# Measuring the Cost of Living in Mexico and the US

David Argente

Chang-Tai Hsieh

Munseob Lee

Penn State

University of Chicago

UC San Diego

#### July 2020, NBER SI CRIW

## Price Measurement Across Countries

- Long-standing problems of measurement
  - Sampling: collected from stores instead of consumers

- Quality: brain surgery in Nairobi vs Tokyo
- Variety: product availability

## This Paper

#### Nielsen US and Mexico

- Representative panel of households with purchases of consumer goods.
- Products matched at the barcode level across countries.
- Quantify potential biases behind the ICP using non-homothetic price index
  - A new decomposition framework to quantify sampling bias, quality bias, and variety bias independently

• Price level ratio between Mexico and the US:

 $\mathbb{NH}^{M} = \Theta^{M} \times \mathbb{ICP}^{M}$  $0.72 = 0.90 \times 0.80$ 

< □ > < □ > < 臣 > < 臣 > 三目目 の Q ○ 3/16

• 
$$\Theta^M = \mathbb{S}^M \times \mathbb{Q}^M \times \mathbb{V}^M$$

- Sampling bias:  $\mathbb{S}^{M} = 0.82$
- Quality bias:  $\mathbb{Q}^M = 1.45$
- Engel-curve Variety bias:  $\mathbb{V}^M = 0.75$

### Data

#### • ICP 2011

- 155 basic headings
- Thousands of comparable items
- Nielsen Mexico
  - Representative sample of 5,000 households for 2012-2013.
  - Households visited biweekly report consumption diary information.
- Nielsen US
  - Representative sample of 60,000 households.
  - Panelists use in-home scanners to record their purchases.

# Matched sample: Nielsen data, ICP data



# ICP Procedure: Data Validation • Details

- **2** Aggregate across stores with store size weights  $(\bar{p}_{ib})$ .
- Jevons index across items  $(\mathbb{ICP}_b)$ .

## Nielsen vs ICP PPP by Basic Heading



Nielsen data mimics well the prices constructed by the ICP.

# Facts on Sampling, Quality and Variety

- Mexican households shop more frequently and visit more stores. Therefore, Mexicans buy a larger share of items at stores where they are cheaper. 
   Details
- The distribution of prices in the US has a higher mean and a longer right tail, but these patterns are attenuated when we compare common goods.
- A significant presence of US brands in the Mexican market gives more variety to Mexican consumers. Details

### Theoretical framework • Engel curves

- basic headings b, items i, barcodes k, stores s
- CES aggregation across basic headings
- CES aggregation across items
- Non-homothetic CES aggregation across barcodes

$$1 = \sum_{k \in \Omega_{ib}^M} \left( \frac{\varphi_{kib}^M C_{kib}^M}{(C_{ib}^M)^{(\varepsilon_{kib} - \sigma_{ib})/(1 - \sigma_{ib})}} \right)^{\frac{\sigma_{ib} - 1}{\sigma_{ib}}}$$

where  $\varepsilon_{kib}$  is the elasticity of a barcode k with respect to item-level consumption  $C_{ib}^{M}$ 

• Cobb-Douglas Aggregation across stores.

### Non-homothetic Price Index

$$\mathbb{NH}_{ib}^{M} \equiv \frac{P_{ib}^{M}}{P_{ib}^{U}} = \prod_{k \in \Omega_{ib}} \left(\frac{p_{kib}^{M}}{p_{kib}^{U}}\right)^{\omega_{kib}\frac{1}{1-\theta_{ib}}} \times \left(\frac{\lambda_{ib}^{M}}{\lambda_{ib}^{U}}\right)^{\frac{1}{\sigma_{ib}-1}\frac{1}{1-\theta_{ib}}} \times \left(\frac{E_{ib}^{M}}{E_{ib}^{U}}\right)^{\frac{\theta_{ib}}{\theta_{ib}-1}}$$

where

$$heta_{ib}\equiv\sum_{k\in\Omega_{ib}}\omega_{kib}rac{arepsilon_{kib}-1}{\sigma_{ib}-1}$$

- Sato-Vartia index across common barcodes
- Variety correction
- Engel-curve adjustment

### Decomposition of Non-homothetic Price Index

$$\mathbb{NH}_{b}^{M} = \Theta_{b}^{M} \times \mathbb{ICP}_{b}^{M}$$
$$\Theta_{b}^{M} \equiv \mathbb{S}_{b}^{M} \times \mathbb{Q}_{b}^{M} \times \mathbb{V}_{b}^{M}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のへで 11/16

- $\mathbb{S}_{b}^{M}$ : Sampling Bias
- $\mathbb{Q}_b^M$ : Quality Bias
- $\mathbb{V}_{b}^{M}$ : Engel-curve Variety Bias

# $\mathbb{S}_{b}^{M}$ : Sampling Bias

$$\mathbb{S}_{b}^{M} \equiv \left( \left( \prod_{i \in \Omega_{b}} \frac{\bar{p}_{ib}^{M}}{\bar{p}_{ib}^{U}} \right)^{\frac{-1}{N_{b}}} \times \prod_{i \in \Omega_{b}} \left( \frac{\bar{p}_{ib}^{M}}{\bar{p}_{ib}^{U}} \right)^{\omega_{ib}} \right) \times \left( \prod_{i \in \Omega_{b}} \left( \frac{\hat{p}_{ib}^{M} / \bar{p}_{ib}^{M}}{\hat{p}_{ib}^{U} / \bar{p}_{ib}^{M}} \right)^{\omega_{ib}} \right)$$

where

$$\bar{p}_{ib}^{\mathcal{M}} = \prod_{s \in \Psi^{\mathcal{M}}} \left( \bar{p}_{sib}^{\mathcal{M}} \right)^{\phi_{s}^{\mathcal{M}}} \text{ and } \hat{p}_{ib}^{\mathcal{M}} \equiv \prod_{s \in \Psi^{\mathcal{M}}} \left( \bar{p}_{sib}^{\mathcal{M}} \right)^{\phi_{sib}^{\mathcal{M}}}$$

- Bias comes from missing expenditures for each item.
- Bias depends on covariance between expenditures and prices across items.
  - No significant difference between two countries Details

# $\mathbb{S}_{b}^{M}$ : Sampling Bias

$$\mathbb{S}_{b}^{M} \equiv \left( \left( \prod_{i \in \Omega_{b}} \frac{\bar{p}_{ib}^{M}}{\bar{p}_{ib}^{U}} \right)^{\frac{-1}{N_{b}}} \times \prod_{i \in \Omega_{b}} \left( \frac{\bar{p}_{ib}^{M}}{\bar{p}_{ib}^{U}} \right)^{\omega_{ib}} \right) \times \left( \prod_{i \in \Omega_{b}} \left( \frac{\hat{p}_{ib}^{M} / \bar{p}_{ib}^{M}}{\hat{p}_{ib}^{U} / \bar{p}_{ib}^{M}} \right)^{\omega_{ib}} \right)$$

where

$$\bar{p}_{ib}^{\mathcal{M}} = \prod_{s \in \Psi^{\mathcal{M}}} \left( \bar{p}_{sib}^{\mathcal{M}} \right)^{\phi_{s}^{\mathcal{M}}}$$
 and  $\hat{p}_{ib}^{\mathcal{M}} \equiv \prod_{s \in \Psi^{\mathcal{M}}} \left( \bar{p}_{sib}^{\mathcal{M}} \right)^{\phi_{sib}^{\mathcal{M}}}$ 

- Bias comes from missing expenditures for each item at each store.
- Bias depends on covariance between expenditures and prices across stores.

# $\mathbb{Q}_{b}^{M}$ : Quality Bias, $\mathbb{V}_{b}^{M}$ : Engel-curve Variety Bias

$$\mathbb{Q}_{b}^{M} \equiv \prod_{i \in \Omega_{b}} \left( \left( \frac{\hat{p}_{ib}^{M}}{\hat{p}_{ib}^{U}} \right)^{-1} \times \prod_{k \in \Omega_{ib}} \left( \frac{p_{kib}^{M}}{p_{kib}^{U}} \right)^{\omega_{kib}} \right)^{\omega_{ib}}$$
$$\mathbb{V}_{b}^{M} = \prod_{i \in \Omega_{b}} \left( \frac{\lambda_{ib}^{M}}{\lambda_{ib}^{U}} \right)^{\frac{\omega_{ib}}{\sigma_{ib}-1}} \times \prod_{i \in \Omega_{b}} \left[ \left( \frac{E_{ib}^{M} / E_{ib}^{U}}{\mathbb{EPI}_{ib}^{M}} \right)^{\frac{\omega_{ib}\theta_{ib}}{\theta_{ib}-1}} \right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣⊨ のへで 14/16

- GMM estimation for  $\sigma_{ib}$  as Broda and Weinstein (2006,2010)  $\bullet$  Details
  - mean 9.29, std.dev. 3.42
- Given  $\sigma_{ib}$  estimates, we use the Engel curve to estimate  $\varepsilon_{kib}$  as Comin et al. (2020). Details

• mean 0.82, std.dev. 1.79

## Conclusion

• Price level ratio between Mexico and the US:

 $\mathbb{NH}^{M} = \Theta^{M} \times \mathbb{ICP}^{M}$  $0.72 = 0.90 \times 0.80$ 

- $\Theta^M = \mathbb{S}^M \times \mathbb{Q}^M \times \mathbb{V}^M$ 
  - Sampling bias:  $\mathbb{S}^M = 0.82$ 
    - Mexicans buy a larger share of items at stores where they are cheaper.
  - Quality bias:  $\mathbb{Q}^M = 1.45$ 
    - Low quality products in Mexico matched to high quality products in US.
  - Engel-curve Variety bias:  $\mathbb{V}^M = 0.75$ 
    - A significant presence of US brands in the Mexican market gives more variety to Mexican consumers.
- Real non-durable consumption in Mexico relative to US is 10 percent higher than previously estimated.

### 

- Follow the procedures followed by ICP 2011
- Use the categories matched between Nielsen and ICP
  - Select a single item i in country j
  - Aggregate across stores using expenditure weights
  - Istimate:

$$\log \bar{p}^c_{ib} = \eta^c_i + \eta^c_b + \varepsilon^c_{ib}$$

where  $\bar{p}_{ib}^c$  is the price of item *i* belonging to heading *b* in country *c* The estimated PPP for basic heading *b* and country is:  $\bar{p}_b^c = exp(\eta_b^c)$ .



### Average number of shopping trip per week is 5 in Mexico and 1 in the US.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三国章 のへで 18/16

## Fact 2: Quality, example of cheese

The distribution of prices in the US has a higher mean and a longer right tail, but these patterns are attenuated when we compare common goods.



(a) All Products

(b) Overlapping Products

▲□▶ < @▶ < E▶ < E▶ E = </li>
 900 19/16

### Fact 3: Variety Back

Mexican households spend less on overlapping products.



## Non-homotheticity

Within category of products, richer households buy more expensive products.



Sampling Bias:  $cov(\omega_{\mathbf{b}}, ln(\mathbf{\bar{p}}_{b}^{c}))$ 

$$\omega_{ib} = \alpha + \beta \, \ln(\bar{p}_{ib}^c) \times 1 \{ c = \mathsf{Mexico} \} + \lambda^c + \theta_b + \varepsilon_{ib}^c$$

|                          | (1)     | (2)               | (3)     | (4)               |
|--------------------------|---------|-------------------|---------|-------------------|
|                          | 0.010   | 0.044             | 0.010   |                   |
| In( <i>p</i> )           | -0.010  | -0.044<br>(0.051) | -0.010  | -0.039<br>(0.059) |
| $ln(ar{p}) 	imes Mexico$ | -0.002  | 0.004             | -0.002  | -0.006            |
|                          | (0.095) | (0.023)           | (0.095) | (0.056)           |
| Observations             | 58      | 58                | 58      | 58                |
| R-squared                | 0.001   | 0.775             | 0.001   | 0.775             |
| Basic Heading            | Ν       | Y                 | Ν       | Y                 |
| Country                  | Ν       | Ν                 | Υ       | Y                 |

Sampling Bias:  $cov(\phi_{ib}^{c}, ln(\bar{\mathbf{p}}_{ib}^{c}))$  (Back

$$\phi_{sib}^{c} = \alpha + \beta \ln(\bar{p}_{sib}^{c}) \times 1\{c = \mathsf{Mexico}\} + \theta_{s}^{c} + \varepsilon_{sib}^{c}$$

|                              | (1)       | (2)       | (3)       | (4)       |
|------------------------------|-----------|-----------|-----------|-----------|
| $\ln(\bar{p})$               | -0.000    | -0.000*** | -0.000*** | -0.000*** |
| (P)                          | (0.000)   | (0.000)   | (0.000)   | (0.000)   |
| $\ln(\bar{p}) \times Mexico$ | -0.002*** | -0.001*** | -0.001*** | -0.001*** |
|                              | (0.000)   | (0.000)   | (0.000)   | (0.000)   |
| Observations                 | 764,419   | 764,419   | 761,751   | 761,750   |
| R-squared                    | 0.028     | 0.030     | 0.212     | 0.212     |
| Store                        | Ν         | Ν         | Y         | Y         |
| Country                      | Ν         | Y         | Ν         | Y         |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣国 のへで 23/16

- Feenstra (1994), Broda and Weinstein (2006, 2010)
- Double-difference log UPC expenditure shares and UPC pricing rule over time and relative to the largest UPC within each firm.

$$\Delta^{\underline{u},t} \ln S_{kibt} = (1 - \sigma_{ib}) \Delta^{\underline{u},t} \ln P_{kibt} + \omega_{kibt}$$
$$\Delta^{\underline{u},t} \ln P_{kibt} = \frac{\delta_{ib}}{1 + \delta_{ib}} \Delta^{\underline{u},t} \ln S_{kibt} + \kappa_{kibt}$$

 $\omega_{kibt} = [\Delta^t \ln \varphi_{kibt} - \Delta^t \ln \varphi_{\underline{k}ibt}] \text{ and } \kappa_{kibt} = [\Delta^t \ln a_{kibt} - \Delta^t \ln a_{\underline{k}ibt}]$ 

# Estimation of $\sigma_{ib}$ $\bullet$

• Orthogonality of the double-differenced demand and supply shocks defines a set of moment conditions:

$$G(\beta_g) = E_T[v_{kibt}(\beta_g)] = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回 のへで 25/16

where  $\beta_g = [\sigma_{ib}, \delta_{ib}]'$  and  $v_{kibt} = \kappa_{kibt} \omega_{kibt}$ .

• We proceed with GMM.

### Parameter Estimation Back

• Given  $\sigma_{ib}$  estimates, we use the Engel curve to estimate  $\varepsilon_{kib}$  as Comin et al. (2020):

$$\begin{aligned} \ln \frac{s_{kibt}^h}{s_{\mathsf{K}ibt}^h} &- (1 - \sigma_{ib}) \ln \frac{p_{kibt}^h}{p_{\mathsf{K}ibt}^h} \\ &= (\varepsilon_{kib} - 1) \left( \ln \frac{E_{ibt}^h}{p_{\mathsf{K}ibt}^h} + \frac{1}{(1 - \sigma_{ib})} \ln s_{\mathsf{K}ibt}^h \right) + \psi_t^h + \varepsilon_{kibt}^h \end{aligned}$$

where K is the benchmark barcode, which corresponds to the largest selling barcode in each item, and  $\psi_t^h$  is the set of fixed effects and controls.

### Parameter Estimation

|                     | mean | std. dev. | 10th-percentile | median | 90th-percentile |
|---------------------|------|-----------|-----------------|--------|-----------------|
| $\sigma_i$          | 9.29 | 3.42      | 5.61            | 8.73   | 12.49           |
| $\varepsilon_{kib}$ | 0.82 | 1.79      | -1.58           | 0.89   | 2.99            |
| $	heta_{ib}$        | 0.02 | 0.13      | -0.13           | 0.03   | 0.16            |
| $E^M_{ib}/E^U_{ib}$ | 0.72 | 0.60      | 0.14            | 0.53   | 1.47            |