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Abstract

We demonstrate an easy-to-use approach how to empirically evaluate potentially
sufficient “micro” moments for the response of aggregate “macro” variables to policy
shocks of interest. We do so entirely by example, by evaluating the sufficiency of
micro pricing moments for the aggregate real effects of monetary policy shocks.
First, while only 4 out of 8 candidate moments are informative about monetary non-
neutrality when considered one at a time, only frequency of price changes is robustly
informative. Second, none of our moments are empirically sufficient statistics for
monetary non-neutrality because other variables are also informative for monetary
non-neutrality. On the theory side, we show how our conditionally identified micro-
macro moments can be used to make modeling choices and direct modeling efforts.
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I Introduction

A widely popular approach in recent years to discipline and evaluate models has been

the use of micro data. In this context, we demonstrate an easy-to-use approach how to

empirically evaluate potentially sufficient “micro” statistics for the response of aggregate

“macro” variables to policy shocks of interest. We do so entirely by example, by evaluating

the sufficiency of micro pricing moments for the aggregate real effects of monetary policy

shocks, which is a first-order question in macroeconomics. However, our analysis can be

also seen as an illustration of a more generally applicable way of using micro data to

evaluate model predictions for a policy shock of interest.

Within our expository example, our analysis considers a large number of popular

pricing moments: the frequency of price changes, kurtosis, kurtosis over frequency, average

size, the standard deviation, the fraction of small price changes, the fraction of positive

changes and the standard deviation of the price duration. Frequency is consistently

informative and statistically significant for understanding monetary non-neutrality.

Conditional on price change frequency, we find no evidence that higher order moments

of the price change distribution are directly relevant for monetary non-neutrality. Other

popular moments such as kurtosis of price changes have a relationship with monetary

non-neutrality that is ambiguous and statistically insignificant. Kurtosis over frequency

of price changes is informative about monetary non-neutrality but as we show only because

frequency has a negative association.

Yet, even if some of these moments are informative about monetary non-neutrality,

we show that none are sufficient statistics.1 All the moments we consider are no sufficient

statistics because they fail to pass a few simple hurdles inherent to any meaningful

definition of sufficient statistics. First, we find that inclusion of other moments and

variables is also informative about monetary non-neutrality. Moreover, any combination

of moments we consider at best explains approximately half of the variation in monetary

non-neutrality. This leaves the other half unaccounted for, and our moments insufficient.

On a positive note, however, such failure of pricing moments to serve as empirically

1What a sufficient statistic is in macroeconomics is surprisingly not precisely defined in the literature.
While we do not aim to remedy this situation, our approach builds on the idea of a formula that sufficiently
summarizes the response of a key variable of interest to an identified structural shock as in Nakamura and
Steinsson (2018b). As a corollary, other variables should not add information to this sufficient summary
nature. Statistically, in particular explanatory power of the formula with respect to the variable of interest
should be extremely high and perfect in an ideal setting.
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sufficient statistics does not mean that a focus on micro data is misguided when we

try to evaluate the real effects of monetary policy, or make model choices. In fact, the

opposite is true. Such failure calls for even more circumspect analysis using micro data.

Our approach of tying micro to macro moments provides a way to do so: Conditional

micro-macro moments are revealing about the question at hand – even if they have no

differential effect. Modeling that only targets micro moments or macro moments may

either draw macro implications that are not consistent with the data, or use a model

micro mechanism that is empirically invalid. Consider for example the moment of kurtosis.

There is no evidence from our data that increasing kurtosis leads to larger consumption

responses. Therefore models that hinge on kurtosis to generate monetary non-neutrality

are not consistent with the data. It is not kurtosis per se, but the model mechanism

that generates excess kurtosis that can be related to monetary non-neutrality. We make

exactly this point in detail in our model section.

An appealing feature of our approach for the policy-maker who aims at conducting

counter-factual policy analysis may further lie in the following: Our approach is good at

describing dynamics conditional on a small, specific shock in normal times. By contrast,

model choice in practice that employs micro data is often made by requiring models to fit

during particular, exceptional episodes – and unconditionally on a shock. For example,

Gagnon (2009) evaluate the performance of Calvo versus menu costs for the Tequila crisis

in Mexico, Alvarez et al. (2019) during hyperinflation in Argentina, Nakamura et al.

(2018) for the Great Inflation in the U.S. in the 1970s, or Karadi and Reiff (2018) for

VAT changes in Hungary. While these papers target momments in vey specific times,

our approach provides moments that can be used to evaluate models more generally. We

happily acknowledge however, that we may want our models to fit precisely in exceptional

times - a necessity that depends on the policymaker’s objective.

The details of our analysis are the following. Our analysis sets out by establishing

empirical regularities for the response of prices and quantities, conditional on a monetary

policy shock, but also conditional on micro moments. These conditional moments will be

our “micro-macro” moments. As such, generating them necessarily involves both micro

and macro data. On the macro side, we obtain a measure of monetary non-neutrality by

computing the conditional impulse responses of prices. These impulse response functions

to a monetary shock are estimated using standard methodologies, but also conditional on
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micro price moments. For example, we compute the impulse response of prices following

a monetary shock when the kurtosis of price changes is above its median versus below its

median in the data. The micro side comes in by conditioning on micro price moments

when choosing the set of prices to compute impulse responses. For example, we compute

the impulse response of prices following a monetary shock when the kurtosis of sectoral

price changes is above its median versus below its median across sectors in the data.

We identify monetary policy shocks using three conventional identification schemes.

First, we follow the Romer and Romer (2004) narrative approach of identifying the effect

of monetary policy shocks. Second, we identify monetary policy shocks using a high-

frequency approach as in Bernanke and Kuttner (2005), Gertler and Karadi (2015) or

Nakamura and Steinsson (2018a). Finally, we employ a FAVAR approach as in Boivin

et al. (2009) to identify the effect of changes in the federal funds rate.

We establish the nexus between monetary policy shocks and pricing moments in two

ways. Both approaches imply the same message for the informativeness and sufficiency

of moments.2 The first approach presents a more aggregate summary while the second

exploits the micro nature of the data. As our first approach, we classify the PPI inflation

data into only two subsets, exploiting the micro price data that underlie the producer

price index (PPI) at the Bureau of Labor Statistics (BLS). One subset is above and

the other subset below the median of a proposed explanatory pricing moment. Here

we compute pricing moments at the six-digit-NAICS-month level and then average the

moment within a sector over time before sorting sectors. Next, we compute a weighted

index of PPI inflation for each subset, for example, a price index for sectors with an

above-median kurtosis of price changes. We then use these indices to compute impulse

responses following a monetary policy shock, using the local projection methodology of

Jordà (2005) and the single equation methodology of Romer and Romer (2004). In our

FAVAR setting, we compute impulse responses for each six-digit NAICS sector and present

results by averaging responses in each subset.

We find from all our analyses based on this first approach that prices are more

responsive to monetary policy shocks for the index made up of sectors with an above-

median frequency of price changes, compared to the index made up by sectors with a

below-median frequency. Prices are less responsive for the index made up of sectors with

2Due to data restrictions, we are able to consider mainly 4 moments in parts of the anaysis.
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a below-median kurtosis over frequency, or standard deviation of price spell durations.

There is also a slightly stronger responses for an index made up of below-median fraction

of positive price changes. However, the responsiveness of both indices sorted by kurtosis is

almost identical when we use the narrative and the high-frequency approaches. From the

FAVAR identification, the response of prices even goes in the opposite direction: prices

in the high-kurtosis subset now respond by more and not by less. This result not only

makes the kurtosis relation ambiguous but is also is at odds with the notion in the pricing

literature3 of larger real and smaller nominal responses when kurtosis is higher. In the

FAVAR analysis, high or low average size, standard deviation of price changes and fraction

of small price changes bear no differential relation with monetary non-neutrality.

Finally, as our key exercise, we use regression analysis to establish two results: First,

only frequency has a robust relation with monetary non-neutrality. Second, however, none

of our moments passes some basics hurdles to serve as sufficient statistics. These results

follow from several steps. First, we regress each sectoral cumulative impulse response on

each pricing moment individually. We tend to confirm the above aggregate relationships

while also controlling for sectoral fixed effects. The regression results also reveal that

frequency has a substantially higher explanatory power than any other moment, around

50%. Kurtosis in particular is not significant and explains the least variation while

only average size and standard deviation of duration also have a significant relationship.

Explanatory power far below 100% suggests that our moments are no quite sufficient.

Second, when we throw in the kitchen sink of all moments plus additional covariates, only

frequency retains a significant relationship, and we explain 59% of variation in monetary

non-neutrality. However, this last step of analysis further emphasizes that neither of our 8

moments can be a sufficient statistic. For example, we find that profits or the persistence

of sectoral shocks also can be significant and informative for monetary non-neutrality.

They also add explanatory power to the regressions.

As our second approach, we solidify our results by exploiting the micro nature of our

data. To this end, we regress real sales at the firm level on firm-level pricing statistics

interacted with our measures of the monetary policy shock. The advantage of this firm-

level analysis – beyond verifying results with a measure of real output rather than its

nominal inflation complement – lies in our ability to control for firm-level fixed effects.

3See for example Vavra (2014): “Midrigan (2011) shows that greater kurtosis leads to a reduction in
price flexibility.”
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The analysis also happens at a much finer level of disaggregation which illustrates the

role of different aggregation levels. We find that exactly the same results hold as in

the analysis that measures monetary non-neutrality using price responses at the six-digit

NAICS level. For example, variation in the kurtosis of price changes given frequency has

no significant interaction effect with monetary policy shocks.

Drawing on our empirical results, we demonstrate in our modeling part of the analysis

how our micro-macro moments can be use to guide modeling and the selection of modeling

ingredients. We show this through the lens of an important class of pricing models, menu

cost models, and three key moments: frequency, kurtosis and kurtosis over frequency of

price changes. In particular, kurtosis of price changes plays an important role in the

menu cost literature, as it is understood to embody the extent of the so-called selection

mechanism: When kurtosis is large, ceteris paribus, then monetary non-neutrality should

be large. However, our results show that kurtosis may be empirically irrelevant for

monetary non-neutrality. Can menu cost models still generate predictions in line with

our empirical conditional impulse response functions?

We first show that menu cost models can indeed match our empirical price responses,

in particular the model does not generate a strong positive association between kurtosis

and monetary non-neutrality. We show this by calibrating a state-of-the-art menu cost

model to match the CPI pricing moments in Vavra (2014). As we vary one target moment

at a time, this variation enables assessment of how such variation changes the real effects

following a monetary shock, just like in our empirical exercise. In particular, we shock

the model for each calibration with a one month doubling of log nominal output of size

0.2%. First, we find a higher frequency of price changes leads to a smaller cumulative

consumption response, in line with intuition. Second, an increase in kurtosis of price

changes decreases monetary non-neutrality, unlike the notion in the literature but in line

with our empirical findings, where the relation is ambiguous and can even have a negative

sign. Third, the relationship of kurtosis over frequency with monetary non-neutrality is

non-monotonic and can be negative. We further verify that these predictions also hold in

a simplified model, the discrete-time version of Golosov and Lucas (2007).4

4While not the focus of our paper, we note that kurtosis can vary within the discrete-time version of
the Golosov and Lucas (2007) model. Unlike in a continuous-time setting like Alvarez et al. (2016) where
the mass of price changes at the Ss bands is always zero and kurtosis given frequency is always unity, this
mass is not zero in discrete time. Hence, kurtosis of the distribution can vary with model parameters.
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Next, our model exercise demonstrates the value of using our “micro-macro” moments

to evaluate underlying model mechanisms. We do so by showing how to reconcile with our

analysis the notion in the pricing literature that after conditioning on frequency, greater

kurtosis leads to more monetary non-neutrality. The answer is simple: The use of random

menu costs can generate this counterfactual relationship, by positively and directly linking

kurtosis to the degree of Calvoness, and thus monetary non-neutrality in a model. When

the fraction of random, small price changes increases as implied by the introduction of

random menu costs, the larger mass of small price changes can increase kurtosis. But these

random changes have zero selection by construction; they are not adjusting in response to

a monetary shock. Therefore, they also increase monetary non-neutrality. These results

show that the source of kurtosis through the model mechanisms is what matters, not

the unconditional pricing moment itself. This insight incidentally validates our empirical

findings of an unstable relationship of kurtosis, due to potentially differential technologies

firms may use. Our results thus show how micro pricing moments when tied to the macro

level can be helpful for evaluating what model ingredients are necessary. More generally,

our analysis suggests that a fruitful test of models can be to link micro moments directly

to macro moments.

We organize the paper as follows. Section II describes the underlying micro pricing

data and our empirical methodology. Section III establishes the empirical regularities that

compare impulse response functions across different values of micro moments. Section

IV presents the modeling setup. Section V presents our model results, and Section VI

concludes.

A. Literature review

Our main contribution lies in providing empirical insights about what micro pricing

moments are informative for monetary non-neutrality following monetary policy shocks.

In particular, we demonstrate that none of these moments take reasonable hurdles to

be sufficient statistics. However, our analysis can also be seen as illustration of a more

generally applicable way of using micro data to evaluate model predictions for a policy

shock of interest.

As suggested, our analysis speaks most directly to the sufficient statistics approach

for the effect of monetary policy shocks. This approach proposes sufficient statistics across
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a wide class of models to fully pin down monetary non-neutrality, as for example in recent

work by Alvarez et al. (2016) and Baley and Blanco (2019).

Our contribution is to show how to empirically evaluate a large set of sufficient

statistic candidates, by providing empirical impulse response functions in samples split

along different values of the sufficient statistic as well as its components. These empirical

impulse response functions allow us to evaluate whether this sufficient statistics approach

is indeed sufficient with respect to empirically measured monetary non-neutrality (or any

other object of interest). We show that empirically only frequency matters as expected.

This finding stands in contrast to a large menu cost literate which sees kurtosis or higher

moments as informative for monetary non-neutrality.5

We also relate to the recent literature that shows that conventional pricing moments

may not even theoretically be sufficient statistics for monetary non-neutrality as proposed

in the literature. Dotsey and Wolman (2018), Karadi and Reiff (2018) and Baley and

Blanco (2019) analyze sophisticated menu costs models to make such arguments. We

emphasize the fragility of kurtosis as a sufficient statistic by making clear in our theory

section that small changes in modeling assumption relate to monetary non-neutrality,

not simply kurtosis as a moment. On the one hand, even in a simple menu cost

model, calibrated to CPI micro moments, kurtosis of price changes can predict lower

monetary non-neutrality. On the other hand, we show why many models predict a

positive relationship between kurtosis and non-neutrality. Menu cost models predict a

positive relationship only when random menu costs are the source of excess kurtosis and

the degree of Calvoness of the model.

Our analysis builds on advances by several papers that have pushed the modeling

frontier. Building on the model of Golosov and Lucas (2007), work by Midrigan (2011)

showed that menu cost models can generate large real effects. Key to this result is a

multi-product setting where small price changes take place, as well as leptokurtic firm

productivity which generates large price changes. Nakamura and Steinsson (2010) have

further developed a Calvo-plus model featuring occasional nearly free price changes. This

modeling trick generates price changes in the Calvo setting similar to a multi-product

5Alvarez et al. (2016) propose kurtosis given frequency as a sufficient statistic. However, a further
sufficiency condition in their paper is that monetary shocks are normalized by the standard deviation of
price changes as one moves cross calibrations or models. We interpret sufficiency based on a measure of
monetary non-neutrality following the same sized shock across comparisons. Hence, when we consider
kurtosis over frequency as one of our moments, we are not testing Alvarez et al. (2016).
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menu cost model. Our model setup takes into account these advances in modeling

assumptions.

Our work also contributes to the literature providing evidence on the interaction of

sticky prices and monetary shocks. Gorodnichenko and Weber (2016) show that firms

with high frequency of price change have greater conditional volatility of stock returns

after monetary policy announcements. In contrast, Bils et al. (2003) find that when broad

categories of consumer goods are split into flexible and sticky price sectors, that prices for

flexible goods actually decrease relative to sticky prices after an expansionary monetary

shock. Mackowiak et al. (2009) study the speed of response to aggregate and sectoral

shocks and find that while higher frequency sectors respond faster to aggregate shocks,

the relationship between sectoral shocks and frequency is weaker and potentially negative.

Finally, we also contribute to the large and growing literature that studies the

heterogeneous response to monetary shocks. Cravino et al. (2018) is closest to our work,

who empirically show that high-income households consume goods which have stickier,

and less volatile prices than middle-income households. Kim (2016) presents related

results.

II Data and Methodology

This section lays out how we use micro moments – which may be candidate sufficient

statistics – to inform us about key policy variables of interest. Our key policy variable of

interest is monetary non-neutrality following a monetary shock, and we have a set of 8

micro price moments. Our approach however is not restricted to the specifics we present

here. Micro moments in any setting can analogously be related to the response of key

policy variables to an identified shock.

Our general approach is to construct a measure of monetary non-neutrality, our key

policy variable of interest and macro moment, and relate it to micro pricing moments. We

do so by first generating empirical impulse response functions of the price level or output

following a monetary policy shock, using several independent methodologies. However,

we do not generate these impulse response functions conditionally on monetary shocks

only. We generate the impulse responses to monetary shocks conditional on both high and

low levels of pricing moments which we consider one at a time. Second, we also employ
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regression techniques to quantify the exact statistical relationship between measures of

monetary non-neutrality and these moments at the firm and sectoral levels.

We next describe our data, and then how the specific methodologies use it.

A. Data

Our main dependent variables of interest are 154 producer price (PPI) inflation series

from Boivin et al. (2009), which allow us to measure monetary non-neutrality. This

dataset also includes various further macroeconomic indicators and financial variables.

Some examples of these indicators are measures of industrial production, interest rates,

employment and various aggregate price indices. We also include disaggregated data on

personal consumption expenditure (PCE) series published by the Bureau of Economic

Analysis, consistent with Boivin et al. (2009). Due to missing observations, we remove

35 real consumption series and are left with 194 disaggregated PCE price series. The

resulting data set is a balanced panel of 653 monthly series, spanning 353 months from

January 1976 to June 2005. As in Boivin et al. (2009), we transform each series to ensure

stationarity.

We sort the 154 sectors for which we have PPI inflation rates into an above-median

and below-median set according to these three moments of interest: Frequency of price

changes, kurtosis of price changes, kurtosis over frequency, average size, standard deviation

of price durations, the fraction of small price changes or the fraction of positive price

changes. This requires us to have sectoral price-setting statistics. We obtain them by

additionally exploiting the underlying micro price data from the PPI at the BLS. For

each of the corresponding 154 series, we construct sector-level price statistics using PPI

micro data from 1998 to 2005. We compute pricing moments at the sectoral-month level,

and then take averages over time at the respective six-digit NAICS industry level, each of

which corresponds to one of the 154 series. We can then assign sectors into above-median

and below-median subsets for any given moment of interest and compute the average

inflation rate in each subset.

We complement these sector-level inflation series with data at the firm-level that

includes sales data and pricing moments. Due to data restrictions we compute 4 pricing

moments: frequency, kurtosis, kurtosis over frequency and standard deviation of price

durations. We compute the same three pricing moments using the PPI micro data for
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the 584 firms which were matched to Compustat data in Gilchrist et al. (2017). The

pricing data is available from 2005 through 2014. Similar to the sectoral calculations

above, we pool all price changes within a firm over time to calculate firm moments. We

merge firm-level sales from Compustat into this dataset to get a measure of output for our

subsequent analysis. In order to compute higher moments of the price change distribution,

we restrict our sample to those firms with a minimum of 15 price changes over the full

sample period leaving 309 firms in the analysis.

To avoid measurement error in the calculation of kurtosis as pointed out by

Eichenbaum et al. (2014), we follow the approach suggested in Alvarez et al. (2016).

We drop all price changes less than 1 cent and more than the 99th percentile of the

absolute price change distribution. We disregard the $25 upper bound on price levels

as in Alvarez et al. (2016) since it does not meaningfully apply to PPI micro data. We

present several additional ways of addressing measurement error in our robustness section,

including the instrumental variables approach in Gorodnichenko and Weber (2016). We

also note that our analysis considers 2 different levels of aggregation – firms versus sectors

– which allows us to see the effect of different levels of aggregation for the informativeness

of pricing moments for measures of monetary non-neutrality.

Next, we describe the methodologies we use to relate pricing moments to the measures

of monetary non-neutrality following monetary policy shocks. If there is data particular

to each identification scheme for the effect of monetary policy shocks, we describe it in

each subsection below.

B. Empirical Response to Romer and Romer Shocks

As a first approach to identify the effect of monetary policy shocks, we follow the narrative

approach in Romer and Romer (2004). The original Romer and Romer (2004) monetary

policy shocks are calculated as residuals from a regression of the change in the federal

funds rate on the information set of Federal Reserve Greenbook forecasts. The original

series is available from January 1969 to 1996. Using the same methodology, Wieland and

Yang (2016) have extended the series up to December 2007. We use monthly industry

level PPI inflation data from January 1976 to December 2007 for 154 six-digit NAICS

industries.

We use the impulse response of prices to a monetary shock to measure monetary non-
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neutrality. We then sort prices into two bins according to high or low pricing moments.

This sorting allows us to obtain differential responses for the prices by estimating the

following local projections:

log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t]

+(1− IPS>M)[θB,h ∗MPshockt + ϕB,hzj,t] + εj,t+h
(1)

where IPS>M is a dummy variable that indicates if the price level is for the above-median

set according to the three pricing moments of interest to generate a potentially differential

response. θj,h is the impulse response of the price level to a Romer-Romer shock h months

after the shock for the average industry in the above-median or below-median set indexed

by j according to one of the three pricing moments of interest. zj,t are controls that

include two lags of the RR shock, two lags of the Fed Funds rate, and current and two

lags of the unemployment rate, industrial production, and price level. MPshockt refers

to the extended Romer and Romer monetary shock series. The dependent variable is the

average PPI in the high or low subsets described above in the data section. We have

normalized the monetary shock such that an increase in the shock is expansionary.

As an alternative specification, we also follow the original Romer and Romer

regression specification. This specification uses a lag structure instead of local projections,

and inflation as a dependent variable:

πj,t = αj +
11∑
k=1

βj,kDk +
24∑
k=1

ηj,kπj,t−k +
48∑
k=1

θj,kMPt−k + εj,t (2)

We estimate each regression separately for the average industry inflation rate πj,t above

and below the median value of each proposed pricing moment to estimate the differential

inflationary responses following a monetary policy shock where j indexes above-median

or below-median for each pricing moment. Following the estimation of the above

specification, the estimated impulse response of interest is contained in the parameter

estimates of θj,k.

Considering the price response of the two subsets of the economy as informative

for the relationship between monetary non-neutrality and pricing moments that differ

across subsets is justified on the following grounds. Variations in pricing moments across

subsets are indicative of variations in monetary non-neutrality as long as there are no
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strong general equilibrium effects and complementarities in the responses across subsets.

We verify this approach in a calibrated two-sector model of the U.S. economy. Figure 10

in Appendix A illustrates the findings: Differences in key pricing moments are associated

with distinct predictions for sectoral price impulse responses.6

C. Empirical Response to High Frequency Shock Identification

As a second approach to identify the effect of monetary policy shocks, we use the high

frequency identified monetary shocks of Gertler and Karadi (2015). Their series is

available from January 1990 through June of 2012. Complementary to this identification,

we also use the series of high-frequency identified monetary policy shocks of Nakamura

and Steinsson (2018). We use their data from January 1995 through March 2014.

We use the impulse response of prices to a monetary shock to measure monetary

non-neutrality. We obtain responses for the prices sorted into two bins according to high

or low pricing moments by estimating the following local projections:

log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t]

+(1− IPS>M)[θB,h ∗MPshockt + ϕB,hzj,t] + εj,t+h
(3)

where IPS>M is a dummy variable that indicates if the price level falls into the above-

median set according to the three pricing moments of interest to generate a potentially

differential response. θj,h is the impulse response of the price level to a high frequency

identified shock h months after the shock for the average industry in the above-median or

below-median set j according to one of the three pricing moments of interest. We control

for the same variables as in the Romer and Romer identification above. zj,t are controls

that include two lags of the monetary policy shock, two lags of the Fed Funds rate, and

current and two lags of the unemployment rate, industrial production, and price level.

The dependent variable is the average PPI in the high or low subsets described above in

the data section.

To complement our sector-level analyses, we also estimate a firm-level specification

that employs the high-frequency identification scheme, and focuses on output instead of

6We thank Adrien Auclert for pointing out the value of model guidance for our empirical strategy in
this context. A similar result in Boivin et al. (2009) also supports our approach: The average of sectoral
IRFs closely resembles the aggregate IRF following a monetary policy shock.
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prices. We estimate the following specification:

log(salesj,t+h) = αth + αjh + θh ∗MPshockt ×Mj + controlst + εj,t+h (4)

where αth are time fixed effects, αjh are firm fixed effects, and salesj,t+h denotes firm

j real sales at time t measured at quarterly frequency h months after the shock. We

also include time and firm fixed effects, and monetary policy shocks are measured by the

high-frequency identified shock. Controls further include 4 quarters of lagged log real

sales, and current and 4 lags of log assets. Mj contains one of our three firm-level pricing

moments: the firm-level frequency of price changes, the kurtosis of price changes, or the

ratio of the two statistics. The estimated coefficients θh measure how the sales response

to the monetary policy shock h months into the future depends on the firm’s pricing

moments Mj.

To assess the relative importance of frequency and kurtosis for monetary non-

neutrality, we also include the interaction of monetary policy shocks with both frequency

and kurtosis jointly on the right-hand side. This joint interaction allows us to

understand the extent to which each pricing moment is jointly informative for monetary

non-neutrality.

D. Empirical Responses to Monetary Shocks: FAVAR

Our third approach to obtain impulse response functions in the different subsets of the

data follows the factor-augmented vector autoregressive model (FAVAR) in Boivin et al.

(2009). In this third approach, we identify the monetary policy shock with a federal funds

rate shock that drives the impulse responses. We refer the reader for details of the FAVAR

approach to Boivin et al. (2009). The appeal of the FAVAR lies in drawing from a large

set of variables containing information on macroeconomic and sectoral factors enabling

us to better identify policy shocks than standard VARs.

We first use the FAVAR to generate PPI inflationary responses πk,t for each sector k:

πk,t = λ′kCt + ek,t (5)

In the FAVAR setting, this sectoral inflationary response is given by the loading λ′k on
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the VAR evolution of the common components Ct. This component in turn includes the

evolution of the federal funds rate which we shock.

Monetary policy shocks are identified using the standard recursive assumption. The

Fed Funds rate may respond to contemporaneous fluctuations in the estimated factors,

but none of the common factors can respond within a month to unanticipated changes in

monetary policy. Given the estimated FAVAR coefficients, we compute estimated impulse

resposne functions for each of the k sectors. We then compute the mean of the impulse

response at each horizon h in the two subsets of the data characterized as above-median

and below-median according to each pricing moment of interest. These series embody

the response of inflation following a monetary policy shock, conditional on high and low

levels of a given micro moment.

Finally, we use the estimated sectoral impulse responses to more quantitatively assess

the importance of our pricing moments for monetary non-neutrality. To do so, we regress

the cumulative sectoral price responses on the pricing moments, taking into account

broader industry fixed effects:

log(IRFk,h) = a+ αj + β′Mk + γ′Xj + εk,h (6)

where log(IRFk,h) denotes the cumulative response of prices for an h-month horizon in

sector k. αj are six-digit NAICS fixed effects as additional control variables to control for

any common factors across broad industries, and Xj are other industry level covariates

such as profit. As before, Mk contains one of our industry-level pricing moments: the

industry-level frequency of price changes, the kurtosis of price changes, the ratio of the

two statistics, the average size of price changes, and the standard deviation of price change.

To assess the relative importance of each pricing moment for monetary non-neutrality, we

also include all moments jointly as explanatory variables. This joint interaction allows us

to understand the extent to which each pricing moment is jointly informative for monetary

non-neutrality.

As a specific test of sufficiency of our main moments, we also include the size of price

changes and their dispersion, both individually and jointly with kurtosis and frequency.

As additional controls, we also use profits and the persistence of idiosyncratic shocks

from Boivin et al. (2009). None of these should be significant or informative if kurtosis,
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frequency or their ratio are indeed sufficient statistics.

III Empirical Results

In this section, we present our main empirical results. Among our 8 moments, 4 show a

statistically significant relation with monetary non-neutrality when considered one at a

time. However, only frequency of price changes has a robust relationship. Interestingly,

kurtosis of price changes has none, or even a negative association, contrary to the

notion in the literature. Kurtosis over frequency of price changes can, taken separately,

be informative about monetary non-neutrality but only because the frequency has a

strong negative association with non-neutrality. Neither pricing moment by itself or in

combination is a sufficient statistic because they explain at best approximately half of the

variation in monetary non-neutrality. In particular, inclusion of other variables also yields

significant relationships with monetary non-neutrality and further explains variation.

A. Monetary Non-Neutrality and Pricing Moments

Across all of our three identification schemes and specifications, price-setting moments

relate to monetary non-neutrality in very similar ways. We present our more aggregate

results first, and then our firm-level and regression results.

A.1 Narrative Approach

First, both specifications that rely on the Romer and Romer identification scheme yield

nearly identical results at the aggregate levels. We summarize the findings from the local

projection specification in equation 1 in Figure 1 while Figure 10 summarizes the findings

from the autoregressive specification in equation 2. Both figures present the response to

a one percent decrease in the realization of the policy measure.

In terms of frequency, we find that low price change frequency sectors have a smaller

price response to the monetary shock than the high frequency sectors. This implies that

they have a larger real output response. Figure 1 and Figure 10 each show this relationship

in Panels a. We note that monetary policy shocks begin to yield price responses with at

least 24 months lag if we consider equation 1 which is consistent with the findings in

Romer and Romer (2004).
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In terms of kurtosis, we find what we call “irrelevance of kurtosis.” Based on the

local projection specification, results show that the price response in the high and the

low kurtosis sectors is not statistically significantly different from one another. Figure 1

Panel b summarizes this result. The autoregressive specification makes a very similar if

not stronger case for the irrelevance of kurtosis. Panel b in Figure 10 shows the associated

impulse response.

In terms of kurtosis over frequency, our results show that high kurtosis over frequency

has a positive association with monetary non-neutrality. High kurtosis over frequency

sectors have a smaller price response to the monetary shock than the low kurtosis over

frequency sectors. This implies that they have a larger real output response. Panel c in

the figures summarizes the relevant price responses. We note that the impulse response

functions are statistically only somewhat different from one another in the local projection

specification while highly so in the autoregressive specification. Crucially, however, as the

individual results for frequency and kurtosis suggest, the result for the ratio appears to be

driven by the result for frequency. We show this point quantitatively rigorously further

below using regression analysis.

In terms of our other pricing moments, we find the following results: As we consider

Figures 1 and Figure 10, the only clear result arises in Panels d and h. Sectors with

a below-median standard deviation of price durations show a statistically larger price

response than above-median sectors. Also, sectors with a below-median fraction of

small price changes tend to have a significantly stronger price response, at least at an

intermediate horizon. Second, as Panel e through g illustrate, the relationship for the

average size of price changes, their standard deviation, and the fraction of small price

changes is generally not significantly different across above-median and below-median

sets.

A.2 High-Frequency Approach

Second, using high-frequency identified shocks confirms the findings from the Romer

and Romer identification scheme for frequency and kurtosis over frequency. However,

our results further highlight the ambiguous relationship between kurtosis and monetary

non-neutrality casting doubt on how informative the moment is for summarizing monetary

non-neutrality. Figure 2 summarizes the findings from estimating equation 3, the
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high-frequency identified monetary shocks using a local projection specification. Panel

a continues to show that low price change frequency sectors have a smaller price response

to the monetary shock than the high-frequency sectors. Panel c continues to show that

low kurtosis over frequency sectors exhibit a stronger price response compared to sectors

with a high kurtosis over frequency. These results look quite similar to those from the

Romer and Romer local projection shown above in Figure 1.

Strikingly, however, as Panel b shows, higher kurtosis is now associated with a

stronger price response than lower kurtosis. This implies high-kurtosis sectors have a

smaller real output response. This result is significant at most horizons and runs counter

to the prevailing fundamental intuition in the menu cost literature. When we use our

alternative high-frequency identified shocks following Nakamura and Steinsson (2018a),

we find the same results as in Figure 2. Figure 20 in the Appendix presents these results.

Our analysis that uses the matched firm-level data confirms these findings as well.

Due to inclusion of firm-level fixed effects in equation 4, these results are particularly

robust to any additional cross-sectional variation down to the firm-level. Time fixed effects

absorb common macroeconomic shocks, so the coefficient θh measures the differential

impact of a monetary shock at horizon h depending on the pricing moment Mj. Figure 3

presents our findings. Panel a shows firms with high frequency of price changes have

a smaller sales response following an expansionary monetary policy shock. Panel b

establishes the “irrelevance of kurtosis” at the firm level. There is no significant difference

from 0 in the sales response at most horizons as a function of firm-level kurtosis following

a monetary policy shock. Panel c shows that firms with a higher kurtosis over frequency

ratio have a larger real response to a monetary policy shock at all horizons. This finding

is consistent with the predictions of the proposed statistic. Finally, in Panel d we estimate

the specification with kurtosis and frequency jointly included, separately interacted with

the monetary shock, to decompose the statistic and find that frequency has a significant

negative impact on real sales, while kurtosis has no sigificant impact on real sales.7

7We confirm these firm-level findings using Romer and Romer shocks. Figure 14 in the Appendix
displays the results.
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A.3 FAVAR Approach

Third, using a FAVAR approach shows very similar results for the relationship between

pricing moments and monetary non-neutrality. Figure 4 presents the implied impulse

responses to a surprise 25 basis point, expansionary decrease in the federal funds rate.

We plot the average response in the respective above-median set of sectors and in the

below-median set of sectors.

In terms of the frequency of price changes, Panel a continues to show that the

average impulse response function of the high-frequency sectors has a larger response to

monetary shock than low-frequency sectors. This implies smaller real effects of monetary

policy. In terms of kurtosis over frequency, Panel c continues to show that low kurtosis

over frequency sectors exhibit a stronger price response compared to sectors with a high

kurtosis over frequency. These two results look quite similar to those presented above. In

terms of kurtosis, Panel b shows results similar to those from the high-frequency identified

monetary shocks. Unlike the notion in the literature, high-kurtosis sectors have on average

a stronger price response than low-kurtosis sectors implying less monetary non-neutrality.

Finally, In terms of the standard deviation of price durations, Panel d shows that sectors

with a relatively higher standard deviation show a larger price response.8

B. Further Results from Regression Analysis

Next, we present key cross-sectional results that confirm our findings in a quantitatively

rigorous regression setting. While several moments individually have a statistically

significant relationship with monetary non-neutrality, only the frequency of price changes

is always robustly informative about monetary non-neutrality. Crucially, we also show

that none of our moments take some basic hurdles to be sufficient statistics. Among

all pricing moments considered, the specification with frequency alone has the highest

explanatory power – but overall, explanatory power is only moderate across specifications.

Further, if we include additional controls, they turn out to be informative about monetary

non-neutrality too, and explanatory power increases. These findings suggest that neither

pricing moment is an empirically sufficient statistic. We now show these results using

8As a robustness check, we show that our results continue to hold at more disaggregated levels. Instead
of looking at above-median and below-median subsets of data, we present the results when looking at
quartiles. Figure 17 in the Appendix shows the results are consistent with our main findings.
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both sectoral and firm-level data.

First, we consider the sectoral level. We use as a measure of monetary non-neutrality

our cumulated FAVAR estimates of price level responses 24 months after an expansionary

monetary shock. We estimate the relationship of cumulated sectoral impulse responses

with our key pricing moments in equation 6. We take into account three-digit fixed effects

that absorb any systematic differences across sectors. We first estimate the relationships

to moments individually, then jointly including frequency and kurtosis, and then pooling

all moments. As a complement, we also include profits or the volatility of sector level

shocks as controls. Table 1 shows our results.

Our main finding at the sectoral level is that individually, only 4 out of 8 moments

have a statistically significant, informative relationship with monetary non-neutrality.

These moments are the frequency of price changes, kurtosis over frequency, average size of

price changes and the standard deviation of the duration of price spells. Kurtosis, a central

moment in the pricing literature, is not significant. Statistical significance of individual

moments with monetary non-neutrality is clearly a necessary statistical condition for

moments to be sufficient statistics. Hence, 4 moments do not take this first hurdle to be

a sufficient statistic.

Two simple further conditions for sufficiency lie in the robustness of the relationship

of each moment with monetary non-neutrality, and high, near 100% explanatory power.

In terms of robustness, columns (9) and (11) show two of our key results in this regard:

In column (9), we include both frequency and kurtosis jointly. Only frequency has a

significant relationship with non-neutrality, but not kurtosis, a central moment in the

pricing literature. Hence, as our aggregate figures already suggested, it is frequency that

drives the relation of frequency over kurtosis with monetary non-neutrality. In column

(11), we include all moments jointly. Again, only frequency retains a strong, statistical

significance, but no other moments such as kurtosis of price changes. In fact, in both

columns (9) and (11), kurtosis exhibits a fragile relationship with monetary non-neutrality

as it flips sign. Clearly, frequency is highly informative for monetary non-neutrality while

all other moments are not, given frequency. They fail to take this simple first hurdle of

robustness.

The importance of frequency is also reflected in the explanatory power across

columns. Columns (1) - (8) show that frequency among all individual moments exhibits
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the highest explanatory power, with 50% of the variation in monetary non-neutrality

explained. All other moments only add noise to the explanation of variation in monetary

non-neutrality, given frequency. This result can be seen from three columns in particular:

Column (1) shows that kurtosis over frequency only has an explanatory power of 43%,

lower than frequency by itself in column (2) with 50%. Kurtosis just adds noise if we

consider the ratio of frequency over kurtosis. Column (9) shows that including both

frequency and kurtosis has approximately the same explanatory power as just frequency.

Column (11) adds all moments as explanatory variables jointly. Now, explanatory power

is still at 50%.

Does this mean that frequency is a sufficient statistic? Unfortunately, no. First, it

should be noted that no pricing moments are completely informative and sufficient in the

sense that they do not fully explain monetary non-neutrality. Approximately half of the

variation in the price response remains unexplained – even for frequency. Second, even

while highly informative, we find that other variables can still add information above

and beyond frequency of price changes. The results in the last 2 columns show this

result. Here, we include all moments together with additional sector level variables that

Boivin et al. (2009) have found to affect the price response. We find that other variables

such as profits or the volatility of sector level shocks are also significantly related to the

price response, in addition to the frequency (but again not kurtosis).9 Moreover, the

R2 increases to nearly 59%. If a pricing moment is a sufficient statistic, then no other

variables should enter significantly and be informative as an explanatory variable. Clearly,

this is not the case, not even for frequency of price changes.

Second, we consider the firm level. Here, decompose the determinants of monetary

non-neutrality using our matched firm sample. We regress the log of firm-level sales four

quarters after the shock on the interaction of one or multiple pricing moments with the

high-frequency shock as in equation 4, including various controls and firm-fixed effects.

Again, findings at the firm level confirm our sectoral regression results from

above. The frequency of price changes is the main moment associated with monetary

non-neutrality. Table 2 shows the results. Column 0 reports the results when no pricing

moment is included. Column 1 shows that higher kurtosis over frequency continues to be

associated higher higher monetary non-neutrality, that is, sales. However, as Columns 2

9Profit is defined as the sector level average gross profit rate over the years 1997 through 2001. The
volatility and persistence of sector level shocks are calculated from the FAVAR.
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through 4 show this result is driven by the fact that higher frequency of price changes

means lower sales. Kurtosis individually or jointly with frequency is not statistically

significant. The percent of variation explained by pricing moments is low as seen by the

specification with no pricing moments.

C. Robustness to Measurement Error

We now present several robustness exercises to confirm that our results are unaffected by

potential measurement error in kurtosis and other micro moments.

First, we show that our calculations of moments change very little in the

above-median and below-median subsets of the data under different trimming methods.

Specifically, we examine the different permutations of trimming both small and large price

changes as in Table 5 of Alvarez et al. (2016). The only difference is that we replicate

the calculations separately for the above-median and below-median sets of each moment

of interest. Table 6 in the Appendix shows robustness to various ways of trimming the

data. We trim the data according to the type of trimming column. For example, case 0

is our baseline measure of trimming where price changes are dropped if they are less than

1 cent or more than the 99th percentile of the absolute price change distribution. Case 1

then changes the trimming of small price changes to drop them if they are less than 0.1

percent in absolute value, and cases 2 through 8 are similarly explained. We show that

both the mean and median pricing statistic for a given subset of the data is stable across

the trimming methods. The top panel shows the above and below-median frequency

when the data is split by that moment. The middle panel shows the stability of kurtosis

across trimming methods, and the bottom panel shows the kurtosis over frequency results.

Across all three moments examined, the rankings show that the moment is well measured

with regards to extreme price changes.

To further support the stability of the moments, we recompute impulse response

functions under several versions of the trimming. In Figure 11 we present FAVAR

estimated impulse response functions when the small price changes are instead dropped if

they are less than 0.1 percent as in case 1. In Figure 12, we present impulses when price

changes are trimmed at log(2) as in case 3. In both cases, results are nearly identical

to the baseline case. Moreover, there is little overlap between the high and low moment

groupings however we trim the data as large measurement error might imply. We find that
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when we construct the above and below median subsets, very few industries will switch

between groups. Comparing case 1 trimming to our baseline methodology, 8 industries

switch when we condition on frequency, 4 industries switch when we condition on kurtosis,

and 8 industries switch when we condition on kurtosis over frequency. Comparing case 3

trimming to our baseline methodology, the results are the same as the previous comparison

except for kurtosis where only 2 industries switch with each other.

Second, we address potential attenuation bias. Due to the large number of price

changes, as seen in Table 10 with an average of 1,430 price changes per industry, we

are able to correct for attenuation bias due to classical measurement error. Following

Gorodnichenko and Weber (2016), we split our sample into an early and a late time period

of approximately equal sizes. The sampling procedure of the BLS rotates and randomly

samples products and establishments, so the sampling error should not be correlated

across the early and late time periods. We repeat our key cross-sectional regression of the

cumulative FAVAR price responses on pricing moments using the subsample moments for

each moment separately (Table 7) and combining all moments (Table 8). These tables

are shown in the Appendix. Column 1 and 2 simply replicate our baseline results from

Table 1, with and without three-digit fixed effects.

To address the importance of measurement error for our analysis, we use an

instrumental-variable approach. If there is idiosyncratic measurement error in each period,

but each pricing moment is driven by the same fundamental, persistent characteristics,

then the pricing moments from one subsample can be used as instruments for the same

pricing moments in the other subsample. These results are shown in columns 3 through

6. In columns 3 and 4, we instrument for the early period moments with the late period

moments, while in columns 5 and 6 we instrument for the late period moments with the

early period moments. The estimated coefficients continue to be similar to our baseline

estimates, suggesting that attenuation bias due to measurement error is not driving our

results. In particular, our main message from the preceding analyses is also confirmed:

Frequency of price changes is always significant. Kurtosis continues to be insignificant

on its own in Table 11; In the top panel of table 12, kurtosis does become significant in

both samples when frequency is the only other control variable. However, this result is an

artifact of the lack of control variables. A the bottom panel shows only frequency retains

significance when all moments act as controls.
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Lastly, we show that the pricing moments are stable over time. While we pool

the pricing moments in the time dimension to increase the size of the sample, we can

calculate industry level pricing moments and compare them over time. In Figure 15 in

the Appendix we calculate pricing moments at an annual frequency, and present the mean

and interquartile range across industries for the three pricing moments. The panels show

that the pricing moments are stable in value across time. In Figure 16 we do the same

exercise but separate the high and low subsets for each pricing moment. We calculate the

above and below median bin, and then plot the mean and interquartile range within each

bin. It is clear that there is a substantial difference across time for the high and low bins

in both frequency and kurtosis over frequency, while for the kurtosis of price change there

is overlap of the interquartile range for the first year of the sample. Overall these figures

show that the ordering of pricing moments across industries is stable over time.

IV General Equilibrium Pricing Model

The section demonstrates the importance of using conditionally identified micro-macro

moments for making modeling choices. We do so by examining through the lens of

menu cost models the role which 3 popular micro pricing moments – frequency, kurtosis,

and kurtosis over frequency – play for monetary non-neutrality, our macro moment.

Across several menu cost models that are common in the literature, we examine how the

consumption response to the same size small monetary shock varies due to a perturbation

in a pricing moment.10 We find that frequency is always informative and has a monotonic

negative relationship with monetary non-neutrality. Kurtosis of price change is not

directly informative for monetary non-neutrality; rather the underlying model mechanism

that generates excess kurtosis is what determines the price response to a monetary shock.

Kurtosis over frequency is only informative through frequency, and generally does not

have a monotonic relationship with monetary non-neutrality.

We first present a second-generation menu cost model in the spirit of Vavra (2014).

When we calibrate it to CPI moments, the model can match our empirical results.

Frequency has a negative relationship with monetary non-neutrality, and the model does

10This is not a direct test of the model of Alvarez et al. (2016) as they vary the size of the monetary
shock.
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not generate a positive association between kurtosis and monetary non-neutrality.11 The

role of kurtosis over frequency is ambiguous. These results also hold in the most simplified

version of the model which is a discrete-time version of the Golosov and Lucas (2007)

model.

Finally, we examine how a commonly used version of random menu costs can flip

the sign of the relationship between kurtosis and monetary non-neutrality, just like in

the data.. The random menu cost mechanism generates random, free price changes that

increases the Calvoness of the model, while also raising the kurtosis in the model through

a higher fraction of random, small price changes. As a result, the relationship between

kurtosis and monetary non-neutrality flips sign, The frequency of price changes continues

to have a negative relationship with non-neutrality. Only by linking micro moments to

macro moments can we draw these conclusions. Simply targeting micro moments is not

sufficiently informative about the behavior of identified macro moments.

A. Model Setup

Our general equilibrium model nests both a menu cost model as well as the Calvo pricing

model. This aspect of the model follows Nakamura and Steinsson (2010) where there

is some probability of a free Calvo price change. The model also includes leptokurtic

idiosyncratic productivity shocks as in Midrigan (2011) as well as aggregate productivity

shocks. Removing these features reduces the model down to the Golosov and Lucas (2007)

model.

A.1 Households

The household side of the model is standard. Households maximize current expected

utility, given by

Et

∞∑
τ=0

βt
[
log(Ct+τ )− ωLt+τ

]
(7)

They consume a continuum of differentiated products indexed by i. The composite

consumption good Ct is the Dixit-Stiglitz aggregate of these differentiated goods,

11See for example our Figures 1-5 for the empirical counterparts. Also in our regression analyses,
frequency has a positive relation with the price response and hence a negative one with output. Kurtosis
is insignificant and has ambiguous signs.
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Ct =

[ ∫ 1

0

ct(z)
θ−1
θ dz

] θ
θ−1

(8)

where θ is the elasticity of substitution between the differentiated goods.

Households decide each period how much to consume of each differentiated good.

For any given level of spending in time t, households choose the consumption bundle that

yields the highest level of the consumption index Ct. This implies that household demand

for differentiated good z is

ct(z) = Ct

(
pt(z)

Pt

)−θ
(9)

where pt(z) is the price of good z at time t and Pt is the price level in period t, calculated

as

Pt =

[ ∫ 1

0

pt(z)1−θdz

] 1
1−θ

(10)

A complete set of Arrow-Debreu securities is traded, which implies that the budget

constraint of the household is written as

PtCt + Et[Dt,t+1Bt+1] ≤ Bt +WtLt +

∫ 1

0

πt(z)dz (11)

where Bt+1 is a random variable that denotes state contingent payoffs of the portfolio of

financial assets purchased by the household in period t and sold in period t+1. Dt+1 is

the unique stochastic discount factor that prices the payoffs, Wt is the wage rate of the

economy at time t, πt(i) is the profit of firm i in period t. A no ponzi game condition is

assumed so that household financial wealth is always large enough so that future income

is high enough to avoid default.

The first-order conditions of the household maximization problem are

Dt,t+1 = β

(
CtPt

Ct+1Pt+1

)
(12)

Wt

Pt
= ωCt (13)

where equation (12) describes the relationship between asset prices and consumption, and
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(13) describes labor supply.

A.2 Firms

In the model there are a continuum of firms indexed by i. The production function of

firm i is given by

yt(i) = Atzt(i)Lt(i) (14)

where Lt(i) is labor rented from households. At are aggregate productivity shocks and

zt(i) are idiosyncratic productivity shocks.

Firm i maximizes the present discounted value of future profits

Et

∞∑
τ=0

Dt,t+τπt+τ (i) (15)

where profits are given by:

πt(i) = pt(i)yt(i)−WtLt(i)− χ(i)WtIt(i) (16)

It(i) is an indicator function equal to one if the firm changes its price and equal to zero

otherwise. χ(i) is the menu cost of changing prices. The final term indicates that firms

must hire an extra χ(i) units of labor if they decide to change prices with probability

1 − α, or may change their price for free with probability α.12 This is the “CalvoPlus”

parameter from Nakamura and Steinsson (2010) that enables the model to encapsulate

both a menu cost as well as a pure Calvo model, as well as allows us to match the random

menu cost set up in Alvarez et al. (2016). In the menu cost model this parameter is set

such that a small probability of receiving a free price change enables the model to generate

small price changes, while in the Calvo model set up it is calibrated to the frequency of

price changes with an infinite menu cost.

Total demand for good i is given by:

yt(i) = Yt

(
pt(i)

Pt

)−θ
(17)

The firm problem is to maximize profits in (24) subject to its production function (22),

demand for its final good product (25), and the behavior of aggregate variables.

12This is a reduced form modeling device representing multiproduct firms like in Midrigan (2011).
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Aggregate productivity follows an AR(1) process:

log(At) = ρAlog(At−1) + σAνt (18)

where νt ∼ N(0,1)

The log of firm productivity follows a mean reverting AR(1) process with shocks that

arrive infrequently according to a Poisson process:

logzt(i) =

ρzlogzt−1(i) + σzεt(i) with probability pz

logzt−1(i) with probability 1− pz,
(19)

where εt(i) ∼ N(0,1).

Nominal aggregate spending follows a random walk with drift:

log(St) = µ+ log(St−1) + σsηt (20)

where St = PtCt and ηt ∼ N(0,1).

The state space of the firms problem is an infinite dimensional object because the

evolution of the aggregate price level depends on the joint distribution of all firms’ prices,

productivity levels, and menu costs. It is assumed that firms only perceive the evolution

of the price level as a function of a small number of moments of the distribution as in

Krusell and Smith (1998). In particular, we assume that firms use a forecasting rule of

the form:

log

(
Pt
St

)
= γ0 + γ1logAt + γ2log

(
Pt−1
St

)
+ γ3

(
log

(
Pt−1
St

)
∗ logAt

)
(21)

The accuracy of the rule is checked using the maximum Den Haan (2010) statistic

in a dynamic forecast. The model is solved recursively by discretization and simulated

using the non-stochastic simulation method of Young (2010).

B. Calibration

For all variations of the model that follow, we use 2 sets of parameters. The first set

of parameters is common to all model calibrations. Our model is a monthly model so
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the discount rate is set to β = (0.96)
1
12 . The elasticity of substitution is set to θ = 4 as

in Nakamura and Steinsson (2010).13 The nominal shock process is calibrated to match

the mean growth rate of nominal GDP minus the mean growth rate of real GDP and

the standard deviation of nominal GDP growth over the period of 1998 to 2012. This

implies µ = 0.002 and σs = 0.0037. Finally the model is linear in labor so we calibrate

the productivity parameters to match the quarterly persistence and standard deviation

of average labor productivity from 1976-2005. This gives ρA = 0.8925 and σA = 0.0037.

The second set of parameters is calibrated internally to match micro pricing moments.

These are the menu cost χ, the probability of an idiosyncratic shock, pz, the volatility of

idiosyncratic shocks σz, the persistence of idiosyncratic shocks ρz, and the probability of

a free price change α. Their values will be discussed in the next section.

V Model Results

This section presents our main model results. It illustrates by example how conditional

pricing moments can be informative for guiding modeling choices. First, we show

that a standard, second-generation menu cost model is able to generate our main

empirical findings. It generates the negative relationship between frequency and monetary

non-neutrality, and does not generate a strong positive association between kurtosis and

monetary non-neutrality. Second, we establish that the same relationships also hold in

the simplest, discrete-time version of a menu cost model, Golosov and Lucas (2007).

We then show how the conditional micro-macro moments can be used to evaluate

underlying model mechanisms. Models that rely on a strong positive relationship

between kurtosis and monetary non-neutrality are at odds with the empirically identified

relationship. We show how instead the use of random menu costs can generate this

counterfactual relationship, by positively linking kurtosis of price changes to perfectly

random price changes. These results show that the source of kurtosis through the model

mechanisms is what matters, not the unconditional pricing moment itself. This insight

also validates our empirical methodology given the unstable relationship of kurtosis, and

the potentially differential technologies firms use.

13While other papers in the literature set the elasticity of substitution to higher numbers such as 7 in
Golosov and Lucas (2007), this lowers the average mark up, but the ordered price level response across
models to a monetary shock would not change.
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A. Baseline Model Results

First, we first show that our baseline menu cost model is able to generate our

main empirical findings: The negative relationship between frequency and monetary

non-neutrality, and does not generate a strong positive association between kurtosis and

monetary non-neutrality. There is no clear relationship between the ratio of kurtosis over

frequency of price changes and monetary non-neutrality.

The baseline model, described in detail in the previous section, is calibrated to match

price-setting statistics from the CPI micro data during the period 1988-2012 documented

by Vavra (2014).14 We then undertake a comparative static exercise where we vary one

pricing moment at a time to understand the importance of each moment for monetary

non-neutrality. The moments we examine are the frequency and kurtosis of price changes.

In addition to a baseline calibration that matches the data, we consider 4 alternative

specifications: a case of high, and a case of low frequency of price changes that holds

kurtosis constant, and a case of low kurtosis, and a case of medium kurtosis that hold

frequency constant. Tables 3 and 4 summarize the moments and parameters associated

with each case. The ratio of kurtosis over frequency is the same in the high frequency

and the low kurtosis cases, allowing this exercise to demonstrate if ratio of kurtosis over

frequency is a sufficient statistic in this simple menu cost model, or rather a function of

one of the underlying moments.

Our outcome variable of interest, as in the empirical analysis, continues to be

monetary non-neutrality. We measure it by examining the impact of a one-time permanent

expansionary monetary shock on real output. We implement this with a monetary shock

that increases nominal output by 0.002, a doubling of the monthly nominal output growth

rate. The real effects of this monetary shock are given by the cumulative consumption

response.

As we vary one pricing moment at a time, while holding all others fixed, we confirm

our two main empirical findings. Figure 5 summarizes the results graphically. First, we

find that monetary non-neutrality is a negative function of frequency in our menu cost

model, holding kurtosis constant. This result which we illustrate in Panel a confirms

the conventional notion that more frequent price adjustment is associated with smaller

14We define the fraction of small price changes as those less than 1% in absolute value and take this
data from Luo and Villar (2015) This definition allows comparison across different pricing data sets.
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real output effects. Second, the impulse response functions in Panel b also show that,

holding frequency constant, an increase in kurtosis of price changes decreases monetary

non-neutrality.15

A key result lies in the role of kurtosis over frequency. Kurtosis over frequency does

not provide clear predictions for monetary non-neutrality. As Panel c in Figure 5 shows,

kurtosis over frequency does not map one to one into monetary non-neutrality. Varying

frequency or kurtosis while holding their ratio constant leads to different cumulative

consumption responses. A comparison of the high frequency and low kurtosis calibration

illustrates this finding. The ratio of kurtosis over frequency is 42 for both calibrations,

but the high frequency calibration in the red dashed line with a frequency of .15 and

kurtosis of 6.4 exhibits a lower consumption response than the low kurtosis calibration

in the grey circled linewith a frequency of .11 and kurtosis of 4.7. The reason is that

increasing frequency and decreasing kurtosis can individually both decrease the ratio of

kurtosis over frequency relative to the baseline. But, at the same time, they cause the

total consumption response to move in opposite directions. Frequency dominates this

movement in our exercise.

The analysis of this simple one-sector menu cost model shows that the frequency of

price changes exhibits a strong negative relationship with monetary non-neutrality, just

like in the data. The model does not generate a positive association between kurtosis of

price changes and monetary non-neutrality: Kurtosis has a weaker negative relationship

with monetary non-neutrality than frequency. Moreover, the ratio of kurtosis over

frequency has a non-monotonic relationship with monetary non-neutrality. The results

also suggest that a naive reading of kurtosis over frequency of price changes does not fully

encapsulate the real effects of monetary shocks and is therefore not sufficient. Rather one

has to pay close attention to changes in even small modeling assumptions that underlie

its derivation as we demonstrate next.

15We repeat this exercise using the model of Midrigan (2011) who more explicitly models firm multi-
product pricing. We find the same relationship as in our model, that monetary non-neutrality falls as
kurtosis increases while holding frequency of regular price changes constant. In the quantitative model of
Dotsey and Wolman (2018), they vary the autocorrelation of idiosyncratic productivity shocks to change
pricing moments and study the relationship of monetary non-neutrality with the ratio of kurtosis over
frequency. They also find that as kurtosis over frequency increases the monetary non-neutrality in the
model falls.
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B. Why Is Kurtosis Not Informative?

This section illustrates how the conditional micro-macro moments can be used to discipline

model mechanisms. Specifically, we show how a popular unconditional micro pricing

moment, kurtosis, can now counterfactually have a strong positive associated with

monetary non-neutrality, our identified macro moment. The unstable relationship across

models and tenuous relationship in the data suggests kurtosis is not a particularly

informative moment for monetary non-neutrality.

We show how a common random menu cost set up can generate a strong positive

relationship between kurtosis and monetary non-neutrality, at odds with the identified

empirical relationship. Our main insight is that the fraction of random, small price

changes, embodying the degree of Calvoness, is key for the sign of the relationship. This

fraction is both positively associated with kurtosis of price changes and monetary non-

neutrality. A small change in price setting assumptions, the assumption of random menu

costs – rather than a fixed menu cost – can create such random small price changes.

In order to establish these results, we start with a simplified version of our baseline

model such that it represents a discrete-time version of the Golosov and Lucas (2007)

model. We find that kurtosis can have a negative relationship while it also varies in a

discrete-time version of the Golosov-Lucas model due to the difference between discrete

time and continuous time.16 In order to generate the posited positive relationship between

kurtosis over frequency and monetary non-neutrality, we find that we need to add one

assumption that is specific to the assumptions in Alvarez et al. (2016) but not Golosov

and Lucas (2007) - random rather than fixed menu costs. We establish this finding by

considering the relationship between kurtosis and monetary non-neutrality in the discrete-

time Golosov-Lucas model with fixed menu costs, and then reconsider it after we add the

random menu cost assumption.

First, to simplify our baseline model to the Golosov and Lucas (2007) model,

we remove several model ingredients from our baseline model. We remove aggregate

productivity shocks and leptokurtic idiosyncratic productivity shocks, remove trend

inflation, and turn the idiosyncratic productivity shocks into random walk processes.

16This is in contrast to Alvarez et al. (2016), who show that it should be equal to unity in continuous
time. The reason is that there is always a non-negligible mass at the Ss bands in discrete time while that
mass is always 0 in continuous time. Changes in the model parameters therefore change the mass at the
bounds and hence the steady-state distribution of price changes and the kurtosis of the distribution.
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We set the Calvo plus parameter to zero, implying no free price changes. Parameter

calibrations for the Golosov-Lucas model are shown in Table ??.17 The same

small expansionary monetary shock is used as in the previous model simulation

exercise to generate consumption impulse response functions as a measure of monetary

non-neutrality.

We find that an increase in kurtosis in the Golosov and Lucas (2007) model is

associated with a decrease in monetary non-neutrality, contrary to the intuition in the

literature. Panel a in Figure 6 illustrates this result. As kurtosis of price changes

increases, the consumption impact of a monetary shock falls. Increasing kurtosis from 1.4

to 2.2 decreases monetary non-neutrality by 47 percent as measured by the cumulative

consumption response over 12 months. The reason that monetary non-neutrality falls as

kurtosis rises is due to the concurrent effect on the average size of price changes. We

increase kurtosis while holding frequency fixed by decreasing the size of the menu cost

from 0.115 to 0.0054, as well as the volatility of idiosyncratic productivity shocks from

0.11 to 0.01. Intuitively, these changes decrease the average size of price changes while

increasing the number of firms that have prices close to the inaction band of changing

prices. Therefore when a monetary shock occurs in the high-kurtosis case, it triggers

more price changes and selection, decreasing monetary non-neutrality. Panels a and b in

Figure 7 illustrates this shift in the simulated distribution of price changes closer to the

Ss bands.

Next, we add the random menu cost assumption from Alvarez et al. (2016) to the

simplified, discrete-time Golosov and Lucas (2007) model. We find that this small change

in model assumption is enough to flip the sign of the relationship between kurtosis and

monetary non-neutrality. Under random menu costs, firms are randomly selected to

receive a free price change, implying that these prices have zero selection into changing.

This feature is implemented by setting the Calvo plus parameter to a positive number.

Table ?? shows our exact specific parameter calibrations. Panel b in Figure 6 illustrates

this striking result, as kurtosis increases, monetary non-neutrality now increases.

What is the deeper intuition for this result? What is evident from the calibration

and the model moments in Table ?? is that the fraction of random, free price changes

L plays a key role. From a modeling standpoint, as the fraction of random, free price

17Specifically we set the ρz = 1 to generate random walk productivity shocks. The probability of
receiving an idiosyncratic shock is set to 1 (pz = 1), and the drift of nominal GDP is set to 0 (µ = 0).
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changes increases from 73% to 91%, the degree of Calvoness of the model increases.

These price changes have no selection effect in them, decreasing the overall selection

effect, causing monetary non-neutrality to rise. At the same time, the random, small

price changes draw mass towards zero and therefore increases the kurtosis of the price

change distribution, holding the frequency constant. Hence, when kurtosis is positively

affected by the fraction of free prices changes in a random menu cost model, kurtosis

can also have a positive relationship with monetary non-neutrality. Given the negative

empirical relationship between kurtosis and monetary non-neutrality, it would seem to

suggest this is not a promising model ingredient.

Figure 8 illustrates these effects. As Panel a shows, the random menu costs increase

the number of small price changes, relative to the fixed menu cost model of Golosov and

Lucas (2007) in Panel a of Figure 7. Panel b illustrates that an increase in Calvoness can

moreover increase the number of small price changes, hence monetary non-neutrality, and

kurtosis at the same time.

This section shows that models that hinge on kurtosis to generate monetary

non-neutrality are not informative due to the unstable relationship across models. The

model results make clear the value in using conditional micro-macro pricing moments,

directly linking unconditional pricing moments to monetary shocks, to evaluate monetary

models. Results show that unconditional pricing moments, such as kurtosis, are not

directly informative about monetary non-neutrality. Rather, the model ingredient that

generates excess kurtosis is what matters. This distinction about kurtosis and monetary

non-neutrality illustrates the value of our empirical methodology given the unstable

relationship of kurtosis.

VI Conclusion

Using micro price data, we have empirically evaluated in this paper what price-setting

moments are informative for monetary non-neutrality, our identified macro moment.

Our analysis presents an example for a generally applicable way of evaluating the

informativeness of micro moments for identified macro moments of interest. We show

that kurtosis of price changes is not a sufficient statistic for monetary non-neutrality.

Contrary to the notion in the literature, kurtosis and monetary non-neutrality have none,
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or even a negative association in the data. Only frequency has an empirically robust

relationship with monetary non-neutrality.

We show that menu cost models can match empirical price responses that are jointly

conditional on a monetary policy shock and key pricing moments. Menu cost models

predict a positive relationship of kurtosis and monetary non-neutrality as posited in the

literature only when random menu costs are the source of excess kurtosis and raise the

Calvoness of the model at the same time.
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Figure 1: Romer and Romer Monetary Policy Shock IRF

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the
following specification: Log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t] + (1 − IPS>M )[θB,h ∗
MPshockt + ϕB,hzj,t] + εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or
“Below Median” set according to the pricing moment of interest, at time t measured at monthly frequency,
h months into the future. Controls include two lags of the RR shock, two lags of the Fed Funds rate, and
current and two lags of the unemployment rate, industrial production, and price level. Standard errors
are constructed using the Newey-West correction for serial autocorrelation. Dashed lines present 68%
standard error bands.
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Figure 2: High Frequency Identified Monetary Policy Shock IRF

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the following
specification: Log(ppij,t+h) = βh +IPS>M [θA,h ∗MPshockt +ϕA,hzj,t]+(1−IPS>M )[θB,h ∗MPshockt +
ϕB,hzj,t]+εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or “Below Median”
set according to the pricing moment of interest, at time t measured at monthly frequency, h months into
the future. Controls include two lags of the high frequency identified shock, two lags of the Fed Funds
rate, and current and two lags of the unemployment rate, industrial production, and price level. Standard
errors are constructed using the Newey-West correction for serial autocorrelation. Dashed lines present
68% standard error bands.
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Figure 3: High Frequency Identified Monetary Policy Shock IRF

Note: In the above panels, we plot the respectively estimated coefficients θh from the following
specification: Log(salesj,t+h) = αth + αjh + θh ∗MPshockt ×Mj + controlst + εj,t+h where salesj,t+h

denotes firm j real sales at time t measured at quarterly frequency, h months into the future. Controls
further include 4 quarters of lagged log real sales, and current and 4 quarters of lagged log assets.
Monetary policy shocks are measured by the high-frequency shock. Mj contains one of our three firm-level
pricing moments: frequency, kurtosis, the ratio of the two statistics, or both statistics individually. In
panel d, the solid blue line is the frequency interaction coefficient and the dash-dot red line is the
kurtosis interaction coefficient. Heteroskedasticity and autocorrelation-consistent asymptotic standard
errors reported in parentheses are computed according to Driscoll and Kraay (1998) with a lag length
equal to forecast horizon of h. Dashed lines present 90% standard error bands.
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Figure 4: FAVAR Monetary Policy Shock IRF

Note: In the above panels, “Above Median” and “Below Median” refer to the impulse response function
of industries whose pricing moment is above or below the median value of that statistic for all industries.
FAVAR estimated impulse responses of sectoral prices in percent to an identified 25 basis point unexpected
Federal Funds rate decrease are shown.
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Figure 5: Consumption IRF Comparison

Note: Impulse response of consumption to a one time permanent increase in log nominal output of size
0.002 for different calibrations of our baseline monthly model. The percent increase in consumption due
to the expansionary shock is plotted where the shock occurs at the horizon labeled 1. The results are
based on simulations of 3500 economies.
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Figure 6: Consumption IRF Comparison

Note: Impulse response of consumption to a one time permanent increase in log nominal output of size
0.002 for different calibrations in each of the two models. The percent increase in consumption due to
the expansionary shock is plotted where the shock occurs at the horizon labeled 1. The results are based
on simulations of 3500 economies.
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Figure 7: Model Price Distributions - GL

Note: Price change distribution in Golosov-Lucas model calibrations.
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Figure 8: Model Price Distributions - Random Menu Costs

Note: Price change distribution in random menu cost model calibrations.
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VIII Tables

Cross-Sectional Determinants of Sectoral Price Response
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Log Kurtosis
Frequency

-0.250***

(0.074)
Log Frequency 0.422*** 0.476*** 0.332*** 0.441** 0.411*** 0.274**

(0.073) (0.074) (0.126) (0.184) (0.102) (0.134)
Log Kurtosis 0.138 -0.151 -0.189 -0.166 -0.113

(0.119) (0.112) (0.142) (0.132) (0.131)
Log Avg. Size -0.316** -0.252 -0.202 -0.111

(0.148) (0.221) (0.232) (0.203)
Log S.D. -0.158 0.117 0.014 -0.136

(0.127) (0.189) (0.195) (0.152)
Log Frac. Small 0.017 -0.105 -0.106 -0.096

(0.077) (0.078) (0.074) (0.064)
Log Frac. Pos. -0.334 0.160 0.070 0.020

(0.382) (0.426) (0.434) (0.343)
Log S.D. Duration -0.462*** -0.144 -0.090

(0.084) (0.129) (0.188)
Log Profit -0.439** -0.298

(0.195) (0.194)
SD(ek) 10.283

(12.401)
ρ(ek) 0.570***

(0.116)
NAICS 3 FE X X X X X X X X X X X X X
R2 0.429 0.502 0.394 0.407 0.393 0.372 0.391 0.477 0.509 0.505 0.506 0.520 0.594
N 148 148 148 148 148 146 148 148 148 148 146 145 145

Table 1: Decomposing Monetary Non-Neutrality

Note: This tables uses regression analysis to test the informativeness of pricing moments for monetary
non-neutrality. We estimate the following specification: log(IRFk,h) = a + αj + β′Mk + γ′Xj + εk,h.
Where Log(IRFk,h) is the log of the 24-month cumulative sectoral response of prices to a monetary
shock from our FAVAR analysis. Mk contains one of our industry-level pricing moments: frequency,
kurtosis, the ratio of the two statistics, average size, and standard deviation of price changes, or the
full set of pricing moments. αj are three-digit NAICS industry fixed effects and are included in all
specifications. Xj are sector-level controls including gross profit rate, the volatility of sector level shocks,
and the autocorrelation of sector level shocks. Robust standard errors in parentheses. *** Significant at
the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.
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Cross-Sectional Determinants of Firm-Level Sales Responses
(0) (1) (2) (3) (4)

Log Kurtosis/Frequency .061**
(0.024)

Log Frequency -.071*** -.071***
(0.027) (0.027)

Log Kurtosis 0.021 0.023
(0.040) (0.039)

Firm Controls X X X X X
Firm FE X X X X X
Time FE X X X X X
R2 0.762 0.762 0.762 0.762 0.762
N 19,315 19,315 19,315 19,315 19,315

Table 2: Decomposing Monetary Non-Neutrality

Note: This tables uses regression analysis to test the informativeness of three pricing moments for
monetary non-neutrality. We estimate the following specification: Log(salesj,t+4) = αth + αjh + θh ∗
MPshockt×Mj +controlst +εj,t+h. Mj contains one of our three firm-level pricing moments: frequency,
kurtosis, the ratio of the two statistics, and both jointly interacted with the high-frequency shock. αt

and αj are firm and time fixed effects. Other controls are 4 quarters of lagged log sales, and current
and 4 quarters of lagged log assets. Column 0 reports the specification with controls and fixed effects
included, but no pricing moments. Within R2 is reported. Heteroskedasticity and autocorrelation-
consistent asymptotic standard errors reported in parentheses are computed according to Driscoll and
Kraay (1998) with a lag length equal to forecast horizon of h. *** Significant at the 1 percent level, **
significant at the 5 percent level, * significant at the 10 percent level.
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High Low High Low
Moment Data Baseline Frequency Frequency Kurtosis Kurtosis

Baseline Calibration
Frequency 0.11 0.11 0.15 0.07 0.11 0.11
Fraction Up 0.65 0.63 0.61 0.67 0.64 0.62
Average Size 0.077 0.077 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.13 0.13 0.13 0.13
Kurtosis 4.9 4.9 4.9 4.9 6.5 3.6
Kurtosis
Frequency

58.2 44.4 32.3 68.1 57.4 32.3

Golosov-Lucas Model with Random Walk and No Trend Inflation
Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Up 0.65 0.51 0.51 0.51 0.49 0.51
Average Size 0.077 0.077 0.077 0.077 0.033 0.23
Fraction Small 0.13 0.00 0.00 0.00 0.00 0.00
Kurtosis 4.9 1.41 1.40 1.44 2.23 1.07
Kurtosis
Frequency

44.5 12.8 9.39 18.1 20.3 9.7

Random Menu Cost Model with Random Walk and No Trend Inflation
Frequency 0.11 0.11 0.15 0.08 0.11 0.11
Fraction Up 0.65 0.51 0.51 0.51 0.51 0.51
Average Size 0.077 0.077 0.077 0.077 0.077 0.077
Fraction Small 0.13 0.13 0.14 0.013 0.14 0.12
Kurtosis 4.9 2.74 2.73 2.74 3.36 2.04
Kurtosis
Frequency

44.5 25.0 18.2 32.6 30.2 18.6

L 0.73 0.74 0.76 0.91 0.55

Table 3: Model Moments

Note: The table shows the model moments that are internally targeted for each economy. All monthly
CPI data moments are taken from Vavra (2014) and are calculated using data from 1988-2014. Fraction
of small price changes less than 1 percent in absolute value taken from Luo and Villar (2017). Bolded
moments are targeted. In the Golosov-Lucas and Random menu cost models, kurtosis of 4.9 is the kurtosis
of standardized price changes from Vavra (2013). L is defined as the fraction of price changes that are
free.
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High Low High Low
Parameter Baseline Frequency Frequency Kurtosis Kurtosis

Baseline Calibration
χ 0.0095 0.0048 0.022 0.0055 0.02
pz 0.072 0.115 0.025 0.053 0.01
σz 0.13 0.143 0.116 0.144 0.103
ρz 0.75 0.99 0.65 0.65 0.75
α 0.029 0.036 0.022 0.022 0.036

Golosov-Lucas Calibration
χ 0.0241 0.0181 0.034 0.0054 0.115
pz 1.0 1.0 1.0 1.0 1.0
σz 0.029 0.0345 0.0243 0.01 0.11
ρz 1.0 1.0 1.0 1.0 1.0
α 0.0 0.0 0.0 0.0 0.0

Random Menu Cost Calibration
χ 0.195 0.14 0.25 0.7 0.089
pz 1.0 1.0 1.0 1.0 1.0
σz 0.044 0.051 0.0383 0.062 0.037
ρz 1.0 1.0 1.0 1.0 1.0
α 0.08 0.1106 0.061 0.10 0.06

Table 4: Model Parameters

Note: The table shows the model parameters that are internally calibrated for each economy. χ denotes
the menu cost of adjusting prices, pz the probability that log firm productivity follows an AR(1) process
with standard deviation σz, ρz the persistence of idiosyncratic probability shocks, and α is the probability
of a free price change.
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A Model Appendix

A. Multi-Sector Pricing Model

This section now presents a multi-sector pricing model that demonstrates that our

empirical identification is consistent with aggregate monetary non-neutrality and that

general equilibrium effects do not reverse the ordering of the impulse response functions.

It is the same as our baseline model in section IV but allows for heterogeneity between

sectors. The quantitative pricing model nests both a second generation menu cost model as

well as the Calvo pricing model. The multi-sector model follows Nakamura and Steinsson

(2010) where there is some probability of a free Calvo price change and each sector has

sector specific pricing behavior. It also includes leptokurtic idiosyncratic productivity

shocks as in Midrigan (2011) as well as aggregate productivity shocks.

A.1 Households

The household side of the model is the same as in the one sector version in section A.1 .

A.2 Firms

In the model there are a continuum of firms indexed by i and industry j. The production

function of firm i is given by

yt(i) = Atzt(i)Lt(i) (22)

where Lt(i) is labor rented from households. At are aggregate productivity shocks and

zt(i) are idiosyncratic productivity shocks.

Firm i maximizes the present discounted value of future profits

Et

∞∑
τ=0

Dt,t+τπt+τ (i) (23)

where profits are given by:

πt(i) = pt(i)yt(i)−WtLt(i)− χj(i)WtIt(i) (24)

It(i) is an indicator function equal to one if the firm changes its price and equal to zero
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otherwise. χj(i) is the sector specific menu cost. The final term indicates that firms must

hire an extra χj(i) units of labor if they decide to change prices with probability 1− αj,
or may change their price for free with probability αj.

Total demand for good i is given by:

yt(i) = Yt

(
pt(i)

Pt

)−θ
(25)

The firm problem is to maximize profits in (24) subject to its production function (22),

demand for its final good product (25), and the behavior of aggregate variables.

Aggregate productivity follows an AR(1) process:

log(At) = ρAlog(At−1) + σAνt (26)

where νt ∼ N(0,1)

The log of firm productivity follows a mean reverting AR(1) process with shocks that

arrive infrequently according to a Poisson process:

logzt(i) =

ρzlogzt−1(i) + σz,jεt(i) with probability pz,j

logzt−1(i) with probability 1− pz,j,
(27)

where εt(i) ∼ N(0,1).

Nominal aggregate spending follows a random walk with drift:

log(St) = µ+ log(St−1) + σsηt (28)

where St = PtCt and ηt ∼ N(0,1).

B. Multi-Sector Model Results

Figure 9 shows the results from the multi-sector menu cost model when industries are split

by a pricing moment of interest. The model is calibrated to data is trimmed when price

changes are less than $.01 or greater than log(2) in absolute value. The model moments

are in Table 5.

The left panel shows that the high frequency sector has a stronger response to a

monetary shock. In the middle panel the high kurtosis sector has a stronger response to
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Frequency Calibration
Low Frequency High Frequency

Sector Sector
Moment Data MC Data MC

Frequency 0.06 0.06 0.28 0.28
Average Size 0.088 0.090 0.057 0.057
Fraction Small 0.11 0.15 0.19 0.19
Kurtosis 3.1 3.2 4.9 5.2
Kurtosis
Frequency

46.1 52.4 24.2 18.9

Kurtosis Calibration
Low Kurtosis High Kurtosis

Sector Sector
Moment Data MC Data MC

Frequency 0.11 0.11 0.23 0.24
Average Size 0.082 0.082 0.066 0.068
Fraction Small 0.15 0.11 0.16 0.16
Kurtosis 2.5 2.7 5.6 5.9
Kurtosis
Frequency

29.5 24.3 41.0 24.9

Kurtosis/Frequency Calibration
Low Kurtosis/Frequency Calibration High Kurtosis/Frequency Calibration

Sector Sector
Moment Data MC Data MC

Frequency 0.25 0.25 0.10 0.10
Average Size 0.065 0.066 0.082 0.081
Fraction Small 0.17 0.17 0.13 0.14
Kurtosis 3.5 3.8 4.5 4.8
Kurtosis
Frequency

17.9 14.9 52.7 49.6

Table 5: Multi-sector Pricing Moments

Note: Monthly pricing moments calculated using PPI data from 1998-2005. For all calibrations, each
pricing moment is calculated at the 6 digit NAICS level. The average pricing moment is then calculated
for industries above and below the median statistic of interest. Fraction small is the fraction of price
changes less than one percent in absolute value.
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Figure 9: Multi-Sector Model Monetary Policy Shock IRF

Note: In all six figures, “Above Median” and “Below Median” refer to the impulse response function of
the sector calibrated to match the pricing moments above or below the median value of the statistic for
all industries. Model calibration noted under each figure. Impulse responses of sectoral prices in response
to a permanent increase in money.

a monetary shock, and in the right panel the high kurtosis over frequency sector has a

lower response to an expansionary monetary shock.
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B Empirical Appendix

In this appendix we show summary statistics and additional robustness checks for time

period of interest, type of monetary shock, and level of disaggregation.

In Tables 9 and 10, we present the summary statistics for pricing moments of interest.

In Figure 17 we show FAVAR estimated impulse response functions when the

industries are quartile subsets of the data rather than above and below median. Panel

a shows that as frequency of price changes increases across quartiles, there is a larger

price response to the monetary shock. Panel b shows that as the kurtosis of price changes

increases across quartiles, the price response remains ambiguous. The response increases

overall but also slightly goes down between the second and third quartiles. When we

consider the ratio of kurtosis over frequency in panel c, the ordering is consistent across

quartiles. Greater kurtosis over frequency is associated with a smaller price response.

In Figures 18 and 19, we show under both local projection and lag structure

methodology that the Romer and Romer shock results continue to hold when we restrict

the data to 1976 to 2007. Choice of the high frequency identified shock also does not

affect our results. Rather than using the Gertler and Karadi (2015) version of the shock

series, we examine the series from Nakamura and Steinsson (2018a). We use their data

from January 1995 through March 2014. Results are in Figure 20 and are consistent with

what we found with the Gertler and Karadi (2015) version of the shocks.
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Low Frequency High Frequency

Type of Trimming Mean Median N Obs Mean Median N Obs Case
< P99 0.057 0.055 38092 0.262 0.223 160974 0
> 0.1% 0.060 0.057 40244 0.280 0.227 170598 1
< log(10/3) 0.058 0.056 38606 0.263 0.223 161499 2
< log(2) 0.058 0.056 38220 0.263 0.223 161145 3
< 100% 0.058 0.056 38510 0.263 0.223 161431 4
> 0% 0.061 0.058 40986 0.283 0.230 173172 5
> 0.5% 0.057 0.054 37437 0.266 0.211 158419 6
> 1.0% 0.054 0.051 36377 0.250 0.190 141862 7
> 0.1%, < log(2) 0.054 0.051 36510 0.251 0.190 142030 8

Low Kurtosis High Kurtosis

Type of Trimming Mean Median N Obs Mean Median N Obs Case
< P99 2.36 2.32 31315 4.85 4.31 167751 0
> 0.1% 2.43 2.41 30287 5.03 4.46 180555 1
< log(10/3) 2.42 2.47 31081 5.33 4.68 169024 2
< log(2) 2.37 2.32 29363 5.00 4.45 170002 3
< 100% 2.41 2.43 30515 5.23 4.67 169426 4
> 0% 2.46 2.47 33583 5.09 4.51 180575 5
> 0.5% 2.34 2.32 29271 4.73 4.29 166585 6
> 1.0% 2.24 2.24 26091 4.45 4.12 152148 7
> 0.1%, < log(2) 2.26 2.25 26172 4.57 4.16 152368 8

Low Kurtosis/ Frequency High Kurtosis / Frequency

Type of Trimming Mean Median N Obs Mean Median N Obs Case
< P99 17.11 17.75 136640 49.80 42.98 62426 0
> 0.1% 17.07 17.60 146225 49.44 42.90 64617 1
< log(10/3) 17.76 18.61 116696 51.96 45.79 83409 2
< log(2) 17.30 17.75 116413 50.42 43.49 82952 3
< 100% 17.63 18.19 116647 51.47 44.78 83294 4
> 0% 17.06 17.75 128030 49.38 43.03 86128 5
> 0.5% 17.03 17.34 135421 49.80 43.53 60435 6
> 1.0% 17.09 17.69 121119 50.34 44.16 57120 7
> 0.1%, < log(2) 17.29 17.69 120798 50.87 44.16 57742 8

Table 6: Pricing Moment Robustness

Note: The table shows the average and median price change moment by above-median and below-median
bin, under various trimming methods. The top panel reports mean and median price change frequency
by above-median and below-median set, the middle panel reports mean and median price change kurtosis
by above-median and below-median set, and the bottom panel reports mean and median price change
kurtosis over frequency by above-median and below-median set. Moments are computed by standardizing
price changes at 6 digit NAICS industry level. N Obs is the number of observations in each set for each
trimming method. Each row describes a different sub-sample of the data applying the filter described in
the column “Type of Trimming.”’ The subsample for case 0 is the baseline sample in the main text of the
paper: price changes are included if they are larger in absolute value than $0.01 and lower in value than
the 99th percentile of changes. Each additional row describes the impact of changing one of the upper or
lower thresholds in the “Type of Trimming.” The second row changes the lower trimming threshold such
that the sample now includes price changes if they are larger in absolute value than 0.1% and lower in
value than the 99th percentile of changes. Case 8 changes both the upper and lower thresholds.52
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Figure 10: Romer and Romer Monetary Policy Shock IRF

Note: In the above figures, we plot the impulse response functions calculated from the following

specification: πj,t = αj +
11∑
k=1

βj,kDk +
24∑
k=1

ηj,kπj,t−k +
48∑
k=1

θj,kMPt−k + εj,t where πj,t is the inflation

rate for industries in the “Above Median” or “Below Median” set according to the pricing moment of
interest, at time t measured at monthly frequency. Dashed lines present 68% bootstrapped standard
error bands.
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Figure 11: FAVAR Monetary Policy Shock IRF - Robustness to Small Price Changes

Note: In the above panels, “Above Median” and “Below Median” refer to the impulse response function
of industries whose pricing moment is above or below the median value of that statistic for all industries.
Data are trimmed as in Case 1 in Table 6. Different from our baseline sample, small price changes are
trimmed when they are less than 0.1 percent in absolute value. FAVAR estimated impulse responses
of sectoral prices in percent to an identified 25 basis point unexpected Federal Funds rate decrease are
shown.
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Figure 12: FAVAR Monetary Policy Shock IRF - Robustness to Large Price Changes

Note: In the above panels, “Above Median” and “Below Median” refer to the impulse response function
of industries whose pricing moment is above or below the median value of that statistic for all industries.
Data are trimmed as in Case 3 in Table 6. Relative from our baseline sample, large price changes are
trimmed when they are greater than log(2) in absolute value. FAVAR estimated impulse responses of
sectoral prices in percent to an identified 25 basis point unexpected Federal Funds rate decrease are
shown.
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Figure 13: FAVAR Cross-Sectional Regression Coefficients

Note: The above figure shows the relationship of the full horizon response for the FAVAR estimated
price level response to an expansionary monetary shock to the key pricing moments. The coefficient
values are estimated from log(IRFk,h) = a + β′hMk + αj,h + εk,h where the horizon h is varied 1 to 48
months after the monetary shock, and the covariates are the log frequency, log kurtosis, log average size,
log standard deviation of price changes, fraction of small price changes, fraction of positive price changes,
and 3-digit NAICS fixed effects. Dashed lines present 90% standard error bands.
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Figure 14: Romer and Romer Monetary Policy Shock IRF

Note: In the above panels, we plot the respectively estimated coefficients θh from the following
specification: Log(salesj,t+h) = αth + αjh + θh ∗MPshockt ×Mj + controlst + εj,t+h where salesj,t+h

denotes firm j sales at time t measured at quarterly frequency, h months into the future. Controls
further include 4 quarters of lagged log sales, and current and 4 quarters of lagged log assets. Monetary
policy shocks are measured by the Romer and Romer shock. Mj contains one of our three firm-level
pricing moments: frequency, kurtosis, or the ratio of the two statistics. Heteroskedasticity and
autocorrelation-consistent asymptotic standard errors reported in parentheses are computed according
to Driscoll and Kraay (1998) with a lag length equal to forecast horizon of h. Dashed lines present 90%
standard error bands.
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Figure 15: Annual Average Pricing Moments

Note: Each monthly pricing moment is calculated at the industry-month, averaged within an industry
at an annual frequency, and then presented as a cross-sectional average. The dotted lines are the 25th
and 75th percentiles of each moment.
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Cross-Sectional Determinants of Sectoral Price Response Univariate Specifications
Baseline Sample 1, IV Sample 2 Sample 2, IV Sample 1

(1) (2) (3) (4) (5) (6)
Log Kurtosis

Frequency
-0.420*** -0.250*** -0.493*** -0.335*** -0.448*** -0.269***

(0.060) (0.074) (0.066) (0.074) (0.071) (0.077)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Frequency 0.448*** 0.422*** 0.470*** 0.454*** 0.507*** 0.521***

(0.056) (0.073) (0.060) (0.078) (0.067) (0.094)
NAICS 3 FE X X X
N 148 148 148 148 148 148
Log Kurtosis 0.289*** 0.138 0.303** 0.072 0.301** 0.181

(0.106) (0.119) (0.131) (0.129) (0.124) (0.122)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Avg. Size -0.594*** -0.316** -0.497*** -0.313 -1.065*** -0.536**

(0.120) (0.148) (0.182) (0.231) (0.205) (0.234)
N 148 148 148 148 148 148
Log Std. Dev. -0.456*** -0.158 -0.444** -0.236 -0.687*** -0.181

(0.141) (0.127) (0.184) (0.169) (0.241) (0.252)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Frac. Small 0.034 0.017 0.150 0.136 0.098 0.134

(0.071) (0.077) (0.092) (0.088) (0.099) (0.093)
NAICS 3 FE X X X
N 146 146 136 136 136 136
Log Frac. Pos. -0.702** -0.334 -0.775 -0.694 -0.950 -0.260

(0.304) (0.382) (0.575) (0.716) (0.585) (0.836)
NAICS 3 FE X X X
N 148 148 148 148 148 148

Table 7: Decomposing Monetary Non-Neutrality IV and Subsample

Note: This tables uses regression analysis to test the informativeness of pricing moments for monetary
non-neutrality. We estimate the following specification: log(IRFk,h) = a + β′Mk + αj + εk,h. Where
Log(IRFk,h) is the log of the 24-month cumulative sectoral response of prices to a monetary shock from
our FAVAR analysis. Mk contains one of our industry-level pricing moments: frequency, kurtosis, the
ratio of the two statistics, average size, and standard deviation of price changes, or the full set of pricing
moments. αj are three-digit NAICS industry fixed effects and are included in columns (2), (4), and (6).
The pricing moments are calculated over the full sample in columns (1) and (2). In columns (3) through
(6), the data set is split into an early and late subsample and the two subsamples are used as instruments
for each other. Robust standard errors in parentheses. *** Significant at the 1 percent level, ** significant
at the 5 percent level, * significant at the 10 percent level.

56



Cross-Sectional Determinants of Sectoral Price Response Multivariate Specifications
Baseline Sample 1, IV Sample 2 Sample 2, IV Sample 1

(1) (2) (3) (4) (5) (6)
Log Frequency 0.520*** 0.476*** 0.561*** 0.549*** 0.623*** 0.601***

(0.056) (0.074) (0.062) (0.074) (0.072) (0.099)
Log Kurtosis -0.222** -0.151 -0.237* -0.223* -0.313** -0.220*

(0.104) (0.112) (0.127) (0.120) (0.125) (0.118)
NAICS 3 FE X X X
N 148 148 147 147 147 147
Log Frequency 0.527*** 0.507*** 0.867*** 0.630*** 0.596** 0.620***

(0.088) (0.091) (0.222) (0.126) (0.273) (0.197)
Log Kurtosis -0.221 -0.203 -0.399 -0.198 -0.742 -0.711

(0.139) (0.135) (0.326) (0.258) (0.475) (0.519)
Log Avg. Size -0.182 -0.225 0.724 0.378 -2.623* -2.369

(0.263) (0.222) (1.039) (0.861) (1.479) (1.586)
Log Std. Dev. -0.083 0.097 -0.374 -0.093 1.671 2.065

(0.227) (0.185) (0.853) (0.727) (1.434) (1.674)
Log Frac. Small -0.149** -0.104 0.125 0.102 -0.514** -0.249

(0.068) (0.078) (0.206) (0.149) (0.228) (0.174)
Log Frac. Pos. 0.252 0.210 1.940* 0.433 -0.275 -0.326

(0.406) (0.415) (1.083) (0.749) (1.522) (1.392)
NAICS 3 FE X X X
N 146 146 136 136 136 136

Table 8: Decomposing Monetary Non-Neutrality IV and Subsample

Note: This tables uses regression analysis to test the informativeness of pricing moments for monetary
non-neutrality. We estimate the following specification: log(IRFk,h) = a + β′Mk + αj + εk,h. Where
Log(IRFk,h) is the log of the 24-month cumulative sectoral response of prices to a monetary shock from
our FAVAR analysis. Mk contains one of our industry-level pricing moments: frequency, kurtosis, the
ratio of the two statistics, average size, and standard deviation of price changes, or the full set of pricing
moments. αj are three-digit NAICS industry fixed effects and are included in columns (2), (4), and (6).
The pricing moments are calculated over the full sample in columns (1) and (2). In columns (3) through
(6), the data set is split into an early and late subsample and the two subsamples are used as instruments
for each other. Robust standard errors in parentheses. *** Significant at the 1 percent level, ** significant
at the 5 percent level, * significant at the 10 percent level.

Mean SD P50
Frequency 0.19 0.21 0.09
Kurtosis 5.58 3.57 4.70
Kurtosis/ Frequency 73.74 78.16 50.00
Number of Price Changes 157.9 251.2 69.0
Firms 309

Table 9: Firm Level Pricing Statistics

Note: This table shows the mean, standard deviation, and median firm level pricing moments for our
Compustat-PPI matched sample using monthly data from 2005 through 2014.
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Figure 16: Annual Average Pricing Moments within Bin

Note: Each monthly pricing moment is calculated at the industry-month, averaged within an industry at
an annual frequency, and then presented as a cross-sectional average within the above and below median
subsets. The dotted lines are the 25th and 75th percentiles of each moment within each subset.

Mean SD P50
Frequency 0.16 0.16 0.09
Kurtosis 4.0 2.6 3.5
Kurtosis/ Frequency 34.7 23.2 28.8
Number of Price Changes 1431 2844 634
Industries 154

Table 10: Industry Level Pricing Statistics

Note: This table shows the mean, standard deviation, and median industry level pricing moments for
the PPI sample using monthly data from 1998 through 2005.
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Figure 17: FAVAR Monetary Policy Shock IRF - Robustness to Disaggregation

Note: In the above panels, “Quartile” refers to the impulse response function of industries whose pricing
moment is included in a given quartile subset for the value of that statistic for all industries. Estimated
impulse responses of sectoral prices in percent to an identified 25 basis point unexpected Federal Funds
rate decrease are shown.
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Figure 18: Romer and Romer Monetary Policy Shock IRF 1976-2007

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the
following specification: Log(ppij,t+h) = βh + IPS>M [θA,h ∗MPshockt + ϕA,hzj,t] + (1 − IPS>M )[θB,h ∗
MPshockt + ϕB,hzj,t] + εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or
“Below Median” set according to the pricing moment of interest, at time t measured at monthly frequency,
h months into the future. Controls include two lags of the RR shock, two lags of the Fed Funds rate, and
current and two lags of the unemployment rate, industrial production, and price level. Standard errors
are constructed using the Newey-West correction for serial autocorrelation. Dashed lines present 68%
standard error bands.
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Figure 19: Romer and Romer Monetary Policy Shock IRF

Note: In the above figures, we plot the impulse response functions calculated from the following

specification: πj,t = αj +
11∑
k=1

βj,kDk +
24∑
k=1

ηj,kπj,t−k +
48∑
k=1

θj,kMPt−k + εj,t where πj,t is the inflation

rate for industries in the “Above Median” or “Below Median” set according to the pricing moment of
interest, at time t measured at monthly frequency. Dashed lines present 68% bootstrapped standard
error bands.
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Figure 20: High Frequency Identified Monetary Policy Shock IRF- Nakamura and
Steinsson Series

Note: In the above figures, we plot the respectively estimated coefficients θA,h and θB,h from the following
specification: Log(ppij,t+h) = βh +IPS>M [θA,h ∗MPshockt +ϕA,hzj,t]+(1−IPS>M )[θB,h ∗MPshockt +
ϕB,hzj,t]+εj,t+h where ppij,t+h is the price level for industries in the “Above Median” or “Below Median”
set according to the pricing moment of interest, at time t measured at monthly frequency, h months into
the future. Controls include two lags of the high frequency identified shock, two lags of the Fed Funds
rate, and current and two lags of the unemployment rate, industrial production, and price level. Standard
errors are constructed using the Newey-West correction for serial autocorrelation. Dashed lines present
68% standard error bands.
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