

AURÉLIO SCETTA
photographer

Aurélio Scetta. City Of São Paulo. This file is licensed under the Creative Commons Attribution 3.0

Unported license. <https://creativecommons.org/licenses/by/3.0/deed.en>. No changes were made.

Cities without Skylines: Worldwide Building-Height Gaps and their Implications

Remi Jedwab

(George Washington University)

Jason Barr

(Rutgers University, Newark)

Jan K. Brueckner

(UC Irvine)

July 22, 2020

AURÉLIO SCETTA
photographer

Motivation: Cities without Skylines

- ▶ Land-use regulations constrain urbanization in various ways.
- ▶ Building-height restrictions among most visible (DC, Paris, Dublin).
- ▶ Goal of paper is to create an indirect measure of the extent of building-height regulation in countries around the world.
- ▶ Important since international regulation indexes are scarce.
- ▶ Contrasts with U.S. case for which extensive literature.

Glaeser et al. 2005; Glaeser & Gyourko 2005; Gyourko et al. 2008, 2019

What We Do

- ▶ Data set that inventories *all the world's tall buildings* (≥ 80 m): city, year constructed, height, function (e.g., residential).
- ▶ For a set of benchmark countries with less stringent regulations, *panel regression (1950-2017)* relating tall-building stocks to covariates suggested by *standard urban model* (e.g., income).
- ▶ Predict *building-height gap* for tighter regulation countries.

What We Do

- ▶ Data set that inventories *all the world's tall buildings* (≥ 80 m): city, year constructed, height, function (e.g., residential).
- ▶ For a set of benchmark countries with less stringent regulations, *panel regression (1950-2017)* relating tall-building stocks to covariates suggested by *standard urban model* (e.g., income).
- ▶ Predict *building-height gap* for tighter regulation countries.
- ▶ Verify gaps correlated with *measures of land use regulations*.
- ▶ Larger gaps for *residential* rather than for commercial buildings.
- ▶ Correlated with *housing prices, urban sprawl, air pollution*.

What We Do

- ▶ Data set that inventories *all the world's tall buildings* (≥ 80 m): city, year constructed, height, function (e.g., residential).
- ▶ For a set of benchmark countries with less stringent regulations, *panel regression (1950-2017)* relating tall-building stocks to covariates suggested by *standard urban model* (e.g., income).
- ▶ Predict *building-height gap* for tighter regulation countries.
- ▶ Verify gaps correlated with *measures of land use regulations*.
- ▶ Larger gaps for *residential* rather than for commercial buildings.
- ▶ Correlated with *housing prices, urban sprawl, air pollution*.
- ▶ **Caveats:** First- and second-step regressions are not causal.

Theory

- ▶ Standard urban model (Brueckner 1987, Duranton & Puga 2015):
Building Heights = F(Pop., Income, Land Rent, Commuting Cost)
- ▶ Greater demand from larger population → taller buildings.
- ▶ Cost of rural-to-urban land conversion → taller buildings.
- ▶ Higher income causes urban decentralization BUT countries become more urbanized as get richer → taller buildings.
- ▶ Tall buildings long-lived, hence need to control for past stock.
- ▶ Any factor that increases value of being centrally located (e.g., agglomeration effects and amenities) reinforces these patterns.

Data: Tall Buildings

Sum of tall building heights for each country-year:


- ▶ Data collected by the *Council on Tall Buildings and Urban Habitat* (CTBUH), a not-for-profit group.
- ▶ **16,369 tall buildings:** ≥ 80 m, about 20 floors (use any available building below 80 m if among top 10 of country).
- ▶ Data submitted by CTBUH member network (mostly from construction industry), verified by CTBUH center team.
- ▶ Webpage for each building. Data coded by research assistants.
- ▶ We know **year of construction, height (m), and function**.

Example from the Tall Buildings Database

The Skyscraper Center
The Global Tall Building Database of the CTBUH

Countries Cities **Buildings** Companies Create Lists/Graphics Compare Data Search Submit Data Chinese 中文

[Burj Khalifa](#) [Download PDF](#)

Height: To Tip
829.8 m / 2,723 ft
Height: Architectural
828 m / 2,717 ft
Height: Occupied
584.5 m / 1,918 ft

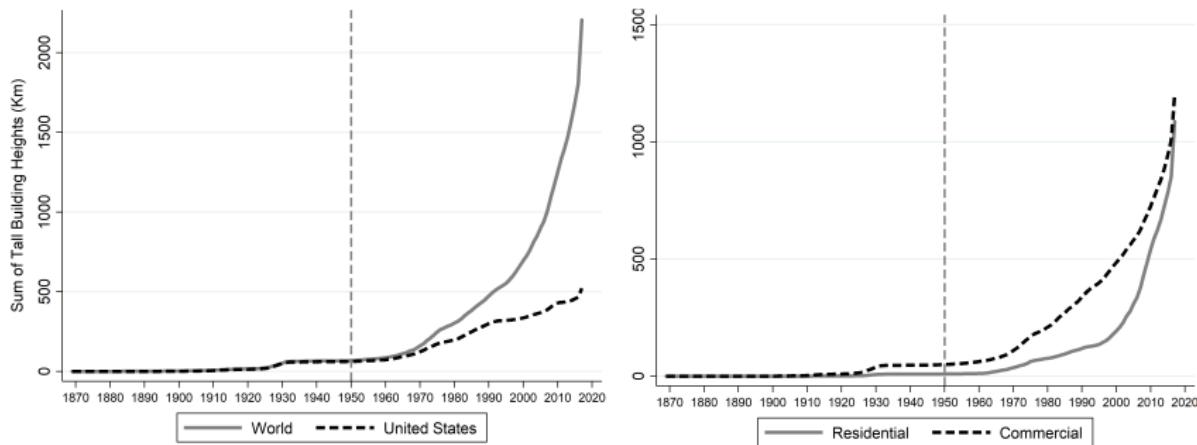
Height: Observatory
555.7 m / 1,823 ft
Floors Above Ground
183
Floors Below Ground
1
of Elevators
58
Top Elevator Speed
10 m/s
Tower GFA
306,473 m² / 3,331,140 ft²
of Apartments
900
of Hotel Rooms
304
of Parking Spaces
2,867

Click an image to view larger version.

Facts

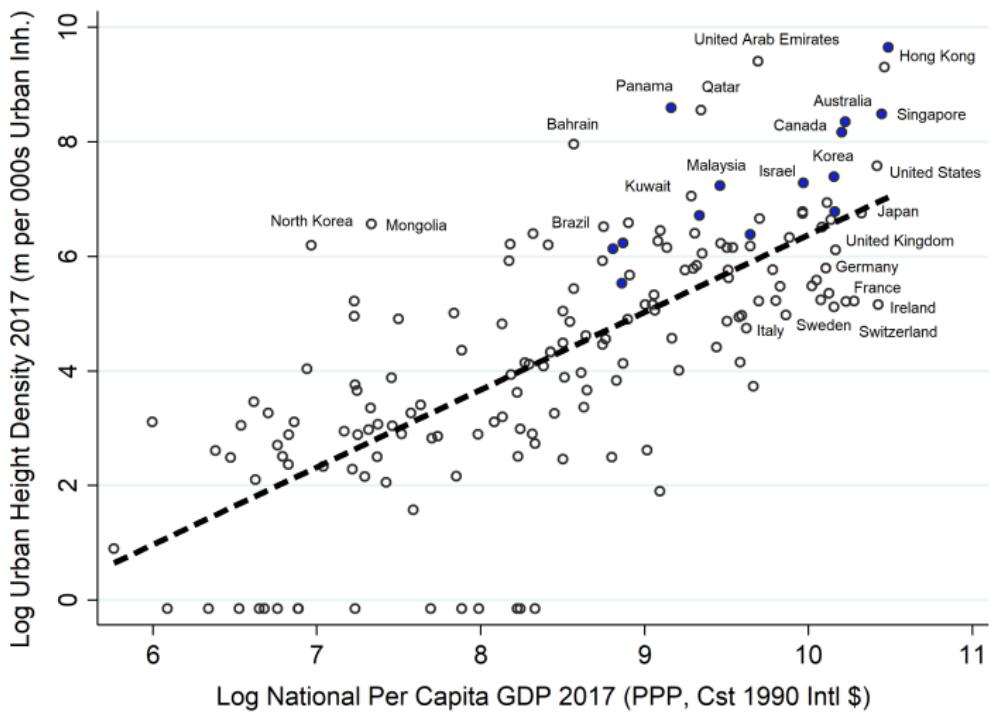
Official Name	Burj Khalifa
Other Names	Bug Dubai
Structure Type	Building
Status	Completed
Country	United Arab Emirates
City	Dubai
Street Address & Map	1 Emaar Boulevard
Building Function	office / residential / hotel
Structural Material	steel/concrete
Proposed	2003
Construction Start	2004
Completion	2010

Companies Involved


Owner/Developer	Emaar Properties
Architect	
• Design	Skidmore, Owings & Merrill LLP
• Architect of Record	Hyder Consulting
Structural Engineer	
• Design	Skidmore, Owings & Merrill LLP
• Engineer of Record	Hyder Consulting
MEP Engineer	
• Design	Skidmore, Owings & Merrill LLP
Project Manager	
• Turner International LLC	
Main Contractor	Samsung C&T Corporation; Arabtec; Besix
Other Consultant	

Source: See URL: <http://www.skyscrapercenter.com/building/burj-khalifa/3>

Data: Sample and Other Variables


- ▶ **Panel regressions** relating tall-building stocks per urban capita to urban per capita income and agricultural land rent.
- ▶ **Main sample:** 158 countries in 1950-2017 (which we call 2020)
- ▶ **Urban height density:** Sum of building heights \div urban pop.
- ▶ **Urban per capita income:** Non-agricultural GDP \div urban pop.
- ▶ **Agricultural land rent:** Ag GDP divided by total land area.
- ▶ **Commuting costs:** Urban road data across countries over time since 1950 does not exist. Will ignore in main analysis.

Evolution of Tall-Building Stocks, 1869-2017.

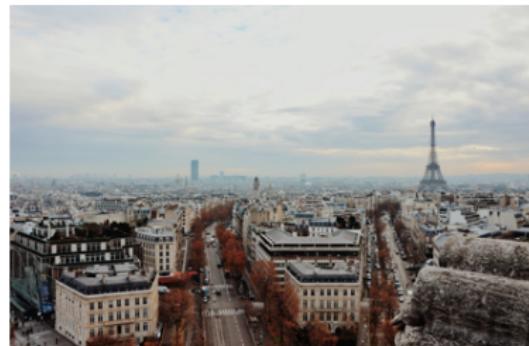
(a) Up until 1950, the U.S. had most of the world's tall buildings. Since then, tall-building stocks in other countries have grown rapidly. The world has added the km equivalent of about 5,000 Empire State Buildings. (b) Most tall buildings commercial until 2000. After 2000, tall residential buildings built at faster pace.

Identification of Benchmark (= Laissez-Faire) Countries.

Regr. $\log(\text{urb. height density})$ on $\log(\text{income})$ and $\log(\text{ag.rent})$ 2017. Benchmark group: residual \geq 75th pctile + upper-middle/high income + democratic (06-17).

Dep. Var.:	Log Urban Height Density (m per 000s Urban Inh.) in Year t (LUHTDENS $_t$)			
	(1)	(2)	(3)	(4)
Countries	All	≥ 0	$\geq p75$ & DemUMH	$\geq p75$ & DemH
LUPCGDP $_t$	0.49*** [0.10]	0.68*** [0.16]	1.54** [0.67]	3.23*** [0.61]
LAGRENT $_t$	0.13 [0.09]	0.30** [0.13]	0.55** [0.26]	0.19 [0.40]
LUHTDENS $_{t-10}$	0.48*** [0.03]	0.46*** [0.04]	0.46*** [0.11]	0.18 [0.12]
Cntry FE, Yr FE	Y	Y	Y	Y
Observations	1,106	511	98	56
Countries	158	73	14	8
Adjusted R2	0.79	0.80	0.87	0.91

Notes: Sample of 158 countries \times 8 years (1950, 1960, 1970, 1980, 1990, 2000, 2010, 2020) = 1,264 obs. Robust SEs clustered at the country level.


Col. (3)-(4): Benchmark countries only: \geq 75th pctile + democratic + at least upper-middle income (UMH; N = 14) or high income (H; N = 8) today.¹

¹H: Australia, Canada, Hong Kong, Israel, Netherlands, South Korea, Uruguay. UM: Brazil, Dom. Rep., Malaysia, N. Macedonia, Panama, Thailand.

(1) Percentage Change Gap (%, From UHTDENS ₂₀₂₀))		(2) Per Capita Gap (Km per Mil. Urban Inh.)		(3) Total Gap (Km)	
Rank	Country	Gap	Country	Gap	Country
1	Ireland	488	Ireland	21	United States
2	Mauritius	451	Mauritius	20	Taiwan
3	Slovenia	369	Austria	12	Japan
4	Switzerland	361	Taiwan	12	United Kingdom
5	Uzbekistan	337	Sri Lanka	8	Germany
6	Norway	321	Trinidad	6	China
7	Austria	290	Switzerland	6	South Korea
8	Taiwan	278	United States	6	France
9	Sweden	277	Slovenia	5	Italy
10	Sri Lanka	261	Norway	4	Ireland
11	Italy	253	South Korea	4	Austria
12	Denmark	252	United Kingdom	3	Netherlands
13	Trinidad	250	Netherlands	3	Switzerland
14	France	249	Estonia	3	Sri Lanka
15	Germany	247	Germany	3	Sweden
16	Eq. Guinea	243	Sweden	3	Spain
17	Finland	223	France	2	Norway
18	United Kingdom	215	Denmark	2	India
19	Lesotho	212	Italy	2	Belgium
20	Portugal	202	Slovakia	2	Poland

- (i) World should have 2x more km of tall buildings (= 6,000 Empire State Buildings)
- (ii) Gaps larger for richer countries in 1950 or growing fast since. (iii) U.S. gap from California (state-level analysis; same methodology). (iv) Gaps smaller for commercial buildings. Cities more open to creating jobs than receiving residents.

Do the gaps make sense? Cities in countries with gaps > 0 (= gaps):

Paris

Kevinblism. Pixabay License. Free for commercial use. No attribution required. <https://pixabay.com/photos/paris-landscape-vista-trip-2674858/>

Vienna

Jarmoluk. Pixabay License. Free for commercial use. No attribution required. <https://pixabay.com/photos/panorama-vienna-austria-city-view-427929/>

Dublin

Kidmoses. Pixabay License. Free for commercial use. No attribution required. <https://pixabay.com/photos/dublin-ireland-travel-tourism-4603885/>

Do the gaps make sense? Cities in countries with gaps < 0 (= excess):

Panama City

Nicolasaroundtheworld. Pixabay License. Free for commercial use. No attribution required.
<https://pixabay.com/photos/panama-city-skyline-coastline-view-4742656/>

Sao Paulo

Joelfotos. Pixabay License. Free for commercial use. No attribution required.
<https://pixabay.com/photos/s%C3%A3o-paulo-buildings-overview-aerial-1194935/>

Kuala Lumpur

Slawomir Gajowniczek. Kuala Lumpur Skyline from KL Tower. This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
<https://creativecommons.org/licenses/by-sa/4.0/deed.en> No changes were made.

Building-Height Gaps and Land-Use Regulations

- ▶ **U.S. state-level analysis:** Gaps strongly correlate in the expected directions with well-known measures (Saiz, Wharton, Saks).
- ▶ For the **world**, building-height gaps strongly correlate with:
 - ▶ **Sally Angel's land-use regulation data** (200 world cities):
 - Gaps correlated with max FAR, not other land-use regulations
 - Countries do not “compensate” their residents by having more lenient regulations in other dimensions: greenbelt, UGB, zoning
 - ▶ Housing supply responsiveness (Caldera and Johansson 2013)
 - ▶ Landlord-friendliness (Global Property Guide)

Source: Intl Comparison Program 2011		Log Total	Log PM	
Dep. Var.:	Price Level (100)	Urban Land	10	
	Hous (1)	Transp (2)	Area 2011 (3)	
1. Gap UMH	3.32*** [1.19]	-0.67 [1.30]	0.22*** [0.04]	0.08*** [0.02]
2. Gap H	3.99*** [1.33]	-1.50 [1.34]	0.19*** [0.03]	0.07** [0.03]
Observations	147	147	125	156
Ctrls, Wgts	Y	Y	Y	Y

Conditional on income level, cross-sectional correlations with: (i) housing prices (residents not compensated by lower transport costs); (ii) land expansion; (iii) air pollution (due to land expansion). Also: (iv) similar with panel of 12,000 world cities in 1975-2015; (v) gaps in central areas not compensated by peripheral areas.

Robustness Checks: Investigation of Causality

- ▶ **Gaps misestimated if coeffs of income and ag rent biased:**
 - ▶ Continent-year FE or WB region-year FE
 - ▶ Country-specific linear or non-linear trends
 - ▶ No effects of the leads
 - ▶ Controls for commuting costs: (i) Subways (Gonzalez-Navarro and Turner, 2017; Gendron-Carrier, Gonzalez-Navarro & Turner, 2020) and (ii) National road stocks (no data on urban).
 - ▶ Simulations suggest coefficients would need to be much lower to significantly alter the ranking of countries in terms of the gaps.
 - ▶ **Caveats:** First- and second-step regressions are not causal.

Robustness Checks: Sampling and Measurement Error

- ▶ **Selection of benchmark (= laissez-faire) countries:**
 - ▶ Correlation btw residuals used to select countries and Google results for name of the country & cities & skyscrapers = 0.61. Language FE and ctrl for number of famous architects: 0.90.
 - ▶ Re-add U.S. to benchmark set.
- ▶ **Measurement error (ME) in building heights:**
 - ▶ Our data mostly capture 80m+ buildings.
 - ▶ Classical ME in dependent variables only affect precision
 - ▶ Correlation btw our data and Emporis for 100 cities = 0.79-0.9.
 - ▶ Focus on tallest: 100m+, 125m+, etc. where ME less likely.
 - ▶ Correlation btw building construction and cement use (main material for 3/4 of buildings) = 0.77 (N = 870 country-years)

Were Results Causal, Welfare Implications?

- ▶ **Contribution to global house price boom:**
 - ▶ Historical house price data from Knoll, Schularick, and Steger (2017). Gaps possibly account for 22% of rise since 1960.
- ▶ **Welfare loss from higher housing and commuting costs:**
 - ▶ Bertaud & Brueckner (2005): Welfare loss for each urban resident = commuting cost for the edge resident.
 - ▶ Worldwide welfare loss: 1% of global urban income.
- ▶ **Welfare loss from air pollution:**
 - ▶ Worldwide welfare loss: 0.6-0.8% of global urban income.
- ▶ **Welfare loss from spatial misallocation:**
 - ▶ Combining Hsieh & Moretti (2019) and our own state-level corr. with Saiz (2010), worldwide loss of 16%.
 - ▶ Implausibly high? Caveat: We apply their U.S. estimates to the world.

Dependent Variable:	H-Based ... Building-Height Gap 2020				
	(1)	(2)	(3)	(4)	(5)
LPCGDP 1950	1.63*** [0.18]	1.48 [1.18]	-30.98* [15.75]	1.08*** [0.22]	19.29 [20.93]
ΔLPCGDP 1950-2020	2.73*** [0.18]	1.81* [0.96]	-35.86* [20.16]	2.52*** [0.23]	16.47 [24.53]
<u>Home Ownership Share (HO)</u>	-0.03 [0.12]				0.01 [0.09]
HO*LPCGDP 1950		0.00 [0.02]			0.00 [0.01]
HO*ΔLPCGDP 19502020		0.01 [0.01]			-0.00 [0.01]
<u>Log Urb. Planners pc (LUPpc)</u>			-46.03** [22.60]		27.12 [30.47]
LUPpc*LPCGDP 1950			4.68** [2.28]		-2.68 [3.01]
LUPpc*ΔLPCGDP 19502020			5.57* [2.91]		-2.08 [3.54]
<u>Log World Heritage Sites pc (LWHSpc)</u>				-20.80*** [7.78]	-21.04*** [7.20]
LWHSpc*LPCGDP 1950				2.50*** [0.87]	2.64*** [0.77]
LWHSpc*ΔLPCGDP 19502020				1.39 [1.01]	0.98 [0.94]
Observations	158	105	158	158	105
Adjusted R-squared	0.66	0.64	0.68	0.69	0.69

Conditional on income level, gaps are: (i) not correlated with home ownership share, unlike homevoter hypothesis; (ii) higher for richer countries with more renown urban planners per cap.; and (iii) higher for richer countries with more cultural World Heritage Sites per cap. (e.g., historic centres of Florence, Rome & Venice).

THE END

THANK YOU!

Dep. Var.:	Col. (1)-(4): Gap Based on UMH Set				Col. (5)-(8): Gap Based on H Set			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Max FAR	-0.20** [0.013]	-0.20** [0.014]	-0.32*** [0.002]	-0.37*** [0.002]	-0.12** [0.037]	-0.15** [0.016]	-0.24*** [0.002]	-0.32*** [0.000]
Urban Containment	0.98 [0.344]		0.42 [0.752]		-0.29 [0.802]		-0.55 [0.647]	
Via Green Belt	-0.87 [0.584]		-1.47 [0.418]		-1.35 [0.401]		-1.36 [0.408]	
Via Urban Growth Boundary	-1.61 [0.101]		-1.05 [0.352]		-0.65 [0.452]		-0.45 [0.635]	
Full or Partial Zoning	1.37 [0.205]		0.68 [0.428]		2.44*** [0.002]		1.22 [0.200]	
Gvt Land Acquisition	0.53 [0.685]		-0.94 [0.370]		0.64 [0.624]		-1.40 [0.147]	
Min Plot Size Y/N		-1.96 [0.111]	-2.06 [0.153]			-1.50 [0.285]	-1.87 [0.279]	
Mths Permit Subdivid.		-0.04 [0.446]	0.04 [0.552]			-0.02 [0.636]	0.07 [0.302]	
Mths Permit Build.		0.12 [0.218]	0.15 [0.165]			0.11 [0.118]	0.16** [0.044]	
Street Layout Gvt/Mixed		1.70 [0.113]	1.59* [0.095]			1.13 [0.252]	1.10 [0.160]	
Infrastructure Gvt/Mixed		-1.20 [0.241]	-0.45 [0.717]			-2.17** [0.050]	-1.21 [0.264]	
Obs./Countries	49	49	47	47	49	49	47	47
R-squared	0.08	0.18	0.30	0.41	0.03	0.14	0.28	0.43

Gaps correlated with max FAR, not other land-use regulations: greenbelt, UGB...

Dep. Var.:	Gap (Log Urban Height Density (m per 000s Urban Inh.) in Year t (LUHTDENS $_t$))							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Check:	Baseline	Continent -Year FE	Region -Year FE	Country Trend	Country Trend Sq.	Effects of the Vars t	Leads $t+10$	Ctrls for Commute
<i>Panel A: UMH Set (98 Observations; 14 Countries)</i>								
LUPCGDP $_t$	1.54** [0.67]	1.97** [0.82]	1.95** [0.75]	3.32** [1.32]	3.91* [2.06]	2.35*** [0.65]	-0.59 [0.83]	1.83* [0.88]
LAGRENT $_t$	0.55** [0.26]	0.63** [0.29]	0.59* [0.31]	-0.05 [0.61]	-0.05 [0.76]	0.44 [0.78]	0.31 [0.74]	0.55** [0.22]
<i>Panel B: H Set (56 Observations; 8 Countries)</i>								
LUPCGDP $_t$	3.23*** [0.61]	3.00*** [0.47]	3.28*** [0.49]	6.06** [2.13]	6.91* [2.99]	4.96** [1.99]	-1.43 [0.68]	4.07*** [0.40]
LAGRENT $_t$	0.19 [0.40]	-0.07 [0.48]	-0.25 [0.85]	-0.45 [0.59]	-0.41 [0.80]	0.08 [0.68]	0.28 [0.71]	0.18 [0.31]
Cntry FE, Yr FE	Y	Y	Y	Y	Y	Y	Y	Y
LUHTDENS $_{t-10}$	Y	Y	Y	Y	Y	Y	Y	Y

Gaps misestimated if coeffs biased. Results hold: (i) area-year FE; (ii) country trends; (iii) no effect of leads; (iv) ctrls commuting costs (subways, road stocks country). Simulations suggest coeffs would need to be much lower to alter rankings.