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Context

Although contention about the appropriate model of the economy

[...] continues, macroeconomic policy decisions have to be made.

Blanchard and Fisher (1989)

• Policy makers use heuristics to decide on policy actions:

• Combine insights from multiple models

• Rely heavily on instinct and judgement calls

• How to know whether the policy choice is the best one?



Illustrative example

The COVID crisis:

• Is the Fed doing enough?

• Should it be more aggressive with QE?

• ...



This paper

• Start from high-level loss function given by policy maker

• Propose a statistic —the Optimal Policy Perturbation

(OPP)— to detect optimization failures in policy process

• OPP does not rely on specifying an underlying model

• OPP informs whether chosen policy is optimal and, if not,

which improvements can be made



Two perspectives for the OPP

1. A researcher interested in assessing the historical performance

of policy makers

2. A tool to help decision making in real time

3. A tool to articulate policy prescriptions around three concepts

3.1 preferences

3.2 economic outlook

3.3 effects of policy



Idea of policy perturbation

• Idea similar to Sufficient Statistic approach, but in a macro

stabilization setting

• Explore whether a perturbation to the policy choice can lower

the loss function

• Exploits idea that at the optimum perturbations should have

no first-order effect on loss function

• OPP is a well-chosen perturbation that only requires

1. Forecasts for the policy objectives given the policy choice

2. Impulse response of policy objectives to changes in the policy

instruments
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Applicability

• OPP can be applied to a broad range of macro policy
problems

• Monetary policy

• Fiscal policy with stabilization vs budget deficit concerns

• Exchange rate management

• Foreign exchange reserve management

• ...

• Today we illustrate the OPP for US monetary policy decisions



This talk

1. Problem description

2. Optimal Policy Perturbation

3. Inference

4. US monetary policy



Problem description



Environment policy maker

Policy maker has

• m = 1, . . . ,M mandates over h = 0, . . . ,H horizons

• target variables ym,t+h with objective y ∗m

• K policy instruments pt = (p1,t , . . . , pK ,t)
′

• preference parameters λm and discount factors βh



Policy maker’s problem

Policy maker (under discretion) aims to solve

min
pt∈D
Lt

with loss function

Lt = Et

H

∑
h=0

M

∑
m=1

λmβh (ym,t+h − y ∗m)
2

where Et(·) = E(·|Ft).



Convenient static re-formulation (1)

• Stack targets

Yt :t+H = [
√

λjβh(ym,t+h − y ∗m)]m=1,...,M,h=0,...,H

• To ease on notations, refer to Yt :t+H as Yt

• Postulate generic model

Yt = ft(pt ,Xt) + ξt ,

ft differentiable wrt pt , Xt is Ft measurable, ξt future shocks



Convenient static re-formulation (2)

• We obtain static description of the dynamic policy problem

min
pt∈D
Lt , Lt = Et‖Yt‖2

s.t. Yt = ft(pt ,Xt) + ξt

• K instruments to hit (H + 1)M targets



Policy maker’s proposed solution

• Policy maker proposes p0t as the solution to the policy problem

• Goal of the paper:

Verify whether p0t is optimal without knowing ft

• Not the goal of the paper:

Derive an optimal policy rule
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Why would p0
t NOT be optimal?

• Mistake

• Mis-specification, if policy maker doesn’t have access to true

ft(.)

• Complexity of ft(.) makes it very expensive to evaluate

• Example: Board Fed production of Tealbook

• Computing ft(.) involves many model iterations and judgment

calls

• Impossible to compute ft(.) for all possible pt
• An incomplete grid search



Optimal Policy Perturbation



Policy perturbations

Main idea:

• Perturbate p0t with δt = (δ1,t , . . . , δK ,t)
′

• If p0t + δt generates lower loss, conclude p0t is not optimal

• Is there a smart choice for δt?



Optimal policy perturbations (OPP)

We consider the perturbation

δ∗t = −(R′tRt)
−1R′tEtY

0
t

which depends on

• impulse responses

Rt ≡ Rt(p
0
t ,Xt) =

∂ft(pt ,Xt)

∂p′t

∣∣∣∣
pt=p0t

• forecasts

EtY
0
t ≡ Et ft(p

0
t ,Xt)

Note: δ∗t is a function of Ft not a shock
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Properties of OPP

What can we learn from OPP δ∗t ?

1. Discarding optimality: when p0t is not optimal

2. Improving policy: when p0t + δ∗t improves p0t

3. Optimal policy: when p0t + δ∗t optimal



Intuition: Discarding Optimality

  

Lt = ft(pt)
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Intuition: Discarding Optimality

δ∗t = −(R′tRt)
−1R′tEtY

0
t

• At the optimum,

∂L
∂pt

∣∣∣∣
pt=p0t

= 2R′tEtY
0
t = 0 ⇒ δ∗t = 0

• Impulse responses (IR) should be orthogonal to forecasts

⇒ There is no adjustment to the instruments, i.e., no

combination of the IRs, that can lower the loss function



Intuition: Improving/Optimal Policy

δ∗t = −(R′tRt)
−1R′tEtY

0
t

• Optimization perspective:

→ OPP as the first-step of a Gauss-Newton algorithm
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Intuition: Optimal Policy

  

p0
t

p0
t + δ∗t = p

opt
t

Lt = ft(pt)
2



Intuition: Optimization perspective

p0t + δ∗t is first step of Gauss-Newton (GN) optimization algorithm

• Approximate linearity (Yt ≈ Rtδt + Y 0
t ): GN converges

⇒ OPP improves policy

• Linearity (Yt = Rtδt + Y 0
t ): GN converges in one step

⇒ OPP gives optimal policy



Two comments related to Lucas critique

1. Assume we know Rt

• Detecting an optimization failure

⇒ immune to Lucas critique (∇pt
Rt 6= 0)

• Improve/optimal policy restricts Rt(pt)

⇒ not fully robust to Lucas critique

2. Can we know/estimate Rt?

• Same issue in Sufficient Statistics literature

• Need sufficient data/experiments relevant for period t



A different viewpoint

Why is Discarding Optimality immune to Lucas critique?

• Estimating the optimal policy is hard (Lucas critique)

• Discarding Optimality is easier, because assessing δ∗t = 0 is
like a score test

• You can impose the null p0t = poptt and use the score at p0t

• No need to estimate optimal policy as it is fixed under the null



Intuition: Econometrics perspective

• OPP formula looks like OLS regression of EtY
0
t on Rt

δ∗t = −
(
R′tRt

)−1R′tEtY
0
t .

• With linearity assumption, get

Y 0
t = −Rtδt + Yt

• Goal of δ∗t is to use Rt to minimize Et ‖Yt‖2: an OLS reg.!



Illustration: simple example I

• Suppose policy maker has 1 mandate and 1 instrument

min
pt
Lt with Lt = Et‖Yt‖2

where Yt = (yt − y ∗, yt+1 − y ∗, . . . , yt+H − y ∗)′

• Two scenarios:

(a) Failing to disregard optimality

(b) Discarding optimality



Illustration: simple example I

δ∗t = −
(
Ry ′

t R
y
t

)−1
Ry ′

t EtY
0
t

(b) Discarding optimality(a) Failing to discard optimality

δ∗t > 0

h

EtY
0
t

EtY
0
t

EtY
0
t + δ∗t R

y
t

hRy
t

δ∗t ≈ 0

h

EtY
0
t

hRy
t



Illustration: simple example II

• Suppose policy maker has 2 mandates and 1 instrument

min
pt
Lt with Lt = Et‖Yt‖2 + Et‖Zt‖2

• Now there are two types of trade-offs

• Across horizons

• Across mandates



Illustration: simple example II

δ∗
t
= ωδyt

∗
+ (1−ω)δzt

∗ < 0

h

EtY
0
t

EtY
0
t

EtY
0
t + δ∗t Ry

hRy
t

h

EtZ
0
t

EtZ
0
t

EtZ
0
t + δ∗t Rz

t

h

Rz
t



Inference for OPP



Inference for OPP

• Computation of OPP requires two statistics

• Impulse response Rt

• Conditional expectation EtY
0
t

• In practice

• Rt is estimated: IR estimation uncertainty

• Policy maker does not know EtY
0
t (the optimal forecast) and

only produces Ŷt|t : Model uncertainty



Avoiding type-1 (false positive) error

• We do not want that researcher rejects optimality because of

• noise in impulse responses

• model mis-specification (incorrect forecasts)

• Therefore we compute confidence bands around the OPP

• Conservative inference: reject optimality if the confidence

bands exclude zero



Inference

• IR estimation uncertainty

r̂t = vec(R̂t) ∼ N(rt , Ωt)

• Conditional expectation uncertainty

Ŷt|t ∼ N
(
EtY

0
t , Σt|t

)
• Simulate/delta method to get distribution of

δ∗t = −(R′tRt)
−1R′tEtY

0
t



A Brainard conservatism principle for the OPP

• Denote by δ̂t the mean of the distribution of δ∗t

• Can show

δ̂t = (R̂′tR̂t + Ω̃t)
−1R̂′tŶt|t ,

• Ω̃t captures an attenuation bias coming from measurement

error in the IRs



Applications of OPP



Two applications of OPP

1. A retrospective analysis of Fed policy

2. A tool to help decision making in real time



Two data requirements

1. Forecasts for π and u

→ Survey of Economic Projections from FOMC (1980-2020)

2. Impulse responses to monetary shocks

• Fed instruments:

2.1 Fed funds rate

2.2 Slope of yield curve (LSAP, QE)

Eberly, Stock and Wright (2019)



Estimation of R

• Estimation by LP-IV

• IVs based on surprises to bond market during 30min window

around FOMC announcements Kuttner(2001), Eberly, Stock and Wright (2019)

• r0t shock: difference between r0t decision and current-month

fed funds futures contract FF1

• slope shock: Surprise to r10yrt − r0t spread, holding r0t shock

constant



Estimation of R
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A first application of OPP

A retrospective analysis of Fed policy

• Fed balanced approach: λ = 1

• Instruments

• FFR alone until 2007

• Slope policy alone over 2008-2013

• FFR and slope policy over 2014-2018



Retrospective analysis of Fed policy
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Should the Fed have lowered FFR faster in 2008?
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Should the Fed have used more slope policy in 2010?
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Another application of OPP

A tool for decision making in real time

• Take the FOMC as of June 2020

• Summarize SEP forecasts with two parameters:

• Second COVID wave?: Etu2020q4

• Speed of recovery in 2021-2022 (half-life)

• Capture model uncertainty from SEP dispersion

• Question: Should Fed use its slope policy more aggressively?

• Warning: This is an illustration. Yield curve is already very close to flat



Slope policy in 2020-M6
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Illustration

A decision map:

• Show results of “test” δ∗t = 0 over forecast space

→ captures effect of IR uncertainty on test

• Show uncertainty “rectangle” around SEP median forecast

→ captures effect of model uncertainty on “test”



A decision map using SEP “central tendency” around forecast

2 4 6 8 10 12 2 4 

1

2

3

4

5

6



With higher model uncertainty: using range of SEP
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With higher IR uncertainty
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With even higher IR uncertainty
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Take-away (1)

• Given the large uncertainty today, we cannot reject that Fed

slope policy is appropriate

• How about the new instruments?

(e.g., Fed lending to small/medium businesses)

• Uncertain effects (high IR uncertainty) makes OPP less

informative



Take-away (2)

δ∗t = −(R′tRt)
−1R′tEtY

0
t

• OPP helps policy makers articulate/communicate their
prescription around three concepts:

1. preference between different objectives

2. assessment of the economic outlook

3. views on the effects of policy



Conclusion

• A framework to help decision making in real life setting

• OPP helps detect optimization failures when

• Underlying model is complex and costly to compute

• Policy makers use heuristics to decide on policy



Two perspectives on literature (1)

• Identification of structural IRs (Ramey, 2016)

• Impulse responses can be used to test optimality



Two perspectives on literature (2)

• Forecast Targeting: “select a policy-rate path so that the

forecasts of the target variables look good, meaning appears

to best fulfill the mandates and return to their target at an

appropriate pace” Svensson (1999, 2017, 2019)

• Captures operational procedure of most π-targeting central

banks

• Limitation: no quantitative criterion for “appropriate”

• ⇒ OPP provides such a quantitative criterion



Extension

• OPP can be applied to broad range of policy problems

• Monetary policy

• Fiscal policy with stabilization vs budget deficit concerns

• Exchange rate management

• Foreign exchange reserve management

• ...



A forecast-targeting rule

The Fed has a rule. The Fed’s rule is that we will go for a 2percent

inflation rate; we will go for the natural rate of unemployment; we

put equal weight on those two things; we will give you information

about our projections, our interest rate. That is a rule and that is

a framework that should clarify exactly what the Fed is doing.

Bernanke (2015)

If the FOMC is going to have a forecast-based framework, it is not

enough to say “eventually we will get back to 2 percent”. The

FOMC needs to talk about a time horizon over which it is planning

to hit 2%.

Kocherlakota (2016)



Formalizing the OPP properties

Proposition

1. Discarding optimality: Given smoothness of ft , we have that

δ∗t 6= 0 implies p0t 6= p
opt
t , where p

opt
t = arg minpt∈D Lt .

details

2. Improving policy: Given Rt(pt) not too non-linear we have

there exists ε > 0 such that for all p0t ∈ N (p
opt
t , ε), and

‖p0t + δ∗t − p
opt
t ‖ ≤ ‖p0t − p

opt
t ‖

details

3. Optimal policy: Given Rt independent of pt we have

p0t + δ∗t = p
opt
t



Assumption: Discarding optimality

Assumption

Let Xt ∈ X and ξt ∈ Ξ be random vectors and D an open convex

subset of RK . We assume that

1. ft : D ×X → RM(H+1) is continuous and there exists a

random variable Zt such that ‖ft‖ ≤ Zt uniformly with

E(Zt) < ∞.

2. there exists a function Rt ≡ ∂ft/∂pt such that uniformly we

have Rt has full column rank.

Back



Assumption: Improving policy perturbation

Assumption

We assume that

1. ‖(Rt(pt ,Xt)− Rt(p
opt
t ,Xt))′Et

(
ft(p

opt
t ,Xt) + ξt

)
‖ ≤

c‖pt − p
opt
t ‖, with constant c < µmin(R ′tRt) for all

(pt ,Xt) ∈ D ×X
2. Rt is Lipschitz continuous with respect to pt on D with

parameter γ.

Back



Assumption: Optimal policy perturbation

Assumption

Rt is independent of pt .



The Lucas critique as an omitted variable bias

• In our context, the Lucas critique can be understood as

∇Rt =
∂Rt(pt)

∂p′t

∣∣∣∣
pt

6= 0

• If the data is generated according to

Yt = Y 0 +Rtδt +
1

2
∇Rtδ

2
t

• Then the OPP should be

δ∗t = arg min ‖Y 0 +Rtδt +
1

2
∇Rδ2t ‖2

but we calculate

δ̃t = arg min ‖Y 0 +Rtδt‖2

• δ̃t is a biased estimate of δ∗t unless ∇Rt = 0 or δ∗t = 0.
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Backgound: optimization (1)

• Step of a Newton line search algorithm

δt = −(∇2Lt)
−1∇Lt

• Gauss-Newton (GN) is a modification of Newton for problems

of the form

Lt =
1

2
min
pt

Y
′
tYt

• GN step is

δt = −
(
R′tRt

)−1∇Lt



Backgound: optimization (2)

• GN approximates Hessian with first-derivatives

∇2Lt = R′tRt +∇R
′
tY

0
t︸ ︷︷ ︸

'0

• Equivalent to minimizing the linear-quadratic model

min
δt

(
Rtδt + Y 0

t

)′ (
Rtδt + Y 0

t

)
• GN step maximizes a quadratic approximation of the

loss function using

Yt ≈ Rtδt + Y 0
t
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