
Measuring the Pace of Innovation: Evidence from
Algorithms

Yash Mohan Sherry1 and Neil C. Thompson1,2,*

1MIT Computer Science & Artificial Intelligence Lab, Cambridge, 02139, USA
2MIT Initiative on the Digital Economy, Cambridge, 02142, USA
*Corresponding author: neil t@mit.edu

ABSTRACT

In many settings, quantifying the pace of innovation is nearly impossible. But with algorithms – the routines that computers
use to solve problems - the pace of innovation can be studied precisely, offering a quantitative measure of how human
ingenuity creates progress over time. Using data from more than 57 textbooks and 1,137 research papers, we present the first
comprehensive look at algorithm progress ever assembled. We find that, for some algorithms, progress has easily outpaced
those from other important sources (e.g. Moore’s Law for computer hardware), while in other cases progress has been minimal.
We also find evidence that algorithm improvement may have been much more important than computer hardware improvement
in creating the Big Data revolution. Collectively, our results shed light on an important, but previously overlooked source of
innovation.

Introduction

There can be little doubt of the immense progress that has been made in computing. But what is the source of this progress?
One widely touted answer is Moore’s Law, which describes a doubling of the computing power of computer hardware every two
years.1, 2 By one measure, hardware has improved 50,000× since 19783 and has had profound impacts on firm performance4.
But hardware determines the number of operations a computer can do in a period of time, which is only one aspect of how
quickly it operates. If methods can be discovered to solve problems with fewer operations, that will also increase performance
(analogously to how, in economics, productivity improvements can be more important that accumulating additional inputs of
capital or labor). Measuring progress in algorithms — the procedures that a computer uses to take a list of inputs, process it,
and provide a correct solution — allows us to quantify how fast innovation is happening in this area.

Algorithms determine which calculations computers use to solve problems and are one of the central pillars of computer
science. As algorithms improve, they enable scientists to tackle larger problems and to explore new domains and new scientific
techniques.5, 6 Bold claims have been made about the pace of algorithmic progress. For example, the President’s Council
of Advisors on Science and Technology (PCAST), a body of senior scientists that advise the U.S. President, wrote in 2010
that “Performance gains due to improvements in algorithms have vastly exceeded even the dramatic performance gains due
to increased processor speed.”7 The report cites commentary by Grötschel about work in Linear Solvers8, “a benchmark
production planning model solved using linear programming would have taken 82 years to solve in 1988, using the computers
and the linear programming algorithms of the day. Fifteen years later – in 2003 – this same model could be solved in roughly 1
minute, an improvement by a factor of roughly 43 million. Of this, a factor of roughly 1,000 was due to increased processor
speed, whereas a factor of roughly 43,000 was due to improvements in algorithms!” Despite the impressiveness of algorithm
improvement in linear solvers, it is hard to generalize about all algorithms based on it, since it is just a case study. Thus, because
there is no guarantee that linear solvers are representative of algorithms more broadly, it is unclear how much confidence should
be placed in sweeping conclusions, such as PCAST’s.

A variety of research has quantified progress for particular algorithms, including for Maximum Flow2, Boolean Satisfiability and
Factoring9, and (many times) for Linear Solvers8–10. Others9, 11–13, have looked at progress on benchmarks, such as computer
chess ratings or weather prediction that are not strictly comparable to algorithms since they lack either mathematically-defined
problem statements or verifiably-optimal answers. The private sector has also seen substantial success in improving algorithms.
For example, Netflix, the streaming service, has worked on improving the data compression algorithms that they use to send
videos to customers over the internet. In 2018, Netflix announced an improvement that allowed them to deliver the same video
quality using just one-third the bandwidth that they had been using 2 years earlier14. Another example comes from routing
algorithms in the logistics industry. UPS estimates that, by applying telematics and algorithms, their 55,000 trucks avoid
driving 85 million miles a year — yielding $2.55 billion in savings for the company15. But, again, while these results are
impressive, they are not strictly defined algorithms. Thus, despite substantial interest in the question, existing research provides
only a limited, fragmentary view of algorithm progress.

In this article, we provide the first comprehensive analysis of algorithm progress ever assembled. This allows us to look
systematically at when algorithms were discovered, how they have improved, and how the scale of these improvements
compares to other sources of innovation.

Results

In the following analysis, we focus on exact algorithms with exact solutions. That is, cases where a problem statement can be
met exactly (e.g. find the shortest path between two nodes on a graph) and there is a guarantee that the optimal solution will be
found (e.g. that the shortest path has been identified).

We categorize algorithms into algorithm families, by which we mean that they solve the same underlying problem. For
example, Merge Sort and Bubble sort are 2 of the 25 algorithms in the “Sorting” family. In theory, an infinite number of such
families could be created, for example by sub-dividing existing domains so that special cases can be addressed separately. To
focus on consequential algorithms, we limit our consideration to those families where the authors of a textbook, one of the 57
we examined, considered that family important enough to discuss. Based on these inclusion criteria, there are 128 algorithm
families. On average, there are 6.2 algorithms per family.

We categorize an algorithm as an improvement if it reduces the worst-case asymptotic time complexity of its algorithm family.
Based on this criterion, there are 310 improvements, an average of 1.4 improvements over the initial algorithm in each algorithm
family.

Creating new algorithms

Figure 1 summarizes algorithm discovery and improvement over time. Panel (a) shows the timing for when the first algorithm
in each family appeared, often as a brute-force implementation (straightforward, but computationally inefficient) and (b) shows
the share of algorithms in each decade where asymptotic time complexity improved. For example, together figures (a) and
(b) reveal that, in the 1970s, 25 new algorithm families were discovered and 30% of all the previously-discovered algorithm
families were improved upon. In later decades, these rates of discovery and improvement fell, indicating a slowdown in progress
on these types of algorithms. It is unclear exactly what caused this. One possibility is that there are decreasing marginal returns
to algorithmic innovation2 because the easy-to-catch innovations have already been “fished-out”16 and what remains is more
difficult or provides smaller gains. Another explanation could be the emergence of approximate algorithms (although this might
also be an effect rather than a cause)17 .

Panels (c) and (d), respectively, show the distribution of “time complexity classes” for algorithms when they were first
discovered, and the probabilities that algorithms in one class transition into another because of an algorithmic improvement.
Time complexity classes, as defined in algorithm theory, categorize algorithms by the number of operations they require
(typically expressed as a function of input size)18. For example, a time complexity of O(n2) indicates that as the size of the input

n grows, there exists a function Cn2 (for some value of C) that upper-bounds the number of operations required.1 Asymptotic
time complexity is useful shorthand for discussing algorithms because, for a sufficiently large value of n, an algorithm with
a higher asymptotic complexity will always require more steps to run. Later in the paper we show that, in general, little
information is lost by our simplification to using asymptotic complexity.

Panel (c) shows that, at discovery, 27% of algorithm families belong to the exponential complexity category — meaning that
they take exponentially, cn, or more operations as input size grows. For these algorithms, including the famous “Traveling
Salesman” problem, the amount of computation grows so fast that it is often infeasible (even on a modern computer) to compute
problems of size n = 100. Another 53% of algorithm families begin with polynomial time that is quadratic or higher, while
20% have asymptotic complexities of n logn or better.

Panel (d) shows that there is considerable movement of algorithms between complexity classes as algorithm designers find
more efficient ways of implementing them. For example, on average from 1940 to 2019, algorithms with complexity O(n2)

transitioned to complexity O(n) with a probability of 0.41% per year. Of particular note in (d) are the transitions from n!/cn

(factorial or exponential) time to polynomial times. These improvements can have profound effects, making algorithms that
were previously infeasible for any significant-sized problem possible for large data sets. As we will show, these are the most
important contributions to algorithmic improvement.

Measuring algorithm improvement

Over time, the performance of an algorithm family improves as new algorithms are discovered that solve the same problem with
fewer operations. To measure progress, we focus on discoveries that improve asymptotic complexity — for example, moving
from O(n2) to O(n logn), or from O(n2.9) to O(n2.8).

Figure 2 (a) shows the progress over time for five different algorithm families, each shown in one color. In each case,
performance is normalized to 1 for the first algorithm in that family. Whenever an algorithm is discovered with better asymptotic
complexity, it is represented by a vertical step up. Inspired by2, the height of each step represents the number of problems that
the new algorithm could solve in the same amount of time as the first algorithm took to solve a single problem (in this case, for
a problem of size, n = 1 million).2 For example, Grenander’s algorithm for the maximum subarray problem, used in genetics
(and elsewhere), is an improvement of 1 million × over the brute force algorithm.

To provide a reference point for the magnitude of these rates, the figure also shows two measures of hardware improvement: an
idealized Moore’s Law rate of 2× every two years, and the SPECInt benchmark progress time series compiled in3 (the latter we
take as the hardware progress baseline throughout the article). Figure 2 (a) shows that, for problem sizes of n = 1 million, some
algorithms, such as maximum subarray, have improved much more rapidly than hardware / Moore’s Law, while others like
Expectation Maximization have not. The orders of magnitude of variation shown in just these 5 of our 128 families makes it
clear why overall algorithm improvement estimates based on small numbers of case studies are unlikely to be representative of
the field as a whole.

An important contrast between algorithm and hardware improvement comes in the evenness of improvements. Whereas
Moore’s Law led to hardware improvements happening smoothly over time, figure 2 shows that algorithms experience large,
but infrequent improvements (as discussed in more detail in2).

The asymptotic performance of an algorithm is a function of input size for the problem. As the input grows, so does the scale of
improvement from moving from one complexity class to the next. For example, for a problem with n = 4 an algorithmic change
from O(n) to o(logn) only represents an improvement of 2 (= 4

2), whereas for n = 16 it is an improvement of 4 (= 16
4). That

1For example, the number of operations needed to alphabetically sort a list of 1,000 filenames in a computer directory might be 0.5(n2 +n), where n is the
number of filenames. For simplicity, algorithm designers typically drop the leading constant and any smaller terms to write this as O(n2).

2For this analysis, we assume that the leading constants are not changing from one algorithm to another. We test this hypothesis later in the paper.

Figure 1. Algorithm discovery and improvement. a Number of new algorithm families discovered each decade. b Share of
known algorithm families improved each decade. c Asymptotic time complexity class of algorithm families at first discovery. d
Average yearly probability that an algorithm in one time complexity class transitions to another

Figure 2. Relative performance improvement for algorithm families, as calculated using changes in asymptotic time
complexity. Comparison lines are SPECInt benchmark performance3 and an idealized Moore’s Law (2× every 2 years). a
Historical improvements for five algorithm families, as compared with the first algorithm in that family (n = 1 million). b
Sensitivity of algorithm improvement measures to input size (n) for the “Cycle Detection” algorithm family.

is, algorithmic improvement is more valuable for larger data. Figure 2 (b) demonstrates this effect for the “Cycle Detection”
family, showing that improvement size varies from 16× to ≈ 4 million× when input size grows from 102 to 108.

Whereas figure 2 shows the impact of algorithmic improvement for 5 algorithm families, figure 3 extends this analysis to 125
families3. Instead of showing the historical plot of improvement for each family, Figure 3 presents the average annualized
improvement rate for problem sizes of 1 thousand, 1 million, and 1 billion.

As these graphs show, there are two large clusters of algorithm families and then some intermediate values. The first cluster,
representing just under half the families, shows little to no improvement even for large problem sizes. These algorithm families
may be ones that have received little attention, ones that have already achieved the mathematically-optimal implementations
(and thus are unable to further improve), those that remain intractable for problems of this size, or something else. In any case,
these problems have experienced little algorithmic speedup — and thus improvements, perhaps from hardware or approximate /
heuristic approaches would be the most important sources of progress for these algorithms.

The second cluster of algorithms, consisting of 13% of the families, has yearly improvement rates greater than 1,000% per year.
These are algorithms that benefited from an exponential speed-up, for example when the initial algorithm had exponential time
complexity, but later improvements made the problem solvable in polynomial time4. As this high improvement rate makes clear,
early implementations of these algorithms would have been impossibly slow for even moderate size problems, but algorithmic
improvement has made larger data feasible. For these families, algorithm improvement has far outstripped improvements in
computer hardware.

Figure 3 also shows how large an effect problem size has on the improvement rate. In particular, for n = 1 thousand, only 17%
of families had improvement rates faster than hardware, whereas 83% had slower rates. But, for n = 1 million and n = 1 billion,
30% and 45% improved faster than hardware. Correspondingly, the median algorithm family improved 6% per year for n = 1
thousand, but 15% per year for n = 1 million, and 28% per year for n = 1 billion. At a problem size of n = 1.23 trillion, the
median algorithm improved faster than computer hardware.

Our results quantify two important lessons about how algorithm improvement affects computer science. First, when an
algorithm family transitions from exponential to polynomial complexity, it transforms the tractability of that problem in a way
that no amount of hardware improvement can. Secondly, as problems increase to billions or trillions of data points, algorithmic
improvement becomes substantially more important than hardware improvement / Moore’s Law in terms of average yearly
improvement rate. These findings suggests that algorithmic improvement has been particularly important in areas, like data
analytics and machine learning, that have large datasets.

Algorithmic Step Analysis

Throughout this article, we have approximated the number of steps that an algorithm needs to perform by looking at its
asymptotic complexity, which drops any leading constants or smaller-order terms, for example simplifying 0.5(n2 +n) to n2.
For any reasonable problem sizes, simplifying to the highest order term is likely to be a good approximation. But dropping the
leading constant may be worrisome if complexity class improvements come with inflation in the size of leading constant. One
particularly important example of this is the 1990 Coppersmith-Winograd algorithm and its successors, which to our knowledge
have no actual implementations because “the huge constants involved in the complexity of fast matrix multiplication usually
make these algorithms impractical”19. If inflation of leading constants is typical, it would mean that our results overestimate the
scale of algorithm improvement. On the other hand, if leading constants neither increase or decrease, on average, then it is safe
to analyze algorithms without them since they will, on average, cancel out when ratios of algorithms are taken.

To estimate the fidelity of our asymptotic complexity approximation, we re-analyze algorithmic improvement including the
leading constants (and call this latter construct the algorithmic steps of that algorithm). Since only 11% of the papers in

33 of the 128 families are excluded from this analysis because the functional forms of improvements are not comparable.
4One example of this is the Matrix Chain Multiplication algorithm family.

Figure 3. Distribution of average yearly improvement rates for 125 algorithm families, as calculated based on asymptotic time
complexity, for problems of size: a n = 1 thousand, b n = 1 million, and c n = 1 billion. The hardware improvement line
shows the average yearly growth rate in SPECInt benchmark performance from 1978 to 2017, as assembled by3.

Figure 4. Evaluation of the importance of leading constants in algorithm performance improvement. Two measures of the
performance improvement for algorithm families (first vs. last algorithm in each family) for n = 1 million. Algorithmic steps
includes leading constants in the analysis, whereas asymptotic performance drops them.

our database directly report the number of algorithmic steps that their algorithms require, whenever possible we manually
reconstruct the number of steps based on the pseudo-code descriptions in the original papers. For example, Counting Sort17 has
an asymptotic time complexity of O(n) but the pseudo-code has 4 linear for-loops, yielding 4n algorithmic steps in total. Using
this method, we are able to able to reconstruct the number of algorithmic steps needed for the first and last algorithm in 62%
of our algorithm families. Figure 4 shows the comparison between algorithm step improvement and asymptotic complexity
improvement. In each case, we show the net effect across improvements in the family by taking the ratio of the performances of
the first and final algorithms (kth) in the family (steps1

stepsk
).

Figure 4 shows that, for the cases where the data is available, the size of improvements to the number of algorithmic steps and
asymptotic performance are nearly identical5. Thus, for the majority of algorithms, there is virtually no systematic inflation of
leading constants. We cannot assume that this necessarily extrapolates to unmeasured algorithms, since higher complexity
may lead to both higher leading constants and a lower likelihood of quantifying them (e.g. Matrix Multiplication). But this
analysis reveals that these are the exception, rather than the rule. Thus, asymptotic complexity is an excellent approximation for
understanding how algorithms progress for most algorithms.

Discussion

Our results provide the first systematic review of progress in algorithms – one of the pillars underpinning computing in
science and in society more broadly. We find enormous heterogeneity in algorithmic progress, with nearly half of algorithm
families experiencing virtually no progress, while 13% experienced improvements orders of magnitude larger than hardware
improvement (including Moore’s Law). Overall, we find that algorithmic progress for the median algorithm family increased
substantially, but by less than Moore’s Law, for moderate-sized problems, and by more than Moore’s Law for big data problems.

Collectively, our results highlight the importance of algorithms as an important, and previously undocumented, source of

5Cases where algorithms transitioned from exponential to polynomial time (7%) cannot be shown on this graph because the change is too large. However,
an analysis of the change in their leading constants shows that, on average, there is 29% leading constant deflation. That said, this effect is so small compared
to the asymptotic gains that it has no effect on our other estimates

computing improvement. Unusually, they also provide a way of measuring innovation directly and quantitatively. We find that
productivity improvements in this area of computing (as with computer hardware) has significantly outpaced overall innovation
in the economy, making it an important omission from other estimates of the impact of I.T. on the economy.

Methods

A full list of the algorithm textbooks, course syllabi, and reference papers used in our analysis can be found in the Extended
Data and Supplementary Information, as can a list of the algorithms in each family.

Algorithms and Algorithm Families

To generate a list of algorithms and their groupings into algorithmic families we use course syllabi, textbooks and research
papers. We gather a list of major sub-domains of computer science by analyzing the coursework from the top 20 computer
science university programs, as measured by the QS World Rankings in 201820. We then shortlist those with maximum overlap
amongst the syllabi, yielding the following 11 algorithm sub-domains: combinatorics, statistics, cryptography, numerical
analysis, databases, operating systems, computer networks, robotics, signal processing, computer graphics/image processing,
and bioinformatics.

From each of these sub-domains, we analyze algorithm textbooks — one from each for each decade since the 1960s for a
total of 57 (not all fields have textbooks in early decades, e.g. BioInformatics). Textbooks were chosen based on being cited
frequently in algorithm research papers, on Wikipedia pages, or in other textbooks. For textbooks from recent years, where such
citations breadcrumbs are too scarce, we also use reviews on Amazon, Google, and others to source the most-used textbooks.

From each of the 57 textbooks, we used those authors’ categorization of problems into chapters, sub-headings, and book index
divisions to determine which algorithms families were important to the field (e.g. “sorting”) and which algorithms corresponded
to each family (e.g. “Quicksort” in sorting). We also searched academic journals, online course material, Wikipedia, and
published theses to find other algorithm improvements for the families identified by the textbooks.

In our analysis, we focus on exact algorithms with exact solutions. That is, cases where a problem statement can be met exactly
(e.g. find the shortest path between two nodes on a graph) and there is a guarantee that an optimal solution will be found
(e.g. that the shortest path has been identified). This ‘exact algorithm, exact solution‘ criterion also excludes, amongst others,
algorithms where solutions, even in theory, are imprecise (e.g. detect parts of an image that might be edges) and algorithms
with precise definitions but where proposed answers are approximate. We also exclude quantum algorithms from our analysis,
since such hardware is not yet available.

We assess that an algorithm has improved if the work that needs to be done to complete it is reduced, asymptotically. This,
for example, means that a parallel implementation of an algorithm that spreads the same amount of work across multiple
processors or allows it to run on a GPU would not count towards our definition. Similarly, an algorithm that reduced the amount
of memory required, without changing the total amount of work, would similarly not be included in this analysis. Finally, we
focus on worst-case time complexity because it doesn’t require assumptions about the distribution of inputs and because it is
the most-widely reported outcome in algorithm improvement papers.

Historical Improvements

We calculate historical improvement rates by examining the initial algorithm in each family and all subsequent algorithms
that improve time complexity. For example, as discussed in21, the “Maximum Subarray in 1D” problem was first proposed in
1977 by Ulf Grenander with a brute force solution of O(n3) but was improved twice in the next two years - first to O(n2) by
Grenander and then to O(n logn) by Shamos using a Divide and Conquer strategy. In 1982, Kadane came up with an O(n)
algorithm, and later that year Gries22 devised another linear algorithm using Dijkstra’s standard strategy. There were no further

complexity improvements after 1982. Of all these algorithms, only Gries’ is excluded from our improvement list, since it did
not have a better time complexity.

When computing the number of operations needed asymptotically, we drop leading constants and smaller order terms. Hence an
algorithm with time complexity 0.5(n2 +n) is approximated as n2. As we show in Figure 4, this is an excellent approximation
to the improvement in the actual number algorithmic steps for the vast majority of algorithms.

For algorithms with matrices, we follow algorithm theory convention in parameterizing the input variables as a function of
matrix dimension (rather than as a total input size as is typical elsewhere). For example, the standard form for writing the time
complexity of the naive implementation of matrix multiplication is n3 where n×n is the dimension of the matrix. This results
in it being classified as in the cubic (n3) time complexity class. Were this instead parameterized by input size, then the n×n
matrix size would make this an n1.5

input algorithm.

In the presentations of our results in figure 1 (d), we “round-up” — meaning that results between complexity classes round up
to the next highest category. For example, an algorithm that scales as n1.9 would be between n logn and n2, and so would get
rounded-up to n2.

Calculating Improvement Rates and Transition Values

In general, we calculate the improvement from one algorithm, i, to another j as:

Improvementi→ j =
Operationsi(n)
Operations j(n)

Where n is the problem size and the number of operations is calculated either using the asymptotic complexity or algorithmic
step techniques. One challenge of this calculation is that there are some improvements which would be mathematically
impressive but not realizable. For example, an improvement from 22n to 2n, when n = 1 billion is an improvement ratio of
21,000,000,000. However, the improved algorithm, even after such an astronomical improvement, remains completely beyond the
ability of any computer to actually calculate. In such cases, we deem that the ‘effective’ performance improvement is zero since
it went from ‘too large to do’ to ‘too large to do’. In practice, this means that we deem all algorithm families that transition
from one factorial / exponential implementation to another have no effective improvement for figures 3 and 4.

We calculate the average per-year percentage improvement rate over t years as:

YearlyImprovementi→ j =

(
Operationsi(n)
Operations j(n)

)1/t

−1

We only consider years since 1940 to be those where an algorithm was eligible for improvement, which avoids biasing very-early
algorithms, e.g. those discovered in Greek times, towards zero.

Both of these measures are intensive, rather than extensive, in that they measure how many more problems (of the same
size) could be solved with a given number of operations. Another potential measure would be to look at the increase in the
problem size that could be achieved, i.e. nnew

nold
, but this requires assumptions about the computing power being used which

would introduce significant extra complexity into our analysis without compensatory benefits.

Algorithms with multiple parameters

While many algorithms only have a single input parameter, others have multiple. For example, graph algorithms can depend on
the number of vertices, V and the number of edges, E, and thus have input size V +E. For these algorithms, increasing input

size could have various effects on the number of operations needed, depending on how much of the increase in input size was
assigned to each variable. To avoid this ambiguity, we look to research papers that have analyzed problems of this type as an
indication of the ratios of these parameters that are of interest to the community). For example, if an average paper considers
graphs with E = 5V then we will assume this for both our base case and any scaling of input sizes. In general, we source such
ratios as the geometric mean of at least 3 studies. In a few cases, such as Convex Hull, we have to make assumptions to calculate
the improvement because newer algorithms scale differently because of output sensitivity and thus cannot be computed directly
with only the inputs parameters. In 3 instances, the functional forms of the early and later algorithms are so incomparable that
we do not attempt to calculate rates of improvement, and instead omit them.

Transition Probabilities

The transition probability from one complexity class to another is calculated by counting the number of transitions that did occur
and dividing by the number of transitions that could have occurred. Specifically, the probability of an algorithm transitioning
from class a to b is as follows:

prob(a→ b) =
1
T ∑

t∈T

||a→ b||t
||a||t−1 +∑c∈C ||c→ a||t

Where t is a year from the set of possible years T , and c is a time complexity class from C, which includes the null set (i.e. a
new algorithm family).

Deriving the number of Algorithmic Steps

In general, we use pseudocode from the original papers to derive the number of algorithmic steps needed for an algorithm when
the authors have not done it. When that is not available, we also use pseudocode from textbooks or other sources. Analogously
to asymptotic complexity calculations, we drop smaller order terms and their constants because they have diminishing impact
as the size of the problem increases.

References

1. Moore, G. E. Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april
19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 11, 33–35, DOI: 10.1109/N-SSC.2006.4785860 (2006).

2. Leiserson, C. E. et al. There’s Plenty of Room at the Top: What will drive computer performance after Moore’s Law.

3. Hennessy, J. L. & Patterson, D. A. Computer Architecture: A Quantitative Approach (Morgan Kaufmann Publications,
2019), 5th edn.

4. Thompson, N. C. The economic impact of moore’s law: Evidence from when it faltered (2017).

5. Division of Computing and Communication Foundations CCF: Algorithmic Foundations (AF) - National Science Founda-
tion.

6. Division of Physics Computational and Data-Enabled Science and Engineering (CDSE) - National Science Foundation.

7. President’s council of advisors on science and technology report. Tech. Rep., Networking and Information Technology
Research and Development (2010)).

8. Bixby, R. Solving real-world linear programs: A decade and more of progress. DOI: 10.1287/opre.50.1.3.17780 (2002).

9. Grace, K. Algorithm progress in six domains. (2013).

10.1109/N-SSC.2006.4785860
10.1287/opre.50.1.3.17780

10. Womble, D. E. Is there a moore’s law for algorithms? Tech. Rep., Sandia National Laboratories (2004).

11. Thompson, N., Ge, S. & Filipe, G. The importance of (exponentially more) computing. (2020).

12. Hernandez, D. & Brown, T. A.i. and efficiency. (2020).

13. Thompson, N., Greenewald, K. & Lee, K. The computation limits of deep learning. (2020).

14. Manohara, M., Moorthy, A., Cock, J. D. & Aaron, A. Netflix Optimized Encodes (2018).

15. Ismail, S. Why Algorithms Are The Future Of Business Success.

16. Kortum, S. S. Research, patenting, and technological change. Econometrica (1997).

17. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to Algorithms (MIT Press, 2009), 3rd edn.

18. Bentley, J. Programming Pearls (Association for Computing Machinery, New York, NY, United States, 2006), 2nd edn.

19. Le Gall, F. Faster algorithms for rectangular matrix multiplication. DOI: 10.1145/3282307 (2012).

20. TopUniversities QS World Rankings 2018 (2018).

21. Bentley, J. Programming pearls: algorithm design techniques. DOI: 10.1145/358234.381162 (1984).

22. Gries, D. A note on a standard strategy for developing loop invariants and loops. DOI: 10.1016/0167-6423(83)90015-1
(1982).

Additional Information

Acknowledgements

The authors would like to acknowledge generous funding from the Tides foundation and from the MIT Initiative on the Digital
Economy. We would also like to thank Charles Leiserson, the MIT Supertech group, and Julian Shun for invaluable input.

Author contributions statement

NT conceived the project and directed the data gathering and analysis. YS gathered the algorithms data and performed the data
analysis. Both NT & YS wrote the paper.

Data Availability and Code Availability

Data is being made public through the online resource for algorithms community at algorithm-wiki.org and will launch
at the time of this article’s publication.

Additional Information

Supplementary Information is available for this paper.

Correspondence and requests for materials should be addressed to Neil Thompson (neil_t@mit.edu).

10.1145/3282307
10.1145/358234.381162
10.1016/0167-6423(83)90015-1
algorithm-wiki.org
neil_t@mit.edu

	References

