side effect of rt on the savings incentives, through the Euler equation. This effect
is proportional to the shadow cost of the Euler equation. Note that the sign of this shadow cost
depends on the planner’s perception of the savings quantity in the economy. It is positive when
the planner perceives excess savings in the economy, and negative the other way around (see
LeGrand and Ragot, 2020 for a lengthier discussion). In consequence, for instance, when there is
an excess quantity of savings in the economy, the total net valuation of liquidity is negative.

The fourth condition regarding the post-tax wage rate wt is:
ˆ
i
ψ̂ity

i
tl
i
t`(di) = ϕµt

(
Lt − (1− α) Yt

wt

)
.

Similarly to equation (38), in absence of side effect for the wage rate, the planner would like to
set the aggregate net liquidity value – weighted by individual labor supply in efficient terms – to
zero. However, this is not possible, since planner has also to take into account the distortions
implied by wage variations on total labor supply and relatedly on output. These distortions are
proportional to the labor elasticity ϕ and vanish when labor supply is inelastic (ϕ = 0).

Finally, the fifth condition regrading the lump-sum transfer Tt is:
ˆ
i
ψ̂it`(di) = 0. (39)

Since there is no distortions implied by the lump-sum transfer, it is set such that the redistributive
effect is null.

Characterizing the optimal fiscal policy in an heterogeneous-agent framework is already a
difficult task. We are aware of very few papers doing so in absence of aggregate shocks. This is the
case of Açikgöz (2015), that is further refined in Açikgöz et al. (2018), who relies on a Lagrangian
approach to compute the planner’s first-order conditions and uses a numerical approximation to
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compute Lagrange multipliers. Another approach is the one of Dyrda and Pedroni (2018) and
Chang et al. (2018), who maximize the aggregate welfare through an extensive search over all
possible instrument values. This solution is computionnally very intensive, which limits further
developments. Nuño and Moll (2018) analyze social optima in a continuous-time framework. To
the best of our knowledge, Bhandari et al. (2020) is the only paper deriving optimal Ramsey
policy in a heterogeneous-agent framework with aggregate shocks. If their solution technique
can handle large aggregate shocks, their approach must feature credit constraints that are either
always binding or never binding. Our solution – that we describe in detail in Section 4 – can
account for occasionally binding credit constraints, which may be the relevant case in some
environments.

3.2.2 An irrelevance result with incomplete markets: The monetary economy with
a full set of fiscal tools

We now turn to the monetary set-up where the full set of fiscal instruments is available. We also
state our main theoretical result showing the irrelevance of monetary tools. The real allocation
can be recovered in a monetary economy when the full set of fiscal instruments is available.

As a preliminary remark, observe that our monetary economy features two market imper-
fections. The first imperfection is the imperfect competition between firms that yields a price
markup ζt strictly above one. The second imperfection is the Rotemberg inefficiency that prevents
firms from setting at no cost their price. The two imperfections are complements. Indeed, in
absence of Rotemberg inefficiency (i.e., κ = 0), firm’s profit maximization yields ζt = 1 and the
markup inefficiency vanishes, as can be seen from the Phillips curve in equation (8). Similarly,
we observe from the Phillips curve that if ζt = 1, we can set Πt = 1 and thereby avoid any
cost related to Rotemberg inefficiency. The objective of the planner’s – in a monetary setup –
therefore includes minimizing the impact of these two inefficiencies.

We first solve for the optimal monetary and fiscal policies when the government has access to
a full set of fiscal tools. This program can be written as:

max
(wt,rt,w̃t,r̃K

t ,Bt,Tt,Kt,Lt,Πt,(ai
t,c

i
t,l

i
t)i)t≥0

J,

subject to the same equations as in the real economy case (without κ 6= 0), as well as the
Phillips curve (29) and the factor price equations (2) and (5). The first observation is that
we have dropped the taxes from the Ramsey program since, as in the real-economy case, they
do not play a direct role and can be substituted by post-tax rates rt, rKt and wt. The second
observation is that the pre-tax nominal rate R̃B,Nt , along with constraints (9) and (10), are
also dropped since they do not play any role. The second and more important observation is
that, as in the real economy, the before-tax rates w̃t and r̃Kt only play a role in the markup
coefficient ζt of equation (2) and in the factor price equation (5). The planner has thus two
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independent instruments (r̃Kt or w̃t on one side and Πt on the other side) to address the two
monetary frictions of the economy. The planner can thus set r̃Kt or w̃t such that the markup
inefficiency vanishes (i.e., such that ζt = 1). The gross inflation rate can then be set to 1 at all
dates, so as to neutralize the Rotemberg inefficiency. The program, with the full set of tools, can
be expressed as max(wt,rt,Bt,Kt,Lt,(ai

t,c
i
t,l

i
t)i)t≥0

J , subject to exactly the same constraints as in the
real economy case (because Πt = ζt = 1 at all dates). This thus leads the same allocation as in
the real economy. We summarize this first result in the following proposition.

Proposition 1 (An irrevelance result) When both labor and capital taxes are available, the
government exactly reproduces the real-economy allocation.

3.2.3 The economy without time-varying capital taxes

We now turn to our main variation, in which we assume that the planner cannot vary the capital
tax, but only the labor tax. The capital tax is constant and fixed at its optimal steady-state τKSS
to avoid steady-state distortions. The problem of the planner can now be written as:

max
(wt,rt,R̃

B,N
t ,w̃t,r̃K

t ,τ
L
t ,Tt,Bt,Kt,Lt,Πt,(ai

t,c
i
t,l

i
t)i)t≥0

J,

subject to same equations as in case with the full set of instruments (Section 3.2.2), as well as to
the additional constraint τKt = τKSS , reflecting the new steady state value of the capital tax. The
main difference with the previous case is that we cannot choose w̃t and r̃Kt to set ζt = 1 and
fully offset markup inefficiency. Indeed, because of the fixed capital tax rate and the factor price
relationship (5), the pre-tax rate r̃Kt affects both the markup ζt and the fund interest rate rt.
Nominal inefficiencies cannot be removed, and the inflation rate cannot consequently set be set
to 1. We derive the first-order conditions in Appendix D.

Compared to the full case, we have two additional Lagrange multiplier: one, denoted by Υt

on the no-arbitrage condition (10), and another one, denoted by Γt on the zero-profit condition
(31) of the fund. We also have three additional first-order conditions related to nominal rate
R̃B,Nt , pre-tax capital rate r̃Kt , and inflation rate Πt. First, the condition with respect to R̃B,Nt is:(

1− τK
)
Et
[Γt+1

Πt+1

]
Bt = ΥtEt

[ 1
Πt+1

]
, (40)

which reflects the connection between the two constraints involving R̃B,Nt . The first-order
condition with respect to r̃Kt is:

Υt−1 + Γt(1− τKSS) (At−1 −Bt−1) =ε− 1
ακ

γtKt−1Mt,

where the left-hand side accounts for the effect of r̃Kt on nominal interest rate R̃B,Nt , and on the
fund rate rt, while the right-hand side reflects the effects of r̃Kt on the markup ζt. This is exactly
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what was explained before: due to fixed capital tax, nominal inefficiencies cannot be addressed
independently of saving incentives.

The third and last additional first-order condition concerns the inflation rate:

µtκ (Πt − 1) = − (γt − γt−1) (2Πt − 1)Mt +
(
Γt
(
1− τKSS

)
Bt−1 −Υt−1

) R̃B,Nt−1
YtΠ2

t

, (41)

where we recall that Mt is the pricing kernel. The left side captures the cost of an increase in
inflation in terms of output destruction. The right hand side is the benefits of an increase in
current’s inflation in terms of Phillips curve’s relaxation and of nominal interest rate variation.

Second, the choice of individual savings ait yields:

ψ̂it =

=extended real effect︷ ︸︸ ︷
βEt

[
(1 + rt+1)ψ̂it+1

]
(42)

+ βEt

[
Γt+1

(
rt+1 −

(
1− τKSS

)(R̃B,Nt

Πt+1
− 1

))]
︸ ︷︷ ︸

=wedge rate effect

.

which is similar to the real case, except that the net social value of liquidity ψ̂it now includes a
term related to the variation of the pricing kernel due to one extra unit of consumption. This is
why we refer to this term as an “extended real effect”. There is a second difference related to the
wedge in interest rate: the (pre-tax) rate on agents’ saving is r̃t, while the one on public debt,
and thus the cost of planner’s funding, is R̃B,N

t
Πt+1

. We refer to this as a “wedge rate effect”.
Third, the choice of public debt yields the following first-order condition:

µt =

=extended real effect︷ ︸︸ ︷
βEt

[
µt+1

(
1− δ + ζ−1

t+1(r̃t+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

(43)

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
︸ ︷︷ ︸

=Phillips curve effect

+ ε− 1
κ

βEt
[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
︸ ︷︷ ︸

=markup effect

+ β
(
1− τKSS

)
Et

[
Γt+1

(
R̃B,Nt

Πt+1
− 1− r̃Kt+1

)]
︸ ︷︷ ︸

=wedge rate effect

(44)

The first line states that public debt enables the planner to smooth out the cost of liquidity for
the government. This is similar to the real economy case, except that the smoothing also needs
to account for nominal effects, and in particular the presence of the markup and of the price
adjustment cost, as well as the wedge between the capital rate and the public debt rate. When

19



monetary imperfections go away (ζt = 1 and Πt = 1), we exactly fall back on the smoothing
effect of the real economy (equation (37)), up to the wedge rate effect. The second line is related
to the impact of public debt on the Phillips curve through capital crowding out and output
mitigation. The third line comes from effect on public debt on the markup inefficiency – through
capital crowding-out and interest rate. Finally, the fourth line is related to the wedge rate effect,
stemming from the difference in rates between public debt and capital.

The first-order condition related to the interest rate rt is:

ˆ
i
ψ̂ita

i
t−1`(di) = −

=extended real effect︷ ︸︸ ︷ˆ
i
λit−1Uc(cit, lit)`(di)−

ε− 1
κ

γt
Ytζt
rt

Mt︸ ︷︷ ︸
=markup effect

+
=rate setting︷ ︸︸ ︷

ΓtAt−1. (45)

We can parallel the interpretation of the real case. In the monetary setting, a second side-effect
is present and is related to the impact of rt on price mark-up. Due to the lack of appropriate
instruments, the planner has to set the post-tax interest rate rt to manage at the same time the
aggregate net benefit of liquidity and mitigates the consequences of the markup inefficiency. The
constraint related to the relationship between the rates of teh fund, of public debt and capital is
also present.

Finally, equation (39) for Tt being unchanged, the choice of wt yields the following FOC:

ˆ
i
ωitψ̂

i
ty
i
tl
i
t`(di) =

=extended real effect︷ ︸︸ ︷
ϕµt

(
Lt − (1− α)ϕYt

wt

(
1− κ

2 (Πt − 1)2
))

(46)

+ (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
YtMt.︸ ︷︷ ︸

=Phillips curve effect

The interpretation of the FOC in equation (46) is similar to the one in equation (46). Due to
missing instruments, setting the post-tax wage rate must also account for the effect related to
nominal rigidities through the Phillips curve – in addition to the effect on labor supply and
output already present in the real case. Note that when labor is inelastic (ϕ = 0), these two
effects are absent, since labor supply – and thereby output – remain unaffected by wage variations.
All in all, the planner sets the post-tax wage to pursue both a real and a nominal objective:
manage aggregate net benefit of liquidity (while internalizing the possible effects on aggregate
labor supply) and mitigate the nominal inefficiencies.

These characterizations will be used in the simulation exercises below. We here summarize
these findings in the following proposition.

Proposition 2 In the economy with constant capital taxes,

1. the Rotemberg inefficiency is solely – though imperfectly – addressed by the inflation rate;
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2. the markup inefficiency is jointly – though imperfectly – addressed by the interest and wage
rates, as well as the public debt;

3. once we account for the role of liquidity in pricing kernel for firms, the evolution of the net
liquidity benefit still follows, as in the real case, an Euler equation.

4 Projecting the model

We use the method detailed in LeGrand and Ragot (2020) to provide a finite state representation
of the model and of the Ramsey program. The general idea of the method relies on the “truncation”
of idiosyncratic histories. More precisely, we construct a representation of the model in which
agents having the same history over last N periods (where N is a fixed horizon) are represented
by the same history, having the same wealth and the same consumption-saving decisions. The
corresponding truncated model features a consistent finite state space representation of Bewley
models. One of the crucial features of our approach is that the truncated model is compatible
with standard expected-utility maximization. More precisely the allocations of the truncated
histories can be computed as the result of an almost-standard competitive equilibrium. To
achieve this, we need to introduce so-called preference shifters that are multiplicative factors
on utility functions. These shifters are easy to identify and can be computed such that the
steady-state allocation of the truncated model are consistent with the one of the full-fledged
model, and in particular both feature the same aggregate quantities and the same prices. The
main benefit of our approach is that it enables us to use the tools of Marcet and Marimon (2019)
to solve a Ramsey program in presence of aggregate shocks (with possibly a large number of
planner’s instruments). We now detail the truncation method in our monetary setup.

4.1 The truncation setup

Let N > 0 be a truncation length. A truncated history is a vector yN = (y−N+1, . . . , y0) ∈ YN

(where Y is the finite set of possible idiosyncratic realizations) and there are therefore Y N possible
histories (where Y = Card(Y)). We present the truncated economy as an island-metaphor. We
consider that there are Y N different islands, corresponding to specific truncated histories. An
agent with history yN at date t will be located on the corresponding island yN and when her
N -length history becomes ŷN in period t+ 1, she will move to island ŷN . An island-planner can
freely transfer resources within – but not across – islands. As a consequence, all inhabitants of
the same island are endowed with the same beginning-of-period wealth and the same allocation.
For agents on island yN , we denote the per capita consumption level ct,yN , the labor supply lt,yN ,
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and the savings at,yN . The beginning-of-period wealth, denoted by ãt,yN is equal to:

ãt,yN =
∑

ŷN∈YN

St−1,ŷN

St,yN

Πt,ŷN ,yNat−1,ŷN , (47)

and reflects the fact that the wealth of all agents of island yN are pooled together when they
arrive from different islands. The quantity Πt,ŷN ,yN is the probability to transit from island ŷN

at t− 1 to island yN at t, and St,yN is the size of island yN at date t, which is defined by the
recursion: St,yN =

∑
ŷN∈YN St−1,ŷN Πt,ŷN ,yN .

We further assume that agents face island-specific preference shifters, denoted by ξyN , that
multiply their utility function (see Section 4.2for a discussion about the role and the calibration
of these parameters). The island-planner’s program can be expressed as:

max
(c

t,yN ,l
t,yN ,a

t,yN ,ã
t,yN )

t≥0,yN∈YN

E0

∞∑
t=0

βt
∑

yN∈YN

St,yN ξyNU(ct,yN , lt,yN ), (48)

at,yN + ct,yN = wty
N
0 lt,yN + (1 + rt)ãt,yN + Tt, for yN ∈ YN , (49)

ct,yN , lt,yN ≥ 0, at,yN ≥ −ā, for yN ∈ YN , (50)

where yN0 is the current productivity status. Denoting by βtνt,yN the Lagrange multiplier of the
credit constraint, the Euler equations are:

ξyNUc(ct,yN , lt,yN ) = βEt

 ∑
ỹN�yN

Πt+1,yN ,ỹN ξỹNUc(ct+1,ỹN , lt+1,ỹN )(1 + rt+1)

+ νt,yN , (51)

l
1/ϕ
t,yN = χwty

N
0 , (52)

νt,yN (at,yN + ā) = 0 and νt,yN ≥ 0, (53)

which are very close to the individual Euler equations (17) and (18). The main difference is
the ξs that we explain below. It is worth noting that Euler equations (51) and (52) could be
derived in a decentralized set-up featuring a well-chosen lump-sum transfer scheme. For the sake
of simplicity, we only presented here the island metaphor and see LeGrand and Ragot (2020,
Section 3.2) for a detailed presentation of the decentralization mechanism.

We assume that in the island economy, the production and governmental sectors are unchanged,
compared to full-fledged economy of Section 2. We can then define market clearing conditions,
for labor supply and asset holdings, as follows:

Lt =
∑

yN∈YN

yN0 St,yN lt,yN , and Bt +Kt =
∑

yN∈YN

St,yNat,yN . (54)

We can then define a truncated equilibrium as follows.

Definition 2 (Truncated equilibrium) A truncated equilibrium is a collection of individual
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allocations
(
cit, l

i
t, a

i
t

)
t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of the set of price processes

(wt, rt, rKt , R
B,N
t , w̃t, r̃t, r̃

K
t , R̃

B,N
t )t≥0, of fiscal policies (τKt , τLt , Bt, Tt)t≥0, and of monetary poli-

cies (Πt)t≥0 such that, for an initial wealth distribution
(
ai−1

)
i∈I , and for initial values of capital

stock K−1 =
´
i a
i
−1`(di), of public debt B−1 and of the aggregate shock z−1, we have:

1. given prices,
(
ct,yN , lt,yN , at,yN

)yN∈YN

t≥0
solve the Euler equations (51) and (52);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equations (54) hold;

3. the government budget is balanced at all dates: equation (13) holds for all t ≥ 0;

4. factor prices (wt, rt, rKt , R
B,N
t , w̃t, r̃t, r̃

K
t , R̃

B,N
t )t≥0 are consistent with condition (5), re-

strictions (9) and (10), as well as with post-tax definitions (11) and (12);

5. the inflation path (Πt)t≥0 is consistent with the dynamics of the Phillips curve: at any date
t ≥ 0, equation (8) holds.

4.2 Constructing an approximated economy

We now show how to construct the preference shifters ξs such that the truncated equilibrium is
consistent with the equilibrium of the full-fledged economy. As a preliminary step, we formally
define the truncation of an allocation. Consider the sequential representation of a general Bewley
model. In this economy, individual choices depend on the whole history of idiosyncratic and
aggregate shocks, yt and zt respectively. For a generic variable, Xt(yt, zt), its truncation N -period
history yN , denoted by Xt,yN is formally defined as:

Xt,yN =

∑
yt∈Yt|(yt

t−N+1,...,y
t
t)=yN Xt(yt, zt)µt(yt)

St,yN

, (55)

where we recall that µt(yt) is the measure of agents with history yt. The truncation Xt,yN is
equal to the average value of the variable X among the population of agents experiencing history
yN over the last N periods in the full-fledged Bewley model.

The steady state. The first step is that the ξs can be constructed such that at the steady
state, allocations of the truncated model are truncations of allocations of the full-fledged model.
We repeat and adapt Proposition 2 of LeGrand and Ragot (2020).

Proposition 3 (Constructing the ξs) The preference shifters (ξyN )yN∈YN can be computed
at the steady state, such that the truncation – following equation (55) – of the steady-state
equilibrium allocations of the full-fledged model (Definition 1) is an equilibrium allocation in the
truncated model (Definition 2).
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The logic of Proposition 3 is as follows. The first step is to compute the policy functions in
the full-fledged model at steady state. These allocations can then be integrated using formula
(55) to compute truncated allocations and characterized credit-constrained truncated histories.
Euler equations (51) can then be inverted to compute the ξs. From an calculus perspective,
the computation of the ξs only elementary matrix calculus. A noteworthy side-effect of the
construction of Proposition 3 is that the prices and aggregate quantities are identical in both the
truncated and full-fledged equilibria.

Why are the ξs needed for? Because there is a non-degenerate distribution of agents with the
same truncated history in the full-fledged Bewley model, truncated allocations are not consistent
with history-level Euler equations. More precisely, truncating Euler equations does not yield valid
Euler equations for truncated allocations (except in the particular case when marginal utilities
are linear). The ξs precisely aim to reconcile Euler equations and truncated allocations can be
seen as the result of a competitive equilibrium (provided that agents are endowed with preference
shifters). Their role is therefore to (partly) recover the within-truncated-history heterogeneity
that has been removed by the truncation operation – that assigns the same truncated history
and thus the same allocation to actually different agents.

Finally, we can state a convergence result regarding the truncated economy. When the length
N becomes infinitely large, the truncated allocations converge to the allocations of the full-fledged
model at the steady state, and the preference shifters (ξs) converge to 1.

With aggregate shocks. To simulate the model in presence of aggregate shocks, we make two
additional assumptions: (i) the ξs remain unchanged and equal to their steady-state value; (ii)
the set of credit-constrained agents remains unchanged compared to the steady-state. With these
two assumptions, we can simulate the model in presence of aggregate shocks using perturbation
techniques, and therefore by using tried-and-tested tools, such as Dynare (Adjemian et al.,
2011). As in the steady state, we can prove a convergence result showing that in presence of
aggregate shocks, truncated allocations converge to allocations of the full-fledged model (as long
as allocations are computed using a perturbation approach).

A couple of remarks regarding assumptions are in order. The first assumption (regarding ξs)
implies that the within-truncated-history heterogeneity remains constant, but importantly is not
discarded. The second assumption (regarding credit-constrained histories) is not imposed by
our truncation technique but by the perturbation method that we use. Should we use another
resolution method, this assumption could be dropped out.

4.3 Ramsey program

The construction of the truncated economy provides a setup in which Ramsey policies can
be computed. Indeed, solving Ramsey program in heterogeneous agents economies (with or
without aggregate shocks) is a difficult task as it involves the joint distribution of two additional
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infinite-dimensional state variables, which are in our case, agents’ wealth and Lagrange multipliers
(on Euler equations). The truncated economy enables us to circumvent these difficulties and to
take advantage of a finite-state economy to solve the Ramsey program using the approach of
Marcet and Marimon (2019).

Formally, if we denote by (ωyN )yN∈YN the Pareto weights associated to history yN , the
Ramsey program in the truncated economy can be expressed as follows.

max
(wt,rt,r̃K

t ,R̃
B,N
t ,τK

t ,τL
t ,Bt,Tt,Kt,Lt,Πt,(at,yN ,c

t,yN ,l
t,yN )

yN )t≥0

E0

∞∑
t=0

βt
∑

yN∈YN

St,yNωyN ξyNU(ct,yN , lt,yN )

, (56)

subject to truncated Euler equations (51) and (52), truncated budget constraint (49), truncated
credit-constraint (50), truncated aggregation equations (54), as well as equations that were
already present in the full-fledged Ramsey program: the governmental budget constraint (24), the
Phillips curve (29), the definition (2) of ζt, the one (4) of Yt, the ones (11) and (12) of after-tax
rates rt, rKt , RB,Nt and wt, the zero profit condition for the fund (9), the no-arbitrage constraint
(10), and the relationship (5) between factor prices. The only difference is that truncated pricing
kernel is now Mt =

∑
yN∈YN St,yN ξyNωyNUc(ct,yN , lt,yN ).

As we did in Section 3.1 and in equation (32), it is possible to use the tools of Marcet and
Marimon (2019) to rewrite the Ramsey program. Two points are worth mentioning regarding
the application of the tools Marcet and Marimon (2019) in our set-up. First, the truncation
adds no complexity to the formulation of the planner’s objective. Second, the application of
Marcet and Marimon (2019) to models with occasionally binding credit constraints can raise
concerns due to the Slater (1950) condition that may not be fulfilled. This condition requires the
existence of an interior solution of the primal problem. We tackle this difficulty by showing that
the first-order conditions of our Ramsey problem can be seen as the limit of first-order conditions
of a Ramsey program with penalty functions (instead of credit constraints), when the concavity
of these penalty function become infinitely high. Details can be found in Appendix.

First-order conditions can similarly be derived as in the general case and we obviously have
the same irrelevance results. The first-order conditions in the three cases (real economy, no
time-varying capital tax and fixed nominal interest rate) can be found in Appendix.

A final aspect regarding the truncated Ramsey program is that it solutions can be shown
to converge to the solutions of the full-fledged Ramsey program (if they exist), when the
truncation length N becomes infinitely long. See LeGrand and Ragot (2020, Proposition 5).
This convergence property is the parallel of the convergence result regarding allocations of the
competitive equilibrium. However, it is noteworthy that this result requires the existence of an
upper bound (that be arbitrarily large) on agents’ saving choices. As in the previous case, the
convergence result is valid for the steady state and in presence of aggregate shocks (as long as
the solutions are computed using the perturbation methods).
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5 Quantitative assessment

As we are mainly concerned about the time-varying behavior of policy instruments in a quantita-
tively relevant environment, we use the following strategy.

1. We calibrate a Bewley model with an empirically relevant fiscal system, monetary parameters
and idiosyncratic income process. We check that both aggregate quantities and the wealth
distribution across agents are close to their empirical counterparts.

2. We project the model and derive the preference shifters ξs to make the projected model
consistent with the full-fledged Bewley model.3

3. We estimate the Pareto weights (ωyN )yN such that the actual US fiscal system is the
optimal fiscal system for the planner in the economy without aggregate shocks. We thus
follow the methodology of the inverse optimal taxation literature, which estimates social
welfare functions that are consistent with observed fiscal systems (see Bargain and Keane,
2010; Bourguignon and Amadeo, 2015; Heathcote and Tsujiyama, 2017; Chang et al.,
2018, among others). This strategy ensures that we investigate the dynamics around a
quantitatively relevant steady state.4

4. We simulate the optimal allocation after a technology shock, in an economy model where
the planner has access to a full set of fiscal instruments. We compare this allocation to the
one generated by a complete market economy to identify the role of market incompleteness.
We already know from the theoretical analysis of Section 3 that inflation is constant in
these economies.

5. We simulate the economy where the capital tax is constant, and fixed at its steady state
value, but where the planner has access to other fiscal tools and to monetary policy. We
then investigate the residual role of monetary policy.

5.1 The calibration

Preferences. The period is a quarter. The discount factor is β = 0.99 and the period utility
function log(c − χ−1 l1+1/ϕ

1+1/ϕ). The Frisch elasticity of labor supply is set to ϕ = 0.5, which is
the value recommended by Chetty et al. (2011) for the intensive margin in heterogeneous agent
models. The scaling parameter is set to χ = 0.068, which implies normalizing the aggregate labor
supply, defined in (19), to 1/3.

3We have simulated the truncated model with aggregate shock, to compare our solution method to the histogram
method developed by Rios-Rull (1999), Reiter (2009), and Young (2010), as well as to the global method of
Boppart et al. (2018) and Auclert et al. (2019). The three methods are shown to deliver very similar quantitative
results. See also LeGrand and Ragot (2020) for the same exercise in a different environment.

4Estimated Pareto weights provide insightful information regarding social preferences. We do not pursue this
investigation further in the current paper, and we leave it for future work.
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Technology and TFP shock. The production function is Cobb-Douglas: Y = ZKαL1−α.
The capital share is set to α = 36% and the depreciation rate to δ = 2.5%, as in Krueger et al.
(2018) among others. The TFP process is a standard AR(1) process, with Zt = exp(zt) and:

zt = ρzzt−1 + εzt , (57)

where εzt
iid∼ N (0, σ2

z). We use the standard values ρz = 0.95 and σz = 0.31% to obtain a deviation
of the TFP shock zt equal to 1% at a quarterly frequency (see Den Haan, 2010 for instance).

Idiosyncratic risk. We use a standard productivity process:

log yt = ρy log yt−1 + εyt ,

with εyt
iid∼ N (0, σ2

y). We calibrate choose a persistence of the productivity process ρy = 0.99
and a standard deviation of σy = 0.14. These values are in line with empirical estimates.5 This
process generates a realistic empirical pattern for wealth. First, the Gini coefficient of the wealth
distribution amounts to 0.77, in line with the data (see below). Second, the model implies an
average wealth-to-GDP ratio of 11.8 and an average capital-to-GDP ratio of 2.5. These two
values are in line with their empirical counterparts.

Finally, the Rouwenhorst (1995) procedure is used to discretize the productivity process into
5 idiosyncratic states with a constant transition matrix.

Taxes and government budget constraint. Fiscal parameters are calibrated based the
computations of Trabandt and Uhlig (2011), who use the methodology of Mendoza et al. (1994)
on public finance data prior to 2008. This approach consists in computing a linear tax on capital
and on labor, as well as lump-sum transfers that are consistent with the governmental budget
constraint. Their estimations for the US in 2007 yield a capital tax (including both personal
and corporate taxes) of 36%, a labor tax of 28% and lump-sum transfers equal to 8% of the
GDP. This affine structure (lump sum transfers and linear marginal tax rates) is often used in
the literature because it enables to properly reproduce the amount of redistribution in the US,
as shown for instance by Bhandari et al. (2017b), Heathcote and Tsujiyama (2017), and Dyrda
and Pedroni (2018).

This fiscal system generates two untargeted outcome. First, it implies a public debt-to-GDP
ratio equal to 60%, which is very close to 63%, which is the value estimated by Trabandt and
Uhlig (2011). Second, it also implies a public spending-to-GDP ratio equal to 12.4%. This value
is a little bit low compared to postwar values but consistent with other quantitative investigations
of the US tax system (Bhandari et al., 2017b).

5For instance, Krueger et al. (2018) estimate a more general process with an additional transitory process. The
implied AR(1) process generates a standard deviation equal to σy = 0.13.
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Monetary parameters. The monetary friction is captured by two parameters. The first one
is the elasticity of substitution across goods ε. The second one is the price adjustment cost κ, in
the Rotemberg representation. We follow the literature and set ε = 6 and κ = 100 (see Bilbiie
and Ragot, 2017 for a discussion and references). As will be clear below, the quantitative results
do not crucially depend on the specific choice of these parameters.

Table 1 provides a summary of the model parameters.

Parameter Description Value

Preference and technology

β Discount factor 0.99
α Capital share 0.36
δ Depreciation rate 0.025
ā Credit limit 0
χ Scaling param. labor supply 0.068
ϕ Frisch elasticity labor supply 0.5

Shock process

ρz Autocorrelation TFP 0.95
σz Standard deviation TFP shock 0.31%
ρy Autocorrelation idio. income 0.99
σy Standard dev. idio. income 14%

Tax system

τK Capital tax 36%
τL Labor tax 28%
T Transfer over GDP 8%

B/Y Public debt over yearly GDP 60%
G/Y Public spending over yearly GDP 12.4%

Monetary parameters

κ Price adjustment cost 100
ε Elasticity of sub. 6

Table 1: Parameter values in the baseline calibration. See text for descriptions and targets.

5.2 Steady-state equilibrium distribution

We first simulate a Bewley model (i.e., without aggregate shocks). In Table 2, we report the
wealth distribution generated by the model and compare it to the empirical distribution. We
compute a number of standard statistics – listed in the first column – including the quartiles,
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the Gini coefficient, and 95-100 intercentiles.

Data Model

Wealth statistics PSID, 06 SCF, 07

Q1 −0.9 −0.2 0.0
Q2 0.8 1.2 0.1
Q3 4.4 4.6 3.5
Q4 13.0 11.9 15.1
Q5 82.7 82.5 81.3

Top 5% 36.5 36.4 37.8
Top 1% 30.9 33.5 10.7
Gini 0.77 0.78 0.77

Table 2: Wealth distribution in the data and in the model.

The empirical wealth distribution, reported in the second and third columns of Table 2, is
computed using two sources, the PSID for the year 2006 and the SCF for the year 2007. The
fourth column reports the wealth distribution generated by our model. Overall, the distribution
of wealth generated by the model is quite similar for the two replacement rate values and is close
to the data. In particular, the model does a good job in matching the wealth distribution with a
high Gini of 0.77. The concentration of wealth at the top 1% of the distribution is higher in the
data than in the model. It is known that additional model features must be introduced to match
the high wealth inequality in the US, such as heterogeneous discount rates, as in Krusell and
Smith (1998), or entrepreneurship, as in Quadrini (1999).

5.3 Truncated model

We now construct the truncated model. We use a truncation length of N = 5. This implies that
we consider 55 = 3125 different truncated histories.

Computing the ξs. For each history, we compute (ξyN )yN such the truncated allocations are
equal to the truncation of allocations in the Bewley model (see Section 4 for further details). More
precisely, we compute the policy functions in the Bewley model and integrate them to deduce
the allocations for truncated histories (savings (ayN ), consumption (cyN ) and labor supply (lyN )).
We then inverse the projected Euler equations (51) to compute the (ξyN ) that are compatible
with the truncated allocations. As we show in Appendix, this computation pins down to simple
matrix algebra.

We constrain the average value of (ξyN ) to be equal to 1 and our computation implies that
theirs standard deviation across histories is std

(
ξyN

)
= 0.13.
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Estimating Pareto weights. We estimate the value of Pareto weights, such that the first-
order conditions of the planner are fulfilled at the steady-state for the actual US tax system,
characterized in Section 5.1. However, the problem is underidentified and there is no uniqueness
of such Pareto weights. To circumvent this difficulty, we choose among the admissible weights,
that minimize the distance to the equi-weighted case (where every truncated history has the same
weight). Formally, the weights solve min(ω

yN ) ||(ωyN )yN − (1/Y N )yN ||2 subject to
∑
yN ωyN = 1

and such that planner’s first-order conditions hold.6

Figure 1 plots the value of the estimated Pareto weights as a function of the current
productivity level. Productivity levels stem from the Rouwenhorst discretization of the income
process. For each of the five productivity levels, there are also 54 different Pareto weights, due
to the truncation with N = 5. Figure 1 exactly reports the average Pareto weight (over the 54

histories as a function of the current productivity level. Note that weights are increasing with
productivity. For agents with the lowest productivity level, the weights are equal to 0.6, while
they more than twice larger for agents with the highest productivity level. We do not report it
here, but we find a similar relationship between Pareto weight and current weight: The higher
the wealth, the higher the weight.

Figure 1: Estimated weights as a function of productivity.

The computation of Pareto weights concludes the calibration of the projected model, that is
by construction consistent with the underlying Bewley allocations and with the optimality of the
actual fiscal system.

6In the previous expression, || · ||2 denotes the Euclidean norm, (ωyN )yN is the vector of Pareto weights, and
(1/Y N )yN the vector corresponding to equal weighting.
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5.4 The complete-market economy benchmark

We solve for the allocation in the complete market economy (henceforth, CM for complete-market
and IM for incomplete market) taht will be used as a benchmark. In the complete market case
(or truncation with N = 1), the economy is represented by a representative agent, a family head,
who decides the aggregate allocation. The family head then allocates the aggregate consumption
across family members according to Pareto weights. Importantly these weights have no effect on
the dynamics of the economy. This environment is studied in a vast literature (Chari and Kehoe,
1999; Aiyagari et al., 2002; Farhi, 2010; Bhandari et al., 2017a, among others). Our calibration
of the CM economy relies on the same parameters as those of Table 1, with one exception. The
parameter χ is set such that the labor supply is 1/3, as in the IM economy. Otherwise the
steady-state zero labor tax in CM economy modifies labor supply. Another consequence of the
recalibrated χ is that the steady-state GDP is the same in both the CM and IM economies,
which ease the comparison between the two economies.

The main feature of the steady-state allocation in the CM economy is that the government
ends up holding a negative debt (i.e., it holds a part of the capital stock) to finance public
consumption out of interest payment, and thereby avoids the costs implied by distortionary
taxation. At the steady state, taxes on capital and labor are null: τL = τK = 0, and the steady
state allocation is the first-best allocation. This economy is only of interest only for the variations
of the policy instruments along the business cycle.

5.5 Dynamic of the fiscal system with complete set of instruments

We now present the dynamics of the fiscal system after a technology shock in the IM economy.
We solve the model when the planner has the full set of fiscal instruments (τK , τL, T , and B).
We proved in Section 3 that inflation does not play any role in this case. To understand the
effect of heterogeneity, we compare the IRFs in the IM economy with those of the CM economy.
Results are plotted in Figure 2. Each panel of Figure 2 reports the proportional change for the
relevant variable, in percentage points, except for tax rates, for which teh absolute variation is
reported. For instance, Panel 1 reports a persistent fall in TFP for 100 periods, after a fall of 1%
on impact.

Overall, the comparison of the dynamics of aggregate quantities (Consumption, Panel 2;
Capital, Panel 3; GDP, Panel 4) shows that the two economies exhibit very similar behavior along
those dimensions. The main difference between the two economies concern fiscal instruments.
The capital tax is very volatile in the CM economy, which is a standard result in this literature.
The planner uses the capital tax to front-load all adjustments, such that the public debt jumps
on a path consistent with zero tax on both capital and labor.7As the public debt is negative, the
decrease in public debt means that the planner actually further accumulates assets to pay for

7
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Figure 2: Comparison between the complete-market economy (black solid line) and the incomplete-
market economy with all instruments (blue dashed line).

public spendings, because it needs to compensate for lower governmental revenues (due not the
negative shock). This very high capital tax volatility is known to be an unappealing feature of
the CM economy.

In the IM economy, the fiscal policy differs sharply. First, the capital tax is much less volatile.
It is actually 100 times less volatile. This result shows that incomplete markets contribute to
solve the capital tax volatility puzzle. Indeed, due to precautionary saving motive, it is very
costly for the planner to raise very sharply the capital tax and thereby wipe out agents’ savings.
A consequence of this very moderate increase in the capital tax is that public debt increases
(and public debt is actual debt in the IM economy) to smooth out the impact of the negative
TFP shock on public finance. The governmental budget adjustment is actually performed by a
moderate increase in the labor tax (around 0.1%) for quite a long period. Finally, inflation is
constant over the dynamics, as expected.

From this experiment, we conclude that; compared to CM, the IM economy implies a sharp
reduction in the volatility of the capital tax, as well as a countercyclical public debt.
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5.6 Dynamics of the fiscal system without time-varying capital tax

We now turn to the dynamics of the IM economy, when the capital tax is not time-varying and
is set to its steady-state value. IRFs are reported in Figure 3 and compared to those of the IM
economy with the full set of instruments. As in Figure 2, the dynamics of aggregate quantities

Figure 3: Comparison between the IM economy with all instruments (black solid line) and the
IM economy with a fixed capital tax (blue dashed line).

(aggregate consumption, capital stock and GDP, in panels 2, 3 and 4, respectively) are a very
similar pattern in the two economies. Keeping a constant capital tax generates a public debt,
that is more countercylical and slightly higher labor tax. Indeed, due to the distortions implied
by the labor tax, its increase remains very limited and smoothed out through time, which is
permitted by a higher public debt. Regarding inflation (Panel 12), it can be observed that
it barely moves, even when the capital tax is constant. Although inflation could be a partial
substitute to the missing capital tax, the implied distortions (on savings and output destruction)
are too high for the planner to actively rely on inflation.
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CM Full No cap.tax

C Mean 0.7543 0.7542 0.7542
Std 0.0259 0.0266 0.0269

K Mean 11.0557 11.0536 11.0535
Std 0.0268 0.0270 0.0288

Y Mean 1.1760 1.1759 1.1759
Std 0.0264 0.0268 0.0274

L Mean 0.3334 0.3334 0.3334
Std 0.0088 0.0094 0.0098

τK Mean 0.0009 0.3600 0.3600
Std 0.8855 0.0145 0.0000

τL Mean 0.0000 0.2800 0.2800
Std 0.0000 0.0016 0.0015

B Mean −10.9327 2.8435 2.8424
Std 0.0146 0.0462 0.0541

T Mean 0.0000 0.0941 0.0941
Std 0.0000 0.0610 0.0637

π Mean 0.0000 0.0000 0.0000
Std 0.0000 0.0000 0.0007

Correlations

corr(τK , Y ) −0.2085 −0.4868 0.0000
corr(τL, Y ) 0.9273 −0.6374 −0.9249
corr(B, Y ) −0.8349 −0.7592 −0.8291
corr(T, Y ) 0.0000 0.6523 0.7796
corr(C, Y ) 0.9673 0.9691 0.9755
corr(Y, Y−1) 0.9776 0.9781 0.9785
corr(B,B−1) 0.9992 0.9996 0.9994

Table 3: First- and second-order moments for key variables, in the three economies (CM: complete
market; Full: IM with full fiscal set; No cap. tax: IM with fixed capital tax). See text for details.

5.7 Second-order moments

We report in Table 3 the unconditional first- and second-order moments for several key variables,
in the three economies (CM, IM with a full set of instruments and IM with a fixed capital tax).
For each variable, reported in the first column, we report the steady-state value (mean) and the
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normalized standard deviation (standard deviation divided by the mean), except for taxes for
which the standard deviation is reported. The second part of the table reports correlations.

First, we can observe that Table 3 confirms the IRFs regarding aggregate variables. Their
mean and standard deviations are very close in the three economies. Second, the main difference,
as for IRFs again, lies in the volatility of taxes and of the behavior of public debt that significantly
differs among the three economies. The volatility of capital tax decreases in the two IM economies,
compared to CM. The labor tax volatility remains low in the three economies, even though it
becomes more countercyclical in the absence of capital tax. When capital tax is not available, the
public debt becomes more volatile and more countercyclical (as can be seen with the correlation
with output).

6 Conclusion

We derive optimal fiscal-monetary policy in an economy with incomplete insurance markets,
nominal frictions, and aggregate shocks. We find that market-incompleteness considerably reduces
the volatility of capital tax, but increases the counter-cyclicality of public debt after technology
shocks. We find that at the optimum, monetary policy has little role for redistribution, even
when the capital tax remains fixed along the business cycle. Although monetary policy could be
a partial substitute for capital tax, the planner chooses to not use it.
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Appendix

A Ramsey program

We provide below a detailed expression of the Ramsey program.

max
(wt,rt,w̃t,r̃K

t ,R̃
B,N
t ,τK

t ,τL
t ,Bt,Tt,Kt,Lt,Πt,(ai

t,c
i
t,l

i
t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ωiU(cit, lit)`(di)

]
,

subject to individual constraints (for all i ∈ I):

ait + cit = (1 + rt)ait−1 + wty
i
tl
i
t + Tt,

ait ≥ −ā,

Uc(cit, lit) = βEt
[
Uc(cit+1, l

i
t+1)(1 + rt+1)

]
+ νit ,

νit(ait + ā) = 0 and νit ≥ 0,

l
i,1/ϕ
t = χwty

i
t,

cit, l
i
t ≥ 0, ait ≥ −ā,

subject to aggregate constraints:

Gt +Bt−1 = Bt +
(

1− κ

2π
2
t

)
Yt − δKt−1,

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

,

Kt +Bt =
ˆ
i
ait`(di), Lt =

ˆ
i
yitl

i
t` (di) , Yt = ZtK

α
t−1L

1−α
t ,

subject to interest rate definitions:

rt = (1− τKt )
r̃Kt Kt−1 +

(
R̃B,N

t−1
Πt
− 1

)
Bt−1

At−1
,

wt = (1− τLt )w̃t,

Et

[
R̃B,Nt

Πt+1

]
= Et

[
1 + r̃Kt+1

]
,

ζt = 1
Zt

(
r̃Kt + δ

α

)α (
w̃t

1− α

)1−α
,

Kt−1
Lt

= α

1− α
w̃t

r̃Kt + δ
,

and finally subject to given initial conditions.
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B Transforming the Ramsey program

Denote βtωitλit the Lagrange multiplier of the Euler equation for agent i at date t. Denote βtγt
the Lagrange multiplier of the Phillips curve at date t.

The objective of the Ramsey program can be rewritten as:

J = E0

∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

− E0

∞∑
t=0

βt
ˆ
i
λitω

i
t

(
Uc(cit, lit)− νit − βEt

[
Uc(cit+1, l

i
t+1)(1 + rt+1)

])
`(di)

− E0
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t=0

βtγt

(
Πt (Πt − 1)YtMt −

ε− 1
κ

(ζt − 1)YtMt − βEt [Πt+1 (Πt+1 − 1)Yt+1Mt+1]
)
.

With λitνit = 0, we obtain after some manipulations the following expression for the objective of
the Ramsey program:

J = E0

∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

− E0

∞∑
t=0

βt
ˆ
i
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i
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βt(1 + rt)
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i
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or using γ−1 = 0:
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i
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We finally obtain:

J =E0

∞∑
t=0

βt
ˆ
i
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C First-order conditions for the real economy

The planner’s program becomes max(wt,rt,Bt,Kt,Lt,Tt,(ai
t,c

i
t,l

i
t)i) J with γt = 0 and Πt = 1 for all t

(because of a real economy), subject to:
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We denote by βtµt the Lagrange multiplier on the governmental budget constraint.

Derivative with respect to wt: the labor tax. We have:
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Using the definition of ψ̂i in (34), we obtain:
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Derivative with respect to rt: the capital tax. Using ∂ci
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Derivative with respect to Bt: the public debt. We obtain:
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This yields using ∂ci
t
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Derivative wrt Tt. ˆ
i
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D First-order conditions for the economy with fixed capital
taxes

The planner’s objective is:
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Derivative with respect to r̃Kt . We have ζt = 1
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At the steady state, ΠSS = 1 (indeed, note that the last term is zero because of (64)).

Derivative with respect to rt. We obtain:
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Furthermore, note that:
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(γt − γt−1) Πt (Πt − 1)− ε− 1
κ

γt (ζt − 1)
)
Yt
wt

ˆ
i
ωitU

i
c,t`(di)

− ε− 1
κ

(1− α)ϕγtζt
Yt
wt

ˆ
i
ωitU

i
c,t`(di),

or using ψ̃:

µtϕ

(
Lt − (1− α) Yt

wt

(
1− κ

2 (Πt − 1)2
))

=
ˆ
i
(ψ̃it − µt)yitlit`(di), (69)

− (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
Yt

ˆ
i
ωitU

i
c,t`(di).

Derivative with respect to Bt: the public debt. Note that we have:

∂Yt+1
∂Bt

= −αZt+1

(ˆ
i
ait`(di)−Bt

)α−1
L1−α
t+1 = −αYt+1

Kt
= −ζ−1

t+1(r̃Kt+1 + δ).

We also have:

ζt = 1
αZt

(
r̃Kt+1 + δ

)(´
i a
i
t−1`(di)−Bt−1

Lt

)1−α

= Kt−1
αYt

(
r̃Kt+1 + δ

)
,

and

∂ζt+1
∂Bt

= −(1− α)ζt+1
Kt

,

Yt+1
∂ζt+1
∂Bt

= −(1− α)ζt+1
Yt+1
Kt

= −1− α
α

(r̃Kt+1 + δ).
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We obtain:

µt = βEt
[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

(70)

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
+ ε− 1

κ
βEt

[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
+ β

(
1− τK

)
Et

[
Γt+1

(
R̃B,Nt

Πt+1
− 1− r̃Kt+1

)]
.

Derivative with respect to ait: the net saving of consumers . We have, using ∂ci
t

∂ai
t

= −1,
∂ci

t+1
∂ai

t
= 1 + rt+1, ∂Yt+1

∂ai
t

= αYt+1
Kt

= ζ−1
t+1(r̃Kt+1 + δ), and ∂ζt+1

∂ai
t
Yt+1 = 1−α

α (r̃Kt+1 + δ):

ψ̃it = βEt
[
(1 + rt+1)(ψ̃it+1 − µt+1)

]
+ βEt

[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1)− ε− 1
κ

γt+1 (ζt+1 − 1)
)
Yt+1
Kt

Mt+1

]
+ (1− α)ε− 1

κ
βEt

[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
+ βEt

[
Γt+1

(
rt+1 −

(
1− τK

)
r̃Kt+1

)]
By difference with (70):

ψ̂it = βEt
[
(1 + rt+1)ψ̂it+1

]
+ βEt

[
Γt+1

(
rt+1 −

(
1− τK

)(R̃B,Nt

Πt+1
− 1

))]
. (71)

Derivative wrt Tt. ˆ
i
ψ̂it`(di) = 0. (72)

E Projected model

We derive first-order conditions of the planer for projected economies.
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E.1 Program in the economy with full set of fiscal tools

E.1.1 Program formulation

We omit the monetary policy tool R̃B,Nt as it is redundant. We directly use the equilibrium
condition πt = 0. The program is the following:

max(
(a

t,yN ,c
t,yN ,l

t,yN )
yN∈YN ,wt,rt,Bt

)
t≥0

E0

∞∑
t=0

βt
∑
yN∈Y

[
St,yN

(
ωyN ξyNU(ct,yN , lt,yN )

−
(
λt,yN − λ̃t,yN (1 + rt)

)
ξyNUc(ct,yN , lt,yN )

)]
,

subject to:

Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt +Kα
t−1L

1−α
t − δKt−1,

λ̃t,yN =
∑
ỹN∈YN St−1,ỹNλt−1,ỹN Πt,ỹN ,yN

St,yN

, (73)

ct,yN + at,yN = wtlt,yN yyN + (1 + rt) ãt,yN + Tt, (74)

ãt,yN =
∑

ỹN∈YN

ΠỹNyN ,t

St−1,ỹN

St,yN

at−1,ỹN , (75)

lt,yN =
(
χyyNwt

)φ
. (76)

E.1.2 First-order conditions

Define the net social value of liquidity as:

ψ̂t,yN = ωyN ξyNUc(ct,yN , lt,yN )−
(
λt,yN − λ̃t,yN (1 + rt)

)
ξyNUcc(ct,yN , lt,yN )− µt.

The first-order conditions on at,yN is:
ψ̂t,yN = βEt

[
(1 + rt+1)

∑
ỹN∈YN Πt,yN ỹN ψ̂t+1,ỹN

]
if νyN = 0,

λt,yN = 0 if νyN > 0,
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and the first-order conditions for wt, rt, B and Tt are, respectively:∑
yN∈YN

St,yN ψ̂t,yN yyN lt,yN = ϕµt

(
Lt − (1− α) Yt

wt

)
,

∑
yN∈YN

St,yN ψ̂t,yN ãt,yN = −
∑

yN∈YN

St,yN λ̃t,yN ξyNUc(ct,yN , lt,yN ),

µt = βEt
[
µt+1(1 + r̃Kt+1)

]
,∑

yN∈YN

St,yN ψ̂t,yN = 0.

E.2 Program in the economy without time-varying capital tax

The net social value of liquidity is ψ̂t,yN = ψt,yN − µt, where:

ψt,yN = ωyN ξyNUc(ct,yN , lt,yN )−
(
λt,yN − λ̃t,yN (1 + rt)

)
ξyNUcc(ct,yN , lt,yN )

−
(

(γt − γt−1) Πt (Πt − 1)− ε− 1
κ

γt (ζt − 1)
)
YtωyN ξyNUcc(ct,yN , lt,yN ).

E.2.1 Program formulation

The program is:

max(
(a

t,yN ,c
t,yN ,l

t,yN )
yN∈YN ,wt,rt,Bt

)
t≥0

E0

∞∑
t=0

βt
∑
yN∈Y

[
St,yN

(
ωyN ξyNU(ct,yN , lt,yN )

−
(
λt,yN − λ̃t,yN (1 + rt)

)
ξyNUc

(
ct,yN , lt,yN

))]
,

subject to truncated-history constraints:

ct,yN + at,yN = wt(χyN0 wt)φyyN + (1 + rt) ãt,yN + Tt,

ãt,yN =
∑

ỹN∈YN

Πt,ỹNyN

St−1,ỹN

St,yN

at−1,ỹN ,

to aggregate constraints:

Gt + rt (Bt−1 +Kt−1) + wtLt = Bt −Bt−1 − Tt +
(

1− κπ
2
t

2

)
Kα
t−1L

1−α
t − δKt−1,

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

,

ζt = 1
αZt

(
r̃Kt + δ

)(Kt−1
Lt

)1−α
,

At = Kt +Bt =
∑
yN∈Y

St,yNat,yN , Lt =
∑
yN∈Y

St,yN yN0 lt,yN ,
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and to interest rate constraints:

(
rt −

(
1− τK

)
r̃Kt

)
At−1 =

(
1− τK

)(R̃B,Nt−1
Πt

− 1− r̃Kt

)
Bt−1, (77)

Et

[
RB,Nt

Πt+1

]
= Et

[
1 + r̃Kt+1

]
. (78)

E.2.2 First-order conditions

We denote by βtΓt and βtΥt the Lagrange multipliers on (77) and (78), respectively. We define
the pricing kernel Mt as follows:

Mt =
∑

yN∈YN

St,yN ξyNωyNUc(ct,yN , lt,yN ).

Derivative with respect to R̃B,Nt .(
1− τKSS

)
Et
[Γt+1

Πt+1

]
Bt = ΥtEt

[ 1
Πt+1

]
. (79)

Derivative with respect to r̃Kt .

Υt−1 + Γt(1− τKSS) (At−1 −Bt−1) =ε− 1
ακ

γtKt−1Mt.

Derivative with respect to Πt.

0 = µtκ (Πt − 1) + (γt − γt−1) (2Πt − 1)Mt (80)

+
(
Γt
(
1− τK

)
Bt−1 −Υt−1

) R̃B,Nt−1
YtΠ2

t

.

Derivative wrt rt.∑
yN∈YN

St,yN ψ̂t,yN ãt,yN = −
∑

yN∈YN

St,yN λ̃t,yN ξyNUc(ct,yN , lt,yN )− ΓtAt−1.

Derivative wrt wt.

µtϕ

(
Lt − (1− α) Yt

wt

(
1− κ

2 (Πt − 1)2
))

=
∑

yN∈YN

St,yN ψ̂t,yN yN0 lt,yN

− (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
YtMt.
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Derivative wrt Bt.

µt = βEt
[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
+ ε− 1

κ
βEt

[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
+ β

(
1− τKSS

)
Et

[
Γt+1

(
R̃B,Nt

Πt+1
− 1− r̃Kt+1

)]
.

Derivative wrt at,yN .

ψ̂t,yN = βEt

(1 + rt+1)
∑

ỹN∈YN

Πt,yN ỹN ψ̂t+1,ỹN

 (81)

+ βEt

[
Γt+1

(
rt+1 −

(
1− τKSS

)(R̃B,Nt

Πt+1
− 1

))]
.

Derivative wrt Tt. ∑
yN∈YN

St,yN ψ̂t,yN = 0. (82)

E.3 Program in the economy without time-varying labor tax

We keep the same notation as in the no-capital tax case of Section E.2. The program is also very
similar to the one of Section E.2, except that the capital tax is time-varying, and the labor tax is
not. We have a new constraint:

α
wt

1− τLSS
Lt = (1− α)Kt−1(r̃Kt + δ),

while the constraints on rt (
(
rt −

(
1− τKSS

)
r̃Kt

)
At−1 =

(
1− τKt

)(
R̃B,N

t−1
Πt
− 1− r̃Kt

)
Bt−1) and

on R̃B,Nt (Et R̃
B,N
t

Πt+1
= Et[1 + r̃Kt+1]) are not binding anymore.

Derivative with respect to r̃Kt .

ΓLt = ε− 1
α(1− α)κγtMt.

Derivative with respect to Πt.

0 = µtκ (Πt − 1) + (γt − γt−1) (2Πt − 1)Mt. (83)
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Derivative with respect to rt.∑
yN∈YN

St,yN ψ̂t,yN ãt,yN = −
∑

yN∈YN

St,yN λ̃t,yN ξyNUc(ct,yN , lt,yN ).

Derivative with respect to wt.

µtϕ

(
Lt − (1− α) Yt

wt

(
1− κ

2 (Πt − 1)2
))

=
∑

yN∈YN

St,yN ψ̂t,yN yN0 lt,yN (84)

− (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
YtMt

+ ΓLt
α

1− τLSS
(1 + ϕ)Lt.

Derivative with respect to Bt: the public debt.

µt = βEt
[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
(85)

+ ε− 1
κ

βEt
[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
− β(1− α)Et

[
ΓLt+1(r̃Kt+1 + δ)

]
. (86)

Derivative with respect to ait: the net saving of consumers .

ψ̂t,yN = βEt

(1 + rt+1)
∑

ỹN∈YN

Πt,yN ỹN ψ̂t+1,ỹN

 . (87)

Derivative wrt Tt. ∑
yN∈YN

St,yN ψ̂t,yN = 0. (88)

F Matrix representation at the steady state to compute ξ and
ω

Before turning to the matrix representation, we introduce the following notation:

◦ is the Hadamard product, ⊗ is the Kronecker product, × is the usual matrix product.

For any vector V , we denote by diag (V ) the diagonal matrix with V on the diagonal.
All previous equations now have to be stacked such that the economy can be written using a

matrix notation at the steady state.
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This represenation provides an efficient way to compute the relevant ξ and ω.
Indeed, a history yN can be seen as an N -length numeric vector {y−N+1, . . . , y0}, where

yk = 1, . . . , Y denotes her productivity level. The number of histories is Ntot = Y N . We can
identify each history by the integer kyN = 1, . . . , Ntot:

kyN =
N−1∑
k=0

N−N+1−k
tot (yk − 1) + 1, (89)

which corresponds to an enumeration in base Y .
Let Uc, ξ and ξu be the Ntot-vectors of end-of-period marginal utilities, and preference

shifters. Define as I the identity matrix and Π = (Πkk′)k,k′=1,...,Ntot as the transition matrix
from history k to history k′.

F.1 Computing the ξs

Let S be the Ntot-vector of steady-state history sizes. Similarly, let a, c, `, ν, Uc, Ucc be the
Ntot-vectors of end-of-period wealth, consumption, labor supply, Lagrange multipliers, marginal
utilities, and derivatives of the marginal utility, respectively. These vectors are known from the
steady-state equilibrium of the Bewley model. Each element is defined as the truncation of the
relevant variable computed using equation (55). We also define:

W = w⊗


y1
...
yY

⊗ 1B, L =


y1
...
yY

⊗ 1B.

Where 1B is a vector of 1 of length Y N−1. Let P be the diagonal matrix having 1 on the diagonal
at yN if and only if the history yN is not credit constrained (i.e., νyN = 0), and 0 otherwise.
Similarly, define Pc = I− P, where I is the (Ntot ×Ntot)-identity matrix. Let Π be the transition
matrix across histories. In the steady state:

S = ΠS, (90)

S ◦ c + S ◦ a = (1 + r)Π (S ◦ a) + (S ◦W ◦ `) ,

Pca = −ā1Ntot×1,

The value of the ξ can then easily be found from the allocation of the Bewley model. Indeed,
the vector ξ solves:

ξ =
[
P
(
diag

(
u′ (c)

)
− β(1 + r)Π× diag

(
u′ (c)

))
+ Pc

]−1
ν, (91)
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F.2 Finding the Pareto weights ω

The first-order conditions of the planner at the steady state are:

Pψ̂ = βPΠ>ψ̂ (1 + r) ,

Pcλp = 0,

(y ◦ l)′ ×
(
S ◦ ψ̂

)
= µL

(
1 + ϕ

w − FL
w

)
,

1ᵀY L ×
(
S ◦ ψ̂ ◦ ã

)
= 1ᵀY L ×

(
S ◦ λ̃ ◦ ξh ◦Uc (c, l)

)
,

1 = β(FK + 1),

S ◦ ψ̂ = 0.

After some algebra, one can express the relationship that the Pareto weights ω must fulfill for
the observed allocation to be a solution of the previous first-order conditions of the planner. One
finds that the Pareto weight must satisfy two relationships:

H1ω = 0 and H2ω = 0,

where H1 = H̃1D (S ◦ ξ ◦Uc(c, lh)), H2 = H̃2D (S ◦ ξ ◦Uc(c, lh)) and:

H̃1 ≡ 1ᵀY L × [D (ã) N + D (ξh ◦Uc (c, l)) ΠJ]−AQ,

Q ≡

 y ◦ l
L
(
1 + ϕw−FL

w

)
′ ×N,

N ≡ IdYN −B (Pc + PMB)−1 PM,

J ≡ − (Pc + PMB)−1 PM,

and

M ≡ IdYN − β (1 + r) ΠS + β
r − FK

L
(
1 + ϕw−FL

w

)S (y ◦ l)′ ,

ΠS ≡ DSΠ>D−1S,

B ≡ D (ξh ◦Ucc (c, l)) ((1 + r) Π− IdY L) ,

H̃2 ≡ 1ᵀY L ×N−Q.

The estimation of Pareto weights is thus given by:

min
ω
‖ω − 1‖ ,

H1ω = 0 and H2ω = 0,

which can be found by simple linear algebra. Once the steady state is found, perturbation
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methods can be used.
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