Social Costs of Proactive Policing: The Impact of NYC's Stop and Frisk Program on Educational Attainment

> Andrew Bacher-Hicks (Boston University)

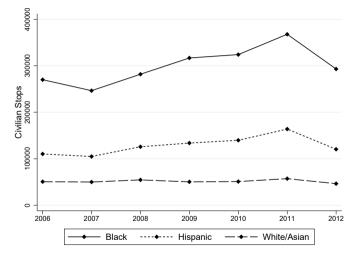
Elijah de la Campa (Harvard University)

NBER Summer Institute - July 23, 2020

POLITICS JULY 22, 2020

Most Americans Say Policing Needs 'Major Changes'

BY STEVE CRABTREE


Michael Bloomberg Pushed 'Stop-and-Frisk' Policing. Now He's Apologizing.

Ahead of a possible Democratic run for president, the former mayor of New York City reversed himself before an important party constituency: black voters.

Stop and Frisk Policing

- In NYC, 3.6 million stops from 2006 to 2012, primarily targeting young Black men.
- 2.5 million Americans stopped on the street by police each year.
- Little evidence of the social costs of frequent and relatively unproductive police contact.
- Implications for police reform, both in schools (SROs) and in the community.

Social Impacts of Civilian Stops Are Ambiguous

Possible positive effects:

- Deter crime, improve neighborhood safety ("Broken Windows").
 (Becker, 1968; Wilson & Kelling, 1982; Chalfin & McCrary, 2017)
- Safer neighborhoods can reduce stress/anxiety and improve educational outcomes. (Margolin & Gordis, 2004; Sharkey et al., 2014)

Possible negative effects:

- Introduction to criminal justice system.
 (Aizer & Doyle, 2015; Dobbie, Goldin & Yang, 2018)
- Traumatic effects of police interaction itself, affecting trust and cognition. (Brunson, 2007; Ang, 2018)
- Negative spillovers through policing of peers, teachers, or family members. (Rosenbaum et al., 2005; Kirk & Papachristos, 2011)

This Paper

Central question:

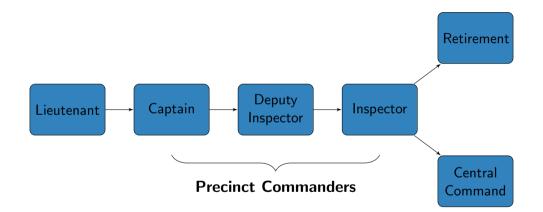
What is the net impact of stop and frisk policing on educational attainment?

Empirical approach:

Exploit naturally-occurring movement of NYPD police commanders across precincts to estimate a switcher quasi-experiment. (Chetty, Friedman, & Rockoff, 2014)

- 1. Predict a commander's effect on stops in one precinct using data from different precincts.
- 2. Estimate the effect of high propensity-to-stop commanders on educational attainment.

Preview of Results


- Changes in commander effects are highly predictive of changes in actual stops, but uncorrelated with baseline measures of crime, policing, and education.
- Exposure to police stops has negative effects on high school graduation, college enrollment, and college persistence.
- Negative effects concentrated among Black students; positive spillovers for White and Asian students.
- Mechanisms include heterogeneous perceptions of safety and system avoidance.

NYPD Precinct Commanders

- Develop patrol strategy for one of NYC's 77 police precincts.
- Lead multiple precincts over their careers.
- Switch precincts every 2.4 years.
- Cross-precinct movement related to natural cycle of retirement and promotions.

Commander Movement and Career Trajectory

Data

NYPD Stop-Question-Frisk (SQF) data (2006-2012)

- ▶ 5+ million records on all NYC civilian stops, frisks, and arrests.
- Date and location of each encounter.

NYPD precinct commander history (2006-2012)

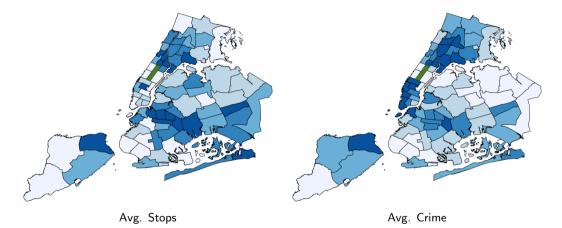
- Start and end month of all (527) precinct commander tenures.
- Compiled by the authors from news clippings and internet archives.

NYCDOE student-level administrative data (2006-2018)

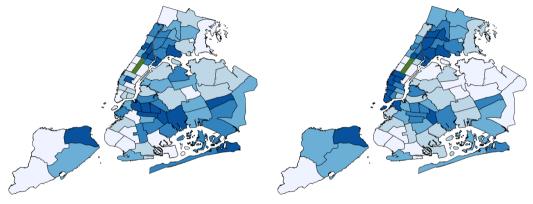
- Student-year records for all public school students in New York City.
- Demographics, attendance, test scores, graduation, college attendance.

Sample and Descriptives

SQF and crime data:


- All non-transit related stops, frisks, and arrests with date and location.
- Collapsed to precinct-year-month and matched to precinct commanders.

Student data:


- All NYC middle school students from 2006 through 2012.
- Linked to precincts/commanders by school location.

Panel A: Precinct SQF and Crime Data	
Stops	506.71
Stop-Induced Frisks	273.26
Stop-Induced Arrests	29.86
Stop-Induced Drug/Weapon Recoveries	13.05
N Precinct-Year-Months	7,140
Panel B: Student Data	
Proportion Black	0.31
Proportion Hispanic	0.40
Proportion White	0.13
Proportion Asian	0.14
Proportion free or reduced lunch	0.69
N Student-Years	1,512,314

Stops are Concentrated in High-Crime Areas

Stops are Concentrated in High-Crime Areas

Avg. Stops

Avg. Crime

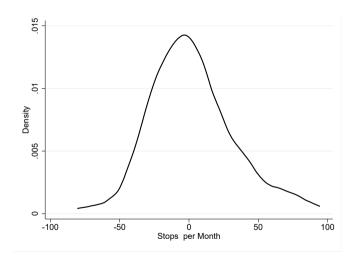
Our solution: Exploit natural movement of commanders across precincts to estimate "leave-precinct-out" commander effects on stops.

Estimating Commander Stop Effects

Step 1: Compute monthly stop residuals, adjusting for observable baseline crime/policing and neighborhood characteristics:

$$Stop_{pm} = \beta_0 A_{p,t-1} + \beta_1 X_p + \alpha_m + \nu_{pm},$$

where $\nu_{pm} = \mu_{jt} + \theta_p + \varepsilon_{pm}$


A_{p,t-1} = Crime and SQFs in precinct p during the prior commander's tenure, t - 1
 X_p = Precinct-level controls, such as race, median age, and median income
 α_m = Year-month fixed effects

Step 2: Generate empirical Bayes shrunken estimates of stop effects for commander j in tenure t ($\hat{\mu}_{jt}$) using only residuals from other tenures.

Empirical Bayes Details

Empirical Distribution of Commander Stop Effects, $\hat{\mu}_{jt}$

- Standard deviation of 29 stops per month
- Commanders account for 12% of residual variance (v_{pm})

Decomposition of Variance

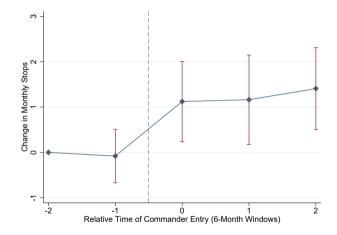
First Stage Estimation

Estimate first stage impact of commander effects $(\hat{\mu}_{jt})$ on observed stops:

$$Stop_{pm} = \beta_{FS}\hat{\mu}_{jt} + \delta X_{p,t-1} + \Phi_m + \Gamma_p + \varepsilon_{pm}$$

- $\hat{\mu}_{jt}$ = Empirical Bayes shrunken estimates of commander stop effects (based on prior tenure data)
- ▶ $X_{p,t-1}$ = Crime and SQFs in precinct p during the prior commander's tenure, t-1
- Fixed effects for year-month (Φ_m) and precinct (Γ_p)

 eta_{FS} identified by changes in predicted commander stop effects within a precinct


First Stage Results

	(1)	(2)	(3)
Commander Effect on Stops	1.082^{**} (0.438)	1.049^{***} (0.397)	1.007*** (0.376)
Precinct FE	\checkmark	\checkmark	\checkmark
Year-Month FE	\checkmark	\checkmark	\checkmark
Lagged-Tenure Crime	-	\checkmark	\checkmark
Lagged-Tenure SQF	-	-	\checkmark
N Precinct-Year-Months	7,140	7,140	7,140

Key findings:

- Changes in commander effects predict changes in observed stops.
- Principals (commanders) have control over agents (officers), even in settings where agents' actions are difficult to monitor and context-dependent.

First Stage Event Study

Key findings:

- No trend in stops prior to a commander switch.
- Stops increase (and persist) following the entrance of high-stop commander.

Balance Checks

Key identification assumption:

Commander stop effects are uncorrelated with other features of precincts that affect educational attainment.

Empirical test:

We find that baseline covariates do not individually or jointly predict an incoming commander's stop effect.

	(1)	(2)
Mean monthly violations	0.035	0.175
	(0.076)	(0.156)
Mean monthly misdemeanors	-0.012	-0.039
	(0.019)	(0.042)
Mean monthly felonies	0.014	-0.034
	(0.032)	(0.070)
Mean monthly stops	0.022	0.008
	(0.017)	(0.022)
Mean monthly frisks	-0.016	-0.015
	(0.032)	(0.036)
Mean math test scores	12.846	-0.435
	(24.546)	(29.137)
Mean ELA test scores	-11.470	-2.338
	(26.237)	(31.258)
Mean days absent	0.047	-0.115
	(0.363)	(0.528)
Mean days suspended	17.668	64.226
	(64.212)	(74.551)
Percent Black	3.414	-7.319
	(14.294)	(26.178)
Percent English language learner	-30.449	16.486
	(43.937)	(66.493)
Percent special education	-31.060	-43.013
	(52.945)	(63.256)
Percent free or reduced lunch	20.651	3.122
	(23.466)	(27.007)
Precinct FE		1
P-value of Joint F-Test	0.286	0.816
N Precinct-Year-Months	7,140	7.140

Reduced Form Estimation

Estimate reduced form impact of commander stop effects $(\hat{\mu}_{jt})$ on educational outcomes:

$$Y_{it} = \beta_{RF} \hat{\mu}_{jt} + \delta X_{i,t-1} + \Gamma_t + \varepsilon_{it}$$

- $\hat{\mu}_{jt}$ = Empirical Bayes shrunken estimates of commander stop effects (based on prior tenure data)
- \blacktriangleright $X_{i,t-1}$ = Students' baseline test scores and demographic characteristics
- Fixed effects for school year (Γ_t)

 β_{RF} identified by differences in exposure to predicted commander stop effects

Reduced Form: Net Effects Across All Students

	HS	Enroll	Enroll	Persist
	Grad.	Coll.	4-Year	Coll.
	(1)	(2)	(3)	(4)
Commander Effect on Stops	-0.006^{*}	-0.010^{***}	-0.003	-0.012^{***}
	(0.003)	(0.004)	(0.004)	(0.004)
	[0.751]	[0.566]	[0.342]	[0.507]
N Student-Years	1,170,546	1,002,339	1,002,339	837,017

Interpretation:

I SD increase in commander effect (30 stops per precinct-month) reduces college enrollment by 1pp (2 percent) and persistence by 1.2pp (2 percent).

Reduced Form Heterogeneity by Race

	HS	Enroll	Enroll	Persist
	Grad.	Coll.	4-Year	Coll.
Panel A: Black Students				
Commander Effect on Stops	-0.018^{***}	-0.025^{***}	-0.016^{***}	-0.025^{***}
	(0.004)	(0.005)	(0.004)	(0.005)
	[0.697]	[0.479]	[0.262]	[0.420]
Panel B: Hispanic Students				
Commander Effect on Stops	-0.002	-0.006	-0.002	-0.010^{*}
	(0.004)	(0.005)	(0.004)	(0.005)
	[0.693]	[0.483]	[0.232]	[0.421]
Panel C: White and Asian Stu	udents			
Commander Effect on Stops	0.006**	0.002	0.010**	0.001
	(0.003)	(0.004)	(0.005)	(0.004)
	[0.887]	[0.766]	[0.569]	[0.714]
N Student-Years	1,170,546	1,002,339	1,002,339	837,017

Reduced Form Effects of Frisks

	HS	Enroll	Enroll	Persist
	Grad.	Coll.	4-Year	Coll.
Panel A: Black Students				
Commander Effect on Frisks	-0.011^{***}	-0.017^{***}	-0.011^{***}	-0.017^{***}
	(0.004)	(0.005)	(0.004)	(0.005)
	[0.697]	[0.479]	[0.262]	[0.420]
Panel B: Hispanic Students				
Commander Effect on Frisks	0.002	-0.004	-0.004	-0.006
	(0.004)	(0.004)	(0.003)	(0.004)
	[0.693]	[0.483]	[0.232]	[0.421]
Panel C: White and Asian Stu	Idents			
Commander Effect on Frisks	0.009***	0.012**	0.021***	0.009*
	(0.003)	(0.005)	(0.007)	(0.005)
	[0.887]	[0.766]	[0.569]	[0.714]
N Student-Years	1,170,546	1,002,339	1,002,339	837,017

Additional and Robustness Analyses

Placebo test: no effects of high-stop commanders after 2013.

> Age effects: similar results in each middle school grade.

Extensive margin: similar results for indicator of ever exposed.

► Race-specific VA: results flow through Black VA on Black students

• Gender: Similar results by gender; same within-gender racial differences.

Mechanisms

- ▶ No evidence of incapacitation effects: no increase in arrests.
- School safety: violent and disruptive school incidents decrease.
- Perceptions of safety: self-reported feelings of safety differ by race.
- System avoidance: chronic absenteeism increases for Black students.

Conclusion

Commanders' impacts on stops transfer across different settings and officers.

- Increased exposure to police stops has negative effects on high school graduation, college enrollment, and college persistence.
- Negative net effects, concentrated among Black students; some evidence of positive spillovers among White and Asian students.
- Results highlight the unintended consequences of criminal justice policies on educational inequality.

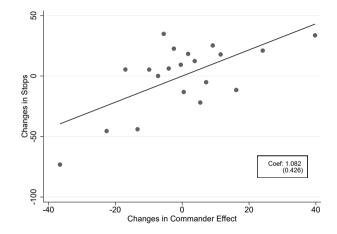
Appendix

Estimating Commander Stop Effects: Empirical Bayes Details

Step 2: Predict commander effect on stops, μ_{jt} , using data only from commander j's prior tenures:

$$\hat{\mu}_{jt} = \gamma \bar{\varepsilon}_{p,t-1}$$

where $\bar{\varepsilon}_{j,t-1}$ is the mean residual of monthly stops in commander j's prior tenure and γ represents the reliability of the commander effect (i.e., the signal to signal-plus-noise ratio):


$$\hat{\mu}_{jt} = \left(\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma_{\theta}^2 + \left(\frac{\sigma_{\varepsilon}^2}{n_{j,t-1}}\right)}\right) \bar{\varepsilon}_{j,t-1},$$

Variance Decomposition

Commander-level variance	14,799
Precinct-level variance	72,235
Within-precinct variance	32,534
Total variance	119,568
Percent commander variance	12.38%
Precinct Characteristics	\checkmark
Year-Month FE	\checkmark
Lagged Crime Controls	\checkmark
Lagged SQF Controls	\checkmark

First Stage

NBER Summer Institute - July 23, 2020

Andrew Bacher-Hicks (Boston University)

Back

First Stage: Sensitivity to Controls in Value-Added

	(1)	(2)	(3)			
	. ,	. ,				
Panel A: Baseline Precinct Cl	haracteristic	S				
Commander Effect on Stops	0.231***	0.254***	0.209**			
	(0.083)	(0.069)	(0.083)			
Panel B: Baseline Precinct Characteristics & Crime						
Commander Effect on Stops	0.531**	0.531***	0.453**			
	(0.218)	(0.167)	(0.189)			
Panel C: Baseline Precinct Cl	haracteristic	s, Crime, &	SQF			
Commander Effect on Stops	1.082**	1.049***	1.007***			
	(0.438)	(0.397)	(0.376)			
Precinct FE	\checkmark	\checkmark	\checkmark			
Year-Month FE	\checkmark	\checkmark	\checkmark			
Lagged-Tenure Crime	-	\checkmark	\checkmark			
Lagged-Tenure SQF	-	-	\checkmark			
N Precinct-Year-Months	7,140	7,140	7,140			

First Stage (Frisks)

	(1)	(2)	(3)
Commander Effect on Frisks	1.361^{**} (0.677)	1.152^{**} (0.451)	0.831^{**} (0.380)
Precinct FE	\checkmark	\checkmark	\checkmark
Year-Month FE	\checkmark	\checkmark	\checkmark
Lagged-Tenure Crime	-	\checkmark	\checkmark
Lagged-Tenure SQF	-	-	\checkmark
N Precinct-Year-Months	7,140	7,140	7,140

First Stage (Post-2013)

	(1)	(2)	(3)
Commander Effect on Stops	-0.042 (0.266)	0.100 (0.239)	-0.071 (0.222)
Precinct FE	\checkmark	\checkmark	\checkmark
Year-Month FE	\checkmark	\checkmark	\checkmark
Lagged-Tenure Crime	-	\checkmark	\checkmark
Lagged-Tenure SQF	-	-	\checkmark
N Precinct-Year-Months	6,188	6,188	6,188

Back

Heterogeneity in Reduced Form Results Across Grades

	HS Grad. (1)	HS Dropout (2)	Enroll Coll. (3)	Enroll 4-Year (4)	Persist 2 Sem. (5)	Persist 4 Sem. (6)
Commander Effect	-0.006^{**} (0.003)	0.003 (0.002)	-0.011^{**} (0.004)	-0.002 (0.004)	-0.013^{***} (0.004)	-0.016^{**} (0.004)
(Commander Effect) $ imes$ (Grade 7)	$0.001 \\ (0.002)$	$0.001 \\ (0.001)$	0.001 (0.003)	-0.000 (0.002)	0.001 (0.002)	$0.004 \\ (0.003)$
(Commander Effect) $ imes$ (Grade 8)	-0.001 (0.003)	0.001 (0.002)	$0.000 \\ (0.004)$	-0.000 (0.003)	0.002 (0.003)	$0.004 \\ (0.004)$
Sample Mean	[0.751]	[0.140]	[0.566]	[0.342]	[0.507]	[0.419]
N Student-Years	1,170,546	1,170,546	1,002,339	1,002,339	837,017	672,207

Heterogeneity in Reduced Form Results: Male Students

	HS Grad. (1)	HS Dropout (2)	Enroll Coll. (3)	Enroll 4-Year (4)	Persist 2 Sem. (5)	Persist 4 Sem. (6)
Panel A: Males						
Commander Effect on Stops	-0.006^{*} (0.003)	0.004^{*} (0.002)	-0.010^{**} (0.004)	-0.001 (0.003)	$\begin{array}{c} -0.011^{***} \\ (0.004) \end{array}$	-0.011^{***} (0.004)
	[0.713]	[0.158]	[0.505]	[0.292]	[0.447]	[0.357]
Panel B: Black Males						
Commander Effect on Stops	-0.021^{***}	0.011^{***}	-0.026^{***}	-0.016^{***}	-0.026^{***}	-0.023^{***}
	(0.004)	(0.003)	(0.005)	(0.004)	(0.005)	(0.005)
	[0.644]	0.181	[0.401]	[0.199]	[0.345]	[0.251]
Panel C: Hispanic Males	. ,	. ,	. ,	. ,	. ,	. ,
Commander Effect on Stops	-0.001	0.003	-0.006	-0.002	-0.008	-0.006
	(0.004)	(0.003)	(0.005)	(0.004)	(0.005)	(0.006)
	[0.655]	[0.197]	[0.417]	[0.187]	[0.355]	[0.263]
Panel D: White and Asian M.	ales	. ,	. ,	. ,	. ,	. ,
Commander Effect on Stops	0.007**	-0.004^{**}	0.003	0.011**	0.002	-0.001
	(0.003)	(0.002)	(0.004)	(0.005)	(0.005)	(0.006)
	[0.859]	[0.082]	[0.723]	[0.520]	[0.669]	[0.587]
N Student-Years	1,170,546	1,170,546	1,002,339	1,002,339	837,017	672,207

Heterogeneity in Reduced Form Results: Female Students

HS	HS	Enroll	Enroll	Persist	Persist
Grad.	Dropout	Coll.	4-Year	2 Sem.	4 Sem.
(1)	(2)	(3)	(4)	(5)	(6)
-0.005^{*}	0.004^{*}	-0.010^{**}	-0.004	-0.013^{***}	-0.015^{***}
(0.003)	(0.002)	(0.004)	(0.004)	(0.004)	(0.005)
[0.789]	[0.123]	[0.629]	[0.393]	[0.570]	[0.483]
-0.016^{***}	0.009***	-0.023^{***}	-0.017^{***}	-0.024^{***}	-0.027^{***}
(0.004)	(0.003)	(0.006)	(0.005)	(0.006)	(0.006)
[0.748]	[0.142]	[0.557]	[0.325]	[0.494]	[0.398]
-0.002	0.004	-0.005	-0.002	-0.011^{*}	-0.014^{*}
(0.004)	(0.003)	(0.005)	(0.004)	(0.006)	(0.008)
[0.732]	[0.159]	[0.552]	[0.280]	[0.489]	[0.392]
males					
0.005**	-0.004^{**}	0.000	0.008^{*}	0.000	0.001
(0.002)	(0.001)	(0.003)	(0.005)	(0.004)	(0.004)
[0.916]	[0.048]	[0.812]	[0.621]	[0.764]	[0.703]
1,170,546	1,170,546	1,002,339	1,002,339	837,017	672,207
	Grad. (1) -0.005* (0.003) [0.789] -0.016**** (0.004) [0.748] -0.002 (0.004) [0.732] males 0.005*** (0.002) [0.916]	$\begin{array}{c c} \mbox{Grad.} & \mbox{Dropout} \\ (1) & (2) \\ \hline \\ -0.005^* & 0.004^* \\ (0.003) & (0.002) \\ [0.789] & [0.123] \\ \hline \\ -0.016^{***} & 0.009^{***} \\ (0.004) & (0.003) \\ [0.748] & [0.142] \\ \hline \\ -0.002 & 0.004 \\ (0.003) \\ [0.732] & [0.159] \\ \hline \\ males \\ 0.005^{**} & -0.004^{**} \\ (0.002) & (0.001) \\ [0.916] & [0.048] \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Extensive Margin: Effects of Exposure to Above Median Commander

	HS Grad.	HS Dropout	Enroll Coll.	Enroll 4-Year	Persist 2 Sem.	Persist 4 Sem.
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Full Sample						
Ever Exposed to High-Stop Commander	-0.013^{***} (0.005)	0.009^{***} (0.004)	-0.012^{*} (0.007)	-0.005 (0.008)	-0.013^{*} (0.007)	-0.018^{**} (0.008)
Panel B: Black Students						
Ever Exposed to High-Stop Commander	-0.028^{***} (0.007)	0.016^{***} (0.005)	-0.033^{***} (0.010)	-0.032^{***} (0.007)	-0.037^{***} (0.011)	-0.045^{***} (0.011)
Panel C: Hispanic Students						
Ever Exposed to High-Stop Commander	-0.015^{**} (0.007)	0.014^{***} (0.005)	$\begin{array}{c} -0.011 \\ (0.009) \end{array}$	-0.004 (0.007)	-0.015^{*} (0.009)	-0.022^{**} (0.009)
Panel D: White and Asian Students						
Ever Exposed to High-Stop Commander	$0.003 \\ (0.006)$	$-0.005 \ (0.004)$	$0.006 \\ (0.011)$	$\begin{array}{c} 0.021 \\ (0.015) \end{array}$	$0.014 \\ (0.011)$	$\begin{array}{c} 0.018 \\ (0.014) \end{array}$
N Student-Years	1,170,546	1,170,546	1,002,339	1,002,339	837,017	672,207

Extensive Margin: Effects of Exposure to Top Quartile Commander

	HS Grad.	HS Dropout	Enroll Coll.	Enroll 4-Year	Persist 2 Sem.	Persist 4 Sem.
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Full Sample						
Ever Exposed to High-Stop Commander	-0.022^{***} (0.007)	0.016^{***} (0.005)	-0.030^{***} (0.008)	-0.013^{*} (0.008)	-0.030^{***} (0.009)	-0.029^{***} (0.010)
Panel B: Black Students						
Ever Exposed to High-Stop Commander	-0.052^{***} (0.009)	0.033^{***} (0.006)	-0.067^{***} (0.012)	-0.043^{***} (0.008)	-0.068^{***} (0.012)	-0.066^{***} (0.011)
Panel C: Hispanic Students						
Ever Exposed to High-Stop Commander	-0.016^{*} (0.008)	0.017^{***} (0.006)	$egin{array}{c} -0.019^{*} \ (0.010) \end{array}$	-0.013^{*} (0.007)	-0.019^{*} (0.010)	$egin{array}{c} -0.023^{*} \ (0.012) \end{array}$
Panel D: White and Asian Students						
Ever Exposed to High-Stop Commander	0.012^{*} (0.006)	-0.009^{**} (0.004)	$0.004 \\ (0.012)$	$0.024 \\ (0.014)$	$\begin{array}{c} 0.010 \\ (0.012) \end{array}$	$0.013 \\ (0.016)$
N Student-Years	1,170,546	1,170,546	1,002,339	1,002,339	837,017	672,207

Race-Specific VA Effects

	HS Grad.	HS Dropout	Enroll Coll.	Enroll 4-Year	Persist 2 Sem.	Persist 4 Sem.
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Black Students						
Commander Effect on Black Stops	-0.028^{***} (0.008)	0.020^{***} (0.006)	-0.033^{***} (0.010)	$\begin{array}{c} -0.014^{*} \\ (0.007) \end{array}$	-0.035^{***} (0.011)	-0.030^{***} (0.011)
Panel B: Hispanic Students						
Commander Effect on Hispanic Stops	0.001 (0.006)	$0.001 \\ (0.004)$	-0.001 (0.007)	0.003 (0.006)	-0.002 (0.008)	-0.003 (0.008)
Panel C: White and Asian Students						
Commander Effect on White and Asian Stops	$0.006 \\ (0.005)$	-0.002 (0.003)	$0.005 \\ (0.009)$	0.017 (0.012)	$0.005 \\ (0.010)$	$\begin{array}{c} 0.001 \\ (0.013) \end{array}$
N Student-Years	1,170,546	1,170,546	1,002,339	1,002,339	837,017	672,207

Back

Incapacitation Effects: Arrests

	SQF Arrests (1)	All Arrests (2)	Felony Arrests (3)	Non-Felony Arrests (4)
Panel A: All Arrests				
Commander Effect on Stops	1.091	-3.704	-0.768	-2.936
	(1.032)	(4.122)	(1.297)	(3.177)
Sample Mean	[29.860]	[347.992]	[93.545]	[254.447]
Panel B: Arrests of Individual	's Under Ag	e 18		
Commander Effect on Stops	0.241	-0.471	0.091	-0.563
	(0.167)	(0.476)	(0.175)	(0.381)
Sample Mean	[4.133]	[34.088]	[11.163]	[22.925]
N Precinct-Year-Months	7,140	7,140	7,140	7,140

School Safety: Violent and Disruptive Incidents

	Total Incidents (1)	Disruptive Incidents (2)	Minor Altercat. (3)	Harass/ Bully (4)	Serious Crimes (5)	Weapon/ Drug/Alc (6)
Commander Effect on Stops	-4.043***	-1.453^{**}	-1.652***	-0.480^{**}	-0.417^{*}	-0.042
	(1.423)	(0.568)	(0.552)	(0.191)	(0.235)	(0.072)
Sample Mean	[50.833]	[13.447]	[17.985]	[6.292]	[9.790]	[3.320]
N School-Years	3,652	3,652	3,652	3,652	3,652	3,652

Back

School Safety: Self-Reported Feelings of Safety

	Safe	Outside	Safe ir	n Classes
	(1)	(2)	(3)	(4)
Commander Effect	-0.015 (0.035)	0.078^{*} (0.045)	0.039 (0.027)	0.094^{**} (0.038)
Commander Effect \times Above Median Black School		-0.165^{***} (0.063)		-0.090^{*} (0.051)
N School-Years	3,433	3,433	3,433	3,433

Back

System Avoidance: School Attendance

	Days Absent (1)	Chronic Absence (2)
Panel A: Full Sample		
Commander Effect on Stops	0.318^{**} (0.159)	0.006 (0.004)
Panel B: Black Students		
Commander Effect on Stops	0.657^{***} (0.180)	0.014^{***} (0.005)
Panel C: Hispanic Students		
Commander Effect on Stops	$0.285 \\ (0.284)$	0.005 (0.007)
Panel D: White and Asian Students	, ,	. ,
Commander Effect on Stops	-0.037 (0.128)	$-0.002 \\ (0.003)$
N Student-Years	1,512,314	1,512,314

System Avoidance: Attendance by Predicted Anti-Social Behavior

	Below Median		Above N	Median
	Days Absent (1)	Chronic Absence (2)	Days Absent (3)	Chronic Absence (4)
Panel A: Full Sample				
Commander Effect on Stops	$0.094 \\ (0.108)$	0.001 (0.003)	0.501^{***} (0.185)	0.010^{**} (0.005)
Panel B: Black Students				
Commander Effect on Stops	0.330^{**} (0.140)	0.007^{**} (0.003)	0.728^{***} (0.194)	0.015^{**} (0.005)
Panel C: Hispanic Students				
Commander Effect on Stops	$0.070 \\ (0.186)$	0.000 (0.005)	0.548^{*} (0.293)	0.010 (0.007)
Panel D: White and Asian Students				
Commander Effect on Stops	$-0.026 \\ (0.110)$	-0.003 (0.002)	$-0.040 \\ (0.175)$	$0.000 \\ (0.005)$
N School-Years	776,016	776,016	736,298	736,298

