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Abstract

The scientific community assigns credit or “priority” to individuals who publish an important
discovery first. We examine the impact of losing a priority race (colloquially known as getting
“scooped”) on subsequent publication and career outcomes. To do so, we take advantage of
data from structural biology where the nature of the scientific process together with the Protein
Data Bank — a repository of standardized research discoveries — enables us to identify priority
races and their outcomes. We find that race winners receive more attention than losers, but
that these contests are not winner-take-all. Scooped teams are 2.5 percent less likely to publish,
are 18 percent less likely to appear in a top-10 journal, and receive 20 percent fewer citations.
As a share of total citations, we estimate that scooped papers receive a credit share of 45
percent. This is larger than the theoretical benchmark of zero percent suggested by classic
models of innovation races. We conduct a survey of structural biologists which suggests that
active scientists are more pessimistic about the cost of getting scooped than can be justified
by the data. Much of the citation effect can be explained by journal placement, suggesting
editors and reviewers are key arbiters of academic priority. Getting scooped has only modest
effects on academic careers. Finally, we present a simple model of statistical discrimination in
academic attention to explain how the priority reward system reinforces inequality in science,
and document empirical evidence consistent with our model. On the whole, these estimates
inform both theoretical models of innovation races and suggest opportunities to re-evaluate the
policies and institutions that affect credit allocation in science.
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1 Introduction

“In short, property rights in science become whittled down to just this one: the recogni-
tion by others of the scientist’s distinctive part in having brought the result into being.”

– Robert K. Merton, Priorities in Scientific Discovery: A Chapter in the Sociology of
Science (1957)

Basic science is a critical input to innovation, but it may be under-provided in competitive markets
because discoveries are not directly marketable and property rights are difficult to enforce. Unlike
applied research, basic (or “pure”) scientific research advances our fundamental understanding of
the world, but typically does not yield immediate opportunities for commercialization (Nelson 1959;
Arrow 1962). As a result, credit for ideas, rather than direct profits, is a potential motivator of
innovative activity (Dasgupta and David 1994). According to conventional wisdom, the first person
to publish a new discovery receives the bulk of the credit. Scientists therefore compete fiercely for
priority (Merton 1957). Famous examples of priority disputes include Isaac Newton versus Gottfried
Leibniz over the invention of calculus, Charles Darwin versus Alfred Wallace over the discovery
of natural selection and evolution, and more recently, Grigori Perelman versus Shing-Tung Yau,
Xi-Peng Zhu, and Haui-Dong Cao over the proof of the Poincaré conjecture. This competition
for recognition shapes the culture and professional structure of many disciplines, and scientists
regularly worry about their work being scooped (Hagstrom 1974). Many theoretical papers about
innovation races conceptualize the reward structure as winner-take-all (Loury 1979; Fudenberg et
al. 1983; Harris and Vickers 1985; Dasgupta and David 1994; Bobtcheff et al. 2016). However, there
is little empirical evidence documenting how credit is allocated in science or how rewards are shared
between the “winners” and “losers” of these races.

The contribution of this paper is to empirically measure the consequences of getting scooped.
We analyze the impact of getting scooped on the losing project (probability of publication, journal
placement, and citations) as well as on the scooped scientist’s subsequent career. We also investigate
whether competition for academic attention is a driver of inequality within scientific disciplines.

Conceptually, we want to measure the cost of getting scooped by constructing comparisons in
which multiple teams of scientists are working independently and concurrently on an identical or
very similar project. In practice, these races are challenging to measure for three reasons. First,
many academic fields use a variety of methods and seek to answer fairly open-ended questions,
and so finding near-identical projects is difficult. Second, even if the questions are well-defined, it
is difficult — especially without expertise in a given scientific field — to determine whether two
teams are working on the same question. Third, scooped projects are often abandoned, making
them impossible to track in publication data. We tackle these challenges by analyzing project-level
data from the field of structural biology. Specifically, we analyze projects in the Protein Data Bank
(PDB), a repository for structural coordinates of biological macromolecules. The PDB is a central-
ized, curated, and searchable database of biological details contributed by the worldwide research
community, and contains over 140,000 macromolecule structures (mostly proteins). Several features
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of the PDB allow us to make headway on the key empirical challenges described above. First,
structural biology papers have a well-defined objective, which is to describe the shape of a known
protein. Once the first paper about a protein structure is published, any follow-up publications
serve mostly to confirm the result of the first, and are otherwise redundant. Second, projects are
grouped according to molecular similarity, which allows us to identify papers written by separate
teams that solve identical or very similar molecular structures. Lastly, the PDB uniquely allows us
to observe projects that are scooped shortly after completion but before publication. Scientists are
required by journals to upload structures to the PDB prior to publication, so we can see projects
that were completed but never appeared in print. Moreover, the rich metadata in the PDB allows
us to reconstruct the timelines of projects, and find instances where teams were — unbeknownst
to each other — working on the same molecule at the same time. Structural biology is a secretive
field,1 so in most cases, teams in our data are scooped unexpectedly near the end of their projects.

We construct races using two key dates that are recorded for all PDB projects. First, the deposit
date marks when the scientist first uploaded their findings to the PDB. Scientists typically deposit
their findings shortly after a manuscript has been submitted for publication. The second is the
release date, which closely corresponds to the date of publication and is usually two to six months
after deposit. Critically for our design, the data is hidden from the public (and from competing
scientists) between deposit and release. To construct races, we find instances where two or more
teams had deposited a structure discovery for identical macromolecules independently of each other
prior to the other competitors’ release date. The order of release then defines the outcome of the
race. The first team to release is the winner, and the second team is scooped. We identify 1,630
races in our data. These races consist of 3,319 separate projects out of 64,018 total projects in our
sample period from 1999 to 2017, suggesting that 5 percent of all structural biology projects are
involved in a late-stage race to publication. These races are composed of a diverse set of scientific
teams from different countries, institutional prestige, and experience.

Our definition of scoops focuses only on late-stage races where both teams are on the cusp of
publication. Some researchers worry about being scooped earlier in the research process, such as
during the design or data collection of an experiment. We cannot systematically identify these
events in our data if the first team publishes before the second team had deposited. Nevertheless,
focusing only on late-stage scoops is advantageous for the economic interpretation of our results.
Since both projects had been completed independently prior to publication, we can infer that the
second-place team would have published the priority paper in the counterfactual where they had
not been scooped. The estimated difference in observed outcomes therefore isolates the premium
for novelty awarded by editors and readers.

While getting scooped is not randomly assigned, we use multiple methods to assess the validity
of the causal identification assumptions and credibly estimate the causal effect of getting scooped.
We estimate the effect of winning a race using the naturally-occurring variation in the priority

1In a survey of structural biologists we conduct, 80 percent of the respondents say they rarely if ever circulate
their findings in a working paper or pre-print prior to journal publication.
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ordering of races. Therefore, omitted variables bias is a threat to the causal interpretation of the
estimates. If the winners are positively selected in experience, research ability, or university prestige,
our estimates will be upward biased. However, we find that the outcome of races — even if not
perfectly random — is highly unpredictable. We observe cases of both high-ranked teams scooping
low-ranked teams, and low-ranked teams scooping high-ranked teams. Throughout the analysis,
we carefully document potential sources of bias and assess treatment balance using the observable
team and author characteristics. To further mitigate concerns of omitted variables bias, we use the
post-double-selection Lasso method for control variable selection (Belloni et al. 2014).

We find that getting scooped has a moderate-sized impact on the success of the scooped project.
Scooped projects are 2.5 percent less likely to be published. Scooped papers appear in a 0.18
standard deviation lower-ranked journal, and are 18 percent less likely to appear in a top-10 journal.
Scooped papers receive 20 percent fewer citations, and are 23 percent less likely to be a “hit” paper,
defined as reaching the top 10 percent in citations for that publishing year. While these effect sizes
are meaningful, they are far from a winner-take-all division of credit. Focusing on citations as an
outcome, our estimates imply that the losing paper receives 45 percent of the total citations accrued
by both papers, a much higher share than the zero percent assumed by a winner-take-all model.

Much of the citation effect is driven by journal placement, with only a 5 percent difference in
citations once we control for journal fixed effects. We provide suggestive evidence that editors and
reviewers have a strong taste for novelty. Papers that are scooped prior to submission to a top
journal are rarely, if ever, accepted for publication. Some scooped papers do appear in top journals,
but only if they were far along in the review process on the date they are scooped.

We also assess the effect of getting scooped on broader measures of attention using alternative
outcomes sourced from Altmetric.com. Scooped papers are 45 percent less likely to be downloaded
in Mendeley, a popular citation management software. They are 11 percent less likely to appear in
a popular press or scientific news story, 4 percent less likely to be cited by a Wikipedia article, and
10 percent less likely to be mentioned on Twitter. Scooped papers receive less attention not just by
editors and scientific peers, but the broader scientific community, popular press, and more casual
readers.

Does getting scooped have a detrimental impact on the careers of individual authors? We
compare the future publications, citations, and academic longevity of scientists on the winning and
losing teams. We find that scientists who are scooped are about 2 percent less likely to be actively
depositing in the PDB five years after they were scooped. We do not find significant effects on
intensive margin publication rates. However, scooped scientists receive 20 percent fewer citations
to their future work, an effect that is stronger for novice scientists (28 percent) than their veteran
co-authors (17 percent).

We analyze and discuss how the priority reward system relates to inequality in science. Our
sample of races provides unique insight into how reputation affects academic attention, because we
see teams of varying reputation and affiliation rank competing to publish the same discovery first.
We find that when a high-reputation lab scoops a relatively unknown lab, they receive 66 percent

3



of the total citations, but when a low-reputation lab scoops a high-reputation lab, they only receive
46 percent of the total citations. We rationalize this asymmetry in priority rewards with a model
of academic attention based on the statistical discrimination literature (Phelps 1972; Aigner and
Cain 1977). Our model proposes that readers receive a noisy signal of a paper’s true quality, and
therefore place some weight on the authors’ pre-existing reputation. Then a high-reputation team
that wins the race not only receives a premium for priority, but also a boost in citations because
of their high reputation. If a low-reputation team scoops a high team, the winner still receives
a priority benefit, but it is fully offset by a penalty for their lower reputation. This relationship
between priority credit and reputation suggests that compensation in science is not formulaic, but
may be influenced by the attention constraints and biases of editors and readers.

Finally, we benchmark the size of the scoop penalty by comparing it to the perceptions of active
structural biologists. We survey 915 corresponding authors of papers linked to the PDB and pose
a hypothetical scenario about getting scooped. The respondents estimate a 25 percent probability
of getting scooped between submission and publication, much larger than the 3 percent chance
we document in the PDB data. We then ask them to predict the probability of publication and
expected citations if they are scooped by a competitor’s paper. They predict that they only have
a 66 percent chance of publishing the paper, again much lower than the 86 percent of scooped
projects that we observe being published in the PDB data. Finally, they estimate a 59 percent
penalty in citations compared to the hypothetical winner, much higher than the 20 percent penalty
we estimate in the PDB data.2 These comparisons suggest that scientists may be overly concerned
about the probability and cost of getting scooped, and perhaps better information about the true
outcome of races might alleviate concerns about risk and competition in academia.

This paper contributes to several distinct but connected literatures, both in economics and
disciplines interested in the “science of science.” First, and most broadly, it contributes to our
understanding of how incentives for basic research are structured. Second, it adds to a more narrow
empirical literature about the causes and consequences of innovation races. Finally, it contributes to
a literature about career dynamics in scientific labor markets and the role of academic reputation.

Priority races in science are often compared to patent races in industry. However, incentives
for basic scientific advances are in some ways distinct from patents. Inventors in a patent race
are competing for profits, while researchers in a priority race are competing for journal placement,
citations, and recognition from their peers. However, both systems compensate researchers for
the production of public goods, incentivize timely disclosure of knowledge, and hasten the pace
of discovery. Both systems are usually conceptualized as tournaments for a discrete innovation
reward or prize, with the first innovator getting the outsized share of rewards. Theoretical models
of patent races have considered how racing affects the amount of R&D investment (Loury 1979;
Lee and Wilde 1980) as well as the pace of research and the amount of risk-taking induced by the
structure of races (Dasgupta and Stiglitz 1980). These models pre-suppose a winner-take-all reward,

2We also estimate these numbers in a subsample of the PDB data that is most similar to the hypothetical posed
in the survey and still find evidence of pessimism. See Table 8 for details.
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which has implications for the outcome of innovation tournaments and the strategic behavior of the
participants (Fudenberg et al. 1983; Harris and Vickers 1985, 1987). The conventional wisdom in
the sciences — and the assumption underlying much of the theoretical economics work on the topic
— is that the process of scientific discovery is also a winner-take-all tournament, even if the prize is
priority recognition rather than a patent. (Merton 1957; Dasgupta and David 1994; Stephan 1996).
This reward structure again has implications for the pace of research and the strategic interaction of
teams (Bobtcheff et al. 2016). Despite these models’ influence on our understanding of innovation
systems, there is very little empirical evidence about the actual distribution of rewards in R&D
races. Therefore we believe our estimates provide important context for theoretical and policy
discussions about the incentives for scientific innovation.

This paper joins a small literature that aims to study innovation races empirically. Lerner (1997)
studies the disk drive industry in the 1970s and 1980s to test predictions about competing firms’
strategic behavior, and finds that firms lagging behind the leader are most likely to innovate. Most
related to our work, Thompson and Kuhn (2017) document that winners of patent races do more
innovation in the future, and that this innovation is more likely to be related to the original patent.
The authors identify patent races by looking for patents that were rejected for lack of novelty.
Bikard (2013) studies the phenomenon of simultaneous discovery in science, and documents many
cases of papers that are similar in content, are published around the same time, and are frequently
cited together. Our method of using biological details to link competing papers allows us to find
simultaneous discoveries where one paper goes unpublished or is cited infrequently in the future.

Our estimates also contribute to work in sociology and economics about how academic repu-
tation interacts with future success. The Matthew Effect, first described by Merton (1968), is a
model of path-dependent advantage, whereby success begets future success through increased name
recognition, resources, and opportunities. Recent empirical work has documented evidence of the
Matthew Effect in science. Azoulay et al. (2013) find that life scientists who win a prestigious award
experience a “boost” in citations to their pre-award work relative to similar scientists. Hill (2019)
finds that astronomers who experience exogenous bad-weather shocks during their data collection
publish at lower rates in the future, with larger effects for novice researchers. Jacob and Lefgren
(2011) and Bol et al. (2018) find that narrowly winning a post-doc grant early in the career can
increase profile and accelerate productivity relative to applicants who were narrowly rejected. Al-
though scientists may value attention and prestige intrinsically, journal placement and citations also
translate to monetary gain in the form of grants, tenure promotions, and salary increases (Hamer-
mesh and Pfann 2012; Ellison 2013). Our estimates of the long-run consequences of getting scooped
confirms that there is some amplification of citations after a successful project in our setting. The
evidence we present of asymmetric credit for high- and low-reputation teams also agrees with the
notion that superstar scientists may be rewarded as much for their past productivity as for their
current output.

The remainder of the paper proceeds as follows. Section 2 provides some scientific background
and a description of our data. Section 3 describes the empirical design and identification. Section 4
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presents results for the short-run impact on publication, journal placement, citations, and alternative
attention metrics as well as the long-run career results. We also discuss the role of editors and the
timing of races for the distribution of priority rewards. Section 5 describes a model of academic
attention and reports results for heterogeneity of the scoop penalty by pre-existing reputation.
Section 6 benchmarks the size of our estimates against the beliefs of surveyed structural biologists
about the probability and cost of getting scooped. Section 7 concludes.

2 Background and Data Construction

2.1 Scientific Primer: Structural Biology and the Role of Proteins

In this section we provide a primer on the field of structural biology, a setting particularly con-
ducive to studying scientific races. Unlike most academic disciplines, structural biology has very de-
tailed and organized project-level data, which allows us to systematically track soon-to-be-published
projects that are at risk of being scooped. Structural biology is the study of the three-dimensional
structure of biological macromolecules. These macromolecules include deoxyribonucleic acid (DNA),
ribonucleic acids (RNA), and, most commonly, proteins. Proteins contribute to almost every pro-
cess inside the body. They transport oxygen in blood (hemoglobin), trigger muscle contractions
(actin and myosin), and regulate blood sugar (insulin). In many ways, the form or structure of a
protein determines its function. For example, antibodies are Y-shaped immune system proteins that
bind to foreign molecules (like viruses or bacteria) with two of their arms, while recruiting other
immune system proteins with the remaining arm. It is exactly this Y shape that allows the antibody
to function (National Institute of General Medical Sciences 2017). By understanding a protein’s
three-dimensional structure, scientists can better understand how the protein functions. Protein
folding and structure has important applications, particularly in medicine, and fifteen Nobel Prizes
have been awarded for advances in structural biology (Wlodawer et al. 2008; Martz et al. 2019).

Proteins are composed of chains of amino acids, which range in length from a few dozen to several
thousand amino acids long. Scientists have long known how to determine a protein’s amino acid
sequence, but it is much more difficult to understand how they are folded. Most protein structures
are solved using a technique called x-ray crystallography, and each project may take many months
or years. Scientists grow proteins into crystals, subject them to x-ray beams at large synchrotron
facilities, and use the resulting diffraction data to determine a model of the protein’s structure
(Goodsell 2019). Although knowledge about protein structures is useful for applied technologies,
the discovery of the structure itself is not patentable.3 New structures are usually solved by academic
researchers at universities, although 15 percent of the scientists in our sample work at non-profit
research laboratories or private companies.

3The 2013 Supreme Court ruling on the Association for Molecular Pathology versus Myriad Genetics Inc. case
precludes patents on naturally occurring products such as proteins, genes, and bacteria in the United States. However,
even prior to this ruling, patents on the 3D structure of proteins were rare and difficult to obtain (Seide and Russo,
2002; Shimbo et al., 2004).
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2.2 The Protein Data Bank

We focus on structural biology because the Protein Data Bank (PDB) contains detailed, organized,
and comprehensive project-level data that is publicly available. The PDB is a worldwide repository
of biological macromolecule structures, 95 percent of which are proteins.4 The PDB was established
in 1971 at Brookhaven National Laboratories, with just seven structures. Today, the PDB contains
over 150,000 macromolecule structures, and is growing at a rate of about ten percent annually
(Berman et al. 2000; Burley et al. 2019). Since the early 1990s, the majority of scientific journals
have required that any published structures be deposited in the PDB (Barinaga 1989; Berman et al.
2000, 2016). Furthermore, in 1998, top journals including Science, Nature, and PNAS formalized a
policy to ensure simultaneous release of academic papers and PDB details (Campbell 1998; Sussman
1998) as encouraged by the PDB and the International Union of Crystallography.

Because of these strict public disclosure policies, we believe the PDB represents a near-complete
census of macromolecule structure discoveries. Whenever a structural biologist completes a project,
they upload the structure, experiment, and discovery details to the PDB. This typically happens
shortly before or after they submit an academic paper describing their findings for publication. An
important feature of this process is that the uploaded data is confidential. No other user of the
PDB can access the data or see that the deposit has been created. Even the editor and reviewers
only receive a receipt of deposit from the PDB and author, and they do not see the underlying
structure data until the date of publication. Only at the point of publication is the data released to
the public. If any project goes unpublished, the data is released by default after one year (wwPDB
2019).

The primary unit of analysis in the PDB is a structure deposit, which is a unique report about
the determination of a single protein by one research lab. Each structure is assigned a unique ID.
For example, PDB ID 4HHB is the structure of human deoxyhemoglobin, the form of hemoglobin
without oxygen, which is the predominant protein in red blood cells (Fermi et al. 1984).

The PDB provides three key pieces of information that we will use in our analysis. The first is
a measure of similarity between proteins. This is calculated by comparing how similar a protein’s
amino acid chain is to other proteins in the PDB. For a given protein, the PDB uses an algorithm
to construct a list of other proteins that are 100 percent similar, 90 percent similar, etc., all the
way down to 30 percent similar. These groupings, or “clusters,” allow us to determine whether two
structure deposits from different teams correspond to the same or very similar protein. The second
key piece of information the PDB provides is a list of dates for the structure deposit, including
when the data was deposited and when it was released. This allows us to construct a timeline
for the projects and identify cases when two or more teams were working simultaneously on the
same protein. Finally, each PDB structure is linked to the academic paper that the structure was
published in (if any). This link includes the PubMed ID, which we link to PubMed bibliographic
data and Web of Science citation data.

4The remaining types of molecules in the PDB are DNA, RNA, or a complex of protein, DNA, and/or RNA.
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2.3 Identifying Priority Races: Challenges and Solutions

Identifying priority races in scientific data is difficult for three distinct reasons. First, questions
should be well-defined and have a common approach to solving the problem. To underscore the
importance of this requirement, consider economics, a field where this is not the case. There are
many papers on the same topic or question (e.g., what is the effect of raising the minimum wage
on employment?), which are often published in close succession (Jardim et al., 2018; Cengiz et al.,
2019). And yet, because there are a variety of methods, settings, and approaches, these papers
may be quite distinct. Therefore, the first paper to be published likely does not necessarily “scoop”
subsequent papers that aim to answer the same question. For our purposes, we need a field where
the questions are tightly defined with a common approach. The second challenge is identifying
papers that answer the same question. Manually comparing papers to decide whether they address
the same question is infeasible at scale. Ideally, we would have some objective measure of scientific
proximity, which can tell us whether two teams are working on the identical problem. Finally, the
third challenge is that scooped papers are often abandoned without publication. If authors abandon
their projects when they see that a similar paper has been published, most scooped papers will never
show up in bibliographic data.

The PDB enables us to make significant progress on these three obstacles. First, the questions
in structural biology are well-defined, because scientists are typically trying to solve the structure
of a known protein. Moreover, the methods are consistent: 85 percent of proteins are solved using
x-ray crystallography. This means that if we observe two papers that study the structure of the
same protein, these two papers are likely to be very similar in terms of the question, methods,
and conclusions. Second, as mentioned in the previous section, the PDB measures how biologically
similar different proteins are to one another. This allows us to link projects based on objective
measures of scientific proximity rather than text similarity or citation behavior. Finally, scientists
are required to deposit their structures in the PDB prior to publication. This gives us the ability to
observe some projects that never get published. Given that scientists might abandon papers that
get scooped, having this record of projects that are never published is a key feature of our data.
We will discuss the timeline in more detail in the next section. To the best of our knowledge, we
are the first to measure scientific races in a data-driven manner.5

2.4 Defining Priority Races

Broadly speaking, we define a priority race as an instance where two or more teams are working
on the same protein independently and concurrently and are likely uncertain about the identity or
progress of their competitors. Following Brown and Ramaswamy (2007), we define “same protein”
as meaning two proteins within the same 50 percent or higher sequence similarity group (called a

5Thompson and Kuhn (2017) are able to identify patent applications that were engaged in a patent race by finding
patents that were rejected for lack of novelty. Bikard (2013) identifies paper “twins” using papers that are frequently
co-cited, but this approach precludes cases where one team captured the outsized share of citations by construction.

8



“cluster” in the PDB).6 The PDB assigns ID numbers to clusters of similar proteins, and we say that
the first deposit released in that cluster is the “priority” deposit. There are often many subsequent
deposits that report similar structure coordinates as the priority deposit. These follow-on deposits
are either scooped projects that proceeded to publication, replication projects of the same protein
by future teams, or new projects that solve the structure for closely related proteins from different
organisms or bonded with different macromolecules in a novel way.7

We use the timing to determine whether a follow-on deposit was scooped by the priority deposit.
The PDB provides two key dates at the structure level that outline the timeline of each project and
help us determine whether two teams are working concurrently: the deposit date and release date.8

The deposit date corresponds to the date that the scientist uploaded her solved structure to the
PDB. Importantly, the structure is not yet visible to the public. Nearly all scientific journals require
that authors upload their structures to the PDB prior to publication, so deposit typically occurs
slightly before or after the date that the scientist first submitted their paper. The release date is
the date that the PDB deposit is made public. This typically corresponds to the publication date.
In cases where the structure is never published, the PDB releases the deposit by default one year
after the deposit date. Figure 1 provides a visual timeline of these dates, as well as some summary
statistics. Throughout this analysis we will always use the release date as the relevant marker of
priority. An alternative approach would be to use paper publication dates to determine priority
ordering. But these dates are often unavailable, especially for older publications, or are ambiguous
in recent data because online publication may come before print edition publication. Further, we
treat publication as an outcome variable, leading to potential bias if we condition on publication
as a requirement for treatment assignment. Lastly, PDB releases tend to be publicly salient dates
that the community pays attention to, so we are comfortable using these dates to mark priority.
Appendix Section A.4 discusses implications and presents evidence about the concordance between
release dates and publication dates in greater detail.

Figure 2 illustrates how we define a scoop event. Consider two projects, A and B, authored
by two distinct teams working on the same protein. Suppose project A is a priority project in one
of the similarity clusters. We say that project A scoops project B if (i) A is released before B is
released, but (ii) after B has deposited to the PDB. Condition (i) guarantees that A finishes first,
while condition (ii) guarantees that B did not know about A until after the structure was deposited
in the PDB. Since B had already deposited a completed structure, they likely would have been
the priority deposit had they not been scooped by A. Requiring that B has deposited before A is
released ensures that we observe abandoned projects, since all deposited structures appear in our
data even if they are scooped and fail to publish. We allow the priority project to scoop more

6If a protein is scooped by more than one other protein, we give preference to the protein that is biologically closer
(i.e. in the “higher” cluster). See Appendix B for details on the data construction. For robustness, we can restrict to
scoops by proteins within the same 100 percent cluster, and find similar results.

7For example, there are 30,154 clusters of proteins in the PDB that are 50 percent similar, and each cluster has
an average of 7.8 deposits, only some of which are eligible to be considered racing according to our definition.

8The scientists also report a collection date, which is the date the scientist took her crystals to the synchrotron
and collected her experimental data. Typically deposit occurs about one to two years after collection.
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than one team, and 5.8 percent of the races we identify have three or more competitors. Appendix
Section B provides a more detailed description of the data work necessary to construct these races
in practice.

An important caveat to our approach is that we can only identify races that were “close” enough
that both teams had already completed a structure determination and were preparing to publish.
Some scientists may claim they were “scooped” if they were working on an incomplete project when
another team published a solution first. We cannot observe their setback if they abandoned the
project before completion, nor can we infer their counterfactual probability of success had they not
been scooped. Therefore our approach specifically identifies the cost of being scooped when both
teams are near the finish line. This effect may be smaller or larger than the effect of being scooped
earlier in the scientific process.

2.4.1 An Example

To help understand our procedure, consider an example outlined in Table 1. The table shows two
structures: 1ZIW and 2A0Z. Both are structures of the Toll-like Receptor 3, a protein involved in
the identification of pathogens and other immune functions. Figure 3 shows the nearly identical
biological assembly models that each team deposited confidentially to the PDB. The scientists at
Scripps Research Institute (1ZIW) collected their data a few months after the scientists at the
National Institutes of Health (2A0Z) (March 13, 2005 versus October 24, 2004). However, by the
time of deposit, Scripps had pulled ahead, depositing two months before NIH (April 27, 2005 versus
June 27, 2005). Ultimately, Scripps won the priority race, with their structure being released one
month before NIH (June 28, 2005 versus August 2, 2005). Importantly, when NIH deposited their
structure on June 27, 2005, Scripps had not yet released their structure. This means that NIH was
likely unaware of their competitor’s progress or results when they were preparing their publication
and depositing the structure. Comparing the outcomes of the winner (1ZIW) and the loser (2A0Z),
we observe that the winning paper was more successful. It was published in a better journal (Science,
with an impact factor of 30.9, versus The Proceedings of the National Academy of Sciences, with an
impact factor of 10.2) and received about 50 percent more citations.

2.4.2 Additional Sample Restrictions

Wemake three further restrictions to minimize cases of ambiguity in the race construction procedure.
First, we drop some proteins that are exceedingly complex. Some very large proteins are composed
of many entities that are sometimes solved piece by piece over many years instead of all at once.
This introduces the possibility that a scientist could be scooped on only a fraction of their project.9

Second, we drop projects that are published in a paper that is linked to 15 or more other structures.
9Proteins are often composed of sub-units called entities. The clustering algorithm in the PDB groups similar

molecules at the entity level, not the structure level. Therefore we define clear rules for dealing with proteins that
are scooped on more than one of their constituent entities. We also drop projects with 15 or more entities because of
exceeding complexity. Appendix Section B describes in more detail how we deal with multi-entity structures in the
data.
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Among the set of papers included in our final analysis sample, 46 percent are linked to more than one
structure, and the average number of structures per paper is 1.9. Multi-structure papers are at risk
of being scooped on a fraction of the full project. This restriction allows for some fractional scoops
to enter our data, but ignores papers where each protein becomes a very small fraction of the full
contribution of the paper. Finally, we drop races that end in a near or exact tie. Occasionally, two
racing papers will be submitted to the same journal and the editor will publish them as companion
pieces in the same issue, and we drop these cases. We also drop races where the two papers were
released closer than two weeks apart from each other. We make this restriction to help ensure that
the first paper has a strong claim of priority and that the order of release is more likely to correspond
to the order of publication.10

2.5 Additional Data Sources

This section describes the additional data sources that we use to define outcome variables, control
variables, and provide further details about our setting. Additional details on data sources can be
found in Appendix A.

Journal Citation Reports Journal Citation Reports is an annual publication that evaluates
journal influence using a metric called “journal impact factor”. Let Citesjt,t−k be the number of
citations that journal j received in year t for articles written in year t− k. Let Articlesjt−k be the
number of articles published by journal j in year t− k. Then journal j’s impact factor in year t is
given by:

JIF jt =
Citesjt,t−1 + Citesjt,t−2

Articlesjt−1 +Articlesjt−2
.

In words, the journal impact factor attempts to capture a journal’s rolling average citations per
article. We standardize the impact factors within a year t to account for the fact that impact
factors have been rising over time as the rate of publishing within the life sciences has increased.
We also use the journal impact factor to create a list of “top-10 journals.” In order to focus on
journals that are both high impact and also relevant to structural biology, we restrict to a potential
list of the 30 journals with the most PDB linkages in each half decade. That set is then restricted to
the 10 highest impact journals in each five-year span. The list contains top-ranked general interest
journals as well as top-ranked life science journals11

Web of Science The Web of Science is a database of over 73 million scientific publications
written since 1900 which are linked to their respective citations. We link the PDB to the Web of

10The PDB only releases structures once per week, which can also make very close scoops ambiguous in terms of
which truly came first. Our two week restriction helps eliminate these cases. See Appendix Section A.4 for more
details on the correspondence between the PDB release date and publication date.

11Top-ten journals in 2017: Nature, Science, Cell, Journal of the American Chemical Society, Nature Chemical
Biology, Nature Structural and Molecular Biology, Nature Communications, Angewandte Chemie, Nucleic Acids
Research, and Proceedings of the National Academy of Sciences
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Science using PubMed identifiers, which are unique IDs assigned to research papers in the medical
and life sciences. We use these data to compute citation counts for PDB linked papers. Our
primary outcome is citations in the five years following publication, excluding self-citations. We
also construct a measure of whether a structure was published in a “hit” paper by ranking PDB
articles by five-year citation counts and marking the top 10 percent with the highest citation counts
within years. The version of the Web of Science that we use ends in 2018, therefore we restrict
the regression samples for this outcome to 1999-2013 to allow for time for publications to accrue
citations we can observe.

We also construct career histories of outcomes before and after the priority date of each race
for control variables and long-run outcomes. We sum publications, top-10 publications, citation-
weighted publications, and “hit” papers for the years preceding and following the treatment date.
The PDB, PubMed, and Web of Science data offer only limited information about careers, and
authors are not linked administratively over time. However, since journal publications are the
primary productive output of scientific careers, we can use these publication histories to infer the
time-span of participation and intensity of scientific activity. Besides analyzing the effects of race
outcomes on the intensive margin of publication, we also consider the extensive margin of exit
from publishing PDB related papers altogether. We mark an individual as having exited structural
biology if there is a hiatus of at least five years in their publication record. If this hiatus began in
the five years following the priority date, the individual is marked as having exited. More details
about the panel of papers and name disambiguation is provided in Appendix A.

Altmetric.com Getting scooped may not only affect traditional publication outcomes like jour-
nal placement and citations, but also the overall engagement with the research by the academic
community and general public. There have been many recent efforts to measure broader sources of
academic impact by counting metrics such as news and social media engagement, patent citations,
and online downloads and readership. We link the PubMed papers in our sample to data provided
by Altmetric.com. In Section 4.2, we examine the effect of getting scooped in recent years on these
non-traditional measures, including Mendeley downloads (a popular citation management software),
news article citations, Wikipedia citations, patent citations, Twitter.com mentions, and a composite
measure of attention called the Altmetric Attention Score.

QS World University Rankings We use information about the affiliation ranking of the PDB
scientists as control variables and to predict their academic reputation. The QS World University
Rankings is an annual publication that globally ranks universities both overall and within subjects.
We use the 2018 life sciences and medicine rankings, as this field is the most relevant to our
setting. The ranking methodology combines four sources: a global survey of academics (academic
reputation), a global survey of employers (employer reputation), citations per paper, and faculty
h-index values. These four sources are aggregated to create a total score which is used to rank the
500 best universities.
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Editorial Dates In Section 4.4, we analyze how the scoop penalty is affected by the timing of the
scoop event relative to the journal review and publication timeline. We supplement our data with
the received, accepted, and publication dates for papers published in journals owned by a handful
of large publishers. While we were not able to obtain these dates for all articles, we chose to focus
on journals based on their prevalence in the PDB and the availability of the data for download.
The journals included in the subsample are flagship or field journals from the following journal
groups: Science, Nature Journals, Cell Press, Public Library of Science (PLOS), and one publisher
that requested to remain anonymous. This subsample covers 23 percent of our primary regression
sample.

Scientist Survey In order to benchmark the magnitudes of our findings, we surveyed structural
biologists about their perceptions of the probability and costs of getting scooped. Email surveys
were conducted in September of 2019. We collected email addresses from the Web of Science, which
provides a contact email for many of the corresponding authors on academic publications. The
recruitment sample was defined as any corresponding author on a PDB-linked publication from
2014-2019 that had an email address available in the Web of Science files. We sent recruitment
emails to 8,984 unique email addresses, and encouraged respondents to participate on a volunteer
basis. We received 915 responses, for a total response rate of 10.2 percent. Each potential recruit
received one initial solicitation and two follow-up reminders to complete the survey. Relevant text
of the questionnaire is provided in Appendix C.

2.6 Summary Statistics

By identifying priority races, we effectively split the PDB into two mutually exclusive groups:
structures involved in a priority race (the “racing sample”) and structures not involved in a priority
race (the “non-racing” sample). Table 2 shows summary statistics at the structure level for both of
these samples. Just over 5 percent of the structures in our sample are involved in a priority race. We
look at both team characteristics and deposit outcomes. Teams involved in priority races tend to
be smaller, younger, and more likely to come from a top university. The racing scientists were also
more likely to work in Asia, and less likely in North America. The deposit outcomes suggest that
proteins involved in priority races are scientifically more important. Proteins in the racing sample
are more likely to be published, appear in higher-ranked journals, and receive more citations.

3 Empirical Design

The analysis is designed to identify the causal effect of getting scooped on the short-term success
of the project (publication, journal placement, and citations), as well as on subsequent academic
success of the scooped authors. We estimate the difference in outcomes between the winners and
losers of the priority races in the PDB. In an ideal setting for causal inference, the winners and
losers would be randomly assigned. In reality, the outcome of these late-stage races is not exactly
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random, but is highly unpredictable. We present evidence that although some characteristics of the
teams are correlated with winning a race, these observables can only explain very small differences
in outcomes. In this section, we present the main estimating equations of our analysis, describe
and test for potential sources of bias, and explain the control selection strategy we use to deal with
potential selection bias.

3.1 Baseline Specification

Equation 1 presents the basic specification for the project-level regressions. For deposit i studying
protein p, we estimate

Yip = α+ βScoopedi + X′iδ + γp + εip (1)

where Yip is an outcome, such as publication, journal impact factor, or citations. Scooped is an
indicator for losing a priority race, X is a vector of covariates, and γ is the coefficient on a protein
(i.e., race) fixed effect. The main coefficient of interest is β, which identifies the scoop penalty. All
standard errors are clustered at the protein level. Our identifying assumption is that Scooped is
uncorrelated with the error term once we condition on observable covariates and the protein involved
in the priority race.

In Section 4.3, we consider the long-run effect of getting scooped on academic career outcomes.
The regression specification is similar to equation 1, but the unit of observation is a scientist, rather
than a project. For scientist s who co-authored deposit i that was in a priority race over protein p,
we estimate

Yisp = α+ βScoopedis + X′isδ + γp + εisp (2)

where Scoopedis is a dummy equal to one if scientist s was scooped on project i. Xis is a vector of
scientist-project covariates, such as the number of publications accumulated by scientist s in the five
years before the priority date associated with project i. We also include cubic controls for career
age, which is defined as the number of years since the author’s first publication in the PDB, as
well as the university rank of the first author affiliation and the continent where the first author is
located. Again, γ is the coefficient on the protein fixed effect (corresponding to the protein from
the initial priority race). The long-run outcomes are calculated as the sum of each outcome in the
five years following the priority date. Importantly, we exclude the publication that is linked to the
structure ID of the PDB projects that were involved in the race. These outcomes therefore represent
productivity in other projects not including the winning or losing paper in each race.

3.2 Identification and Balance

Comparing outcomes of winners and losers of the PDB races identifies the causal effect of getting
scooped if the race ordering is as-good-as-randomly-assigned. There are many reasons a team
might win or lose a priority race, and it is plausible that the order of completion is somewhat
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idiosyncratic. The randomness of the scientific process, day-to-day operation of scientific labs, and
the vagaries of the journal review process leave ample opportunity for random chance to dictate the
timing of these races. Anecdotal accounts of ill-timed personnel issues, lab accidents, or unlucky
experiment failures suggest that the timing of project completion is oftentimes out of the hands of
even the most diligent and skilled scientist (Ramakrishnan, 2018; Yong, 2018). Furthermore, after
the deposit date and submission of a manuscript, the scientist has very little discretion over the
timing of the review process, which may be delayed by editor preference, reviewer inattention, or
publisher congestion. Moreover, scientists typically have little information about the identities or
progress of their competitors.

On the other hand, skill, experience, or resources could provide an advantage to certain teams
that would allow them to systematically start earlier or work faster and therefore win priority
races. This is a threat to identification because these characteristics may simultaneously increase
the probability of winning and improve project outcomes. For example, suppose a technological
breakthrough marks the starting point of a race that many diverse teams enter. If one team from
Harvard has exceptional resources to adopt the technology and complete the project first, we will
observe them win the race and receive many citations. But since Harvard is a high-reputation
university and has a track record of success, they would likely have high citations even in the
counterfactual where their competitor won the race. Therefore, we rely on the assumption that
well-resourced or otherwise high-reputation teams are not able to systematically win priority races,
and we test this using observable characteristics of each team.

If winning a priority race is random, then winning and losing teams should look balanced based
on observables. We assess this observed balance between winners and losers in Table 3. Using the
information disclosed by the teams in the PDB, we inspect a variety of observable characteristics
that might reasonably be correlated with the probability of treatment or with outcomes. These
include the number of authors, the location of the lab, the rank of the university affiliation, and
the experience in years of the first and last authors. We also calculate measures of the authors’
productivity in PDB-related publications in the five years prior to the racing deposits. These include
the number of PDB deposits, publications, and publications in top-ranked journals.12

Table 3 shows the mean values of each covariate for the winning and losing teams, as well as
for the teams in the non-racing sample, for reference. We report test statistics for the difference in
means between the winning and losing teams, as well as an F-statistic for a test of joint significance
of all covariates. We find that many of the covariates are balanced between the winning and losing
teams. But winning and losing teams are statistically different in a few notable dimensions. North
American and European teams are more likely to win than lose, while Asian teams are more likely
to lose than win. Scientists from top-50 ranked universities are more likely to win, as well as first
authors with slightly less experience. The prior productivity of these labs is more balanced, with
both the first and last authors having almost identical numbers of deposits and publications. We also

12We do not use citations accrued to the racing papers because many of those citations would be assigned after the
treatment date of the priority races and could therefore be endogenous to the outcome of the race.
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test whether the scientific results that are being deposited by both teams are similar. Refinement
resolution and R-free are two variables reported by the PDB that describe the objective quality
of the experimental data and model in each deposit. For both of these measures, smaller values
imply better quality. These two measures are very close to balanced between winners and losers,
suggesting that the quality of the science or the skill of the scientists is likely not driving our results.
Taking the table as a whole, we reject the null hypothesis of balance on the full battery of covariates
based on an F-statistic of 3.91.

Unbalanced covariates lead to biased estimates only if they are systematically correlated with
the outcome variable. Therefore, to further assess potential selection bias, we visually inspect the
difference in expected citations between winners and losers. We estimate a model of citations using
a Lasso13 regression of five-year citation counts on the battery of team covariates. This model
is estimated only in the sample of non-racing deposits. We then take the selected variables and
estimated coefficients to predict citations in the racing sample in a post-Lasso OLS procedure. The
covariates we include are counts of publications, citations, and journal placements in the five years
prior to the deposit for the first and last author. We also use the career age of the first and last
authors, the rank of the first author’s institution in ten-school bins, and the country and university
of the first author. The Lasso model selects many of the variables one would expect to be important,
including dummies for being in the US, and dummies for university rank. The full Lasso results are
reported in Appendix Table A1.

Figure 4 plots a histogram of the difference in predicted citations between each pair of winning
and losing teams (races with three or more teams are omitted here). A perfectly balanced sample
would be centered around zero and symmetric. If winners were systematically better-resourced,
higher reputation, or more experienced, then the histogram would be skewed to the right. As a
benchmark for perfect balance, we compare this distribution to a simulated distribution where we
randomly assign one of the paired teams as the winner. We simulate this coin flip 100 times per
pair. The true distribution is shifted slightly to the right of the randomly simulated distribution,
suggesting that winners are slightly more likely to be high-reputation than would be predicted by
chance. But the differences in the distribution are minimal, with an average difference in pre-
dicted citations of 0.21 citations (p-value of 0.587). We can also compare the distributions with a
Kolmogorov-Smirnov test and calculate a test statistic of 0.040 with a p-value of 0.240. Therefore
we fail to reject the hypothesis that the difference between these two histograms is different than
zero. While winners and losers of priority races are not identical in observables, their differences
appear to have very little systematic effect on our measures of project success.

3.3 Control Selection Using Post-double-selection Lasso

In light of potential treatment imbalance, we rely on an identification assumption that treatment is
exogenous conditional on observable control variables. There are many potential control variables in
our data, so we use a method called post-double-selection Lasso (PDS-Lasso) proposed by Belloni

13Least Absolute Shrinkage and Selection Operator (Tibshirani 1996).
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et al. (2014) to optimally select controls variables. Consider a partially linear model similar to
equation 1

Yip = α+ βScoopedi + g(Zi) + γp + εip (3)

where Zi is a large set of control variables. Also, assume that εip satisfies an exogeneity assump-
tion such that the treatment is mean independent of εip conditional on controls. Then β will be
consistently estimated if we can control for a sufficiently good approximation of g(Zi). Rather than
relying on an ad hoc procedure to choose controls, PDS-Lasso offers a robust approach to estimation
and inference for β.

The PDS-Lasso method uses two steps. First, it estimates a Lasso regression of Scoopedi on Zi

to select a set of regressors that are predictive of treatment. Then it uses a second Lasso regression
of Yip on Zi to select regressors that are predictive of the dependent variable. The selected control
variables are highly informative of treatment assignment and outcomes, and therefore reduce bias
in estimation. The superset of selected regressors from those two regressions are used as the control
variables in a post-OLS regression of Yip on Scoopedi. The potential set of regressors we use are
the variables in the balance Table 3 as well as squares of those variables and university rank binned
into 10 school dummies. The protein fixed effects γp are included as unpenalized regressors in all
steps of the method.

4 Results

4.1 Short-run Effect on Projects

Table 4 reports the regression results for the project-level effect of getting scooped. We focus on five
primary outcomes: (1) an indicator for whether the project was published, (2) the journal impact
factor (standardized within year) (3) an indicator for publishing in a top-10 journal as measured by
impact factor, (4) total citations accrued in five years, transformed with the inverse hyperbolic sine
function14, and (5) an indicator for becoming one of the top 10 percent of publications measured
by five-year citation counts. Not all projects are published, and if they are, may not be published
in a ranked journal. We count unpublished papers as having zero citations. If the project is not
published in a ranked journal, we impute the impact factor of their publications as being equivalent
to the minimum journal ranking in the regression sample. The sample is restricted in columns 4
and 5 to projects released before 2014 to allow a full five years of data coverage to count citations
in that window before our citation data ends in 2018. We present regression results from three
different specifications. Panel A shows the results from a simplified version of equation 1 with no
control variables. Panel B adds all controls listed in Table 3, and panel C uses controls selected
from the PDS-Lasso procedure described in Section 3.3. The results across all five outcomes suggest

14The inverse hyperbolic sine transform is a standard way of dealing with a right-skewed distribution that has
zeroes and/or negative numbers (Burbidge et al. 1988; Bellemare and Wichman 2019). The transformation is given
by asinh(x) = log

(
x+
√
x2 + 1

)
. The coefficients on variables transformed by the hyperbolic sine function can be

interpreted similarly to logs (i.e. proportionally).
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that covariates have very little impact on the coefficients between panel A and panel C, assuaging
concerns about omitted variables bias. We will use panel C as the preferred specification to report
our estimates throughout the paper.

The baseline publication rate for winning projects is high at 88 percent. Scooped projects are
2.5 percentage points less likely to publish their results. This small discouragement rate is likely
driven by the low cost of publishing once the project has already been deposited in the PDB (recall
that in our sample, all scooped projects have already been deposited in the PDB when they learn
that they have been scooped). In many cases, the scooped teams may be well into their submission
and revision process at the time of being scooped, and therefore will persist to publication. Even
if they are rejected from a journal, there are many low-ranked outlets that may be more willing to
accept scooped papers, a mechanism we explore in Section 4.4.

In column 2, we estimate a statistically significant penalty in journal impact factor. Scooped
papers are published in journals with impact factors 0.18 standard deviations below non-scooped
papers. In column 3, this translates to a six percentage point (18 percent) decrease in the probability
of publishing in a top-ten journal. Column 4 shows that scooped papers face a significant citation
penalty as well. The winning projects receive 29 citations on average in the first five years. The
scooped projects receive 20 percent fewer citations in the same time span. Column 5 suggests that
this means scooped projects are 3.5 percentage points (23 percent) less likely to be one of the top
10 percent of papers in that publication year ranked by five-year citations. These results are robust
to a variety of cutoffs, including a shorter or longer citation window and different percentiles for
the high-citation mark. Taken together, these results suggest that there is a significant penalty
for being scooped, both in the likelihood of publication, the journal rank of publication, and the
number of citations accrued in the early life cycle. However, these results also strongly indicate that
the rewards for priority are not winner-take-all. Losing teams receive a smaller, but still substantial
share of the credit as measured by publication and citations. Translating the citation penalty to
shares of total citations, losing projects receive approximately 44.5 percent of the total citations
accrued to both papers, a much larger share of credit than zero percent for the winner as is typically
assumed by classic models of innovation races.15

4.2 Alternative Measures of Attention

Scooped projects may not only be penalized in terms of journal placement and citations, but also
by less formal forms of recognition, such as reader downloads, coverage in the scientific press, and
mentions on social media. Scientists value these interactions as they build standing and reputation in
both the academic community and general public. Table 5 shows results of project-level regressions
using outcomes sourced from Altmetric.com. In these regressions, we restrict the sample period to
2011-2017 since many of these outcomes are only relevant in the recent internet era. All outcomes

15The estimated share of 44.5 percent is calculated by dividing the mean citations of the losing teams, 28.9 ∗ (1−
0.197) by the implied total citations (28.9 + 28.9 ∗ (1 − .197)) based on the estimate of the percent citation penalty
from column 4, panel C.
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are count variables again transformed with the inverse hyperbolic sine function to deal with skewness
and facilitate proportional interpretation of the effects. Regression results are again reported with
the three different control strategies used in Table 4.

Column 1 of Table 5 reports the effect of getting scooped on Mendeley readership. Mendeley is
a popular citation manager used by many researchers. Downloading a paper on Mendeley can be
interpreted as a proxy for popularity of a paper among readers, and especially those readers that
might consider citing the paper at some point. Getting scooped leads to a 45 percent decline in
Mendeley downloads, which is quite a bit larger than the citation penalty reported in Table 4. News
stories covering the academic articles fall by 11 percent for scooped papers, and Wikipedia citations
fall by 3.5 percent. There is no detectable effect on patent citations. Mentions of a paper on Twitter
fall by 12 percent, although this estimate is only marginally significant and not robust to all control
strategies. Altmetric.com provides a comprehensive score of alternative attention (Huang et al.
2018), which falls by 24 percent for scooped papers. These results suggest that getting scooped has
different effects for different audiences. The large effect on readership proxied by Mendeley suggests
that scientists who casually interact with the research are more prone to focus on only the race
winners. This is likely driven in part by journal placement, where some scientists stay abreast of
advances in various fields by only reading papers that appear in the top general interest or field
journals. Science reporters in the news tend to be less responsive to priority ordering, suggesting
that they might be more likely to cover both papers about a topic instead of just the first paper.
Some of the most specialized readers, such as Wikipedia contributors and patent citers seem to be
the least responsive, suggesting that they do a much deeper literature search when citing academic
papers.

4.3 Long-run Effect on Authors

In this section we analyze the long-run consequences of being scooped on the careers of the various
authors of scooped papers. The regressions follow equation 2 and are run at the level of the individual
scientist. Although each scientist may win or lose races multiple times, we include each appearance
as a separate treatment event, and consider the subsequent outcomes for all scoop events. Table 6
reports the results of the long-run outcomes regression. Panel A contains results for regressions in
the full sample of authors. Panel B restricts to novices only, which are defined as authors who had
two years or less since their first publication at the time of the scooping event. Panel C restricts to
veterans, which are all scientists not defined as novices.16

Overall, scientists are less likely to still be actively publishing PDB-linked articles if they have
been scooped. In the full sample, 80 percent of authors persist for at least five years following
the priority date, and the scooped scientists are 2.2 percentage points less likely to persist than
the winning scientists. This effect is only statistically significant for veteran scientists. The effect

16The sum of the sample sizes in panels B and C is smaller than the sample size in panel A because the race fixed
effects specification requires us to restrict to races that have at least one novice (or veteran) in the winning and losing
team of each race.
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among novices is similar in sign and magnitude, but we cannot reject the effect is different than
zero, in part because of the smaller sample size. We can only calculate this extensive margin effect
using PubMed publications that are linked to PDB projects. It may be that getting scooped is
not enough to push scientists all the way out of academia, but could push them to other fields of
research in biology that do not involve structure determination. Perhaps the losing authors are
discouraged by the competitive nature of races in crystallography and decide to dedicate themselves
to other questions in biology. 17

The negative extensive margin result does not translate into significant changes in intensive
margin publishing for novices or veterans. Losing teams have no statistically significant differences
in publications in the following years as shown in column 2, and they are not more or less likely
to publish in top-10 journals. However, we do estimate significant penalties in citations for all
categories of authors. In the full author sample, the scooped individuals receive 20 percent fewer
citations to their subsequent publications in the next five years (where citations are counted up to
three years after each paper’s publication). This effect falls particularly hard on novices, who receive
28 percent fewer citations, while veterans receive only 17 percent fewer citations. The effect on “hit”
papers is reported in column 5 and also suggests that getting scooped decreases attention to future
work. The full sample of scientists are 16% less likely to have a hit paper following a scoop event
on average. The negative effect in this case is larger in percent terms for veterans (-16%) than it is
for novices (-12%), although veterans have a higher base rate of hit papers than novices. We also
consider outcomes in the following three years in Appendix Table A2 and ten years in Appendix
Table A3. The results are similar in the three year window, but are smaller and imprecise after 10
years, in part because we restrict to a smaller balanced sample of races that ended before the last
ten years of our sample window.

4.4 Mechanisms: Role of Scoop Timing in the Publication Process

Scooped projects receive 20 percent fewer citations than their winning counterparts, suggesting
that academic researchers pay less attention to the projects that are scooped. In this section, we
ask how the editorial process affects the scoop penalty, and we argue that journal placement is a
primary driver of the citation penalty. Further, the size of the penalty is highly correlated with
the timing of races. Teams that are scooped very soon after they deposit their findings receive a
much larger penalty than teams that are scooped shortly before publication. We provide evidence
that top journal editors are unlikely to accept scooped papers, therefore scooped papers consistently
fall to lower-ranked journals unless they were deep into the review process at the time they were
scooped. These results suggest that editors and reviewers are key policymakers in determining the
distribution of academic credit for novel research.

17The full PubMed database could shed light on full exit from academia, but due to data availability and challenges
with name disambiguation, we are not able to analyze these outcomes yet. See Appendix A for a discussion of name
disambiguation.
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4.4.1 Decomposing the Citation Effect

First we show that the citation penalty is largely driven by journal placement. We decompose the
citation effect into an editor/reviewer effect and a reader effect by controlling for journal placement.
Column 1 of Table 7 replicates the citation penalty effect from Table 4, column 4, but uses a
subsample of races where both papers were published in ranked journals. When both papers are
published, the citation penalty is 16 percent for scooped papers. In columns 2 and 3, we add controls
for journal impact factor, first as a linear term and then as a cubic polynomial. The citation effect
falls to 11 percent, but remains statistically significant. Finally, in column 4 we include journal fixed
effects to control completely for any direct effect of the publication outlet on citations. The effect
falls to 5 percent and is no longer statistically significant. These results suggest that at least two-
thirds of the citation penalty comes through the channel of the publishing journal. Any remaining
effect on citation attention comes through readers differentially citing winning and losing papers in
similar journals.

4.4.2 Getting Scooped and the Publication Timeline

Academic journals compete fiercely to publish the highest quality and most novel scientific articles.
Many of these journals have explicit policies for accepting only highly original and novel research.
For example, Science provides the following guidelines to peer reviewers: “[R]ecommend in your
review whether the paper should be published in Science and provide a more detailed critique
based on the following: ... Novelty: Indicate in your review if the conclusions are novel or are too
similar to work already published.”18 Editors and reviewers therefore likely drive much of the scoop
penalty if they choose to reject scooped papers when they come across their desk. In this section we
look at how the scoop penalty is affected by the timing of journal submissions. Many of the papers
in our sample had already been submitted to a journal when they were scooped, and a few papers
had already been accepted. Even if an editor would prefer to reject a scooped paper, they may be
unable to do so if the paper had already been accepted or was far along in the review process. We
use the supplementary data collected from journal websites to examine how the scoop penalty is
affected by the timing of the review process. Ideally, we would compare the scoop date to rejection
dates at leading journals. But data on rejected papers is not publicly available in almost all cases.
Therefore, we instead use the timing of submission and acceptance to present suggestive evidence
that editors at top journals are reticent to publish scooped papers.

In our data, scooped papers occasionally appear in top journals like Science, Nature, and Cell,
but 90 percent of those papers were already under review on the date that they were scooped.
Furthermore, about 60 percent of those papers were scooped after they had already been accepted.
Figure 5 further shows that this pattern varies greatly by the impact factor of the journal that
eventually publishes the scooped paper. For lower ranked journals, such as PLOS One, only 60
percent of scooped papers had been received by the journal on the date they were scooped, and just

18See 2019 Science Instructions for Reviewers of Research Articles: https://www.sciencemag.org/sites/default/
files/RAinstr19.pdf
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over 20 percent had been accepted. Among the twelve large journals for which we have received
and accepted data, there is a positive and statistically significant relationship between the share
accepted before the scoop date and the impact factor, with a one standard deviation higher ranked
journal being eight percentage points more likely to have already been accepted on the scoop date.
Although we cannot directly observe scooped papers being rejected from these journals, we can
infer from this pattern that top journals are less willing to accept papers that were scooped before
submission or early in the review process. Many of these scooped papers fall to lower ranked
general interest journals or highly specialized structural biology journals. Some of these lower-
ranked journals, such as PLOS Biology, have explicit policies of accepting scooped papers. PLOS
Biology editors write, “Just as summiting Everest second is still an incredible achievement, so
too, we believe, is the scientific research resulting from a group who have (perhaps inadvertently)
replicated the important findings of another group. To recognize this, we are formalizing a policy
whereby manuscripts that confirm or extend a recently published study (“scooped” manuscripts, also
referred to as complementary) are eligible for consideration at PLOS Biology” (PLOS Biology Staff
Editors 2018). But even some lower-ranked journals are concerned about the fierce competition
for novel research. When we approached one publisher about sharing their data on received and
accepted dates, they were only willing to provide the data anonymously, stating their concern about
presenting public evidence that they publish scooped papers. Figure 5 shows that this anonymous
editor may have realistic grounds for concern, as they are much more likely to accept scooped papers
than other large journals in our sample.

5 Reputation and the Scoop Penalty

In this section we document large heterogeneity in priority rewards between race winners and losers
depending on their preexisting reputation. When a high-status team scoops a low-status team, they
receive 66 percent of the total citations, but when a low-status team scoops a high-status team in a
comparable race, they only receive 46 percent of the the total citations. This asymmetry in attention
suggests that the distribution of priority rewards is not formulaic and may be affected by the
institutions and norms of the academic community. We propose a model of academic attention based
on a standard statistical discrimination model (Aigner and Cain, 1977) and present heterogeneity
results that support the predictions of the model. Priority rewards are allocated by a decentralized
set of actors, including journal editors and readers, in a market for academic attention. Because
scientists have limited time for reading and reviewing new papers, it may be difficult to determine
the quality of new research or to compare the merits of two similar papers. Therefore, editors and
readers may rely on signals of ability based on the reputation of the researchers or their institution
to supplement their judgement of a paper’s quality.
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5.1 A Model of Academic Attention

5.1.1 Setup

Editors, reviewers, and authors read new academic papers. In doing so, they receive a noisy signal
of the paper’s quality. The notion that paper quality is only partially observed by readers is similar
to the setup in Card and DellaVigna (2019) and may arise from inattention or uncertainty about the
importance of the contribution. The signal, s, is a function of the paper’s true underlying quality
(q) as well as a noise term, u:

s = q + u

where u ∼ N(0, σ2u) is independent of q ∼ N(α, σ2q ). Following the standard statistical discrimina-
tion model, readers will use both the signal and the average quality to infer the paper’s quality:

q̂(s) = E[q|s] = γs+ (1− γ)α

where γ =
σ2
q

σ2
q+σ

2
u
is the signal-to-noise ratio. Intuitively, expected quality is a weighted average of

the observed signal and mean quality. Readers put more weight on the signal when γ is large, i.e.
when the signal is informative relative to the noise term.

5.1.2 The Priority Premium

When making decisions about which paper to publish or cite, scientists care about both quality and
priority. Consider two papers which answer the same question, with inferred qualities q̂1 and q̂2.
Let the numeric subscript index the order of publication, so that q̂1 was published before q̂2, and
let f > 0 denote the priority premium. A scientist will cite the first paper if q̂1 + f ≥ q̂2. On the
other hand, a scientist will cite the second paper if q̂1 + f < q̂2.

5.1.3 Lab Types

Suppose there are two types of labs, H and L. H labs are “high-reputation” labs, known for
producing papers of high average quality, while L labs are “low-reputation” labs, known for producing
papers of low average quality. In other words, q is drawn from a different distribution depending on
the lab type. For H labs, qH ∼ N

(
αH , σ2q

)
while for L labs, qL ∼ N

(
αL, σ2q

)
. The key distinction

between the two lab types is that αH > αL. We will assume that variances are equal.
When two labs each write a paper on the identical topic (or in our case, protein), the true

qualities of the two papers are the same. However, if the labs have different reputations, the
inferred qualities will be different, even if the signals are identical:

q̂H(s) = γs+ (1− γ)αH

q̂L(s) = γs+ (1− γ)αL.

Ultimately, this gives rise to two distinct effects when competing labs publish on the same
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protein. The “priority effect” leads scientists to cite the earlier paper, since this paper receives a
premium, as described above. On the other hand, the “reputation effect” leads scientists to cite the
paper from the higher-reputation lab, since this paper will have higher inferred quality. This insight
leads us to two propositions.

Proposition 1. If labs are the same type, then the lab that publishes first is more likely to be cited.
In other words,

P (q̂H1 + f ≥ q̂H2 ) = P (q̂L1 + f ≥ q̂L2 ) >
1

2
.

Proof. See Appendix D. The intuition is that if the labs are the same type, there is no differential
reputation effect. Therefore, citations are driven solely by the priority effect.

Proposition 2. If the lab that publishes first is H-type and the lab that publishes second is L-type,
then the lab that publishes first is more likely to be cited. Moreover, the difference in citations will
be greater than if the labs were the same type. Conversely, if the lab that publishes first is L-type
and the lab that publishes second is H-type, it is ambiguous which lab is more likely to be cited.
However, the difference in probability of citation will certainly be less than if the labs were the same
type. This means that we can rank the probability of citation in all four scenarios:

P (q̂H1 + f ≥ q̂L2 ) > P (q̂H1 + f ≥ q̂H2 ) = P (q̂L1 + f ≥ q̂L2 ) > P (q̂L1 + f ≥ q̂H2 ).

Proof. See Appendix D. The intuition is that if the first lab is H-type and the second lab is
L-type, then the priority effect and the reputation effect work in the same direction. However, if the
first lab is L-type and the second lab is H-type, then the priority effect and the reputation effect
are working in opposite directions. Therefore, the net effect on citation behavior is ambiguous.

5.2 Heterogeneity by Academic Reputation

To test our model, we measure the share of total citations received by winning and losing labs, and
compare these shares by the reputations of the racing labs. More specifically, if lab A and lab B race
to write a paper about the same protein, we compute CitationShareA = CitationsA/(CitationsA+

CitationsB). This citation share maps to the probability of citation outlined in the model above.
We proxy for the pre-existing “reputation” of each lab using the Lasso-estimated predicted

citations from the non-racing data sample as described in Section 3.1.1. Labs with above-median
predicted citations correspond to the H labs, while teams below median correspond to the L labs.
In Figure 6 we plot the predicted citations of the losers on the x-axis and the predicted citations
of the corresponding winners on the y-axis. Each point on this scatter plot represents the observed
match between two racing labs. If all labs were equally matched in pre-existing reputation, all
points would lie on the dashed 45-degree line. Of course labs are rarely perfectly matched in the
data, providing variation in the difference of reputation between the winners and losers.

The median lines in Figure 6 conveniently partition the sample into four sub-samples that line
up with the four types of “matchups” we discuss in our model. The top right and bottom left corners
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represent subsamples of closely matched races where both labs were either high-reputation or both
low-reputation. The top-left and bottom-right subsamples represent mismatched races where an
above-median team scooped a below-median team and vice versa.

Figure 7 shows the average citation counts by matchup type, as well as the citation shares. Panel
A shows the evenly matched races, where we have shut down the reputation effect and isolated the
priority effect. As predicted by the model, the winning labs receive more citations. Moreover, if
we look at the share received by the winning team, we see that it is identical whether we are in
a H versus H matchup (winning team receives 55 percent of the total citations) or an L versus
L matchup (winning team receives 55 percent of the total citations). This is consistent with the
prediction from proposition 1.19

Panel B shows the unevenly matched races. When an H lab scoops an L lab, the priority effect
and the reputation effect work in the same direction. Here we see that, consistent with proposition
2, the winning team receives an even larger share of the total citations (66 percent). Conversely,
when an L lab scoops an H lab, the priority effect and the reputation effect move in opposing
directions. In this case, it appears that the reputation effect is the stronger of the two, with the
winning team receiving less than half (46 percent) of the total citations. Again, this matches the
prediction outlined by proposition 2 of the model.

Collectively, we interpret this as evidence that statistical discrimination based on prior lab
reputation can rationalize our heterogeneity results. The lack of symmetry exhibited in panel B
suggests that being first is not the sole determinant of credit in science. In science, there is no
central arbiter that gives legally binding credit or property rights to the first-place team. Here the
teams vie for attention, and although the low-reputation teams may benefit by winning a race, there
appears to be built-in inequality in attention that prevents them from capturing as much of the
credit as their high-reputation competitors.

6 Benchmarking Magnitudes: Survey Results

We estimate that getting scooped causes a decrease in the probability of publication, leads to
publication in lower-impact journals, and reduces citations. However, priority races are not winner-
take-all. Our citation estimate suggests that winners get 55 percent of the total citations, a far cry
from 100 percent as is often assumed in the theoretical literature. But how does this estimated
share of credit compare to scientists’ beliefs? In an email survey of structural biologists, we pose
a hypothetical situation about a late-stage race to publication. The full text of the questions can
be found in Appendix 6. First we ask, “Suppose you have just completed a very promising research
project...what do you think is the probability that your project will be scooped between now and
when it is published?” We next inform them that their hypothetical project has indeed been scooped
by a paper in the journal Science. In this scenario, we ask them the following questions: “Would

19The restriction to evenly matched teams in panel A is also a convenient check on the identification assumptions
for a causal interpretation of the estimated scoop effect. Even when competitors are well-matched on observables,
there exists a statistically significant priority premium that is unlikely to be driven by positive selection of winners.
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you choose to abandon your manuscript? Assuming you submit, what is the probability the article
will eventually be published? What is the best journal that would accept your paper? If your
competitor receives 100 citations, how many citations do you expect your publication to receive?”
This hypothetical scenario was designed to match the instances of racing that we have in our data.
Two projects are near completion, and one is preempted by the other. We can therefore compare
our magnitudes to the average beliefs of the survey respondents.

Table 8 reports the average responses of the biologists and compares them to the magnitudes
estimated in the PDB data. Because we tried to pose the survey questions as a concrete hypothetical
for clarity and consistency, the racing situation does not exactly match the average situation in the
data. In particular, the losing team is scooped early in the submission process, and the project is
very high-quality, with an expected journal placement in Science. Therefore we report estimates in
column 2 from a subset of the PDB data where (1) the losing team is scooped soon after they deposit
their data,20 and (2) one of the teams published in one of the three highest impact journals (Science,
Nature, or Cell). These restrictions make some of the PDB estimates smaller or larger, but we still
consistently find evidence of pessimism among respondents. Surveyed scientists report a 27 percent
chance of being scooped between submission and publication, more than double the 8 percent scoop
probability in the comparable PDB sample. Six percent of respondents report that they would
abandon the project, but only 70 percent think they would succeed at publishing conditional on
submitting, suggesting a 66 percent unconditional probability of publishing. This is much lower
than the 86 percent of scooped papers that are actually published in the PDB data, and the 97
percent that are published in the comparable subsample. Scientists are very pessimistic about the
potential journal placement of scooped papers, expecting that the best journal they could publish in
would be almost three standard deviations below Science, which has a standardized impact factor
of about three in most years. Finally, we ask about expected citation effects. When asked to guess
the number of citations they would receive compared to the hypothetical winner’s 100 citations, the
average guess was only 41 citations, which translates to a 59 percent penalty, or 29 percent as a
share of the total citations. The corresponding estimate in the PDB is no more than a 20 percent
penalty or a 45 percent share. Ultimately, PDB scientists expect much worse consequences from
being scooped than can be found in the data.

Table 8 also reports survey responses separately for high- and low-reputation scientists. We split
the survey sample using the same Lasso-predicted citation measures used in Section 5. Column 4
reports the average responses for below-median reputation scientists, column 5 reports the average
responses for above-median reputation scientists, and the difference with standard errors is reported
in column 6. High- and low-reputation respondents predict equal probabilities of being scooped.
Low-reputation respondents are more pessimistic however about the probability of publishing condi-
tional on being scooped, with 7 percentage points lower probability that they will be able to publish
their scooped paper. Perhaps surprisingly, both types of respondents had similar expectations for

20Specifically, we sort races by the time elapsed between the loser deposit date and the winner release date and
keep the quarter of race losers that were scooped earliest in the process.
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the types of journals that they would publish in, all expecting that the scooped papers would fall
to field journals or middling general interest journals with average impact factor. But they again
depart on their expected citations, with high-reputation scientists expecting to get about five more
citations (9 percent) than low-reputation scientists. This difference in expectations is consistent
with our results about the role of reputation in determining priority rewards. Since both types of
authors suggest they would submit to similar journals, it may be that the difference in citations is
driven by statistical discrimination of editors, reviewers, and readers as explained in the model in
Section 5. It appears that although all scientists are pessimistic about the cost of getting scooped,
less prominent authors are particularly concerned. Our estimates of significant inequality in citation
patterns suggest that these beliefs may be justified.

7 Conclusion

Priority races are a common feature of academic science, and credit for priority is considered an
important motivator for the generation of new knowledge. Yet, we have little empirical evidence on
how these priority rewards are structured. Racing is hard to analyze empirically because proximate
research projects are difficult to link in data and many scooped projects are abandoned before
entering the scientific record. This paper makes progress on these empirical challenges by focusing
on project-level data in a setting that captures the near universe of completed projects in structural
biology. By linking adjacent projects using biological measures of similarity, we reconstruct races and
compare the outcomes of winners and losers, even in cases where the losing project goes unpublished.
We find that losing a priority race decreases the probability of publishing by 2.5 percentage points.
Conditional on publishing, the scooped papers are less likely to appear in a top journal and receive
20 percent fewer citations than the winning papers. The effect of getting scooped lingers along
some dimensions in the years following the event. We estimate a small increase in the probability
of exiting the field of structural biology, and find that citations decrease for scooped scientists in
subsequent work, particularly for novices. Priority rewards are in part dependent on pre-existing
reputation. In cases where a high-reputation team is racing against a low-reputation team, priority
rewards are unevenly distributed. High-reputation winners receive much more attention than losers.
And in cases where the high-reputation team is scooped, there is very little impact on their citation
rates, and the winning low-reputation team receives no more citations than their high-reputation
rival.

Given the moderate estimated cost of losing a race, especially in the long run, are scientists
overly concerned about the threat of being scooped? There has been scant evidence on scientist
beliefs about the threat of being preempted. The best evidence we can find comes from a survey
conducted by Hagstrom (1974) who finds that 29 percent of experimental biologists are moderately
or very concerned that they will be scooped on their current research. We update these survey
results and find that scientists may be overly concerned about getting scooped. In the survey we
conduct, scientists perceive a higher likelihood of being scooped than we see in the PDB data, and
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conditional on being scooped, they believe the penalty in terms of publication and citations is higher
than we estimate.

This paper contributes to our understanding of the role of priority and the structure of incentives
in basic research. Academic science is an atypical marketplace of productive activity. New ideas are
valuable for the world but are not immediately marketable, and are therefore unlikely to be produced
by private firms or individuals seeking profits. A patent system is therefore an infeasible instrument
for encouraging investment, risk-taking, effort, or disclosure of scientific studies. Instead, a system
of priority rewards has developed to encourage research investment, which is reinforced through
norms in the scientific community. Individuals who produce new knowledge are given credit by
the community that can accumulate into a reputation that likely has both intrinsic and monetary
value to the scientist. Although R&D races have been posed as winner-take-all tournaments in
past literature, we find that priority rewards are not winner-take-all, but are potentially still an
important motivator of both effort and novelty in science. Even if the result of one race has a small
impact on careers, the accumulation of credit may still be important.

In this paper, we establish that priority is a relevant incentive in science, but we do not analyze
the overall welfare implications of the priority system, or consider alternative systems or policies.
An important concern raised in popular and academic writing is the potential “dark side” of priority,
where novelty may be pursued at the expense of openness and quality. Racing to complete projects
may stimulate effort and hasten the pace of discovery, but it may lead scientists to cut corners on
the quality of the results that they disclose. If the incentives for replication are low and the costs of
replication are high, science as a whole may suffer as quick and sloppy research becomes the norm.
In ongoing research, we analyze objective measures of the quality of crystal diffraction data and
corresponding structure models to study how racing in science affects quality outcomes. Future work
should also focus on how competition affects the openness of science, ease of collaboration, and free
transmission of knowledge between scientists. Concerns about the cutthroat nature of racing have
led to suggestions of policies that might dampen the strong incentives for novelty. These include
allowing a grace period for journal acceptance in a few months after being scooped, providing
opportunities to establish priority for early-stage work through pre-prints, or directly incentivizing
replication efforts through directed grant funding.

Finally, the results of our survey suggest that scientists are very pessimistic about the cost and
probability of being scooped. If the perceived threat of being scooped has a negative influence on
the pace, direction, quality, and openness of science, we believe that this paper should help assuage
concerns about competition for priority and foster a more productive research environment.
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Figures and Tables

Figure 1: Project Timeline and Key Dates

crystallize protein determine structure paper under reviewwrite and submit paper publication

Deposit Date:
Team uploads project 
details to the PDB 
database in secret

Release Date:
Project is released at time 
of publication* for public 
view

PDB dates: Collection Date:
Self-reported date of 
X-ray experiments at 
synchrotron

*If project goes unpublished, data is 
released publicly after one year

PDB deposit hidden from public

Mean = 16.8 months
Median = 11.4 months

Mean = 6.5 months
Median = 5.1 months

Notes: This figure shows the timeline of a PDB project. Dates in bold above the line are observed in our data.
Events listed below the timeline are the approximate timing of other project events including the submission and
review process. Deposit event and structure data is hidden from public until the structure is released.
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Figure 2: Defining Priority Races

Release Date A

Release Date BDeposit Date B

Scenario 2: Project A and Project B are excluded from racing sample

Rule: Winning project is released first and scooped project is 
deposited before winning project is released 

Deposit Date A Release Date A

Release Date B

Scenario 1: Project A scoops Project B 

Deposit Date B

Notes: This figure shows visually the timing rule we use to define scoops: (1) the winning project is released first and
(2) the scooped project is deposited before the winning project is released. In the first example, Project A scoops
Project B according to the rule, and therefore this example enters our regression sample. In the second scenario,
Project A releases before Project B, but Project B had not yet deposited their data at the time of Project A’s release.
Therefore this example would be excluded from our regression sample. We do not include these cases because Team
B had full information about being scooped before they decided to deposit, and could therefore have decided to
abandon the project without ever entering the data.
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Figure 3: Example Priority Race — Toll-like Receptor 3

1ZIW 2A0Z

Notes: This figure presents a side-by-side comparison of the biological assembly models of the Toll-like Receptor
3 protein deposited by two independent racing teams. According to the scoop definition in Section 2.4, structure
deposit 1ZIW scooped structure deposit 2A0Z. See Table 1 for more details.
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Figure 4: Histogram of Team Reputation Difference

Kolmogorov–Smirnov Test: 0.040
p-value: 0.240

Difference in Means: 0.212
p-value: 0.587
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Notes: An observation in this figure is a racing pair. The blue distribution shows the actual difference in predicted
citations. Bars the the right of zero represent instances when the winning team had higher predicted citations than
the losing team, and bars to the left of zero represent instances when the winning team had lower predicted citations
than the losing team. The white distribution outlined in black shows the difference in predicted citations if the
winning and losing team were randomly chosen. This random selection of winners was simulated 100 times to create
the histogram and is therefore close to symmetric and centered around zero.

36



Figure 5: Journal Placement and Timing of Scoops
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Notes: The figure reports the share of scooped papers that were received and accepted before the the scoop date at
different journals. Each circle represents one of the twelve largest journals that we collected supplemental data on
the editorial timeline. Journals are arranged along the x-axis by their standardized journal impact factor. The size
of the circles is proportional to the number of scooped papers published in each one.
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Figure 6: Scatter Plot of Team Reputation Difference
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Notes: An observation in this figure is a racing pair. The y-axis shows the predicted citations for the winning team,
and the y-axis shows the predicted citations for the losing team. Perfectly matched teams would lie on the 45-degree
line. If the winning team has higher predicted citations than the losing team, the dot will lie above the 45-degree
line. If the winning team has lower predicted citations than the losing team, the dot will lie below the 45-degree line.
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Figure 7: Priority Effect by Reputation Match-up
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B. Mismatched Races

Notes: We divide the sample of races from Figure 6 into four quadrants, depending on whether the winners and
losers are above- or below-median in expected 3-year citations defined by the Lasso estimation. In each panel, the
dark bars represent the actual citations of the winning team and the light bars of the losing team. Panel A reports
the comparison between evenly matched races, H scoops H or L scoops L. Panel B reports the comparison between
mismatched races, H scoops L or L scoops H. The winner’s share of total citations are reported above each set of
bars.

39



Table 1: Example Priority Race — Toll-like Receptor 3

Winning project Scooped project
PDB structure ID 1ZIW 2A0Z
Protein name Toll-like Receptor 3 Toll-like Receptor 3

Paper title "Crystal structure of human toll-like 
receptor 3 (TLR3) ectodomain"

"The molecular structure of the toll-
like receptor 3 ligand-binding 

domain"
Key dates:
    Collection date March 13, 2005 October 24, 2004
    Deposit date April 27, 2005 June 27, 2005
    Release date June 28, 2005 August 2, 2005
First author affiliation Scripps Research Institute National Institutes of Health

Journal Science
Proc. of the Natl. Acad. of 

Sciences (PNAS)
Journal impact factor 30.9 10.2
Citations:
    Three years 140 90
    Five years 196 129
    Ten years 311 212
Notes: This table presents an example of a racing pair identified in the Protein Data Bank using the
scoop rules outlined in Section 2.4. See Figure 3 for the image of the structure models deposited by each
team.
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Table 2: Summary Statistics for Structure-Level Data

Racing Not racing
Difference 

(race - not race)
Variable (1) (2) (3)

Panel A. Team characteristics
Number of authors 7.134 7.454 -0.319 (0.078) ***
Affiliation in North America 0.292 0.351 -0.058 (0.008) ***
Affiliation in Europe 0.151 0.158 -0.007 (0.006)
Affiliation in Asia 0.190 0.133 0.057 (0.007) ***
Top 50 university 0.251 0.241 0.010 (0.008)
Rank 51-200 university 0.238 0.260 -0.022 (0.008) ***
Other affiliation 0.511 0.499 0.013 (0.009)
Industry or non-profit affiliation 0.154 0.170 -0.016 (0.006) **
First author experience (years) 5.462 5.986 -0.524 (0.109) ***
Last author experience (years) 7.410 7.813 -0.403 (0.119) ***

Panel B. Project outcomes
Published 0.867 0.752 0.115 (0.006) ***
Standardized impact factor 0.114 -0.045 0.158 (0.021) ***
Top ten journal 0.354 0.281 0.073 (0.009) ***
Five-year citation counts 26.370 17.245 9.125 (0.739) ***
Top 10% in five-year citations 0.132 0.132 0.000 (0.000) ***

Panel C. Project altmetrics
Mendeley downloads 33.838 24.032 9.806 (1.400) ***
News stories 0.300 0.214 0.086 (0.059)
Wikipedia citations 0.178 0.091 0.088 (0.009) ***
Patent citations 0.906 0.661 0.246 (0.089) ***
Twitter mentions 1.855 1.691 0.165 (0.196)
Altmetric attention score 5.262 3.875 1.387 (0.621) **

Observations 3,319 64,018

(4)

Notes: This table presents summary statistics for the racing and non-racing samples. Observations are at
the structure level. Column 1 shows the means of the racing sample and column 2 shows the means of
the non-racing sample. Column 3 shows the difference between the racing and non-racing projects, and
column 4 shows the heteroskedasticity-robust standard error of the difference. 
* p<0.1, ** p<0.05, *** p<0.01.

Std. error of 
difference
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Table 3: Covariate Balance Between Winning and Losing Teams

Racing: Racing: Difference:
Not racing losers winners (lose - win)

Variable (1) (2) (3) (4)

Panel A. Team characteristics
Number of authors 7.454 7.193 7.074 0.119 (0.204)

Affiliation in North American 0.351 0.264 0.321 -0.057 (0.022) ***
Affiliation in Europe 0.158 0.133 0.170 -0.038 (0.018) **
Affiliation in Asia 0.133 0.223 0.155 0.068 (0.018) ***

Top 50 university 0.241 0.222 0.280 -0.058 (0.020) ***
Rank 51-200 university 0.260 0.247 0.228 0.019 (0.020)
Other affiliation 0.499 0.531 0.491 0.039 (0.023) *
Industry or non-profit affiliation 0.170 0.156 0.152 0.004 (0.018)

First author experience (years) 5.986 5.785 5.127 0.658 (0.278) **
Last author experience (years) 7.813 7.510 7.306 0.203 (0.311)

Panel B. First author productivity (prior five years)
Deposits 12.362 4.168 5.473 -1.304 (0.734) *
Publications 2.893 2.677 3.138 -0.461 (0.464)
Top-10 publications 0.649 0.706 0.666 0.040 (0.064)
Top-5 publications 0.222 0.265 0.242 0.023 (0.032)

Panel C. Last author productivity (prior five years)
Deposits 44.284 30.772 28.922 1.850 (4.288)
Publications 9.909 12.423 13.511 -1.088 (2.233)
Top-10 publications 4.007 4.617 4.569 0.048 (0.505)
Top-5 publications 1.419 1.638 1.784 -0.146 (0.188)

Panel D: Project quality metrics
Resolution (Å) 2.244 2.328 2.317 0.011 (0.062)
R-free goodness-of-fit 0.236 0.245 0.243 0.002 (0.002)

Observations 64,018 1,689 1,630 F -stat: 3.911 ***

difference
(5)

Notes: This table compares characteristics of winning and losing projects in order to check for treatment balance.
Observations are at the structure level. Column 1 shows the means of the non-racing sample, column 2 shows the
means of the losing projects in the racing sample, and column 3 shows the means of the winning projects in the racing
sample. Column 4 shows the difference between the losing and winning projects, and column 5 shows the
heteroskedasticity-robust standard error of the difference. The F-statistic and associated p -value is calculated in a
regression in which all of the variable values are stacked into a single left-hand side outcome variable and the
treatment indicator is interacted with variable fixed effects on the right-hand side. 
*p<0.1, **p<0.05, ***p<0.01.

Std. error of 

42



Table 4: Effect of Getting Scooped on Project Outcomes

Std. journal Top-ten Five-year Top-10% five year
Published impact factor journal citations citations

Dependent variable (1) (2) (3) (4) (5)

Panel A. No controls
Scooped -0.027* -0.187*** -0.065*** -0.243*** -0.037**

(0.015) (0.044) (0.020) (0.070) (0.014)

Panel B. Base controls
Scooped -0.026** -0.176*** -0.062*** -0.208*** -0.028**

(0.013) (0.044) (0.020) (0.063) (0.014)

Panel C. PDS-Lasso selected controls
Scooped -0.025*** -0.178*** -0.060*** -0.197*** -0.035***

(0.010) (0.032) (0.014) (0.045) (0.010)

Winner Y mean 0.880 -0.031 0.318 28.918 0.150
Observations 3,319 3,319 3,319 2,546 2,546
Notes: This table presents regression estimates of the scoop penalty, following equation 1 in the text. Each
regression contains protein (i.e., race) fixed effects. Observations are at the structure level. Each coefficient is from
a separate regression. Panel A presents results from a specification with no controls. Panel B adds the base set of
controls as listed in Table 3. Panel C uses controls selected by the PDS-Lasso method. Standard errors are in
parentheses, and are clustered at the race level. Column 4 regression uses asinh(five-year citations) as the
dependent variable, but Winner Y Mean is reported in levels for ease of interpretation.
*p<0.1, **p<0.05, ***p<0.01.
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Table 5: Effect of Getting Scooped on Alternative Measures of Attention

Dependent variable: Mendeley News Wikipedia Patent Twitter Atltmetric
All transformed with asinh() downloads stories citations citations mentions attention 

(1) (2) (3) (4) (5) (6)

Panel A. No controls
Scooped -0.452*** -0.107** -0.037** -0.007 -0.114 -0.240**

(0.152) (0.042) (0.018) (0.028) (0.077) (0.094)

Panel B. Base controls
Scooped -0.425*** -0.092** -0.030 0.001 -0.087 -0.199**

(0.144) (0.043) (0.020) (0.031) (0.074) (0.090)

Panel C. PDS-Lasso selected controls
Scooped -0.453*** -0.108*** -0.035** -0.008 -0.101* -0.237***

(0.105) (0.032) (0.014) (0.021) (0.054) (0.066)

Winner Y mean 42.874 0.641 0.104 0.260 3.982 9.137
Observations 1,339 1,339 1,339 1,339 1,339 1,339
Notes: Attention outcomes are sourced from Altmetric.com. Sample restricted to years 2011-2017. Each regression
contains protein (i.e. race) fixed effects. Observations are at the structure level. Each coefficient is from a separate
regression. Panel A presents results from a specification with no controls. Panel B adds the base set of controls as listed
in Table 3. Panel C uses controls selected by the PDS-Lasso method. Standard errors are in parentheses, and are
clustered at the race level. All outcomes are cumulative counts of the metrics summed over time between the publication
date to August 2019. All counts are transformed with the inverse hyperbolic sine transformation. The Altmetric
Attention Score is a composite measure of all metrics used by Altmetric.com.
*p<0.1, **p<0.05, ***p<0.01.
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Table 6: Effect of Getting Scooped on Five-Year Productivity

Active in PDB Top-ten Citation-weighted Top-10% cited
5 years later Publications publications publications publications

Dependent variable (1) (2) (3) (4) (5)

Panel A. All scientists
Scooped -0.023** 0.325 0.047 -0.199*** -0.159***

(0.010) (0.264) (0.105) (0.053) (0.052)

Winner Y mean 0.797 13.541 4.441 187.129 1.529
Observations 6,642 12,488 12,488 9,297 9,297

Panel B. Novices
Scooped -0.013 -0.054 -0.076 -0.282** -0.121***

(0.022) (0.183) (0.065) (0.112) (0.039)

Winner Y mean 0.587 2.667 0.929 50.692 0.440
Observations 2,273 3,554 3,554 2,868 2,868

Panel C. Veterans
Scooped -0.024** 0.504 0.118 -0.167*** -0.165**

(0.009) (0.373) (0.145) (0.051) (0.071)

Winner Y mean 0.930 19.042 6.221 263.894 2.143
Observations 4,027 8,251 8,251 5,913 5,913
Notes: This table presents regression estimates of the long-run scoop penalty, following equation 2 in the text.
Observations are at the scientist level. Each coefficient is from a separate regression. Column 4 dependent variable is
the total citations accrued in three years to all papers published in the five years after the race transformed with the
the inverse hyperbolic sine function (winner Y means reported in level citations). Column 5 dependent variable is the
total number of publications that reach the top-10% of three-year citations in that publishing year. Panel A presents
results for all scientists. Panel B restricts to novices (defined as scientists with less than two years of publishing
experience prior to the priority race year), and panel C restricts to veterans (defined as all non-novices). All
regressions include scientist-level covariates selected by PDS-Lasso and race fixed effects. Standard errors are in
parentheses, and are clustered at the race level. 
*p<0.1, **p<0.05, ***p<0.01.

Total count five years after race
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Table 7: Decomposing Citation and Journal Effect

Dependent variable (1) (2) (3) (4)

Scooped -0.164*** -0.114*** -0.107*** -0.047*
(0.032) (0.028) (0.028) (0.026)

Journal controls None Linear JIF Cubic JIF Journal FE

Winner Y mean 34.8 34.8 34.8 34.8
Observations 1,917 1,917 1,917 1,917

Five-year citations

Notes: This table reports the scooped coefficients in regressions with five-year citations as the
outcome where we control for journal impact factor. The citation counts are transformed with the
inverse hyperbolic sine function in the regression, but the winner Y mean is reported in levels for
ease of interpretation. The regression sample is restricted to races where both papers were
published in a ranked publication. Column 1 re-estimates the Table 1, column 4 regression in this
subsample. Column 2 and 3 add linear and then cubic controls for journal impact factor. Column
4 includes fixed effects for journal. All regressions also include PDS-Lasso selected controls and
protein fixed effects.
*p<0.1, **p<0.05, ***p<0.01.

Table 8: Survey Benchmark of Scoop Penalty

Full Comparable All Below-median Above-median Column (4) - (5)
sample subsample respondents reputation reputation difference

(1) (2) (3) (4) (5) (6)

Prob (Scoop) 0.029 0.081 0.266 0.268 0.264 0.004
(0.016)

Prob (Publication) 0.853 0.976 0.665 0.628 0.703 -0.075***
(0.022)

Journal impact factor penalty -0.18 -1.23 -2.92 -2.95 -2.89 -0.055
(0.084)

Citation penalty -0.197 -0.150 -0.594 -0.620 -0.568 -0.052**
(0.024)

Scooped citation share 0.445 0.459 0.257 0.241 0.274 -0.033***
(0.011)

PDB estimate Survey estimate

Notes: This table reports the responses to a survey of 915 structural biologists. The survey asked respondents to estimate the
probability and consequences of getting scooped on a hypothetical project. See Appendix C for full survey text. Estimates from the
PDB main regressions are reported in column 1. Comparable subsample PDB estimates in column 2 restrict to PDB races where one
racer published in Science, Nature, or Cell, and losing team was scooped early in the process (quarter of sample with the shortest
time between loser deposit and winner release). In column 4 and 5, respondents were divided into two groups, high- and low-
reputation using the predicted citations measure used for heterogeneity in Section 6 of the text. Column 6 reports the difference in
response means between columns 4 and 5 and reports the heteroskedastic-robust standard error in parentheses.
*p<0.1, **p<0.05, ***p<0.01.
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A Data Appendix

A.1 Protein Data Bank

The Protein Data Bank (PDB) is the main source of project data we use to construct priority races.
The first iteration of the PDB started in 1971, and the current archive is a global collaboration run
by a non-profit organization called the World Wide Protein Data Bank (wwPDB). The wwPDB is a
union of four existing data banks from around the world, including the Research Collaboratory for
Structural Bioinformatics Protein Database (RCSB PDB), Protein Data Bank in Europe (PDBe),
Protein Data Bank Japan (PDBj), and Biological Magnetic Resonance Data Bank (BMRB). The
data has been standardized and currently represents the universe of discoveries deposited in each
of these archives. All new discoveries deposited to any database are transferred to, processed,
standardized, and archived by the RCSB (Berman et al. 2006) at Rutgers University. Details about
the PDB data can be found on their website.21

We access the data directly from the RCSB Custom Report Web Service.22 The data extract
used in this study was downloaded on May 22, 2018. We use the following field reports and variables:

• Structure Summary: structure ID, structure title, structure authors, deposit date, release
date.

• Citation: PubMed ID, publication year, and journal name.

• Cluster Entity: entity ID, chain ID, sequence similarity clusters (BLAST algorithm for 90
percent and 100 percent sequence similarity, see section B below)

• Data Collection Details: collection date (the self-reported date the scientists generated diffrac-
tion data at a major synchrotron).

Additional data on cluster entities was accessed through a separate raw file archive at RCSB23 on
December 14, 2018. These files provided additional cluster groupings for the BLAST algorithm at
50 percent and 70 percent sequence similarity.

A.2 Citations and Journal Impact Factor

We use the journal names from the PDB extracts to link data to the Journal Citations Reports for
journal impact factor and the Web of Science for citations.24 We link the Journal Citations Reports
using the journal name listed in the PDB. Each journal has an impact factor in each year and is
calculated as the average number of citations per paper in the preceding two years. We standardize

21http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction
22https://www.rcsb.org/pdb/results/reportField.do
23ftp://resources.rcsb.org/sequence/clusters/ clusters50.txt and clusters70.txt
24Both data sources were owned by Thompson Reuters at the time of access, but have since been sold to Clarivate

Analytics.
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impact factor in each year within the set of PDB-linked publications in our extracts each year. The
citation data from the Web of Science and is restricted to citations from papers linked to PubMed
IDs, and self-citations are excluded. Citations are aggregated for each cited paper by publication
year of the citing paper. When we report five-year citations, it represents the total number of
citations in the publishing year and the subsequent five calendar years.

A.3 Altmetric.com Data

We use data from Altmetric.com to measure alternative forms of attention for academic research.25

One limitation of the Altmetric data extract we use is that it only reports cumulative counts from
the time of publication to the present (date of access: August 2nd, 2019). We account for the fact
that scooped papers are published later and have less time to accumulate attention scores, using
information about the change in score in recent time periods. The Altmetric.com data reports the
change in attention in the past week, month, etc. We can therefore restrict the regression sample
to races in which both teams had not accrued any additional attention in the amount of time that
had passed between publications. For example, if Paper A was released two months before Paper
B, we do not include this race in the analysis if Paper A or Paper B had accrued any additional
attention in the most recent two months. This allows Paper B to have the same window of time to
accrue attention despite starting two months late. Because races in our sample end across a wide
range of years, the regression coefficients are interpreted as the percent difference in outcomes for
papers of an average vintage.

A.4 Editorial Dates

We access the received, accepted, and published dates from the websites of publications of Science,
Nature Journals, Cell Press, and Public Library of Science. Another large publisher did not have
accessible data on their website, and they were willing to share the data with us anonymously.
These data are used to compare the scoop date to the timeline of the journal review process as
reported in Section 4.4.

We also use these data to look at the correspondence between the journal publication date and
the release date. Appendix Figure A1 reports the correspondence between the PDB release date
and the publication date for the 750 articles in the racing sample for which they are available.
This correspondence is not exact for a few reasons. First, according to PDB policy, scientists are
allowed to release their findings immediately after deposit, which could potentially come before the
publication date. In typical practice, the scientists prefer to wait until publication so that other
scientists cannot use the information for follow-on work until after publication. In fact, scientists
prefer to wait for release as long as possible to maintain a competitive advantage, which was the
motivation behind the 1998 policy change to align release and publication (Campbell 1998). Another
reason that release may come earlier than publication is because of the policy that all data is released

25https://help.altmetric.com/support/solutions/articles/6000190631-using-altmetric-data-for-altmetrics-research
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after one year. If a team takes more than one year to publish results after the deposit, they would be
forced to release at the one year point even if they eventually publish. Release sometimes happens
after publication, but these cases should be rare and only be delayed for a few weeks. Any longer
delays for release is either due to data errors or non-compliance with PDB policies.

Overall, 52 percent of the release dates are within two weeks of publication. This may lead to
concerns about potential measurement error in the definition of the priority ordering. Throughout
the paper, we always define the order of PDB release as the rule for being scooped. The community
tracks public PDB releases carefully, so we believe this is a valid definition of priority. Publication
dates are also complicated in recent years by the practice of online publication, which sometimes
comes weeks before the print edition is published. But even if we prefer to consider only the
publications as a claim to priority, our release date definition appears to usually correspond to the
publication date ordering. In the 122 races where we have journal publication dates for the winner
and loser, the priority ordering as defined by deposit corresponds with the priority ordering as defined
by publication 81 percent of the time. To the degree that this is interpreted as measurement error,
the scooped estimate will be somewhat attenuated.

A.5 Affiliations and University Rankings

Affiliation data is available from PubMed for most PDB deposits that resulted in a publication.
Often the affiliation is only available for the first author of those publications, so we assign that
affiliation to all authors on the publication. This assumption is more reasonable in structural biology
than it is in economics for example, because cross-university collaboration is somewhat unusual in
lab-based life sciences. The affiliations are contained in an author- or journal-reported text field
that sometimes contains addresses or non-standard abbreviations. We standardize as many of these
affiliations as possible using regular expressions and hand classification. We also assign as many
affiliations as possible to their continent (Asia, North America, Europe, and other) to use as control
variables. Affiliations are also categorized based on whether the affiliation is a university, non-profit
research entity, or private corporation (typically a pharmaceutical company). In our full sample
of projects (both racing and non-racing), there are 44,167 unique PubMed articles linked to the
deposits. Of those papers, we were able to classify 71 percent to a standardized affiliation.

We link the university affiliations to the QS Top Universities Ranking for Life Sciences and
Medicines.26 This website provides rankings for 500 top academic programs based on surveys of
academics and employers as well as citations per paper and h-index of the scientists affiliated with
each department.

A.6 Name Disambiguation and Linked Author Papers in the PDB and PubMed

Some of our analysis relies on using panel data of scientist productivity, including control variables
for past productivity and long-run outcomes in the years following a scoop event. The PDB does not

26https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/
life-sciences-medicine
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explicitly link authors between deposits, and neither PubMed or Web of Science have author identi-
fiers across publications. Therefore we manually create a panel of author publications by matching
last names and initials across projects and papers. This name disambiguation procedure requires
making assumptions about match reliability, and we follow the suggestions of Milojević (2013). We
don’t use additional information such as affiliations because they often change throughout a career.

The name disambiguation procedure using only last names and initials is more reliable in a
smaller subset of academic papers. We therefore choose to focus the panel only on PubMed papers
that are linked to the PDB instead of trying to use the full PubMed archive, which covers all of
the medical and life science literature.27 This choice improves the reliability of our name-matching,
but offers less information about academic productivity. For example, observing an author that
stops publishing PDB-linked papers may indicate that they have shifted their focus to a related
field rather than dropped out of academia altogether.

Scientists usually identify themselves on publications with a consistent last name, but are some-
times inconsistent with their use of first and last initials, or first names and nicknames.28 According
to Milojević (2013), there are two potential matching errors that should be accounted for. First, a
given individual may be identified as two or more authors (splitting). Second, two or more individ-
uals may be identified as a single author (merging). We follow the hybrid model they propose to
deal with these concerns, using first and second initials to determine whether splitting or merging
is likely, especially in cases of very common last names.

To connect names across PDB-linked publications, we use the following procedure:

1. Strip names of non-alphabetic characters and standardize spacing and hyphenation of com-
pound last names.

2. Identify groups of paper-authors that have the same last name and first initial.

3. Look at the second initial to determine potential merging errors. We find that 96.5 percent of
the last name/first initial groups have no second-initial conflict, so we treat these as distinct
individuals

4. If we are unable to differentiate the individual using the second initial, (e.g. JACKSON, P;
JACKSON, PA; and JACKSON, PS), we keep them as a merged name, but mark the group
as “common.” These make up 3.5 percent of the sample.

5. In all regressions using long-run outcomes, we control for a dummy variable for the common
names to help account for potential measurement error of the left-hand side variables.

Using these linked panels of data, we construct controls and outcome variables, such as the number of
publications in the five years prior to a scoop event, or the number of citation-weighted publications

27Large-scale, data-driven name disambiguation efforts of the PubMed archive have been undertaken (Torvik et al.
2005; Torvik and Smalheiser 2009). They incorporate additional information about co-author networks and research
topics to infer matches. Unfortunately, an updated version of their linked author data is not yet publicly available.

28Changes from maiden names to married names is also a potential source of error which we cannot account for,
but this is becoming less common in recent years, especially among academics.
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in the five years after the scoop event. We also use this panel to assign university rank and location
controls. Racing projects sometimes go unpublished, so we cannot use the PDB-linked publication
affiliation as a control variable in the main regression. Therefore we assign the most recent affiliation
of the first author in the publication panel to improve the coverage of these control variables.

B Protein Similarity and Race Definition

In this section we describe in detail the algorithm used to construct priority races used for our main
analysis. Although the main text of the paper describes the basic rules for this sample construction,
we report here a number of technical details and decisions that were used to work with the data in
practice.

B.1 Sequence Similarity Algorithm

Each protein in the PDB is a chain composed of the 22 different types of proteinogenic amino acids
in some combination. The order of these molecules in the chain defines the type of protein, and we
use this code to compare the similarity of the proteins that scientists are working on. The PDB
provides a clustering algorithm called the Basic Local Alignment Search Tool or BLAST (Altschul
et al. 1990) which creates groupings of structure deposits that have identical or similar amino acid
chains. The clusters can be defined at different thresholds of similarity, including 100 percent, 90
percent, etc. One possible approach to defining races would be to only focus on competing projects
that determine the structure of proteins that are 100 percent similar. But in many cases, two
proteins that are 90 percent similar or lower have many of the same defining features and functions
within the same organism or across different species. Therefore, many interesting priority races are
between teams working on very similar if not identical proteins. Following the similarity threshold
chosen by (Brown and Ramaswamy 2007), we define racing for proteins all the way down to 50
percent similarity. We include races with a broad threshold in part to increase the sample size for
our regressions, but also to include races over discoveries that were exceedingly different from any
past structure discoveries.

Another tricky feature of the PDB data is that cluster groupings are sometimes defined at a
level of granularity that is smaller than our outcome variables, which are defined at the structure
deposit and article level. Proteins are composed of “chains” of amino acids, and large proteins are
often characterized in the PDB as a set of distinct chains. Further, chains of amino acids are often
grouped as “entities”, and many proteins are combinations of two or more entities. This is relevant to
our sample construction because the BLAST similarity algorithm clusters at the entity level rather
than the protein level. In simple cases where proteins are made of a single entity, a new structure
discovery might directly scoop another team working on the same entity. But in a few cases, a team
working on a single entity might scoop a team that is working on a complex protein with multiple
entities only, one of which was being worked on by both teams. These deposits will still be linked
by the algorithm, but the interpretation of the scooping event is less clear. We consider these cases
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to be “partial scoops” where some part of the scientific discovery was overshadowed by the winning
team. Since outcomes are defined at the protein and paper level, including these partial scoops will
potentially understate the effect of an average “full scoop.” We drop some very large proteins (such
as the ribosome) that have more than 15 entities (0.7 percent of the sample). In these cases, the
notion of a partial scoop is hard to define, as many different discoveries overlap at the entity level
in sometimes complicated directions.

B.2 Procedure for defining races and scoop events

We follow the steps below to define priority races and scoop events. These steps are performed
separately for four different similarity thresholds (50 percent, 70 percent, 90 percent, and 100
percent) and then combined in a final step.

1. Keep all clusters that have at least two deposits.

2. Sort the deposits within the clusters by release date, starting with the project that was released
earliest. We focus only on cases of novel structure discoveries, so winners must be the first
structure release in a given similarity cluster. We call this the priority deposit.

3. Compare the list of structure authors on the priority deposit with the list of authors on all
subsequent deposits. Drop any follow-on deposits with one or more author names that were
also on the priority deposit.29

4. Drop all deposits with a deposit date after the release date of the priority deposit. This rule
allows for multiple teams to be scooped by the same priority structure. See Section 2.3 for a
discussion of this rule.

This procedure identifies a set of races that are defined within 50 percent, 70 percent, 90 percent, or
100 percent similarity clusters. We consolidate to a final analysis sample that minimizes duplicate
races and duplicate deposits. Using this procedure leaves us with some proteins that are scooped at
multiple levels. For example, Protein A may be first and Protein B may be second in a 100 percent
similar cluster but are also the first and second in a 90 percent similar cluster (and 70 percent and
50 percent). To avoid counting this race multiple times, we keep only the instance defined in the
100 percent sample. In more complicated cases, Protein A might be scooped by Protein B that is
70 percent similar, but also scooped by Protein C that is 100 percent similar either before or after
Protein B is released. In these cases, we always keep the scoop event at the closest similarity. So
the race between Protein A and Protein B is dropped, and the race between Protein A and Protein
C is kept. This leaves us with a final sample of mutually exclusive races where each scooped paper
only appears once. Some winning deposits are allowed to scoop more than one protein, sometimes
at different similarity levels.

29In a few cases, we see instances where the same team of authors deposited multiple structure discoveries in the
same cluster around the same time. We keep only one of those structures per team and give preference to the first
deposit that resulted in a publication or the first one deposited if they are never published.
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D Proofs of Propositions

Proof of Proposition 1.

Consider two high-reputation labs, H1 and H2. H1 publishes before H2. The probability that H1

is cited is:

P
(
q̂H1 + f > q̂H2

)
= P

(
(1− γ)αH + γs1 + f > (1− γ)αH + γs1

)
= P (γ(q + u1) + f > γ(q + u2))
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γ
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2σu

)
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2

using the fact that (u2−u1) ∼ N
(
0, 2σ2u

)
and f, γ > 0. Similarly, consider two low-reputation labs,

L1 and L2. L1 publishes before L2. Analogously, the probability that L1 is cited is Φ
(

f

γ
√
2σu

)
> 1

2 .

Proof of Proposition 2.

Consider a high-reputation lab and a low-reputation lab, H1 and L2. H1 publishes before L2. The
probability that H1 is cited is:

P (q̂H + f > q̂L) = P
(
(1− γ)αH + γs1 + f > (1− γ)αL + γs2

)
= P

(
(1− γ)αH + γ(q + u1) + f > (1− γ)αL + γ(q + u2)

)
= P

(
(1− γ)(αH − αL) + f > γ(u2 − u1)

)
= P

(
u2 − u1 <

(1− γ)(αH − αL) + f

γ

)
.

= P
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2σu
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)
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(
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> Φ
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γ
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2σu

)
>

1

2

again using the fact that (u2 − u1) ∼ N
(
0, 2σ2u

)
and (1 − γ) > 0, αH > αL. Similarly, consider a

low-reputation lab and a high-reputation lab, L1 and H2. L1 publishes before H2. The probability
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that L1 is cited is:

P (q̂L + f > q̂H) = P
(
(1− γ)αL + γs1 + f > (1− γ)αH + γs2

)
= P

(
(1− γ)αL + γ(q + u1) + f > (1− γ)αH + γ(q + u2)

)
= P

(
−(1− γ)(αH − αL) + f > γ(u2 − u1)

)
= P
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γ

)
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2σu
<
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γ
√

2σu

)
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(
−(1− γ)(αH − αL) + f

γ
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)
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(
f

γ
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2σu

)
.

Whether the expression is greater or less than 1
2 depends on the magnitude of (1 − γ)(αH − αL).

More specifically, if (1 − γ)(αH − αL) < f , then P (q̂L + f > q̂H) > 1
2 . If (1 − γ)(αH − αL) > f ,

then P (q̂L + f > q̂H) < 1
2 .
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E Appendix Figures and Tables

Figure A1: Correspondence between release date and available publication dates
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Notes: This histogram shows the correspondence between PDB release date and publication date when publication
dates are available from the editorial date supplement. Positive days means the publication came before release, and
negative days mean it came after release.
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Table A1: Lasso-selected Variables and Coefficients for Predicted Citations

Lasso-selected variables Post-Lasso OLS coefficients

Number of authors 0.54
Affiliation in North America 1.81
Affiliation in Asia -3.45
Non-academic affiliation 1.63

First author experience (years) -0.20
First author PDB deposits, 5 prior years -0.07
First author top-5 publications, 5 prior years 2.48
First author PDB deposits, all years squared 0.00
First author PDB deposits, 5 prior years squared 0.00
First author publications, 5 prior years squared 0.00

Last author experience (years) -0.22
Last author PDB deposits, 5 prior years -0.11
Last author publications, 5 prior years 0.02
Last author top-5 publications, all years 0.20
Last author top-5 publications, 5 prior years 2.16
Last author PDB deposits, all years squared 0.00
Last author PDB deposits, 5 prior years squared 0.00
Last author top-10 publications, 5 prior years squared -0.01

University rank bins:
    1-10 3.47
    71-80 -0.22
    81-90 -1.05
    101-110 -2.46
    111-120 4.96
    151-160 -2.81
    171-180 -2.23
    181-190 -0.42
    211-220 -5.25
    221-230 -7.14
    271-280 -4.24
    291-300 -3.11
    361-370 -3.81
    401-410 -2.79
    451-460 -2.88

Constant 10.32
    R-squared 0.103
    N 58,758
Notes: This table presents results from a Lasso regression of 3-year unconditional
citations on observable team characteristics. The model is estimated in the non-racing
sample and uses data-driven and heteroskedasticity-robust penalization. Estimated
coefficients are from a post-Lasso OLS regression of 3-year citations on selected
regressors.
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Table A2: Effect of Getting Scooped on Three-Year Productivity

Top-ten Citation-weighted Top-10% cited
Publications publications publications publications

Dependent variable (1) (2) (3) (4)

Panel A. All scientists
Scooped 0.101 0.035 -0.145*** -0.111***

(0.143) (0.064) (0.049) (0.035)

Winner Y mean 8.706 2.925 124.312 1.017
Observations 14,768 14,768 11,075 11,075

Panel B. Novices
Scooped -0.032 -0.035 -0.277*** -0.104***

(0.107) (0.043) (0.103) (0.026)

Winner Y mean 1.545 0.538 31.174 0.266
Observations 3,926 3,926 3,241 3,241

Panel C. Veterans
Scooped 0.140 0.079 -0.132*** -0.116**

(0.199) (0.086) (0.049) (0.047)

Winner Y mean 12.087 4.053 173.221 1.412
Observations 10,019 10,019 7,225 7,225

Total count three years after race

Notes: This table presents regression estimates of the three-year long-run scoop penalty, following
equation 2 in the text. Observations are at the scientist level. Each coefficient is from a separate
regression. Column 3 dependent variable is the total citations accrued in three years to all papers
published in the three years after the race. Column 4 dependent variable is the total citations
accrued in three years to all papers published in the five years after the race transformed with the
inverse hyperbolic sine function (winner Y means reported in level citations). Panel A presents
results for all scientists. Panel B restricts to novices (defined as scientists with less than two years
of publishing experience prior to the priority race year), and panel C restricts to veterans (defined
as all non-novices). All regressions include scientist-level covariates selected by PDS-Lasso and race
fixed effects. Standard errors are in parentheses, and are clustered at the race level. 
*p<0.1, **p<0.05, ***p<0.01.
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Table A3: Effect of Getting Scooped on Ten-Year Productivity

Top-ten Citation-weighted Top-10% cited
Publications publications publications publications

Dependent variable (1) (2) (3) (4)

Panel A. All scientists
Scooped 0.793 0.134 -0.050 -0.004

(0.675) (0.251) (0.087) (0.145)

Winner Y mean 24.945 7.982 318.123 2.432
Observations 7,673 7,673 4,384 4,384

Panel B. Novices
Scooped 0.063 -0.016 0.034 -0.044

(0.448) (0.147) (0.148) (0.082)

Winner Y mean 5.382 1.713 74.943 0.583
Observations 2,494 2,494 1,624 1,624

Panel C. Veterans
Scooped 0.893 0.300 -0.051 0.083

(1.002) (0.373) (0.079) (0.217)

Winner Y mean 36.507 11.700 491.753 3.757
Observations 4,769 4,769 2,520 2,520

Total count ten years after race

Notes: This table presents regression estimates of the ten-year long-run scoop penalty, following
equation 2 in the text. Observations are at the scientist level. Each coefficient is from a separate
regression. Column 3 dependent variable is the total citations accrued in three years to all papers
published in the ten years after the race. Column 4 dependent variable is the total citations
accrued in three years to all papers published in the five years after the race transformed with the
inverse hyperbolic sine function (winner Y means reported in level citations). Panel A presents
results for all scientists. Panel B restricts to novices (defined as scientists with less than two years
of publishing experience prior to the priority race year), and panel C restricts to veterans (defined
as all non-novices). All regressions include scientist-level covariates selected by PDS-Lasso and race
fixed effects. Standard errors are in parentheses, and are clustered at the race level. 
*p<0.1, **p<0.05, ***p<0.01.
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