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Abstract

I use a quasi-experiment in Norway to examine how households respond to capital
taxation. The introduction of a new wealth assessment methodology in 2010 led to ge-
ographic discontinuities in household exposure to wealth taxes, along both the extensive
and intensive margins. I exploit this novel variation using rich administrative data and
a Boundary Discontinuity approach. In contrast to existing work, I find that exposure
to wealth taxes has a positive effect on saving as well as a positive effect on labor earn-
ings. For each additional NOK subject to a 1 percent wealth tax, households increase
their yearly financial saving by 0.04 NOK. This increase in saving is largely financed by
increased labor earnings. My results imply that income effects may dominate substitution
effects in household responses to (net-of-tax) rate-of-return shocks, which has important
implications for both optimal capital taxation and macroeconomic modeling.
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1 Introduction

How households respond to changes in the net-of-tax rate-of-return is crucial to both opti-
mal capital taxation and macroeconomic modeling. In optimal capital taxation, it determines
the extent of distortionary effects on saving behavior and labor supply. Quantifying these dis-
tortions is necessary for determining the optimal tax policy (Atkinson and Sandmo 1980, Straub
and Werning 2019, Saez and Stantcheva 2018). In macroeconomics, it determines the ability
of standard representative agent models to explain the aggregate effects of monetary policy
(Kaplan, Moll, and Violante, 2018) and informs the importance of new transmission channels
(Auclert 2019, Wong 2019). More generally, empirical responses to rate-of-return shocks inform
the Elasticity of Intertemporal Substitution (EIS). The EIS is a key parameter in virtually all
economic models involving intertemporal decision-making, but there is no consensus on what
it should be.

Despite this broad importance, there is a dearth of applicable empirical evidence, reflecting
challenges related to both identification and measurement. Exogenous shocks to the interest rate
may have general equilibrium effects inhibiting the identification of the pure rate-of-return effect
needed to inform micro-founded models. A potential solution is to exploit variation in capital
taxation caused by peculiarities in the tax-code to identify partial-equilibrium effects. However,
this strategy typically offers two problems. First, one must often compare households who differ
on tax-relevant characteristics, such as wealth or gross income, that are also determinants of
saving behavior. Second, even if capital taxation were randomly assigned, data limitations
may preclude researchers from distinguishing between real saving responses and tax evasion.
This is problematic, since evasion responses are uninformative of responses to other rate-of-
return shocks, such as interest rate changes or capital taxation when evasion opportunities are
restrained.

These empirical challenges are complemented by a long-standing theoretical ambiguity
about even the sign of saving responses to rate-of-return shocks.1 This ambiguity is due to
countering income and substitution effects from increasing both the absolute and relative price
of future consumption. Which effect dominates depends crucially on the EIS, for which the
existing range of empirical estimates spans 0 to 2.2 This is an “enormous range in terms of its
implications for intertemporal behavior and policy” (Best, Cloyne, Ilzetzki, and Kleven, 2018)
1Boskin (1978) indirectly refers to the theoretical ambiguity in his seminal empirical paper: “In brief summary,
there is very little empirical evidence upon which to infer a positive relationship (substitution effect outweighing
income effect) between saving and the real net rate-of-return to capital. Surprisingly little attention has been
paid to this issue – particularly in light of its key role in answering many important policy questions – and
those studies which do attempt to deal with it can be improved substantially.”

2In a standard life-cycle model without (non-capital) incomes, the income effect dominates whenever the EIS
< 1. Including (endogenous) labor income lowers this cut-off to around 0.3 in the model in section 7, which is
calibrated to the empirical setting of this paper.
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and includes strikingly different household responses to economic news (Schmidt and Toda,
2019).

In this paper, I use a quasi-experimental setting in Norway that allows me to address
the identification and measurement challenges mentioned above. The source of identifying
variation in the net-of-tax rate-of-return comes from capital taxation in the form of a wealth
tax. While wealth taxation and capital income taxation are equivalent in standard models,
wealth taxation differs from capital income taxation by requiring regular assessments of the
stock of capital.3 The steps that the Norwegian government has taken to make such assessments
provides promising quasi-experimental variation in the net-of-tax rate-of-return.

In Norway, wealth taxes are levied annually as a 1 percent tax on taxable wealth exceeding
a given threshold. The relatively low threshold subjects 12 to 15 percent of tax-payers to the
wealth tax.4 The two key components of the tax base are financial wealth and housing wealth.
While financial wealth may be assessed at third-party reported market values (which limits
the scope for evasion through misreporting), housing wealth must be determined by the tax
authorities. In 2010, the tax authorities implemented a new model to assess the housing wealth
component. This hedonic pricing model contained municipal fixed effects, which imposed geo-
graphic discontinuities in assessed housing wealth even in the absence of any true discontinuities
in house prices. These discontinuities provide substantial identifying variation in taxable wealth
and thereby (i) whether or not households pay a wealth tax and (ii) the amount of wealth taxes
they pay. This provides variation in both the marginal and average net-of-tax rate-of-return. I
use data on structure-level ownership and location as well as the exact parameters of the hedo-
nic pricing model to implement this identifying variation in a Boundary Discontinuity Design
(BDD) approach.

I first consider the effect on yearly financial saving. My estimates imply that for each addi-
tional NOK pushed above the tax threshold, and thereby subject to the wealth tax, households
increase their yearly financial saving by NOK 0.04. These estimates adjust for the mechanical
wealth-reducing effects of increased taxation and constitute evidence of behavioral responses to
capital taxation that go in the opposite direction of what is typically assumed.5 This adjusted
saving propensity is four times larger than what is necessary to maintain the same level of
wealth after taxes are collected, consistent with households increasing savings to offset future
wealth tax payments.
3This includes Chamley (1986) and Judd (1985). The equivalence comes from assuming homogenous returns.
As an example, a tax on capital income of τCI of a fixed rate-of-return r, is equivalent to a wealth tax of
τCI · r/(1 + r). For further discussions of this equivalence, see, e.g., Bastani and Waldenström (2018) and
Guvenen, Kambourov, Kuruscu, Ocampo, and Chen (2019).

4This refers to the years 2010–2015, which is the time period that I study.
5References in the popular press to the potential disincentive effects of wealth or capital taxation are abundant.
In economic modeling, the typical assumption is that capital taxation reduces saving, see, e.g., Saez and
Stantcheva (2018)
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I find that a majority of the increase in saving is financed by increased labor income. For
each additional NOK subject to a wealth tax, households increase total taxable labor income
by NOK 0.01. I further find that the effect on labor income is driven entirely by households
initially above the wealth tax threshold. These are the households positioned to experience
larger income effects. To obtain a better proxy for concurrent labor supply, I isolate salary and
self-employment earnings from other sources of labor income, such as pensions. This yields a
starker response: For each additional NOK subject to a wealth tax, households increase labor
earnings by NOK 0.017. These findings constitute novel evidence of a non-trivial cross-elasticity
between the return on capital and the supply of labor. By cumulating the saving and labor
income responses over a 5 year treatment period, I find that 50% to 84% of the cumulative
saving effect is financed by increased labor incomes.

I continue by presenting new evidence on the effect of capital taxation on portfolio allocation.
I first consider the effect on the share of financial wealth invested in the stock market. The
perhaps dominant hypothesis is that risk-averse agents will respond to a wealth-tax induced
drop in life-time consumption by allocating less of their wealth to risky assets. I find no evidence
of any effect on the risky share and can rule out any economically large effects. I then present
the hypothesis that that the adverse income effect of increased taxation may induce households
to enjoy less financial leisure, in the sense that they exert greater effort towards financially
optimizing the returns they receive or pay on their deposits or debt. I test this using itemized
data on capital incomes that allow me to calculate realized interest rates. I firmly reject the
above hypothesis and can rule out any economically meaningful effects.

Given the non-linear nature of rate-of-return shocks caused by taxing only wealth in excess
of a threshold, it is useful to consider the underlying structural parameters governing these
responses. Hence, in the last part of this paper, I use a simple multi-period life-cycle model to
explore which values of the EIS are consistent my estimates. I find that in order to replicate
treatment effects on savings and labor income growth within the 95% (90%) confidence interval
around my empirical results, an EIS below 0.5 (0.3) is needed. This illustrates how my empirical
findings can provide a new upper bound for the EIS, which is in the lower range of existing
estimates. This finding is robust in the sense that (i) it can be derived from either my savings
or labor earnings results, and (ii) it is largely insensitive to the value of the Frisch elasticity
that governs the elasticity of labor supply.

I use these bounds to simulate savings and labor supply responses to linear rate-of-return
shocks to infer the implied elasticities. At the 10% level, my empirical findings are inconsistent
with parameterizations of a life-cycle model that would produce positive elasticities of saving
and labor supply to the rate-of-return.6

6At the cut-off of 0.5 (0.3), the simulated 5-year uncompensated elasticity of savings to the net-of-tax rate-of-
return is 0.11 (-0.01). For labor supply it is 0.13 (-0.31).
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This paper contributes to three literatures. I contribute to the new literature examining
household responses to wealth taxation. This literature has found that wealth taxes reduce
the amount of taxable wealth that households report (Seim 2017, Londoño-Vélez and Ávila-
Mahecha 2018, Zoutman 2018, Jakobsen, Jakobsen, Kleven, and Zucman 2020, Maŕıa Durán-
Cabré, Esteller-Moré, and Mas-Montserrat 2019, Brülhart, Gruber, Krapf, and Schmidheiny
2019).7 However, these findings do not necessarily imply that wealth taxes cause households
to save less, as evasion responses may dominate (real) saving responses. Consistent with this
ambiguity, I find strikingly different effects when limiting the role for evasion. I limit the role for
evasion by (i) focusing on savings in the form of financial wealth, which is primarily third-party
reported in Norway, and by (ii) obtaining identifying variation in wealth tax exposure from
below the top 1%, where evasion is less prominent.8

By speaking to real saving responses to (net-of-tax) rate-of-return shocks, I also contribute
to the empirical literature aimed at estimating the Interest Elasticity of Saving (see, e.g., Boskin
1978 and Beznoska and Ochmann 2013). This literature has seen few recent contributions and
thereby offers a “paucity of empirical estimates” (Saez and Stantcheva, 2018). Finally, since the
outcomes I consider are tightly connected to the Elasticity of Intertemporal Substitution, I con-
tribute to the large empirical literature aimed at estimating it (see, e.g., Best, Cloyne, Ilzetzki,
and Kleven 2018, Gruber 2013, Vissing-Jørgensen 2002, Bonaparte and Fabozzi 2017).

Relative to this combined body of work, I make three main contributions. My first contri-
bution is to provide micro-level evidence while comparing households who are similar on socio-
economic observables. While assessed tax assessments change discontinuously at geographic
boundaries, these changes are not predictive of changes in other pre-period observables, such
as housing transaction prices, wealth, labor income or education in my preferred BDD spec-
ifications. This contrasts with micro-econometric studies that obtain identifying variation in
after-tax returns by using differential tax treatment arising from differences in characteristics
such as wealth, income and asset shares.

My second contribution is to also study how (net-of-tax) rate-of-return shocks affect labor
earnings, which is crucial to optimal taxation (see, e.g., Atkinson and Sandmo 1980 and Saez
and Stantcheva 2018) and provides an additional moment for parametrizing life-cycle models
with endogenous labor supply.

My third contribution is to provide evidence on how net-of-tax rate-of-return shocks affects
7The existing literature has either focused completely on evasion (Seim (2017) and Londoño-Vélez and Ávila-
Mahecha 2018), or has not distinguished between real and reporting (i.e., evasion) responses to wealth taxation.
This fact is stressed by both Zoutman (2018) and Jakobsen et al. (2020) .

8Wealth taxes are levied at a relatively low threshold in Norway, and the treatment at hand, namely increased
tax assessment of housing, is particularly well-suited for identifying responses for the moderately wealthy, where
housing wealth accounts for a large share of taxable net wealth. (Fagereng, Guiso, Malacrino, and Pistaferri,
2018). Alstadsæter, Johannesen, and Zucman (2019) show that wealth tax evasion primarily occurs above the
99th percentile of the wealth distribution.
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portfolio decisions. This has seen little empirical attention, despite its importance for economic
modeling. By showing that (i) the risky share of financial wealth and (ii) the realized returns
on risk-free assets are unaffected by rate-of-return shocks, I provide justification for treating
rates-of-return as exogenous in partial equilibrium.

This paper also provides new evidence of limited evasion responses to wealth taxes. I
examine this by considering the amount of excess bunching near the wealth tax threshold.
The visual evidence does not favor bunching, which greatly contrasts previous findings from
Denmark, Sweden, Colombia, and Switzerland.9 The findings in Seim (2017) and Londoño-
Vélez and Ávila-Mahecha (2018) suggest that evasion may be greatly restricted if self-reporting
is limited. My findings are consistent with this, suggesting that evasion is addressable through
limiting the extent of self-reporting, as argued by Saez and Zucman (2019).

This paper has implications for the growing literature studying the effects of household het-
erogeneity on monetary policy transmission. The importance of this literature relies partially
on the premise that standard intertemporal substitution effects are unable to explain the ag-
gregate effects of monetary policy. This premise is validated by my finding that income effects
dominate substitution effects in household responses to rate-of-return shocks and that a low
EIS is necessary to explain my results.

Finally, this paper contributes to the literature employing BDD frameworks.10 My empir-
ical setting features heterogenous border areas that differ significantly in terms of residential
density and treatment discontinuities, which presents some interesting empirical challenges that
I explore in detail. My key contribution is to design a simple semi-parametric approach that is
successful at explaining observable geographic variation in house prices and household charac-
teristics and facilitates graphical presentation of regression estimates.

The paper proceeds as follows. Section 2 discusses the institutional features and assessment
model for housing wealth. Section 3 presents a simple two-period theoretical framework that
relates tax assessment shocks to rate-of-return shocks, and highlights the theoretical ambiguity
of the effects on saving. Section 4 introduces the data, the identification strategy, and the
empirical specifications. Section 5 the presents the empirical findings. Section 6 explores
bunching behavior. Section 7 considers the implied structural parameters in light of a life-cycle
model. Section 8 concludes.
9See Jakobsen et al. (2020), Seim (2017), Londoño-Vélez and Ávila-Mahecha (2018) and Brülhart et al. (2019),
respectively.

10See, e.g., Black (1999) and Bayer et al. (2007) who also employ BDD designs to incorporate treatment
discontinuities that vary across boundary areas.
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2 Institutional Details

2.1 Wealth Taxation in Norway

In Norway, wealth taxes are assessed according to the following formula:

wtaxi,t = τt(TNWi,t − Thresholdt)1[TNWi,t > Thresholdt], (1)

where wtaxi,t is the amount of wealth taxes incurred during year, t, and is due the following
year. τt is the tax rate applied to any Taxable Net Wealth (TNW ) in excess of a time-
varying threshold. The tax rate, τ , was 1.1% during 2009–2013, 1% in 2014, and 0.85% in
2015.11 Taxable Net Wealth (TNW) is the sum of taxable assets minus liabilities, where housing
wealth is assessed at a discounted fraction of estimated market value (25% for owner-occupied
housing).12 The tax is assessed on individuals, but married couples are free to reshuffle assets
and liabilities between them, effectively taxing married households on the sum of their taxable
net wealth in excess of two times the wealth tax threshold.

The market value of all financial assets (debt) held through (borrowed from) domestically
registered financial institutions are third-party reported each year. Private-equity wealth, i.e.,
the value of unlisted stocks, is reported by the stock issuer as a part of their financial reporting
to the tax authorities.13

In this paper, I identify effects from quasi-random variation in TNWi,t, arising due to the
implementation of a new methodology to assess the housing wealth component. This identifying
variation in TNWi,t affects the marginal rate-of-return that households face to the extent that
it switches on 1[TNWi,t > Thresholdt] in equation 1, and thereby lowers the marginal after-
tax return by τt. It affects the average rate-of-return to the extent that it lowers the ratio of
net-of-tax capital incomes (Pre-Tax Capital Incomes - wtaxi,t) to TNWi,t by increasing wtaxi,t.
This effect on the average return is a combination of intensive and extensive margin effects,
while the effect on the marginal return is driven only by extensive margin variation in wealth
tax exposure.

In the next subsection, I describe the model used to assess the housing wealth component
in more detail.
11Prior to 2009, there were two thresholds. All wealth above the highest threshold was taxed at 1.1%, while

the intermediate levels of wealth were taxed at 0.9%. During 2009–2015, the single threshold was gradually
increased from NOK 470,000 to 1,250,000 (USD 78,000 to 208,000, using the 2010 USD/NOK exchange rate
of around 6.)

12Prior to 2008 some other assets were taxable at a discount as well. For example, stocks only entered with
85% of their market value in 2007. During 2008–2015, the only asset class taxed at a discount was real-estate.
While primary housing (owner-occupied) was taxed at 25%, secondary housing was assessed a tax value of
40%–60% of the estimated market value.

13These reports are audited for all firms with revenue > 5 MNOK, > Employees or assets > 10 MNOK. The
value of financial assets/debts are also reported directly to the tax authorities from financial institutions.
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2.1.1 Introduction of a Hedonic House Price model

In 2010, the Norwegian Tax Authorities implemented a major change to how they assess
the housing wealth component of Taxable Net Wealth (TNW). Prior to 2010, assessed housing
wealth was set to an inflated multiple of the initial tax assessment, typically corresponding to
30% of construction cost.14 This approach grew unpopular as some regions experienced larger
house price growth than others, which produced regional disparities in the ratio of assessed
housing wealth to observed transaction prices. To rectify this, the tax authorities began as-
sessing housing wealth using a hedonic real-estate pricing model that included geographic fixed
effects. The implementation of a new assessment methodology was communicated to home-
owners through a letter sent out in August 2010. I describe this communication in more detail
in section B.7.

Utilizing a large national dataset on property transactions during 2004–2009, the hedonic
pricing model was estimated according to equation 2 below.15

log(Pricei/Sizei) = αR,s + γZ,s + ζsizeR,s log(Sizei) + ζDenseR,s DenseAreai (2)

+ ζAge1,R,s1{Agei ∈ [10, 19]}+ ζAge2,R,s1{Agei ∈ [20, 34]}

+ ζAge3,R,s1{Agei ≥ 35}+ εi.

P rice is the recorded transaction price. Size is the size of the house in square meters. The
size of the property/lot was not accounted for. DenseArea is a dummy for whether or not the
dwelling was located in a cluster of at least 50 housing units. Age is number of years since
initial construction. The estimation took place separately for each of the three structure types,
s ∈ {Detached housing, non-detached housing, condominiums}, and for each region, R. The
regions were mainly defined as one of the twenty Norwegian counties or one of the four largest
cities (Oslo, Bergen, Stavanger, Trondheim).16 Municipalities, or within-city districts for the
largest 4 cities, were assigned to within-region price zones, Z, separately for each structure
type-region. These price zone fixed effects, γZ,s, make up a key component of the pricing
model.17

14The tax value of a house would first enter as it’s construction cost. Then each year the tax value is
changed by some percentage, e.g., -5%, 0%, 10%. The existing practice of using initial construction cost is
described in the government budget of 2010: https://www.statsbudsjettet.no/Statsbudsjettet-2010/
Dokumenter/html/Prop-1-L-Skatte--og-avgiftsopplegget-2010-mv---lovendringer/
3-Nytt-system-for-formuesverdsetting-av-bolig

15The housing price model used to assess house values at year t would include transactions during t−5, ..., t−1.
When households were given preliminary estimates of their assessed values during 2010, only 2004–2008 data
was used. When actual tax values were assigned, 2009 data was included.

16For non-detached housing and condominiums, of which there were fewer transactions, some counties were
combined, presumably to increase sample size in each regression.

17While I can observe the assignments of Z and R in the appendices of the reports, the underlying process is

7

https://www.statsbudsjettet.no/Statsbudsjettet-2010/Dokumenter/html/Prop-1-L-Skatte--og-avgiftsopplegget-2010-mv---lovendringer/3-Nytt-system-for-formuesverdsetting-av-bolig
https://www.statsbudsjettet.no/Statsbudsjettet-2010/Dokumenter/html/Prop-1-L-Skatte--og-avgiftsopplegget-2010-mv---lovendringer/3-Nytt-system-for-formuesverdsetting-av-bolig
https://www.statsbudsjettet.no/Statsbudsjettet-2010/Dokumenter/html/Prop-1-L-Skatte--og-avgiftsopplegget-2010-mv---lovendringer/3-Nytt-system-for-formuesverdsetting-av-bolig


All the estimated coefficients for a total of 44 regressions are provided in regression output
form. I provide an example of these regression outputs in Figure A.5 These coefficients were
then provided to the Tax Authorities who applied the estimated coefficients to data from real-
estate registers and home-owner verified data on housing characteristics. These assessments
were done largely out-of-sample, as most houses present in 2010 were not transacted during
2004–2009. The following formula was used to assess the tax value of housing:

̂TaxV ali = 0.25Sizei · exp(log(Pricei/Sizei)
∧

) · exp(0.5σ̂2
R,s), (3)

where exp(0.5σ̂2
R) is the concavity adjustment term, with σ̂2

R,s being the Mean Squared Error
(MSE) of the regression for structure type s in region R.

We can use Equations 2 and 3 to write log( ̂TaxV ali) as

log(TaxV al
∧

i) = log(0.25) + α̂R,s + γ̂R,Z,s + (1 + ζ̂sizeR,s ) log(Sizei) + ζ̂DenseR,s DenseAreai (4)

+ ζ̂Age1,R,s1{Agei ∈ [10, 19]}+ ζ̂Age2,R,s1{Agei ∈ [20, 34]}+ ζ̂Age3,R,s1{Agei ≥ 35}

+ log(0.5σ̂2
R,s).

From this, we see that that tax assessments will be geographically discontinuous even if past
transaction prices are truly smooth. This implies that that two identical houses, on different
sides of a geographic boundary, may have very different assessments due only to cross-price
zone differences in average past transaction prices. For a given structure type, s, the geographic
variation within a region, R, comes from γ̂R,Z,s. Across regions, all of the estimated coefficients
change. This provides identifying variation that depends on structure characteristics, such
as Size and Age. In section 4.2, I discuss how I exploit (and isolate) all of this geographic
variation.

I collect all the data necessary to replicate the assessed house values from Statistics Norway’s
reports. In Figure A.4 in the Appendix, I show how utilizing these coefficients and the real-
estate registers allows me to accurately predict assessed tax values observable in household tax
returns.

only briefly described: Municipalities were assigned to price zones depending on “analyses of past price levels”
(My translation of a comment in the 2009 report.), and non-transacting municipalities were grouped in with
low price level municipalities. Consistent with this, I observe that members of the same price zone tend to
have similar past-price levels, and smaller municipalities are more likely to be grouped in with multiple other
municipalities within that region, regardless of geographic proximity. (This essentially precludes the use of
border areas contained within one price zone to be used for placebo testing. The most intuitive definition
of a placebo treatment variable would be the differences in past average transaction prices, but given the
assignment rule, there would be very little identifying variation.)
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Figure 1: Model-Implied Geographic Variation in Tax Assessment for
a Standard House

This figure shows the logarithm of the 2010 assessed tax value of an identical single family home assessed as if it were
located inside one of the municipalities below, predicted using the coefficients in the Tax Authorities’ hedonic pricing
model. Each distinct (shade of) color corresponds to a bin of TaxV al

∧

with a width of 0.3 log-points. I assume a house
size of 130 m2, an age of 25–34 years, and a location in an area defined as densely populated. The assessed log tax
value has a mean of 13.30 and a standard deviation of 0.37, across (equal-weighted) municipalities. For municipalities
with within-city districts making up separate price zones, I assign the unweighted average tax assessments for the
purpose of this illustration.

The actual tax values may differ from predicted tax values for a few key reasons. First,
the coefficients I utilize are based on estimating equation 2 on 2004–2008 data. These are, to
the best of my knowledge, the same coefficients that were used to inform households of their
new tax assessments during 2010. When assessing tax values after the end of the tax year, the
coefficients were re-estimated on a dataset that also included 2009 data. Thus the inclusion
of more data would slightly impact the coefficients and the assessed tax values. Second, the
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amount of housing wealth observed in the tax returns, TaxV al (no hat), also includes the value
of secondary homes, while I estimate model-predicted tax values, TaxV al

∧
, only considering

primary residences. This leads to a few cases where TaxV al > TaxV al
∧

. Third, households
may have moved during 2010. Finally, they may filed a complaint regarding the tax assessment.
While assessed tax values are meant to equal 0.25×market value, households who can document
that their assessment exceeds 0.30× market value may have the assessment lowered to 0.30×
market value, but not to 0.25×. In other words, even if the assessment is 20% too high, there are
no incentives to complain. This ensures that the possibility of households complaining does not
materially lower the explanatory effect of the model coefficients on actual tax assessments.

3 Conceptual framework

The purpose of this section is to present a simple two-period life-cycle model of consumption
to relate saving responses to tax assessment shocks to responses to changes in the net-of-tax
rate-of-return, and show how these responses relate to structural parameters.18 I then show how
comparing the effects of assessment shocks on the marginal versus average net-of-tax rates-of-
return can help us assess whether tax assessment shocks can be used as instruments for (linear)
rate-of-return shocks. Later, in subsection 5.2.1, I combine the main insights from this model
with empirical data to discuss expected heterogenous responses.

Consider the following simple two-period model, where households chose how much to con-
sume in each period, Ct and may save S in period 1. I focus on saving responses and assume
perfect foresight to keep the model simple. Households have an initial endowment of Y1, which
can be thought of as initial wealth plus first-period exogenous income, and face exogenous
income of Y2 in period 2. At the end of this section, I discuss the impact of introducing endoge-
nous labor supply. The tax authorities impose a tax τ on taxable net wealth, W = SR + A,
in excess of a threshold, W̄ . A is some premium that the tax authorities add to a household’s
wealth, analogous to the empirical variation in tax assessments for the housing component of
net wealth.

Baseline optimization problem.

max
C1,C2,S

U(C1, C2, S) = 1
1− γC

1−γ
1 + β

1
1− γC

1−γ
2 , (5)

s.t. C1 + S = Y1 (6)

and C2 = Y2 +RS − τ1[SR + A− W̄ > 0](SR + A− W̄ ). (7)
18In the last section, where I calibrate a life-cycle model to infer which EIS my results I can rule out, I use a

multi-period model with endogenous labor supply. However, the key intuition can be found in this simpler
two-period model.
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We can rewrite the constraint for period 2 as:

C2 = Y2 + SR(1− τ1[SR + A− W̄ > 0](SR + A− W̄ )) + τ1[SR + A− W̄ > 0](W̄ − A).

Where the last term is virtual income (in period 2), which compensates for the fact that τ
is not applied to all savings due to the tax threshold.

Wealth taxes offer a slightly complicated optimization problem, with agents potentially
bunching such that SR + A − W̄ = 0. Since bunching is not an empirically important phe-
nomenon in my setting, and a few key insights are obtainable with a few simplifying approxi-
mations, I take the following simpler route. First define R̃ = R(1− τ1[SR+A− W̄ > 0]) and
Ṽ = τ1[SR + A − W̄ > 0](W̄ − A). We can then rewrite the budget constraint for period 2
as C2 = Y2 + R̃S + Ṽ . Then I assume that agents take R̃ and Ṽ as given when they optimize,
which can be thought of as a linearization of the budget constraint around the empirical means.
The problem then becomes:

Simplified optimization problem.

max
C1,C2,S

U(C1, C2, S) = 1
1− γC

1−γ
1 + β

1
1− γC

1−γ
2 , (8)

s.t. C1 + S = Y1 (9)

and C2 = Y2 + R̃S + Ṽ . (10)

Assuming that constraints bind, imposing the first-order condition on S, and reorganizing
then leads to the following expression for S:

S = [βR̃]
1
γ Y1

R̃ + [βR̃]
1
γ

− Y2 + Ṽ

R̃ + [βR̃]
1
γ

. (11)

Suppose R̃ and Ṽ are differentiable with respect to the tax assessment variable, A. Now I
assume that agents optimally change their behavior when A affects R̃ and Ṽ . Their response
can be decomposed, using the chain rule, as the sum of a rate-of-return effect and a virtual
income effect:

dS

dA
= dS

dR̃

dR̃

dA︸ ︷︷ ︸
Rate-of-return Effect

+ dS

dṼ

dṼ

dA︸ ︷︷ ︸
Virtual Income Effect

. (12)

Rate-of-return effect. By reducing the marginal rate-of-return, R̃, increases in tax as-
sessment, A, cause a “traditional” rate-of-return effect, which I write out below.
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dS

dR̃
= Y1

(
1
γ
− 1

)
[βR̃]

1
γ

(R̃ + [βR̃]
1
γ )2

+ (Y2 + Ṽ )
1 + β

γ
[βR̃]

1
γ
−1

(R̃ + [βR̃]
1
γ )2

. (13)

The first term in equation 13 gives rise to the theoretical ambiguity in household responses
to rate-of-return shocks. Its sign depends on the Elasticity of Intertemporal Substitution, 1

γ
.

The second term is the “human wealth effect”, where an increase in R̃ lowers the net present
value of future incomes, Y2 + Ṽ , which induces more saving.

We can rewrite the expression for dS
dR

above, using the formula for S, to see the over-all
ambiguity more clearly in the presence of a human wealth effect.

dS

dR̃
= 1
γ

[βR]
1
γ

(R̃ + [βR̃]
1
γ )2

(
Y1 + Y2 + Ṽ

R̃

)
− S

R̃ + [βR̃]
1
γ

. (14)

We see now that if savings are sufficiently positive, S > 0, and the EIS, 1
γ
, is sufficiently

small, then this expression is negative.19

Virtual Income Effect. By affecting Ṽ , shocks to tax assessment cause an additional
(virtual) income effect:

dS

dṼ
= − 1

R̃ + [βR̃]
1
γ

. (15)

The magnitude and sign of this channel depends critically on how A affects Ṽ . If we define
the average rate of return as R̃avg, such that SR̃avg = SR̃ + Ṽ , then we can rewrite Ṽ as
Ṽ = S(R̃avg− R̃), which is simply savings multiplied by the difference between the average and
marginal rates-of-return. We may therefore write the effect of tax assessment shocks on virtual
income as the following:20

dṼ

dA
= S

(
dR̃avg

dA
− dR̃

dA

)
. (16)

19As an example, consider the case when βR̃ = 1. Further assume that R̃ = 1.5, and, without loss of generality
(since it will be divided through), that Y2 + Ṽ = 1. S > 0 then implies Y1 > 1. In this case, dS/dR̃ ≤ 0
whenever 1

γ ≤ 2.5− 2.5+1/1.5
Y1

. Setting Y1 = 1.5, in other words that current income and wealth exceeds future
(nominal) income and wealth by R̃− 1 = 50%, yields 1/γ ≤ 0.38.

20This assumes that S is not also affected by A in any way that affects V . This is related to the assumption
that agents take R̃ and Ṽ as given when choosing the optimal amount of S.

12



While these derivatives are not well-defined analytically due to the presence of indicator
functions, their empirical counterparts can be estimated empirically by considering differential
effects of tax assessment shocks on the marginal versus average after-tax rates-of-return. This
will be a useful exercise, because the differential effects dictate how my tax assessment shocks
yield a treatment comparable to linear rate-of-return shocks.

Relative importance of income and virtual income effects. To understand the rela-
tive importance of these two effects, I rewrite the (decomposed) effect of tax assessment shocks
on saving from equation 12 when the EIS is zero to isolate income effects. I use the expression
for dS/dR̃ from equation 14, and substitute in for dṼ /dA, and reorganize, to get:

dS

dA
= − S

R̃ + 1


(

dR̃

dA

)
︸ ︷︷ ︸
Income Effect

−
(
dR̃

dA
− dR̃avg

dA

)
︸ ︷︷ ︸
Virtual Income Effect

 . (17)

The term denoted income effect represents the effect of tax assessment on saving through
changing a linear rate-of-return. The second term indicates the effect through changing virtual
income. This equation suggests that we can evaluate the relative impact of these two channels
by comparing the effects of tax assessment shocks on the marginal versus average rates-of-
return. If I find E[dR̃/dA] to be twice as large as E[dR̃avg/dA], then this suggests that half
the income effects are offset by opposing virtual income effects. If I find Ed[R̃/dA] to be only
half that of E[dR̃avg/dA], then this suggests that income effects are amplified by a factor of
two.

Endogenous labor supply. In section B.9 in the Appendix, I modify the existing opti-
mization problem by introducing endogenous labor supply in period 1. The preferences feature
a constant Frisch elasticity, and additive separability in the (dis)preferences for consumption
and labor supply. This added complexity has no effect on the qualitative conclusions in the pre-
vious section, but shows that the labor earnings response will be of a same sign as, but smaller
in magnitude than, the savings response. The savings response takes the same form, but is
scaled up in magnitude. This added responsiveness will depend on the parameters governing
labor supply.
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4 Empirical

4.1 Identification

I identify household responses to an increased exposure to wealth taxation caused by higher
tax assessments on housing. Since this tax assessment is the result of a model that aims to
predict housing wealth, more treated households will, by construction, own more expensive
homes on average. This may be an important violation of the exclusion restriction, given that
housing wealth is known to be an important determinant of household saving behavior, and is
likely highly correlated with other important determinants such as income or wealth.

To address this issue, I employ a Boundary Discontinuity Design (BDD) approach. The
purpose of this empirical design is to utilize the fact that treatment varies discontinuously at
geographic boundaries, thus allowing me to remove the effects of potential confounders that
vary smoothly.

The success of the BDD approach in isolating treatment effects from tax assessment hinges
on the following: Potential confounders must vary smoothly at the geographic treatment bound-
aries. In addition, my parametrization of the BDD regression equations must not confuse
smooth variation with geographic discontinuities. This is not straightforward in a setting with
treatment discontinuities that vary across boundaries. In the next subsection, I describe my pa-
rameterization in more detail. Throughout the results section, I show that a correctly specified
BDD framework does not pick up any discontinuities in potential confounders such as housing
wealth, pre-period income or financial wealth. The fact that the identifying variation in my
BDD framework is essentially orthogonal to household observables allows me to include a wide
range of controls without reducing the amount of residual identifying variation.

Another attractive feature of my empirical setting is that the treatment discontinuities were
only recently introduced. This offers two key advantages relative to a setting identifying effects
from a non-time varying treatment discontinuity. First, it allows me to focus on households
who made their residential location choices prior to having any knowledge of the impending
wealth assessment discontinuities.21 This addresses the concern that households may have self-
selected into lower or higher tax assessment. In addition, it allows me to speak to the parallel-
trends assumption by examining the effect of higher tax assessment on pre-period outcome
variables.

Another concern when studying the effects of geographically confined increases in taxation
is that households may be affected through the effect on local government finances. In section
B.6 in the Appendix, I argue that this is unlikely to play a meaningful role in my empirical
21(1) Per my investigations, the fact that geographic assessment discontinuities exist is still a little-known fact

even at the time of writing. (2) This wouldn’t be a benefit to research examining house price capitalization,
since a key driver of house prices is selection.
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setting since wealth taxes are primarily paid by the very wealthiest households, who were not
disproportionately affected by this reform. The impact on municipal finances would thus be
too small to trigger a meaningful response.

Finally, it is worth noting that this setting will identify partial-equilibrium effects. Since
bordering municipalities are typically tightly economically linked, there is little scope for ge-
ographic discontinuities in terms of general equilibrium treatment effects. For example, there
is little reason to suspect that wages are affected by this treatment, since employers face no
frictions in choosing employees from either side of one of the treatment boundaries.

4.2 Empirical Specification

Distance and Boundary Areas. I define the key geographic measure, di, as the signed
distance, in kilometers, to the closest municipal boundary, where households on the low assess-
ment side of the borders receive a negative distance, and households on the high assessment
side receive a positive distance.22

I will refer boundary areas, b, as sets of households assigned to the same municipal boundary.
Within a boundary area, b, households are defined to be on the high assessment side if the
average household within that boundary would see a higher tax assessment on that side.23

Geographic variables, such as di, b, and geographic location, ci, are all measured in 2009.

Identifying variation. I define ∆i as the log increase in tax assessment that arises for
household i if it were assessed on the high instead of the low assessment side of the bor-
der. This variable is a border-area and structure-type specific (linear) function of Hi =
{log(Size)i, DenseAreai, {1[Agei ≥ a], a = 0, 10, 20, 35}} and isolates the identifying varia-
tion in model-implied tax assessment, log(TaxV al

∧

i,t), to come from cross-border (but within
border area) differences in pricing model coefficients, and allows this effect to vary with Hi,
measured as of 2009.

∆i ≡ log(TaxV al
∧

i)
∣∣∣∣
di>0
− log(TaxV al
∧

i)
∣∣∣∣
di<0

(18)

Main reduced-form regression specification. The following regression equation yields
the estimator, β̂, for the reduced-form effect of increased tax assessment on some outcome
22I calculate di by minimizing the distance to the nearest residence in a different municipality (or within-city

district). This has the benefit of not assigning households as being close to a border that is vacant on the
other side.

23Within a boundary area, a municipality is defined to be on the high assessment side of the average detached
house (by far the largest group in my sample) in the border area would receive a higher assessment in that
area. If there is no differences for single family homes, i.e., they are in the same price region and price zone,
I do the same exercise for non-detached houses, and if necessary for condominiums.
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variable, yi,t, measured at year t.

yi,t = β log(TaxV al
∧

i) + gb(ci)∆i + δ′b,sHi + γ′tXi + εi,t, (19)

The inclusion of border area and structure-type specific linear controls in housing charac-
teristics, Hi, isolates the identifying variation in log(TaxV al

∧

i,t) to 1[di > 0]∆i. While the
estimator for β identifies the effect of a discontinuous loading on ∆i, the the estimated coeffi-
cient on gb(ci)∆i is meant to capture the effect of anything that loads continuously on ∆i. I
describe the parameterization of gb() in more detail below.

To increase precision, and to alleviate concerns that relevant observed heterogeneity is not
appropriately controlled for, I include a number of household-level controls, denoted by Xi,
which is a vector of 2009-valued household characteristics: A single dummy, a single dummy
interacted with a male dummy, a third-order polynomial in the average age of household adults,
log(Labor Income), log(Gross Financial Wealth [GFW]) College [Dummy for whether any of
the adults have a college degree], A debt dummy, log(Debt), the share of GFW invested in the
stock market [SMW], the log of the tax-return observed assessed tax value of housing, a dummy
for whether the tax returns indicate ownership of other real estate, and the log of the assessed
value, and finally a dummy for whether the household is reported to own non-listed stocks [PE
Dummy]. Xi is not included as a vector of controls when I examine whether the identifying
variation is correlated with pre-treatment household characteristics.

I note that while my specification allows the effect of geographic discontinuities in the
estimated coefficients to covary with Hi (per the definition of ∆i), estimating border area
specific coefficients on Hi accounts for the fact that those with larger houses in more high-
priced (border-) areas may have have different (unobservable) characteristics.

In most specifications, observations are pooled by treatment period, where the pre-period
is 2004–2009 and the post-period is 2010–2015. Equation 19 is then estimated separately for
these periods, allowing the slopes without a t subscript to vary by treatment period. My
main specification imposes equal weights on all observations and clusters at the census tract
level (grunnkrets). I provide results using triangular (distance-based) weights for my main
results in Table A.3 in the Appendix. Results using different levels of clustering (household and
municipality) are reported in Table A.4. Neither standard errors nor estimates are sensitive to
these specifications.

Addressing continuous geographic loading on ∆i. My method to capture potential
confounding heterogeneity is to introduce the term gb(ci)∆i. gb(ci) is a border area-specific
function of household i’s location, and is meant to capture geographically heterogenous loading
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on ∆i. Similar to Dell (2010), I test multiple such specifications. The baseline specification
involves controlling for (signed) border distance in kilometers:

gb(ci) = γ−1[di < 0]di + γ+1[di > 0]di, (20)

where γ− and γ+ are to be estimated. However, there is considerable heterogeneity in
residential density across the border areas in my sample. The extent to which confounding
variables change more rapidly, in a geographic sense, in denser urban areas is problematic. I
provide a fuller discussion of this issue, and the approaches to addressing it in Appendix A. I
highlight the main aspects of the approaches below.

My preferred specifications address this issue by allowing the slope on border distance to vary
parametrically with measures of residential density. The main preferred measure, Scaled Border
Distance, simply scales border distance (in kilometers) by a measure of average distances in a
border area.24 The second preferred measure, Relative Location, maps all households onto [-1,1],
where households at 0 are equidistant to the low- and high-side centers.25 As a robustness, I also
allow the slope on border distance to vary by border area. Since this involves the estimation of
many slopes, this limits precision and inhibits visual verification.

Two Stage Least Squares Specification. I implement a fuzzy BDD approach to provide
IV estimates of how changes in tax assessment affect a given outcome, yi,t. The expectation is
that the first-stage coefficient, β̂FS is close to one. The coefficient of interest is βIV . Given the
inclusion of the term δFS

′
b,s Hi, the identifying variation in log(TaxV al

∧

i) is equal to 1[di > 0]∆i;
the discontinuous loading on the high-side assessment premium.

log(TaxV ali,t) = βFS log(TaxV al
∧

i) +gFSb (ci)∆i + δFS
′

b,s Hi + γFS
′

t Xi + εFSi,t (21)

yi,t = βIV log(TaxV ali,t) +gIVb (ci)∆i + δIV
′

b,s Hi + γIV
′

t Xi + εIVi,t (22)

Specification to test differences on observables. When testing whether my identifying
variation is correlated with pre-treatment observables, I estimate the following equation, which
removes socio-economic controls from the main specification in equation 19. The coefficient of
interest is β.
24Specifically, the distance between the two centroids of the two municipalities (or within-city districts) whose

residents occupy a given border area, b. This centroid-distance measure is thus b-specific.
25Households at RelLoc ∈ [−1, 1] must travel (as the crow flies) RelLoc ·X km further to get to the high side,

than they would to get to the low side, where X is the distance between the centroids of the left and high
sides.
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yi = β log(TaxV al
∧

i) + gb(ci)∆i + δ′b,sHi + εi (23)

4.2.1 Empirical specification relative to BDD literature

The similarity between my empirical specification and that of the existing BDD literature
(e.g., Black (1999) and Bayer et al. (2007)) that incorporates cross-boundary area variation
in treatment intensity can be seen by acknowledging that 1[di > 0]∆i in equation 19 may be
replaced with log(TaxV al

∧
) and I would still obtain the exact same estimator β̂. However,

writing out the identifying variation as a discontinuous loading, 1[di > 0]∆i, facilitates a
standard Regression Discontinuity Design representation of estimates.26

Beyond this graphical contribution, my approach differs from the existing approach in how
it deals with potentially confounding geographic heterogeneity. First of all, my approach,
as highlighted from the main reduced-form specification in equation 19, differs by addressing
the fact that the relevant confounders covary with 1[di > 0]∆i and not just 1[di > 0]. The
traditional approach is to utilize a specification similar to the baseline regression specification
in equation 19 without controlling directly for geographically smooth heterogeneity, but rather
uniformly reduce the cut offs (bands) for which i would be included, based on di alone.

Applying the traditional approach to my empirical setting would entail comparing house-
holds whose di’s were similar in order to limit potential influence of confounders that covary
with di. To preserve identifying variation one would then consider households whose dis are
close to the treatment cut-off of 0. This approach would be unsatisfactory to the extent that
confounders vary more rapidly in settings where treatment discontinuities are larger. If this is
the case, then imposing uniform cut-offs implies that the boundary areas that offer the most
identifying variation will also have the worst control group. My approach directly addresses
this concern.

Second, my approach differs from the traditional approach by addressing rather than dis-
carding geographic heterogeneity in residential density. Addressing heterogeneity in density
is important whenever potential confounders may change more rapidly, in a geographic sense,
in denser areas. My solutions towards addressing this is a useful contribution, since it may
be applied to settings where there are many boundary areas that differ significantly, without
having to reduce the sample size by dropping boundary areas in order to achieve homogeneity.
In Appendix A, I provide examples of how geographic heterogeneity in residential density may
26Existing papers, e.g., Black (1999) and Bayer et al. (2007), do not provide RDD-style figures to illustrate

their main empirical findings. Bayer et al. (2007) provide graphical evidence only when using a binary
treatment cut-off, but their main estimation strategy leverages the full identifying variation, allowing treatment
discontinuities to vary across border areas.
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invite the false detection of discontinuities in observable characteristics.

4.3 Data

I combine a wide range of administrative registers maintained by Statistics Norway. These
registers contain primarily third-party reported data, and are all linkable through unique de-
identified person and property identification numbers. A detailed description of the financial
data sources can be found in Fagereng et al. (2018).

Financial data. Data on household financials come from household tax returns. These
include breakdowns of household assets, such as housing wealth, deposits, bonds, mutual funds,
listed stocks, and private equity holdings. It also includes the sum of household liabilities. I
can further distinguish between third-party reported domestic wealth holdings (e.g., domestic
deposits), and self-reported foreign holdings of real-estate, deposits and other securities, sep-
arately. The tax data includes a breakdown of household income, such as self-employment
income, wage earnings, pensions, UI income, and the sum of government transfers. It also con-
tains a detailed breakdown of capital income, such as interest income from domestic or foreign
deposits, and realized gains or realized losses. This data is spans 1993 to 2015.

Real-estate data. The real-estate ownership registers provides end-of-year data of the
ownership of each plot of land in Norway. Using de-identified property ID numbers, I can
populate each property with the buildings it contains. Then, using structure ID numbers, I
can populate each structure with the housing units that it contains (e.g., multiple apartments,
attached homes, or a single detached house). I can combine this with data on housing unit
characteristics, such as size. An attractive feature of the administrative data is that it location
data based on the geographic coordinates at the structure-level, instead of district- or census
block-level (for examples see Dell (2010) and Bayer et al. (2007), respectively). These data
sources cover 2004 to 2016.

Real-estate transaction data. I also use data on real-estate transactions to examine
past and future transaction prices. This dataset is comparable to the CoreLogic dataset often
used in real-estate research in the U.S., but can be linked to the other data sources through
de-identified property and buyer/seller identification numbers (for both private individuals and
corporate entitites). I collapse the dataset on the property-ID level, keeping information on
most recent transaction prior to 2009 and earliest transaction during or after 2010. I restrict
the data to transactions noted as being conducted on the open market, thus excluding other
events such as bequests or expropriations. This dataset spans 1993 to 2016.

Other data sources. I also use data on demographics from the National Population
Register. This contains data on birth year, gender, and marital links. I also obtain data on
educational attainment as of 2010 from the National Education Database.
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4.3.1 Variable definitions

Gross Financial Wealth (GFW) is the sum of domestic deposits, foreign deposits, bonds held
domestically, listed domestic stocks, domestically held mutual funds, non-listed domestic stocks
(e.g., private equity holdings), foreign financial assets (stocks, bonds and other securities), and
outstanding claims.27

Labor Income is the sum of salaries, max(self-employment income,0) and transfers (incl.,
labor-related pensions and unemployment benefits). I also examine effects when only consider-
ing salaries and self-employment income.

Stock Market Share (SMS) is the ratio of listed domestic stocks and domestically held
mutual funds to GFW.

I measure saving as one-year log-differences of financial savings (GFW). Log-differencing
wealth variables is standard in the wealth tax literature.28

I further follow Jakobsen et al. (2020) in adjusting for the “mechanical effects” of increased
wealth tax exposure. Absent any behavioral responses, higher wealth tax exposure mechani-
cally reduces wealth by lowering the net-of-tax rate-of-return. To address this, I add wealth
taxes incurred during t − 1, and thus payable during period t, to savings at time t, for all
households:

Adjusted ∆ log(GFWi,t) ≡ log(GFWi,t + wtaxi,t−1)− log(GFWi,t−1) (24)

≈ ∆GFWi,t

GFWi,t−1
+ wtaxi,t−1

GFWi,t−1

The definition of saving above is important to consider for anyone who uses the estimated
effects for calibration or inputs into optimal taxation models. Specifically, the implied elastic-
ities arising from regressions defining saving as in 24 need to be adjusted in order to serve as
a target to calibrate measures of savings growth that include mechanical effects. Alternatively,
implied elasticities that incorporate such mechanical effects by not making this adjustment will
be provided in the results section.

The majority of my variables will be measured in natural log-points. To accommodate
zeros within specific components of financial wealth (e.g., self-reported) or for debt, and to
limit the influence of large log-changes caused by small level differences, I shift levels by an
inflation-adjusted NOK 10,000 (USD 1,700).29

27Foreign deposits and foreign financial assets are self-reported. Outstanding claims are primarily self-reported.
The third-party reported components include claims on unpaid wages.

28Zoutman (2018) considers 1–3 year log differences, Brülhart et al. (2019) considers 3 year log differences.
Jakobsen et al. (2020) consider log-values, but incorporates household fixed effects to produce estimated
effects on 1–8 year log-differenced wealth.

29This implies that a reduction in debt from NOK 138,000 (the 50th percentile) to 0 (the 25th percentile)
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4.3.2 Sample selection

I only keep households who lived in the same building during 2007–2009, owned at least
90% of their primary residence and had a positive assessed tax value of their house in 2009.
In addition, I require that their residence is registered to be larger than 50 square meters
(approx. 540 square feet). This is to limit the probability that size is mis-measured, or that
this is not their intended long-term residence. I drop households whose tax records indicate
ownership in building coops in 2009, due to the lack of data on housing unit assignment within
coops. I further restrict the sample to only include households with an income above NOK
150,000 (approx. USD 25,000) in 2009, which is well below the poverty limit in Norway.
Such households are thus unlikely to the relevant sample for this study. I further exclude
households where the average age of adults is less than 25 years. I then only keep households
with a taxable net wealth (per adult) in 2009 strictly above NOK 0 and below NOK 6,000,000.
NOK 6,000,000 corresponds to the 99th percentile of taxable net wealth per adult among the
remaining households in 2009. Restricting to positive TNW households is standard in the
wealth tax literature, and in my setting implies that the sample is fairly balanced with respect
to whether or not households paid wealth taxes. This restriction leads to 66% of the sample
having paid wealth taxes in 2009, and 60% end up paying wealth taxes during 2010–2015. I
further trim the sample by removing households with labor incomes above NOK 4,300,000,
which corresponds to the 99.95th percentile of the labor income distribution in 2009.

The primary reason for incorporating these upper bounds, is that ultra-high income and
high net worth households have more complicated balance-sheets and likely have access to
more evasion technologies. A secondary reason is to increase the ability of income to explain
unobserved variation in outcome variables by removing a handful of extreme outliers from the
income distribution. In addition, treatment effects will be fairly small relative to existing wealth
or incomes for such households as housing wealth makes up a rather small proportion of total
wealth for very wealthy households. This means that I can remove these households without
eliminating much identifying variation in e.g., fraction of wealth subjected to a wealth tax.
Excluding such households has an important additional benefit: Excluding the ultra wealthy
allows the sample means to provide more relevant benchmarks for approximating level changes
as the product of sample means and estimated log-differences.

An immediate consequence of selecting only households with initial positive taxable net
wealth is that the resulting sample has a fairly high average age of 62, and thus fairly close to

appears as a log-difference of -2.695 rather than -11.835 when using a log(1 + x) specification, which is
considerably closer to the true percentage change of -100%. A similarly large magnitude would appear when
using the asymptotic sine transformation (asinh), which is employed by Londoño-Vélez and Ávila-Mahecha
(2018). There are only negligible differences for similar changes in the main outcome variables. For example,
a change in gross financial wealth (GFW) from the 50th to the 25th percentile yields a log-difference of -0.925
compared to a log-difference of -0.951 when using the log(1 + x) specification.
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retirement. This is close to the average age of 61 in Jakobsen et al. (2020).30 From a theoretical
perspective, this suggests that these households are not highly influenced by the human wealth
effect in their saving responses to rate-of-return shocks, which is consistent with my empirical
results. I would argue that this is not necessarily a concern from an external validity point of
view since savings tend to be concentrated among older households.31 A recent report from
Statistics Norway shows that the average age of wealth tax payers was 63 years in 2015, and
that individuals above 65 years of age account for 48% of wealth tax payers.32

I also impose some geographic cut-offs. When considering border distance in kilometers,
I only consider households within 10km of the border, which accounts for around 80% of
my sample. When using scaled border distance, I consider households within [−0.6, 0.6] (the
distance to the border is at most 60% of the distance between the two municipal centroids).
This cut-off similarly keeps approximately 80% of the sample. The main purpose of this is to
allow for the estimation of lower-order polynomials in these distance measures, without giving
too much weight to geographic outliers. In Figure A.3 in the appendix, I show how households
are distributed according to the different distance measures. In Tables A.6, A.7 and A.8, I
provide results when varying these cut-offs.

5 Results

5.1 A Graphical Overview

In this section, I show graphically how tax values are discontinuous at municipal borders,
while past transaction prices and labor incomes appear to behave continuously. These results
are presented in Figure 2 below.
30Given population aging, my sample is likely younger. Their sample statistics are based on average pre-period

(1982–1985) ages, while my statistics are based on 2009. This is 24 years later on average.
31See for example the Federal Reserve Bulletin 09/2017 Vol 103, No. 3, which shows that median net worth is

the highest for household whose head is 65-74 years of age. Their median net worth is 5 times larger than
households aged 35-44.

32https://www.ssb.no/inntekt-og-forbruk/artikler-og-publikasjoner/naer-hver-tredje-over-65-ar-betaler-
formuesskatt
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Figure 2: Assessed Tax Values and Observable Characteristics

The graphs below show the effect on actual tax assessment (as observed in tax returns), past transaction prices and pre-treatment
incomes of living in a boundary region where hedonic pricing model coefficients imply a one log-point assessment premium on
the high assessment side. Panel A considers log tax assessment in 2010 to verify the treatment discontinuity. Panel B considers
the smoothness of observed past log transaction prices (2000–2009). Panel C considers log labor incomes in 2009. The effects are
estimated separately for geographic bins, according to the different location measures. The top row uses distance in kilometers,
where households on the low-assessment side are given a negative distance. The second row uses (similarly signed) distance scaled
by the distance between the two municipal centroids. Bins with less than 1% of observations are not plotted. The size of the circles
corresponds approximately to the relative size of that bin in the estimation sample. Estimated coefficients stem from estimating
a coefficient on ∆i in equation 23 separately for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. This
specification includes a vector of housing controls, but no household characteristics. Panel B includes all home-owners present
during 2009 who purchased their home during 2000-2009, and is not subject to the main sample restrictions. A robustness exercise
is performed in Table 10.

Panel A shows that for a given model-implied treatment discontinuity, ∆i, assessed housing
wealth does indeed rise by close to ∆i log-points. As expected, the coefficient does not vary
significantly other than at the discontinuity, given that only observable characteristics are used
for tax assessment.33 Formal tests of the presence of any discontinuities are performed in
subsection 5.2.

Panels B and C show how past transaction prices (using transactions during 2000-2009) vary
geographically. Regardless of which geographic measure is used, these variables do not appear
to behave discontinuously at the treatment boundary. I perform formal tests of the presence of
discontinuities in Tables 10 and 11, respectively, in subsection 5.9. From Table 10 column (2),
we see that if all within-boundary variation in observed transaction prices were attributable
to the treatment discontinuities, rather than smooth geographic variation, the jump should be
approximately 0.8. However, these plots reveal that we are closer to the ideal scenario of a
33The slight positive coefficient may be explained by the fact that tax-return observed TaxV al also in-

cludes the value of secondary homes. Some fraction of households will thus have TaxV al = TaxV al
∧

+
Value of Secondary Home. The propensity to own a secondary is higher for wealthier households, and as we
move towards the right on the geographic axis, households get richer.

23



true jump of 0. Similarly for labor incomes, in Table 11, column (2), we see that if the entire
correlation between model-implied tax assessments and incomes were driven by a discontinuity,
the observed jump should be approximately 0.15.

The key take-away from these plots is that past transaction prices and labor income change
non-linearly relative to border distance measured in kilometers, but linearly relative to scaled
border distance. While visual inspection does not suggest a discontinuity in labor incomes,
a formal test in Table 11, column 3, where slopes on border distance (in km) are estimated
with side-specific second-order polynomials, shows a discontinuity of 0.1, significant at the 1%
level. Thus in order for regression-estimates to agree with our visual inspection, we either need
polynomials of an even higher order, or further limit the sample, both of which would have
adverse effects on precision.

Formal tests of a discontinuity using scaled border distance (linear slope on each side)
in Table 11, column 4, finds no evidence of a discontinuity, and a point-estimate of 0.002.
Comparisons of formal tests of discontinuities on past transaction prices provide similar results.
My parametric approach for accounting for cross-border heterogeneity in density thus appears
to be an attractive way to avoid the detection of non-existing discontinuities without estimating
higher-order polynomials in border-distance or losing power by focusing on narrow bands around
the borders.

5.2 First Stage Effects on Wealth Tax Outcomes

My main specifications will estimate the effect of increased tax assessment on household
outcomes. In order to relate these estimates to more generalizable quantities, I also estimate the
effects of tax assessment on wealth tax outcomes. Specifically, I provide reduced-form estimates
of how changes in (model-implied) tax assessment affects the extensive margin propensity to
pay a wealth tax and the amount subject to a wealth tax. I show these results graphically in
Figure 3. The pre-period (placebo) version of these plots can be found in Figure A.7 in the
Appendix.

I also calculate the impact on the marginal and average after-tax rates-of-return. The esti-
mates isolate the effect coming through wealth taxation, thereby excluding potential behavioral
responses affecting the rate-of-return these households achieve. These estimates, and the exact
methodologies, are provided in Table 1, which uses the scaled border distance specification.
Table A.9 in the Appendix provides the version using the unscaled border distance (in km)
specification.

In Figure 3, I show clear evidence of a discontinuous treatment effect in terms of the amount
subject to a wealth tax (Panel A, rows 1 and 2) and the probability of facing a positive marginal
wealth tax rate (Panel B, rows 1 and 2). A 1-log point increase in model-implied tax assessment
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increases the amount of taxed wealth by between 0.5 to 0.9 MNOK, and increases the propensity
to pay a wealth tax by about 25 percentage points, or roughly 42% relative to a mean of
60%.

Figure 3: Graphical Presentation of the Reduced-Form Effects on Wealth
Tax Exposure

This graph shows the reduced-form effects of increased tax assessment on (A) how much of household savings is subject to a wealth
tax, i.e., the amount of wealth above the tax threshold, and (B) whether or not a household pays a wealth tax. These outcomes
are measured during 2010–2015. The first row uses distance in kilometers, where households on the low-assessment side are given a
negative distance. The second row uses (similarly signed) distance scaled by the distance between the two municipal centroids. The
fitted lines and discontinuities for correspond to reduced-form regressions using the regression specification in equation 19. 95%
Confidence bands are represented by dashed lines. All panels consider post-period saving outcomes for the full sample of households
with initial positive taxable net wealth in 2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately
for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The size of each circle correspond approximately to
the relative number of observations in that bin.

Row 1 uses distance in kilometers as the running variable, and shows larger effects in terms
of the amount subject to a wealth tax in Panel A. The reason is likely that households located
near the boundary (in a kilometer sense) tend to be drawn from more urban areas (See Figure
A.2 in the Appendix.) House prices in more urban areas are higher, which implies that a given
percent increase leads to larger level shifts and thereby larger effects on the total amount subject
to the wealth tax.

In Table 1, I also include the first stage effect of increasing model-implied tax assessment on

25



actual (as observed in tax returns) tax assessment, log(TaxV al). This coefficient is 0.8194 in
the full sample, and thus fairly close to 1. A coefficient of 1 would be expected in the absence
of moving and ownership of secondary homes (See end of Section 2.1.1 for a discussion of why
the coefficient will be less than one). In column (2) I provide the estimates corresponding to
Panel B, row 2, in Figure 3. Column (3) shows the effect on the marginal rate-of-return, which
is roughly the coefficient in column (1) multiplied by the average wealth tax rate of 1.04%.
Column (4) shows the effect on the amount of wealth above the threshold, corresponding to
Panel A, row 2, in Figure 3.

Table 1: First Stage Effects on Wealth Tax Outcomes

This table provides the reduced-form using scaled border distance as the geographic measure in equation 19. Column (1) considers
the tax value of housing, as observed in tax returns. Column (2) considers the effect on being above the wealth tax threshold.
Column (3) considers the effect on the marginal rate-of-return, by isolating extensive margin effects from wealth taxation. This
is done by defining the dependent variable to be −τt1[TNWi,t > Thresholdt]. Column (4) examines the effect on the amount
above the wealth tax threshold, 1[TNWi,t > Thresholdt](TNWi,t − Threshold). Column (5) considers isolates the effect of
increased wealth taxation on the average rate-of-return. This is done by defining the dependent variable as −τt1[TNWi,t >
Thresholdt](TNWi,t − Threshold)/TNWi,t, which is evaluated as 0 if TNWi,t ≤ 0. pp is short for percentage points, and
indicates that coefficients (SEs) are multiplied by 100. Standard errors, provided in parenthesis, are clustered at the census tract
level.

Extensive Margin Extensive and intensive margin

log(TaxV al) 1[TNW > Threshold] rmarginal AmountAbove raverage

(pp.) (pp.)

(1) (2) (3) (4) (5)

Full sample

log(TaxV al
∧

) 0.8194*** 0.2545*** -0.2675*** 489959*** -0.1544***
(0.0316) (0.0130) (0.0136) (75376) (0.0083)

F(β̂ = 0) 672 383 388 42 347

Households above tax threshold in 2009

log(TaxV al
∧

) 0.8450*** 0.2047*** -0.2159*** 740511*** -0.1713***
(0.0440) (0.015926) (0.0166) (120820) (0.0111)

F(β̂ = 0) 369 165 168 38 239

Households below tax threshold in 2009

log(TaxV al
∧

) 0.7994*** 0.2957*** -0.3103*** 237618*** -0.1312***
(0.0414) (0.0196) (0.0205) (48691) (0.0103)

F(β̂ = 0) 373 227 230 24 162

Scaled Border Distance Yes Yes Yes Yes Yes

Column (5) provides the effect on the average rate-of-return. We see that the effect on the
marginal rate-of-return in column (3) is larger than the effect on the average rate-of-return in
column (5). In light of my conceptual framework introduced in section 3, this suggests that the
income effects associated with changing a linear rate-of-return are generally muted. This implies
that any finding that saving increases due to higher tax assessment would be indicative of a
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low (intertemporal) substitution effect, and in general that my reduced-form findings provide a
lower bound of the saving effect of changing a linear rate-of-return (where average and marginal
rates are affected equally).34

In general, the quasi first stage estimates, such as those in Table 1, should be interpreted
with some caution, since they may be affected by behavioral responses. For example, if house-
hold Taxable Net Wealth is extremely elastic with respect to wealth taxation, increased tax
assessment may cause households to lower TNW sufficiently to avoid having to pay a wealth
tax. Such behavior would push the first stage estimates towards zero. However, as I will show,
behavioral responses are modest. I therefore do not believe that this is a first order concern,
and that this framework thus provides useful quantities with which to compare the subsequent
estimates of how increases in tax assessment affect household behavior.

5.2.1 Heterogeneous responses

The conceptual framework in Section 3 suggests that income effects are amplified (muted)
to the extent that the effect on the average rate-of-return is larger (smaller) than the effect
on the marginal rate-of-return. Table 1 above suggests that income effects are muted in the
full sample of households, as the effect on the marginal rate-of-return is 0.2675/0.1544-1=73%
larger. This underlies some significant heterogeneity: In the above sample, the effect on the
marginal rate-of-return is only 19.5% larger than the effect on the average rate-of-return, while
in the below sample, it is 125% larger. I would therefore expect to see more (positive) saving
responses in the above sample.35

The conceptual framework also suggests that income effects are smaller when future incomes,
Y2, are large relative to initial income and wealth, Y1, i.e., when the human wealth effect is
larger. In my empirical setting, households whose initial taxable wealth was above the threshold
differ from those initially below the threshold along three key characteristics, as shown in the
summary statistics in Table A.1: (1) They are slightly older (2 years at the mean), but have
similar current levels of labor incomes, thus likely face lower future incomes due to retirement.
34This assumes that Taxable Net Wealth is the relevant definition of savings, which is done in Jakobsen et al.

(2020). Given the definition of TNW in my setting, this is akin to assuming that 25% of housing wealth counts
as consumption-planning relevant savings. In the calibration exercise at the end of this paper, I instead define
Gross Financial Wealth (GFW) to be the main measure of savings. The effect on the average rate-of-return
is then scaled up by the ratio of the average TNW to the average GFW (1.741) to 0.27 pp., which is close to
the effect on the marginal rate-of-return.

35These qualitative differences hold if we consider returns on Gross Financial Wealth (GFW). The marginal
returns are the same, but the average returns must be adjusted, since TNW is typically larger than GFW.
The effect on the average rate-of-return on GFW is thus larger. By scaling up the average rate-of-return effect
by the ratio of the means of TNW and GFW in the respective samples, we get ratios of the effect on the
marginal versus the average rates-of-return of 1.00 (=0.2675/((1741/1000)*0.1544)) in the full sample, 0.71
(=0.2169/((2541/1432)*0.1713)) in the above sample, and 1.45 (=0.3103/((758/466)*0.1312)) in the below
sample.

27



(2) They have more initial wealth as of 2009. These two elements suggest that households
with initial taxable wealth above the threshold will save more or dissave less when subjected
to increased tax assessment. If both income effects and substitution effects are large, this may
offer differential effects (in terms of the sign of the savings response) based on initial taxable
wealth.

5.3 Financial Saving

Figure 4: Graphical Presentation of the Effects of
Increased Tax Assessment on Financial Saving

The graphs below show the reduced-form effect on savings of living in a boundary region where households face a one log-point tax
assessment premium on the high assessment side. This effect is estimated separately for geographic bins, according to the different
location measures. The discontinuities at zero represent the estimated reduced-form causal effect of a one log-point increase in
(model-implied) tax assessment on household savings, measured as yearly log-differences of Gross Financial Wealth, adjusted for
wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers post-period outcomes (2010–
2015). The first row uses distance in kilometers, where households on the low-assessment side are given a negative distance. The
second row uses (similarly signed) distance scaled by the distance between the two municipal centroids. The fitted lines and
discontinuities for correspond to reduced-form regressions using the regression specification in equation 19. 95% Confidence bands
are represented by dashed lines. All panels consider the full sample of households with initial positive taxable net wealth in 2009.
Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than estimating coefficients
on log(TaxV al
∧

i) and gb(ci)∆i. The size of each circle correspond approximately to the relative number of observations in that bin.

In this section, I provide the results on household financial saving. Figure 4 shows the
reduced-form results graphically for two of the main specifications. In Table 2, I provide
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the corresponding results, using an Instrumental Variables specification, for the full set of
geographic running variables. Both Figure 4 and Table 2 consider the effect on wealth-tax
adjusted financial saving. The wealth tax adjustment (discussed in subsection 4.3.1) removes
the mechanical effects of increased taxation on savings, essentially by treating tax payments as
saving. Table 3 shows results absent this adjustment, and also considers different components
of financial wealth.

Table 2: The (IV) Effect of Increased Tax Assessment
on Household Financial Saving Behavior

This table shows the effect of changing tax assessment on financial saving during 2010–2015. log(TaxV al) is instrumented for
with the model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity, and does not allow
slopes on housing characteristics, Hi, to vary at the border area level. Column (2) allows slopes to vary at the border area
level, but does not address within-border area geographic heterogeneity. Columns (3)-(6) address geographic heterogeneity
according to the main IV specification in equation 21. Column (4) corresponds to the preferred (scaled) border distance
measure. Census-tract level clustered standard errors are in parenthesis. Sample size is in brackets. F is the Kleinbergen-Paap
rk-F statistic of the first-stage regression. One, two, and three stars indicate that estimates are statistically different from zero
at the 10, 5, and 1 percent levels, respectively.

log(GFWt + wtaxt−1)− log(GFWt−1) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0229*** 0.0252*** 0.0231*** 0.0238*** 0.0270** 0.0232***
(0.0011) (0.0038) (0.0083) (0.0089) (0.0127) (0.0080)

N [1842603] [1842508] [1459917] [1472113] [1472113] [1649409]
F 40411 2960 845 683 326 837

Households Initially Above Threshold

log(TaxV al) 0.0176*** 0.0235*** 0.0183* 0.0239** 0.0535*** 0.0291***
(0.0014) (0.0050) (0.0109) (0.0121) (0.0185) (0.0113)

N [1013476] [1013369] [817054] [817214] [817214] [912464]
F 27576 1770 496 376 163 420

Households Initially Below Threshold

log(TaxV al) 0.0291*** 0.0265*** 0.0234* 0.0216* -0.0003 0.0166
(0.0016) (0.0057) (0.0129) (0.0129) (0.0169) (0.0111)

N [829127] [829022] [642762] [654804] [654804] [736853]
F 24703 1940 430 374 189 463

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

Figure 4, Panel A, rows 1 and 2, both show the estimated effect of increased model-implied
tax assessment on pre-period financial saving for the full analysis sample. The first row uses
(unscaled) border distance in kilometers as the running variable, while the second uses scaled
border distance. Neither specification can reject the null hypothesis of no pre-trends. The
visual evidence is consistent with this conclusion. Panel B, rows 1 and 2 show the effect
on financial saving. Both specifications find that a 1 log-point increase in model-implied tax
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assessment increases saving by approximately 2%. Both discontinuities are significant at the
1% level.

Table 2 provides the regression estimates using the IV specification, where tax-return ob-
served tax assessment (TaxV al) is instrumented for by model-implied tax assessment (TaxV al

∧
).

The first row of results show the estimated effects of the full sample. The estimates in columns
(3) and (4) correspond to the reduced-form estimates in rows 1 and 2, respectively, in Panel B
of Figure 4. The effects are consistent across specifications, and significantly different from zero
at the 1% level for all but the specification that estimates slopes on border distance separately
for each border area (column 5). Some of the specifications suggest that effects are weaker for
households initially below the wealth tax threshold. This is consistent with the finding from
Table 1 that these households are see relatively smaller income effects, since their marginal
rate-of-returns is affected considerably more than the average rate-of-return.

To infer the implied saving propensity, namely how many NOK saving increases by for each
additional NOK subject to a wealth tax, I perform the following calculation. Table 1 shows
that the effect of a 1 log-point increase in TaxV al increases the amount subject to a wealth
tax by NOK 489,959, NOK 740,511 and NOK 237,618, for the full, above and below samples,
respectively. To relate these effects do the IV estimates, we must divide these amounts by the
first stage coefficients of 0.8194, 0.8450, and 0.7994, respectively. This addresses the fact that
the IV estimates provide estimated effects of increases in log(TaxV al), while the estimates in
Table 1 provides the estimated effects of increases in model-implied log(TaxV al

∧
). While the

resulting NOK effect on the amount subject to a wealth tax goes into the denominator, the
following number enter the numerator. I take the estimated effects on the saving rate, 0.0238,
0.0239, and 0.0206, and multiply with the respective sample means of GFW of NOK 1,000,000,
NOK 1,432,000, and NOK 466,000, respectively. This provides propensities (SEs) to increase
saving out of increased wealth tax exposure of 0.0398 (0.0149), 0.0391 (0.0198), and 0.0339
(0.0202), respectively for the three samples.

For the full sample, these numbers suggest that households save approximately 4 NOK per
additional NOK of wealth taxes. That includes approximately 1 NOK that goes towards paying
the wealth taxes for that year. The residual 3 NOK may be interpreted as additional saving to
offset future wealth tax payments. This seems reasonable from a life-cycle perspective, given
that the average household is 62 years and thus not far from retirement.

I perform similar calculations to calculate the implied semi-elasticities of saving to the
marginal rate-of-return. I divide the estimated coefficients by the (reduced-form) effect on the
marginal rate of return, rmarginal, which themselves are divided by the first stage coefficients in
column (1) of Table 1. This provides semi-elasticities of saving with respect to the marginal
rate-of-return of -7.2904 (2.2762), -9.3541 (4.7357), and -5.5646 (3.3233), for the full, above, and
below samples, respectively. This first estimate may read the following way. a 0.1 percentage
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point decrease in the marginal rate-of-return increases the saving rate out of financial wealth
by 0.73 percentage points.

I perform a number of robustness tests. In Table A.3, I provide results when using tri-
angular (distance-based) weights. All standard errors provided in the main text are clustered
on the census-tract level. In A.4, I provide standard errors when clustering at the household
or municipality level. Standard errors are slightly smaller when accounting for correlation in
the error term across larger geographic areas (municipalities). In Tables A.6, A.7, and A.8, I
provide estimated IV effects when varying the location measure cut-offs for the scaled border
distance measure, border distance in KM, and the relative location measure, respectively. Ef-
fects are qualitatively similar when varying the bandwidths, but tend to be larger (and more
noisily estimated) the more narrow the bandwidths are.

5.3.1 Decompositions of Financial Saving Effect

In Table 3 below, I consider the effects on saving, when not adjusting for wealth tax payments
in column (2). In column (3), I further isolate responses to changes in third-party reported
domestic deposits. In column (4), I only consider items that include self-reported items, such as
foreign wealth and outstanding claims. Column (1) provides the the results from the baseline
definition for reference. I provide results using scaled border distance as the geographic running
variable.

Table 3: Decomposition of Financial Saving Response

In this table, I provide the IV effects using different measures of financial savings. Column (1) uses the baseline definition, which
adjusts for wealth tax payments. Column (2) does not account for wealth tax payments. (3) Only considers domestically-held
(and thus third-party reported) holdings of deposits. (4) Only considers self-reported wealth items: foreign financial assets
and outstanding claims. Reduced-form standard errors are provided in parenthesis, and are clustered on the census tract level.

Adj. ∆ log(GFW ) Unadj. ∆ log(GFW ) ∆ log(Dom. Deposits) ∆ log(Self-Rep. GFW)

(1) (2) (3) (4)

Full sample

log(TaxV al) 0.0238*** 0.0149 0.0154 0.0254***
(0.0089) (0.0091) (0.0099) (0.0096)

Households Initially Above Threshold

log(TaxV al) 0.0239** 0.0144 0.0093 0.0254
(0.0121) (0.0127) (0.0141) (0.0160)

Households Initially Below Threshold

log(TaxV al) 0.0216* 0.0131 0.0201 0.0229**
(0.0129) (0.0129) (0.0139) (0.0097)

Controls

Household Characteristics Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes
– Border specific Yes Yes Yes Yes

Border Distance Controls
– Scaled Yes Yes Yes Yes
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Comparing columns (1) and (2) suggest that around 0.149/0.0238=63% of the effect on
saving comes from increased accumulation of financial wealth, and 37% comes from increased
wealth tax payments. I perform the same exercise as in the previous section to calculate the
implied propensities to save out of increased wealth tax exposure. I find that households in
the full, above, and below samples, increase their savings (SE) by NOK 0.0249 (0.0152), 0.0235
(0.0208), and 0.0205 (0.0202) for each additional NOK subject to a wealth tax, respectively.
The implied semi-elasticities are -4.5641 (2.7875), 5.6359 (4.9706), and 3.3748 (3.3233), respec-
tively.

In column (3) I focus on changes in domestic holdings of deposits, which is the primary
(financial) saving vehicle for Norwegian households. Deposits are broadly defined, and include
various forms of low-risk savings vehicles offered through banks. From the summary statistics
in Table A.1, we see that deposits make up 98% (80%) of financial wealth for the median (mean)
household in the full sample, and 94% (77%) for the median (mean) household in the above
sample.36

While the estimated effect on deposit growth is not statistically significant, it is important
to note that this specification does not account for the mechanical effects of increased wealth
taxation. The relevant null hypothesis is therefore not zero, but the implied mechanical effect
on deposits. Under the reasonable assumption that wealth taxes are paid out of deposits, the
standard no-behavioral-response null-hypothesis would be a point estimate of -0.0045.37 This
would imply a t-statistic (column 3, full sample) of (0.0154+0.0045)/0.0099=2.01.

In column (4), I only consider self-reported items, and find qualitatively similar results. This
suggests, that even though there is some scope for misreporting responses along asset classes
such as foreign wealth, this does not seem to materialize itself as less reported wealth.

5.4 Debt

In this section, I explore the effects on household debt. Figure 5 shows the reduced-form
results for the full sample. The first row uses the (unscaled) border distance specification, while
the second row uses scaled border distance as the geographic running variable. Panel A finds
no evidence of pre-trends in debt accumulation, and Panel B finds no evidence for any effect
36This is higher than in the U.S. Fagereng et al. (2018) provides a comparison of the financial balance sheets of

U.S. consumers present in the Survey of Consumer Finances (SCF) and Norwegian households by percentiles of
financial wealth. This comparison accounts for the fact that pensions are largely provided by the government
and therefore do not appear on household balance sheets. From their Table OA.1, I see that SCF households
in the 90th to 95th percentile hold 47% of their (non-private equity) financial wealth in deposits and bonds.
The comparable share for Norwegian households found from Table 1A is 78%.

37In Table 1, we see that a 1 log point increase in TaxVal reduces the average rate-of-return by
0.1544/0.8194=0.1884 pp. If I assume that the wealth taxes are paid out of Deposits (rather than out of
all of TNW), the reduction in Deposits would be 0.1884% * 1741/722=0.4543%, where 722 is the mean
amount of TNW and 722 is the mean amount of Deposits, in thousands of NOK, obtained from Table A.1.
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during the post-period, 2010–2015.

Figure 5: Debt

The graphs below show the effect on log-differenced debt of living in a boundary region where households face a one log-point tax
assessment premium on the high assessment side. This effect is estimated separately for geographic bins, according to the different
location measures. The discontinuities at zero represent the estimated reduced-form causal effect of a one log-point increase in
(model-implied) tax assessment on household savings, measured as yearly log-differences of Gross Financial Wealth, adjusted for
wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers post-period outcomes (2010–
2015). The first row uses distance in kilometers, where households on the low-assessment side are given a negative distance. The
second row uses (similarly signed) distance scaled by the distance between the two municipal centroids. The fitted lines and
discontinuities for correspond to reduced-form regressions using the regression specification in equation 19. 95% Confidence bands
are represented by dashed lines. All panels consider the full sample of households with initial positive taxable net wealth in 2009.
Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than estimating coefficients
on log(TaxV al
∧

i) and gb(ci)∆i. The size of each circle correspond approximately to the relative number of observations in that bin.

In Table 4, I show the results from the IV specifications using the full set of specifications,
and providing results separately for the different subsamples. All the specifications that control
for unobserved geographic heterogeneity (columns 3–6) find no evidence that debt increases
as a result of higher tax assessment. The coefficients in column (5) suggests that households
reduce debt. However, this result can not be inferred from the other specifications. The finding
of little to no effect on debt suggests that marginal savings go towards increasing financial
wealth rather than to reduce debt. This seems reasonable since the sample consists of older
and wealthier households with fairly little debt.38

38The median household only has NOK 138,000 (USD 23,000) in debt (See Table A.1).
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Table 4: Debt

This table shows the effect of tax assessment on log-differenced debt during 2010–2015. log(TaxV al) is instrumented for with
the model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity, and does not allow
slopes on housing characteristics, Hi, to vary at the border area level. Column (2) allows slopes to vary at the border area
level, but does not address within-border area geographic heterogeneity. Columns (3)-(6) address geographic heterogeneity
according to the main IV specification in equation 21. Column (4) corresponds to the preferred (scaled) border distance
measure. Census-tract level clustered standard errors are in parenthesis. Sample size is in brackets. F is the Kleinbergen-Paap
rk-F statistic of the first-stage regression. One, two, and three stars indicate that estimates are statistically different from zero
at the 10, 5, and 1 percent levels, respectively.

∆ log(Debt) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0300*** 0.0265*** 0.0057 0.0022 -0.0356* -0.0060
(0.0016) (0.0058) (0.0128) (0.0135) (0.0189) (0.0119)

N [1842624] [1842529] [1459935] [1472130] [1472130] [1649429]
F 40414 2960 845 683 326 836

Households Initially Above Threshold

log(TaxV al) 0.0296*** 0.0249*** 0.0153 -0.0019 -0.0408 -0.0025
(0.0022) (0.0080) (0.0170) (0.0186) (0.0276) (0.0168)

N [1013495] [1013388] [817070] [817229] [817229] [912482]
F 27580 1770 496 375 162 419

Households Initially Below Threshold

log(TaxV al) 0.0307*** 0.0286*** -0.0040 0.0098 -0.0162 -0.0024
(0.0024) (0.0082) (0.0189) (0.0194) (0.0246) (0.0164)

N [829129] [829024] [642764] [654806] [654806] [736855]
F 24704 1940 430 374 189 463

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

5.5 Portfolio Allocation

5.5.1 Risky Share of Financial Wealth

In this section I examine the effect of increased tax assessment on the share of financial
wealth invested in the stock market. Figure 6 shows that there are no discontinuities during
either the pre-period or post-period.

I perform a similar calculation as in the previous sections to calculate implied (semi-semi)
elasticities. A 1 percentage point decrease in the after-tax rate-of-return changes the the stock
market share by 0 (0.4288), -0.2348 (0.7828), and 0.2834 (0.5410) percentage points, for the
full, above, and below samples, respectively, where standard errors are provided in parenthesis.
In the full sample, I can thus rule out (at the 95% level) that a 1 percentage point reduction
in the net-of-tax return reduces the stock market share by more than 0.84 percentage points
and I can rule out an elasticity (dividing the effect by the mean share of financial wealth, and
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1 percentage point by an average rate-of-return of 2%) larger than 0.17 in absolute value.

Figure 6: Stock Market Share

The graphs below show the effect on the one-year differenced stock market share of living in a boundary region where households
face a one log-point tax assessment premium on the high assessment side. This effect is estimated separately for geographic bins,
according to the different location measures. The discontinuities at zero represent the estimated reduced-form causal effect of a one
log-point increase in (model-implied) tax assessment on household savings, measured as yearly log-differences of Gross Financial
Wealth, adjusted for wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers post-
period outcomes (2010–2015). The first row uses distance in kilometers, where households on the low-assessment side are given
a negative distance. The second row uses (similarly signed) distance scaled by the distance between the two municipal centroids.
The fitted lines and discontinuities for correspond to reduced-form regressions using the regression specification in equation 19.
95% Confidence bands are represented by dashed lines. All panels the full sample of households with initial positive taxable
net wealth in 2009. Scatter-points are estimated using the specification in equation 19, excluding geographic trend controls, g,
allowing the coefficient on ∆i to vary by bin. The size of each circle correspond approximately to the number of observations in
that bin.

A potential hypothesis is that households take on more risk in order to increase their capital
gains (in expectation) and thereby offset the effects of increased taxation. Focusing on the full
sample, I multiply the estimated effect (and the SEs) by the average amount of financial wealth
in the sample and divide by the estimated effect on the amount subject to the wealth tax to
obtain a propensity to save in stocks out of wealth tax exposure. Given that this effect arises
through changes in the stock market share, this would be a propensity to save in stocks, above-
and-beyond what would be implied by maintaining a constant risky share. This exercise yields
a 95% confidence interval of ±1.96*0.0014*1000000/489959=[-0.0056,0.0056]. If we assume a
risk premium of 5%, then the confidence interval on the effect on expected capital gains is [-

35



0.0003,0.0003]. This does not come close to offsetting the effect on yearly wealth tax payments
of around 0.0104 per additional NOK subject to the wealth tax.

In Table A.5 in the Appendix, I provide results when instead considering a broader mea-
sure of the risky share of financial wealth. This measure also includes holdings of non-listed
stocks, i.e., private equity. With this definition, the effects suggest a (statistically insignificant)
reduction in risk-taking. For the full sample, a 1 percentage point reduction in the after-tax
rate-of-return reduces the risky share of financial wealth by 0.8577 (SE=0.5514) percentage
points.

Table 5: Stock Market Share

This table shows the effect of tax assessment on the (one-year differenced) share of wealth allocated to the stock market during
2010–2015. log(TaxV al) is instrumented for with the model-implied variation in tax assessment. Column (1) does not address
geographic heterogeneity, and does not allow slopes on housing characteristics, Hi, to vary at the border area level. Column
(2) allows slopes to vary at the border area level, but does not address within-border area geographic heterogeneity. Columns
(3)-(6) address geographic heterogeneity according to the main IV specification in equation 21. Column (4) corresponds to
the preferred (scaled) border distance measure. Census-tract level clustered standard errors are in parenthesis. Sample size
is in brackets. F is the Kleinbergen-Paap rk-F statistic of the first-stage regression. One, two, and three stars indicate that
estimates are statistically different from zero at the 10, 5, and 1 percent levels, respectively.

∆SMS (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0004** 0.0004 -0.0001 0.0000 -0.0012 0.0001
(0.0002) (0.0006) (0.0014) (0.0014) (0.0020) (0.0012)

N [1835781] [1835687] [1454510] [1466682] [1466682] [1643325]
F 41089 3022 857 698 332 850

Households Initially Above Threshold

log(TaxV al) 0.0008*** 0.0010 0.0004 0.0006 -0.0010 0.0007
(0.0002) (0.0008) (0.0018) (0.0020) (0.0029) (0.0017)

N [1008692] [1008586] [813160] [813335] [813335] [908140]
F 28321 1818 509 387 166 430

Households Initially Below Threshold

log(TaxV al) -0.0004 -0.0004 -0.0011 -0.0011 -0.0015 -0.0009
(0.0003) (0.0009) (0.0022) (0.0021) (0.0028) (0.0017)

N [827089] [826985] [641250] [653253] [653253] [735094]
F 24962 1952 431 378 192 466

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

5.5.2 Interest Rates

Below I present the results for realized interest rates on deposits and debt. Figure 7 shows
the results graphically, focusing on the scaled border distance specification.

I find no statistically significant effects on the interest rates on either deposits or debt. To
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speak to what effects I can rule out, I focus on the estimated effect on interest rates on deposits
for the full sample, using the scaled border distance specification in column (2). This specifica-
tion yields an (semi-semi) elasticity of -0.000101/(-0.002675/0.8194)=0.0309 (SE=0.0380). In
other words, the effect of a 1 percentage point decrease in the marginal after-tax rate-of-return
on realized returns has a 95% confidence interval of [-0.0437, 0.1053] percentage points.

Figure 7: Interest Rates on Deposits and Debt

The dependent variable is one-year differences realized interest rates on deposits (left) and debt (right). This graph only
considers households with taxable net wealth above the wealth tax threshold in 2009 (full sample). The discontinuities
at zero represent the estimated causal effect of a one log-point increase in tax assessment, and correspond to the
estimated coefficients in Table 6 columns (1) and (3) for the left and right hand side figures, respectively. Both graphs
use scaled border distance as the geographic running variable.

To calculate back-of-the-envelope bounds on how much of increased wealth tax payments
is offset by realizing better returns on deposits, I perform the following exercise. Multiplying
the coefficient in column (2) of -0.000101 (SE=0.000124) by the mean amount of deposits of
0.722 MNOK yields a NOK effect of 73 (89). At the same time, a 1 log increase in TaxVal will
increase the amount of wealth subject to a wealth tax by 0.49MNOK/0.8194 ≈ 0.6 MNOK.
The propensity to earn more interest out of increased wealth tax exposure is thus 0.000121
(SE=0.000148), which is small relative to the impact on the yearly wealth tax bill of around
1.04%.
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Table 6: Effects of Increased Tax Assessment on
Interest Rates on Deposits and Debt

This table shows the IV effects on realized interest rates on deposits and debt. Realized interest rates for X ∈ {Deposits,
Debt} are calculated as Interest(X)i,t/(0.5Xi,t + 0.5Xi,t−1) Only households with debt in excess of NOK 10,000 are included
when examining the interest rate on debt. Standard errors are provided in parenthesis, and are clustered on the census tract
level. Sample sizes are provided in brackets.

Interest Rates on Deposits Interest Rates on Debt

(1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) -0.000145 -0.000101 -0.000131 0.000156 0.000023 0.000046
(0.000119) (0.000124) (0.000107) (0.000216) (0.000228) (0.000197)

N [1230385] [1240695] [1390122] [725506] [726694] [812642]
F 983 798 976 670 540 628

Households Initially Above Threshold

log(TaxV al) -0.000032 -0.000023 -0.000074 0.000379 -0.000053 -0.000262
(0.000154) (0.000167) (0.000147) (0.000393) (0.000439) (0.000409)

N [689009] [689150] [769440] [291170] [286855] [318960]
F 566 428 483 271 197 204

Households Initially Below Threshold

log(TaxV al) -0.000390** -0.000218 -0.000224 0.000057 0.000137 0.000224
(0.000193) (0.000181) (0.000159) (0.000255) (0.000262) (0.000212)

N [541270] [551446] [620587] [434182] [439676] [493528]
F 504 438 535 455 378 464

Controls

Household Controls Yes Yes Yes Yes Yes Yes
Housing Controls Yes Yes Yes Yes Yes Yes
– Border specific Yes Yes Yes Yes Yes Yes

Border Distance (KM) Yes – – Yes – –
Border Distance (Scaled) – Yes – – Yes –
Relative Location Control – – Yes – – Yes
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5.6 Labor Income

5.6.1 Total Taxable Labor Income

Figure 8: Labor Income

The graphs below show the effect on one-year log-differenced labor income of living in a boundary region where households face
a one log-point tax assessment premium on the high assessment side. This effect is estimated separately for geographic bins,
according to the different location measures. The discontinuities at zero represent the estimated reduced-form causal effect of
a one log-point increase in (model-implied) tax assessment on household savings, measured as yearly log-differences of Gross
Financial Wealth, adjusted for wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers
post-period outcomes (2010–2015). The first row uses distance in kilometers, where households on the low-assessment side are
given a negative distance. The second row uses (similarly signed) distance scaled by the distance between the two municipal
centroids. The fitted lines and discontinuities for correspond to reduced-form regressions using the regression specification in
equation 19. 95% Confidence bands are represented by dashed lines. All panels consider the full sample of households with initial
positive taxable net wealth in 2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di
bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The size of each circle correspond approximately to the
relative number of observations in that bin.

This section shows the results on household total taxable labor income. This definition of
labor income includes transfers, such as UI benefits, labor-related pension payments, sickness
and parental leave benefits. Figure A.9 shows the reduced-form effects for the full sample.

Table 7 shows estimated coefficients using different specifications and an IV setup. There
is meaningful within-sample variation in the point-estimates across the specifications that ad-
dress geographic heterogeneity (columns 3–6). To calculate implied elasticities and propensi-
ties, I take the average coefficient (and standard errors) across these specifications. Performing
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the same exercises as in the previous sections, I find an implied semi-elasticity (SE) of la-
bor income to the marginal after-tax rate-of-return of -2.6190 (1.6388), -7.2798 (3.1996), and
0.0966 (1.6552), for the full, above, and below samples, respectively. A similar exercise yields
propensities to earn (pre-tax) of 0.0099 (0.0062), 0.0147 (0.0065), and -0.0009 (0.0150), respec-
tively.

Table 7: Labor Income

This table shows the effect of tax assessment on log-differenced labor income during 2010–2015. Labor Income is defined as
the sum of wage earnings, self-employment earnings, pensions, and unemployment income. log(TaxV al) is instrumented for
with the model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity, and does not allow
slopes on housing characteristics, Hi, to vary at the border area level. Column (2) allows slopes to vary at the border area
level, but does not address within-border area geographic heterogeneity. Columns (3)-(6) address geographic heterogeneity
according to the main IV specification in equation 21. Column (4) corresponds to the preferred (scaled) border distance
measure. Census-tract level clustered standard errors are in parenthesis. Sample size is in brackets. F is the Kleinbergen-Paap
rk-F statistic of the first-stage regression. One, two, and three stars indicate that estimates are statistically different from zero
at the 10, 5, and 1 percent levels, respectively.

∆ log(Labor Income) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0049*** 0.0032 0.0094** 0.0053 0.0132* 0.0063
(0.0006) (0.0021) (0.0045) (0.0050) (0.0074) (0.0045)

N [1844488] [1844392] [1461364] [1473585] [1473585] [1651083]
F 40163 2968 839 681 327 837

Households Initially Above Threshold

log(TaxV al) 0.0053*** 0.0026 0.0161** 0.0139* 0.0325*** 0.0119*
(0.0009) (0.0033) (0.0065) (0.0075) (0.0115) (0.0072)

N [1014776] [1014669] [818080] [818244] [818244] [913625]
F 27346 1754 494 375 164 420

Households Initially Below Threshold

log(TaxV al) 0.0039*** 0.0037 -0.0015 -0.0036 -0.0041 0.0005
(0.0008) (0.0026) (0.0059) (0.0063) (0.0082) (0.0053)

N [829712] [829607] [643184] [655247] [655247] [737367]
F 24628 1961 427 374 188 465

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

5.6.2 Salary and self-employment income

In this subsection, I focus on labor income in the form of salary and self-employment income.
This is an important robustness check in my setting, since many of the households in my
empirical setting are past retirement age. This means that a large part of their labor incomes
come in the form of pensions that are the result of previous – unaffected – labor supply. The
summary statistics in Table A.1 shows that for the full sample, the mean of salary and self-
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employment income is 62% that of the more comprehensive definition.
Figure 9 shows the results for the full sample using both the unscaled (km) and scaled

border distance specification. The plots reveal a clear level shift in the post period. While
there is no stark evidence of a pre-trend, the plots suggest slightly higher earnings growth in
the pre-period. In Figure A.10, I provide the same plots, restricting the sample to those initially
above the tax threshold. As I will show in Table 8 below, the effect is driven by this subsample,
and it is thus reassuring that Figure A.10 shows no visual indication of pre-trends.

Figure 9: Salary and Self-Employment Income

The graphs below show the effect on one-year log-differenced labor income of living in a boundary region where households face
a one log-point tax assessment premium on the high assessment side. This effect is estimated separately for geographic bins,
according to the different location measures. The discontinuities at zero represent the estimated reduced-form causal effect of
a one log-point increase in (model-implied) tax assessment on household savings, measured as yearly log-differences of Gross
Financial Wealth, adjusted for wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers
post-period outcomes (2010–2015). The first row uses distance in kilometers, where households on the low-assessment side are
given a negative distance. The second row uses (similarly signed) distance scaled by the distance between the two municipal
centroids. The fitted lines and discontinuities for correspond to reduced-form regressions using the regression specification in
equation 19. 95% Confidence bands are represented by dashed lines. All panels consider the full sample of households with initial
positive taxable net wealth in 2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di
bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The size of each circle correspond approximately to the
relative number of observations in that bin.

This change of definition reveals considerably stronger labor earnings responses. For the full
sample, the coefficients from the IV regressions in Table 8 are 2–4 times larger than those using
the more comprehensive definition in Table 7. For the above sample, estimated coefficients are
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around 3 times larger. This implies that estimated elasticities are correspondingly larger in
magnitude.

Consistent with results using the previous definition, there is noticeable difference in the
responses between households initially above versus those initially below the wealth tax thresh-
old.

Table 8: The Effects of Increased Tax Assessment
On Salary and Self-employment Income

This table shows the effect of tax assessment on log-differenced labor income, excluding pensions and transfers, during 2010–
2015. Labor Income is defined as the sum of wage earnings, self-employment earnings, pensions, and unemployment income.
log(TaxV al) is instrumented for with the model-implied variation in tax assessment. Column (1) does not address geographic
heterogeneity, and does not allow slopes on housing characteristics, Hi, to vary at the border area level. Column (2) allows
slopes to vary at the border area level, but does not address within-border area geographic heterogeneity. Columns (3)-(6)
address geographic heterogeneity according to the main IV specification in equation 21. Column (4) corresponds to the
preferred (scaled) border distance measure. Census-tract level clustered standard errors are in parenthesis. Sample size is
in brackets. F is the Kleinbergen-Paap rk-F statistic of the first-stage regression. One, two, and three stars indicate that
estimates are statistically different from zero at the 10, 5, and 1 percent levels, respectively.

∆ log(Salary and Self-E. Income) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0162*** 0.0159*** 0.0379*** 0.0230** 0.0233 0.0263***
(0.0013) (0.0049) (0.0108) (0.0116) (0.0158) (0.0099)

N [1844488] [1844392] [1461364] [1473585] [1473585] [1651083]
F 40163 2968 839 681 327 837

Households Initially Above Threshold

log(TaxV al) 0.0166*** 0.0194*** 0.0528*** 0.0336** 0.0290 0.0386***
(0.0017) (0.0069) (0.0149) (0.0161) (0.0225) (0.0142)

N [1014776] [1014669] [818080] [818244] [818244] [913625]
F 27346 1754 494 375 164 420

Households Initially Below Threshold

log(TaxV al) 0.0149*** 0.0112* 0.0133 0.0103 0.0094 0.0134
(0.0019) (0.0064) (0.0154) (0.0166) (0.0215) (0.0137)

N [829712] [829607] [643184] [655247] [655247] [737367]
F 24628 1961 427 374 188 465

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

Repeating the calculations in the previous subsection yields semi-elasticities (SEs) of -7.0453
(3.5533), -13.1505 (6.3013), and -2.6535 (4.2765), for the full, above and below samples, respec-
tively. The implied propensities (SEs) to increase yearly pre-tax earnings out of increased
wealth tax exposure are 0.0165 (0.0083), 0.0155 (0.0074), and 0.0159 (0.0257), for the full,
above and below samples, respectively.

Both Tables 9 and 8 reveal much stronger (71% and 65%, respectively) labor earnings re-
sponses when using border distance in kilometers versus scaled border distance as the geographic
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running variable. This is consistent with the finding in Figure 3, that estimated discontinuity
in wealth tax exposure (measured in NOK) is 77% larger when using border distance in kilo-
meters. In other words, while the assessment effects are different, the propensities to earn out
of wealth tax exposure are similar across specifications.

5.6.3 Labor-financed savings

This subsection provides some back-of-the-envelope calculations regarding the extent to
which saving responses are financed by increased labor earnings.

In subsection 5.3.1 I found that the propensity to accumulate more financial wealth out of
increased wealth tax exposure was 0.0249. If we also account for increased tax payments, this
leads to a cumulative saving propensity over 5 years of 0.0249*5 + 5*1.04% = 0.1765. The
yearly propensity to increase total taxable labor earnings of 0.0099 imply a cumulative earnings
propensity of 0.0099 + 2*0.0099 + ... + 5*0.0099=0.1485. Over the course of five years,
households will have earned 0.1485 NOK for each additional NOK subject to the wealth tax.
If I assume an average marginal tax rate of 40%, this implies increased earnings over a 5-year
period of 0.1485*(1-40%)=0.0891. Together, these numbers imply that around 0.0891/0.1765≈
50% of the increase in saving was financed by increased labor earnings. If I instead use the
implied propensity to earn (only salary and self-employment income) of 0.0150, this labor-
financed share is instead (5+...+1)*0.0165*(1-40%)/(0.1765)=84%.

5.7 Year-by-year effects

In this section, I decompose the pooled post-period (2010–2015) results, by estimating
coefficients separately for each year. I plot these results separately for the four main outcome
variables in 10 below, using the scaled border distance specification.

Real responses to capital taxation are likely to be somewhat sluggish. It is therefore useful
to investigate the dynamics of the effect. By showing that the main estimates are not driven
by a single year is consistent with effects being driven by real responses, which are likely
to be somewhat sluggish. For example, Zoutman (2018) finds that his estimated elasticities
are driven by immediate responses and therefore attributes the elasticity high to changes in
reporting behavior.

Panel A considers the effects on financial savings. As a reference, the estimated pooled
coefficients from (corresponding Table 2 column (4) are plotted as horizontal lines. We see that
the savings effect is persistent across the years, and that the yearly coefficients hover around
the pooled coefficient. Panel B similarly shows the yearly estimated effects for the unadjusted
saving measure.

Panel C considers the effects on debt. This reveals a somewhat more interesting pattern.
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The immediate response appears to be to increase debt (or reduce it less), while the opposite
seems to be the case towards 2014–2015. This could be consistent with constrained households
lowering their debt payments to pay for their taxes, but eventually respond to the income effect
and increase their saving by paying off their debts.

Figure 10: Yearly Decomposition of Estimated (Reduced-form) Effects

In this graph, I allow the estimated discontinuities, β̂, to vary by year. Otherwise, the specifications are identical to those in column
(4) of the respective tables, which includes the scaled border distance control. Standard errors are clustered on the census tract
level, and plots indicate 95% confidence intervals for the point estimates. Coefficients are estimated in two different samples: Full
sample corresponds to all households in the analysis sample, and the Above sample is the sample of households with Taxable Net
Wealth above the wealth tax threshold in 2009. The blue solid (green dashed) line corresponds to the pooled regression estimates
for the Full (Above) sample.
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Panel D considers the share of wealth allocated to the stock market. I see no dynamic
effects, and all coefficients are close to zero, as are the pooled estimates.

Panel E considers total taxable labor income. The point-estimates suggest (although this
suggestion is far from statistically significant) that initial responses are somewhat larger, and
that the effects eventually dissipate. This seems highly reasonable, given that the average age
of households is 62 (measured in 2009), and the modal age of retirement in Norway is 67, thus
I expect the median household to retire during 2014–2015. We see a similar pattern in Panel
F, which considers salary and self-employment incomes.

5.8 Subsequent Transaction Prices

In this section, I investigate the effects on subsequent transaction outcomes in terms of the
likelihood of selling and the conditional subsequent sales price. I report these results in Table
9.

In columns (4)-(6) I consider extensive margin effects. The treatment in my setting is
specific to the house that the households own. Households may therefore undo the treatment
by selling their house and moving to an area with lower assessments. I do not believe that
this is likely, given my impression of limited awareness of the geographic aspects of the pricing
model, as well as the likely presence of sizable costs associated with moving. Consistent with
this, I find statistically small effects on the propensity to sell. The estimates show that a 1
log-point increase in TaxV al

∧
increases the likelihood of selling by 1.2 percentage points, and I

can rule out any effects larger than 4.2 percentage points at the 5% level.
In columns (1)-(3) I consider conditional sales prices. The effect of increased tax assessment

(which follows the house) on tax prices likely depends on the propensity of potential buyers to
be subject to a wealth tax. Since most new home-owners finance their purchases with debt, the
net-effect of a house purchase on your Taxable Net Wealth (TNW) is highly negative. This is
because debt is deducted from TNW in its entirety, while the tax value of the house, on average,
corresponds to around 25% of its market value. This causes new home buyers to generally have
very low (negative) TNW. Any tax assessment premiums are therefore unlikely to affect these
households’ immediate wealth tax liabilities. I therefore do not expect the demand side to be
highly sensitive to the tax assessments. Consistent with this, I find no effects on subsequent
sales prices. The estimated point estimates from the preferred specifications in columns 1 and
3 are rather small at 0.035 and 0.016.

Since the confidence intervals in columns (1) through (3) are somewhat large, it makes
sense to inquire whether the associated confidence intervals include a full capitalization effect.
I evaluate this with a back-of-the-envelope calculation. If all potential buyers were well-above
the wealth tax threshold, then a 10% increase in the tax assessment would increase yearly
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housing-induced wealth tax liabilities by around 10% times the average wealth tax rate of
0.0104. The NPV effect of this (over 30 years, discounted at 2%) would be 10%*0.0104*(1/0.02-
1.02−30/0.02)=2.33%, which would be the upper bound for the magnitude of the potential
capitalization effect. Using the estimates from column (1), I can rule out an effect out-
side of 10%*(0.035 ± 1.96*0.085)=[-1.32%, 2.02%]. Thus, the confidence interval contains
1.32/2.33=57% of the (back-of-the-envelope) potential full capitalization effect.

In Table 9, I also report estimated coefficients on the geographic trend controls. The purpose
of this is to check whether the estimated coefficients on these variables correspond to my initial
expectations. which were based on the motivating examples in the empirical specification
section. My expectation was that the coefficients on the scaled border distance variable in
column (1) would be 1, and the coefficient on the relative location variable in column (3) would
be 0.5. The point-estimates are indeed very close to this, and statistically indistinguishable at
the 5% level.

Table 9: Subsequent Transaction Outcomes

This table provides the effects of a one log-point increase in TaxV al
∧

on transaction outcomes during 2010–2016. Columns
(1)-(3) consider log transaction prices, and columns (4)-(6) examine extensive margin effects, in terms of a dummy which
takes the value 1 if the house that the household lived in during 2009 was transacted during 2010–2016. Standard errors are
provided in parenthesis, and are clustered on the census tract level.

log(Transaction Price) Sales Dummy

(1) (2) (3) (4) (5) (6)

log( ̂TaxV al) 0.035 0.239*** 0.016 0.002 0.004 0.002
(0.085) (0.084) (0.072) (0.003) (0.003) (0.002)

1[di < 0] ∗ dscaledi ∗∆i 0.955*** 0.005
(0.167) (0.006)

1[di > 0] ∗ dscaledi ∗∆i 1.096*** 0.004
(0.215) (0.006)

1[di < 0] ∗ dKMi ∗∆i 0.050*** 0.0003
(0.015) (0.0004)

1[di > 0] ∗ dKMi ∗∆i 0.042*** -0.0002
(0.015) (0.0004)

RelativeLocationi * ∆i 0.592*** 0.003*
(0.060) (0.002)

N 44666 45422 50203 1553563 1540201 1740546
R2 0.5381 0.5337 0.5257 0.1931 0.1972 0.1943

Household controls Yes Yes Yes Yes Yes Yes
Housing controls (Border spec.) Yes Yes Yes Yes Yes Yes
Geo-Controls

– Scaled Border Distance Yes – – Yes – –
– KM Border Distance – Yes – – Yes –
– Relative Location – – Yes – – Yes
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5.9 Regression-based Analysis of Pre-treatment Differences

5.9.1 Past transaction prices

In this subsection, I explore whether my empirical specifications are identifying discontinu-
ities in past transaction prices. I show that my preferred specifications cannot reject the null of
no discontinuity, while more naive approaches do identify such discontinuities. I also perform
robustness tests by considering different subsets of past transactions.

Column (1) shows that model-implied tax assessment is highly correlated with past trans-
action prices if only the baseline housing characteristics (size, age, dummy for dense area) are
controlled for. This specification uses both within-boundary and across boundary area variation
in tax assessment. This correlation remains strong when controlling for these characteristics at
the border area level in column (2), which only uses within-boundary area variation, but does
not address geographic trends.

When addressing geographic heterogeneity by controlling for (unscaled) border distance in
KM in column (3) these correlations are reduced considerably, but remain (largely) positive
across subsamples. This is consistent with the visual evidence in Figure 2, where housing
prices change non-linearly, thereby inviting the detection of a discontinuity in a linear specifi-
cation.

Column (4) uses my main preferred geographic running variable, scaled border distance.
This removes any statistically significant correlation between tax assessment and past transac-
tion prices across subsamples. Column (5) estimates geographic slopes on border distance at
the border area level. In 3 out of 4 subsamples I cannot reject the null of no correlation, but
point estimates are consistently positive, and somewhat large. Column (6) corresponds to my
second preferred specification, and also consistently keeps the null of no correlation between
tax assessment and past transaction prices.

This exercise shows that scaled border distance and relative location perform well at keeping
the null of no discontinuities, consistent with the visual evidence presented in Figure 2. The
fact that estimates are slightly positive, at least in the first two samples, may be reflective of the
fact that many of these transactions would have been present in the sample used to estimate
the house price model coefficients. This is especially the case for the second sample, which
restricts to transactions during 2004–2009.

47



Table 10: The Correlation Between Treatment and
Observed Transaction Prices After Including Geographic Controls

This table reports estimated coefficients from a regressing log housing transaction prices on the log of model-implied tax
assessment. Past transaction prices are obtained from the real-estate transaction register, covering all real-estate transactions
during 1993–2017. The sample is limited to households who, in 2009, lived in a house that was transacted during 1993–2009.
Panels (A)-(B) consider all households who owned a house during 2009; while Panels (A) and (C) restricts the sample to
households in the main analysis sample. Panels (B) and (D) restricts the sample to transactions occurring during 2004–2009,
the same sample period during the estimation of the house price model coefficients. Column (1) does not address geographic
heterogeneity, and does not allow slopes on housing characteristics, Hi, to vary at the border area level. Column (2) allows
slopes to vary at the border area level, but does not address within-border area geographic heterogeneity. Columns (3)-(6)
address geographic heterogeneity according to the main reduced-form specification in equation 19. Column (4) corresponds to
the preferred (scaled) border distance measure. Standard errors are provided in parenthesis, and are clustered on the census
tract level. Sample sizes are provided in brackets.

log(Transaction Price) (1) (2) (3) (4) (5) (6)

(A) All homeowners, 2000–2009

log(TaxV al
∧

) 1.273*** 0.769*** 0.293*** 0.086 0.148 0.148
(0.017) (0.051) (0.108) (0.102) (0.091) (0.094)
[206712] [206280] [206280] [199841] [199841] [199841]

(B) All homeowners, 2004–2009

log(TaxV al
∧

) 1.258*** 0.800*** 0.422*** 0.115 0.171* 0.144
(0.020) (0.062) (0.121) (0.121) (0.102) (0.110)
[134304] [133843] [133843] [129608] [129608] [129608]

(C) Analysis sample, 2000–2009

log(TaxV al
∧

) 1.457*** 0.773*** -0.067 -0.061 0.252 -0.109
(0.040) (0.110) (0.244) (0.224) (0.202) (0.211)
[40211] [39649] [39649] [38639] [38639] [38639]

(D) Analysis sample, 2004–2009

log(TaxV al
∧

) 1.490*** 0.946*** 0.265 -0.086 0.332 -0.420
(0.071) (0.172) (0.332) (0.333) (0.322) (0.322)
[18021] [17429] [17429] [17035] [17035] [17035]

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM, KM2 – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

5.9.2 Pre-period Income, Wealth, Debt and Educational Attainment

In this section, I examine whether tax assessment discontinuities correlate with other pre-
period household observables under my different specifications. The specifications in columns
(1)-(2) do not address geographic heterogeneity and find a strong correlation between model-
implied tax assessment and household observables. These correlations are reduced significantly
in column (3), which uses border distance in kilometers as the running variable, but most
correlations are still statistically different from zero. This occurs despite allowing the continuous
loading on the assessment premium to be non-linear by including second-order polynomial terms
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in dKMi interacted with ∆i.
My preferred specifications (4) and (6) show very small correlations. They are also fairly

precise in the sense that the standard errors are an order of magnitude smaller than the point
estimates in the baseline specifications (columns (1)–(2)). Column (5), which estimates border-
specific slopes on border distance also performs reasonably well, except for a marginally signif-
icant (at the 10% level) correlation with having a college degree.

To illustrate the success of my approach in removing the correlation between tax treatment
and household characteristics, consider the correlation between log(TaxV al

∧
) and log(Labor

Income). Column (1) shows that, when not addressing geographic heterogeneity at all, a one
log-point increase in tax assessment is associated with 28.8% higher labor incomes. Addressing
geographical confounders using my main preferred specification in column (4), I find that this
correlation is reduced to 0, and I can rule out a correlation larger (in magnitude) than 5.5
percentage points, at the 5% level.
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Table 11: The Correlation Between Treatment and Household
Characteristics after Including Geographic Controls

This table reports the correlation between model-implied tax assessment, log(TaxV al
∧

) and 2009 socioeconomic characteristics:
Income, Gross Financial Wealth (GFW), Debt and education. College is a dummy equal to one if one of the household members
(excluding children) have a college degree. Columns (1)-(4) add different sets of controls. Column (1) includes the baseline
controls: structure-type specific slopes on log(size), the dense population dummy and age bracket indicators. Column (2)
interacts the baseline controls with border area fixed effects. Column (3) further includes a control for the distance to border
within a border area, estimated separately for each side, and interacted with ∆i (border area and structure-type specific
log(difference) in average assessed house prices between the sides of the border). Column (4) Includes the relative location
control, also interacted with ∆i. These two variables are defined in detail in the text. Standard errors are provided in
parenthesis, and are clustered on the census tract level.

(1) (2) (3) (4) (5) (6)

log(Labor Income)

log(TaxV al
∧

) 0.288*** 0.153*** 0.067* -0.000 -0.039 0.002
(0.005) (0.013) (0.040) (0.028) (0.034) (0.023)

log(Gross Financial Wealth)

log(TaxV al
∧

) 0.629*** 0.409*** 0.255*** -0.030 0.110 0.002
(0.012) (0.035) (0.095) (0.070) (0.086) (0.064)

Stock Market Share

log(TaxV al
∧

) 0.045*** 0.028*** 0.053*** 0.000 0.010 0.002
(0.002) (0.005) (0.014) (0.010) (0.013) (0.009)

log(Debt)

log(TaxV al
∧

) 0.502*** 0.350*** 0.180 0.092 -0.009 0.097
(0.015) (0.046) (0.143) (0.099) (0.125) (0.082)

College

log(TaxV al
∧

) 0.239*** 0.194*** 0.159*** 0.019 0.056* 0.028
(0.005) (0.015) (0.040) (0.028) (0.033) (0.024)

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM, KM2 – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes

6 Bunching

In this section, I examine the extent towhich households bunch around the wealth tax
threshold. The primary reason for this is to investigate the likely extent of evasion or avoidance
opportunities. If these are abundant and not costly, I would expect to see sizable bunching
(excess mass) around the wealth tax threshold. If this is indeed the case, one may worry that
households can partially “untreat” themselves through these means. For example, if it is not
costly for households to lower their wealth tax burden by moving financial assets that are
observed by tax authorities into harder to tax assets, such as cash, the response that I observe
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in terms of growth in financial wealth may be a lower bound of the actual effect on savings.39

This is not a concern for the qualitative conclusions of this paper, but it is nevertheless useful
to evaluate since sizable bunching would suggest that the true saving responses may even
higher.

I show my results in Figure 11 below. Panel A shows the results for my full analysis sample,
and Panel B shows results for the full sample of Norwegian tax payers. I follow the approach
from Chetty, Friedman, Olsen, and Pistaferri (2011) to perform the analysis.

The visual evidence is quite clear in that there is no sizable bunching around the wealth
tax threshold in either sample. Panel B estimates a statistically significant excess mass around
the threshold, but the visual evidence is not very supportive. In Panel B, the excess mass,
b = 0.097. This says, that there is 9.7% extra mass in the NOK 5,000 bin to the left of the
kink. This number is calculated using the methodology from Chetty, Friedman, Olsen, and
Pistaferri (2011), and the assumptions closely resemble those made in Seim (2017). First, a
counterfactual distribution is calculated, by fitting a 7th order polynomial to all points bins
outside [−40k, 15k]. Then the relative number of bunchers, N(%) is calculated as the relative
difference between the number of agents in the empirical and counterfactual distributions within
[−40k, 15k]. Then, all the bunchers are assumed to be bunching one bin to the left of the
threshold. Multiplying N(%) by the number of NOK 5,000 bins in [−40k, 15k], then yields
b.

Multiplying b by NOK 5,000, tells us that 5, 000b less TNW is being reported due to
the wealth tax threshold. In relative terms, given an average threshold during this period
of NOK 830,000, and b = 0.097, this implies that 0.05843% of TNW is being misreported.
Since the average wealth tax rate during this sample period (2011–2014) was 1.075%, this
yields a net-of-tax rate elasticity of taxable wealth (following the definition in Seim (2017)) of
0.05853%/(0.01075/(1− 0.01075)) = 0.054. When translated to an elasticity with respect to a
net-of-tax rate-of-return of 2%, the elasticity becomes 0.05853%/(0.01075/(2%)) = 0.0010
39I do expect that withdrawing deposits to store as cash is quite costly for households. Even though it could

reduce wealth taxes by 1 cent per dollar, it would also preclude them from any interest earnings of (on average)
2 cents, leading to a net loss.
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Figure 11: Distribution of Households around the Wealth Tax Threshold

These figures show the distribution of taxable net wealth around the wealth tax threshold. Households are divided into NOK
5,000 bins, and households at zero have [0, 5000) NOK in excess of the threshold. Panel A considers the full analysis sample,
where thresholds are multiplied by 2 for married couples, and only couples with a non-changed marital status are included.
Panel B considers the full sample of Norwegian tax-payers, where the analysis is done at the individual level. Plots and
estimates are produced using the .ado file provided by Chetty, Friedman, Olsen, and Pistaferri (2011). The counterfactual
distributions (green line) is constructed by fitting a 7 degree polynomial on all bins outside [-40,000, 15,000]. b is the estimated
excess mass in this excluded range, normalized to be in the bin directly to the left of the threshold. Bootstrapped standard
errors are in parenthesis. The analyses use pooled data for 2011–2014. Sample period is restricted due to limited sample
years in the dataset covering the universe of tax-payers.

7 Implied Structural Parameters

In this section, I use a simple life-cycle model to explore what value of the EIS is most
consistent with my empirical findings. The model environment is simple. It only contains the
key elements necessary to replicate my empirical results and the shock to wealth tax exposure.
Agents choose both how much to save and how much to work and they’re shocked by more
aggressive wealth taxation in a way where the effect on the marginal and average net-of-tax
rates-of-return may differ.

7.1 A simple life-cycle model

Consider the following life-cycle model with perfect foresight. The model features a constant
Elasticity of Intertemporal Substitution (EIS), 1

γ
, and a constant Frisch elasticity of labor

supply, 1
ν
.

max
{ct,st+1}Tt=0

∑T
t=0 βt

(
1

1− γ c
1−γ
t − ψ l1+ν

t

1 + ν

)
(25)

s.t. ct + st+1 = yt + ltwt (26)

+ stR(1− τ1[stR + A− w̄ > 0]) + (A− w̄)τ1[stR + A− w̄ > 0]
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ψ is the (dis)utility weight on labor supply, and β is the discount factor. The endogenous
variables are ct, lt, st+1 for t ≥ 0. Unearned income (pensions), yt and initial wealth, s0, are
exogenous. w̄ is the threshold applicable to all taxable wealth, savings with returns (stR) plus
assessed housing wealth, A.

Define R̃t = R(1−τ1[stR+A− w̄ > 0]) and Ṽt = s∗τ1[stR+A− w̄ > 0]. Budget constraint
can be written as

ct = yt + ltwt + stR̃t + Ṽt − st+1 (27)

I assume that households respond to changes in R̃t and Ṽt. I shut off the feedback mechanism
of how changes in st can affect R̃t and Ṽt. This eliminates bunching around the tax threshold,
and allows me to solve the model using the (binding) first order conditions, and the life-time
budget constraint.

I do not model precautionary savings motives or bequests directly. Instead I assume that
households live until they are 100 years old. This ensures that households do not dissave too
quickly, and therefore still hold meaningful savings around the average (empirical) age of death
in Norway, which is around 85 old.40

7.2 Simulation and calibration

I assume that households act according to the model in the previous section, and simulate
their responses to shocks to R̃t and Ṽt, for t ≥ 1, from a baseline R̃t = 1.02 and Ṽt = 0. I simulate
the responses in terms of their saving behavior and labor supply for EIS-Frisch combinations,
( 1
γ
, 1
ν
). The (dis)utility weight on labor supply, ψ is calibrated to ensure that simulated labor

earnings at t = 0 equal observed after-tax labor earnings in 2009 and the consumption share of
total incomes (labor earnings plus exogenous income) equals 80%.41 I set β = 0.98.

Similar to Jakobsen et al. (2020), I model the responses of a representative agent. This agent
sees shocks to R̃t and Ṽt corresponding to those found for the full sample in Table 1, assuming a
shock to log( ̂TaxV al) = 0.5. This implies ∆R̃t = 0.13375 p. p. and ∆Ṽt = st(∆R̃avg

t −∆R̃t) =
st(−0.000772 − (−0.0013375)) for t ≥ 1, where the st used to determine ∆Ṽt is the st chosen
absent the shock.

Savings, st, in my model corresponds to Gross Financial Wealth (GFW). Labor earnings
40Absent any mortality risk, this corresponds to (1) assuming that the bequest elasticity equals the EIS, and (2)

that the strength of the (warm-glow) bequest motive ensures that households wish to bequest an amount large
enough to finance their own planned consumption for 15 years given a continued flow of exogenous income.

41Choosing a consumption share of 80% ensures that agents choose labor supply is close to the empirical average
in the sample. Setting it to 100% for example leads to very large (unshocked) labor supply in order to save
enough to finance a higher level of consumption.
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corresponds to salary and self-employment income. I set exogenous income, yt, equal to the
difference between total taxable income and labor earnings in 2009, whenever the agent’s age is
strictly below retirement age. This difference corresponds approximately to the average amount
of pension income. Starting at retirement age, exogenous income (pension income) increases
by 50% of the after-tax 2009 average of labor earnings. I induce retirement by making wages
drop to zero over a 5 year period that starts at retirement age.

7.3 Simulated treatment effects

The benchmark empirical treatment effect on savings corresponds to a 0.5 log-point increase
in tax assessment. My empirical estimates on savings growth (GFW) imply a yearly effect
of 0.5*0.0149 percentage points each year, when not adjusting for the mechanical effects of
increased taxation in Table 3. When cumulated over a 5 year period, this implies an effect
of 5*0.5*0.0149= 0.0373 (SE=5*0.5*0.0091=0.0228). The lower bound of the 95% confidence
interval is -0.0074.

Figure 12: The Frisch-EIS elasticities that provide simulated treatment
effects inside the empirical confidence intervals

This figure shows the EIS and Frisch elasticity combinations that yield simulated cumulative treatment effects on savings (or
labor earnings) over a five year period that correspond to the lower bound of the 95 percent confidence interval of my empirical
findings. The baseline shock corresponds to a 0.5 log-point increase in tax assessment. EIS–Frisch combinations above the lines
yield simulated treatment effects below the confidence intervals of my empirical findings.
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The benchmark empirical treatment effect for labor earnings is the following. I found that
a 0.5 log-point increase in labor earnings increases labor earnings (salaries and self-employment
income) by 0.5*0.0230 percentage points each year. The cumulative effect of this in terms of
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total earnings is 0.5*0.0230* (5+4+3+2+1), since the first year effect cumulates over 5 years,
and so on. This gives a cumulative effect of 0.1725 (SE=0.5*0.0116* (5+4+3+2+1)=0.087). In
other words, over 5 years, treated households earned 17.25% more than untreated households.
The lower bound of the 95% confidence interval is 0.002.

In Figure 12, I plot the Frisch-EIS combinations (with the disutility weight on labor supply
is calibrated) that provide treatment effects corresponding to the lower bound of the 95%
confidence intervals of the cumulative treatment effects in green. The orange line similarly
represents the lower part of the 90% confidence intervals. Any EIS-Frisch combinations above
these lines yield simulated treatment effects below the respective confidence intervals. In this
figure, we see that either the labor earnings effect or the savings effect can be used to pin down
similar bounds for the EIS, which only depend weakly on the Frisch elasticity.

Figure 13: Simulated Treatment Effects as a function of the EIS

This figure shows the simulated cumulative treatment effect (blue line) as a function of the EIS, assuming a Frisch elasticity o 0.5.
The baseline shock corresponds to a 0.5 log-point increase in tax assessment. The green dashed the empirical point estimate, while
the green shaded area constitutes the 95% confidence interval. The first column considers the effect on savings growth, while the
second column considers the effect on earnings growth.
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In Figure 13, I plot the simulated cumulative treatment effects as a function of the EIS,
assuming a Frisch Elasticity of 0.5. It’s clear from the figure that is difficult to parameterize
the simple life-cycle model that I use in a way that exactly replicates my point estimates. This
feature is not particularly robust to the assumptions of the model. For example, if we force the
agent to pay a large bequest at death, increase β, or make other adjustments that increase the
income effect, then the blue line will shift slightly upwards. Similarly, we can make the blue
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line shift downwards by lowering the income effect, for example, by shortening the life-span of
the agent.

This section shows that in a simple life-cycle model, we need a fairly small value of the
EIS to rationalize the empirical findings. We could also replicate the low-EIS behavior by
exogenously imposing harsh consumption adjustment frictions, e.g., that ct ≥ c0 for t ≥ 1. In
such an environment, the responses to wealth taxation becomes uninformative of the EIS.

7.4 Implied uncompensated elasticity of savings to the net-of-tax
rate-of-return

In Figure 14, I simulate the effects of a reduction in the (net-of-tax) rate-of-return for
different values of the EIS. In this (partial-equilibrium) model, it does not matter whether
the rate-of-return is reduced by capital taxation or monetary policy. The blue and green lines
correspond to the the EIS that produced simulated treatment effects in Figure 13 corresponding
to the lower bound of the confidence intervals of my empirical findings at the 90% and 95%
levels, respectively.42

Figure 14: Simulated Saving Responses to Reducing the Net-of-tax
Rate-of-return

This figure shows the simulated 5-year effect (in log points) of reducing the net-of-tax rate-of-return for different values of the
EIS, assuming a Frisch elasticity of 0.5. Given a gross rate-of-return of 1.02 (assumed in the model), we can find the implied
uncompensated savings elasticities to the net-of-tax rate-of-return by reading off (the negative of) the value on the y-axis for a given
line when the x-axis takes a value of 0.02. In Panel A (Panel B) these values are 0.42, 0.01, -0.11, -0.31, and -0.90 (2.74, 0.31, -0.13,
-0.40, and -0.51) for an EIS of 0.01, 0.29, 0.53, 1.00, 2.00, respectively.

 EIS = 0.01

 EIS = 0.29

 EIS = 0.53

 EIS = 1.00

 EIS = 2.00

-1
-.8

-.6
-.4

-.2
0

.2
.4

.6
.8

1
 5

-Y
ea

r E
ffe

ct
 o

n 
Sa

vi
ng

s (
lo

g-
po

in
ts

)

-.02 0 .02 .04 .06
 Reduction in the Net-of-Tax Rate-of-Return

 Panel A: Savings

 EIS = 0.01

 EIS = 0.29

 EIS = 0.53

 EIS = 1.00

 EIS = 2.00

-1
.5

-1
-.5

0
.5

1
1.
5

2
2.
5

3
 5

-Y
ea

r E
ffe

ct
 o

n 
Sa

vi
ng

s (
lo

g-
po

in
ts

)

-.02 0 .02 .04 .06
 Reduction in the Net-of-Tax Rate-of-Return

 Panel B: Labor Earnings

42The EIS cut-offs are slightly different for whether we look at the savings results or labor earnings results, I
therefore take the average EIS for a given confidence level.
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I also plot the treatment effects for two other values of the EIS. The solid line assumes an
EIS of 1, corresponding to log-utility in consumption. The dashed line corresponds to one of
the lower values of the EIS needed to calibrate the model in Jakobsen et al. (2020) to their
empirical estimates. Given an average gross rate-of-return of 1.02 (assumed in the model and
consistent with summary statistics), we can find the implied uncompensated elasticities to the
net-of-tax rate-of-return by reading off (the negative of) the value on the y-axis for a given line
when the x-axis takes a value of 0.02. From Panel A, we see that the implicit uncompensated
five-year savings elasticity consistent with our empirical findings are below 0.10 and 0.02 at
the 95% and 90% level, which can be read off of the green and blue lines, respectively. The
implied elasticity when the EIS equals zero, which is the EIS that comes closest to explaining
my results, is −0.42.

Finally, Figure 14 also highlights the strikingly different responses to, for example, tax-
induced, rate-of-return shocks contained within the set of commonly used values of the EIS. A
2 percentage point reduction in the rate-of-return leads to a dissaving of 59% (=exp(-0.9)-1)
if the EIS is 2, but an increase in savings of almost 50% (=exp(0.4)-1) if the EIS is zero. In
the middle, we have an EIS of around 0.3, that gives barely any response at all. Research
into the saving responses to capital taxation and the underlying parameters that drive these
responses therefore seems particularly prudent to inform tax policy even in the short to medium
term.

8 Discussion

In this paper, I address an important and long-standing question in economics, namely how
household savings and labor income respond to capital taxation. Despite the importance of
this question in terms of how it may inform a range of economic models, and in particular tax
policy, there exists very little empirical evidence that is applicable to these models. This is in
part due to a lack of exogenous identifying variation in the rate-of-return and capital taxation,
but also due to the difficulty of isolating real responses from evasion and avoidance effects. By
utilizing a novel source of identifying variation in wealth tax exposure in an empirical setting
where responses are unlikely to be driven by evasion, I make an important contribution to this
literature. An additional contribution lies in the novel examination of theoretically important
margins of adjustment, such as labor earnings and portfolio allocation.

My results indicate that the distortionary effects of capital taxation may go in the opposite
direction of what is typically assumed.43 In addition, capital taxation may encourage households
to supply more labor. This is important for policy-makers to consider when considering the
43Saez and Stantcheva (2018) consider feasible elasticities of capital to the net-of-tax rate-of-return to be 0.25,

0.5, and 1.
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optimal mix of capital and labor income taxation. My findings suggest that capital taxation
may offset some of the distortionary (tax revenue reducing) effects of labor income taxation on
labor income. However, it is important to note, that my findings focus on distortionary effects
arising in partial equilibrium in the household sector. Wealth taxation, and capital taxation in
general, may have potentially adverse general equilibrium effects or effects operating through
the corporate sector that are not considered in this paper.

My results on the savings effects of wealth taxation are qualitative different (and even of a
different sign) from the existing empirical literature. The likely explanation is that my empirical
setting, with largely third-party reported measures of savings, comes closer to estimating savings
effects rather than strategic tax responses. Elasticities estimated elsewhere in the literature
likely include evasion or avoidance responses, and will thus be larger (and may even be of a
different sign) than pure savings elasticities. In Denmark for example, only households in the
top 1% to 2% of the wealth distribution paid a wealth tax. Around half of these households
are business owners with potentially sizable evasion opportunities since business wealth is self-
reported. In Switzerland, financial wealth is completely self-reported by tax-payers.

I know of no obvious reason why the finding of a positive as opposed to a negative effect of
wealth taxes on saving is would be driven by characteristics specific to Norway. If anything, the
presence of more generous pension and social insurance programs should create an economic
environment where savings motives, and thus income effects, would be weaker in Norway, and
more easily dominated by the substitution effects associated with rate-of-return shocks.

At face value, the finding of a positive effect on savings is somewhat surprising. However,
as I showed in the previous section, non-negative saving responses to a negative rate-of-return
shock can be generated by plausible parameterizations of a life-cycle model. For example, The
estimate of 0.1 in (Best et al., 2018) would, in the model calibrated to my empirical setting,
produce simulated saving responses that take a positive sign. A value for the EIS of 0.1 is also
contained in the confidence bounds around the empirical estimates of the EIS for stockholders in
Vissing-Jørgensen (2002). This further highlights the possibility of positively signed responses
to adverse rate-of-return shocks.

Finally, as discussed in the introduction, my findings strengthen the premise upon which
the recent macro-heterogeneity literature is built. In particular, my findings point towards a
larger role for the partial-equilibrium mechanism in Auclert (2019) and the general-equilibrium
mechanisms in Kaplan, Moll, and Violante (2018) in explaining aggregate responses to monetary
policy. In addition, my results are driven by older, wealthier households, which suggests that
these households may respond in the opposite way of that of a representative agent, highlighting
the need to study the behavior of younger, constrained households, as in Wong (2019), where
the mortgage refinancing channel is important.
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A Empirical Appendix

A.1 Defining the geographic running variable

My setting includes many border areas that differ significantly in terms of residential density.
While neighbors may be kilometers away in the arctic northern parts of Norway, they may only
be meters away in rural Oslo. This is problematic when pooling boundary areas in order
to obtain precision, because for a fixed differential, ∆i, house prices must change more rapidly
whenever the border area is smaller. When pooling boundary areas, by construction, households
closer to the border (in kilometers) will be drawn from smaller (denser) areas,44 where the slope
of house prices will be steeper. I provide a graphical example of the issue in Figure A.6 in the
Appendix. This example shows that, despite geographically smooth – even linear – house
prices within a border area, a pooled regression may easily detect discontinuities due to strong
non-linearities arising.

Below I describe a simple motivating example where house prices move linearly within
border areas, and the geographic slope varies only with two key characteristics, namely the
difference in average house prices (∆) and residential density.

Fix a boundary area, b, populated by households, i. Assume that true house prices, p, move
linearly along some geographic measure, k: pi = p(k(ci)) = ξbki = ξbk(ci). We can think of k
as border distance in kilometers. There are two sides, S = L,H. Then assume that E[k(ci)|i ∈
S] = k(E[ci|i ∈ S]) (a linearity assumption)45. Then the mean price in S equals the price at
k() valued at the centroid of S: E[pi|i ∈ S] = p

(
k
(
E[ci|i ∈ S]

)
), since p is linear in k. Define

the coordinate centroid of side S as: cS = E[ci|i ∈ S]. Applying the formula for a line, given
two points, we get that the slope of p on k(ci) is: (p(k(cH))− p(k(cL)))/(k(cH)− k(cL)).

Define ∆b as the difference in mean house prices: ∆b = E[pi|i ∈ H] − E[pi|i ∈ L], and
the centroid distance, CDb = k(cH) − k(cL), and we can write the slope of prices, p, on our
geographic measure, k, as ∆b/CDb

pi = ki
CDb

∆b

This example contains the two key elements: (1) house prices have larger geographic gra-
dients when the differences in averages are higher; and (2) more dense (less scattered) areas
have larger geographic gradients. I illustrate this in Figure A.1. The boundary region in (A)
and (B) differ only in that the average prices in (A) are 1 price unit higher in (A). Boundary
regions (B) and (C) differ only in that (C) is spread out geographically (all gis in C are twice
44In Panel A of Figure A.2, I show that households located near the boundary (in a kilometer sense) live in

much denser areas than those further away.
45In reality, this is more of an approximation, as coordinates generally will not map linearly into border distance.
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that in B). In all three cases, the slope of prices, p, on our geographic measure, k, is simply
∆b/CDb. Below I outline four approaches based on this example.

Figure A.1: Border Area Heterogeneity: Motivating Example

This figure provides some simple examples to motivate my empirical specifications. I plot house prices (dotted
lines) against a geographic measure (e.g., border distance) for three hypothetical border areas. The geographic
slope of house prices is linear within each border area. Panel A and (B) differ only in that the difference in
average house prices between each side of the boundary is higher in (A) than in (B). Panel B and (C) differ only
in that (C) is more spread out, while the differences in averages is still the same. The commonality between
all border areas, b, is that the slope of house prices on the geographic measure is ∆b/CDb, where CDb is the
distance between the centroids of the two sides of a given boundary area, b.

Approach 1 (Benchmark: Border Distance in km). This approach uses signed border dis-
tance, di, as the relevant within-boundary area geographic measure: k(ci) = di. It ignores
heterogeneity in residential density by assuming a (normalized) centroid distance, CDb = 1.
This invites the problem of non-linear slopes on di, that are potentially very steep near bound-
aries in a pooled regression. This can be visualized by envisioning the slope of house prices on
g, when pooling border areas (B) and (C). I provide an example of what this might look when
pooling multiple border areas in Figure A.6. This issue also becomes apparent in the results
section. Despite this, it serves as a useful benchmark for the other approaches.

(Unscaled) Border Distance term: gb(ci) = γ · di (28)
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Approach 2 (Scaled Border Distance). This approach also uses signed border distance, di,
but incorporates the heterogeneity in density, by scaling the measure by CDb = Dist(cb,H , cb,L).
The following term then captures the within-border area geographic variation in house prices,
where the expectation is that γ̂ = 1.

Scaled Border Distance term: gb(ci) = γ · di
CDb

(29)

Approach 3 (Relative Location). I set k() equal to the differential distance to the centroids
of the L versus H side of the boundary. This provides, in meters, how much closer ci is to cH
than cL: k(ci) = Dist(ci, cb,L)−Dist(ci, cb,H). In this setting, k(cH)−k(cL) = 2·Dist(cb,H , cb,L).
I omit this scaling by 2, which leads to the expectation that γ̂ = 1

2 .

Relative Location term: gb(ci) = γ · Dist(ci, cb,L)−Dist(ci, cb,H)
Dist(cb,H , cb,L) ∈ [−γ, γ] (30)

The Relative Location variable is novel in the BDD setting. It is based on the hypothesis
that the true house price for some sampled house within a boundary area is a weighted average
of estimated average house prices on each side of a boundary, where weights are assigned based
on how much closer (or less far away) a house is located to the centroids of the estimation
samples on the two sides.46

Approach 4 (Border-specific slopes). Finally, I set k() equal to signed border distance,
d(ci) = di where households on the low-assessment side receive k < 0. I estimate slopes
separately for each border area, and thus do not scale by CDb, since this does not vary within
a border area.

Border-specific Border Distance: gb(ci) = γb · di (31)

While the motivating example does not contain side-specific slopes, I follow the standard
approach in the RDD literature and allow slopes γ, to be estimated separately for di < 0 and
di > 0 in approaches 1, 2, and 4.

In the specifications using border distance, there is the concern that treated units on one
side of the border may indeed be very far away from any control units on the other side. This
may be caused by housing clusters near a border, where the other side of the border is vacant
due to the presence of a forest or mountain. If this happens frequently enough, observable char-
acteristics may seem discontinuous, even if they truly are smooth (and even linear) along other
dimensions of proximity, such as (unobservable) travel distance. I partially address this concern
by measuring border distance as the distance to the nearest owner-occupied residences on the
46I use the centroids of all residences to proxy for the centroid of the actual estimation sample. Some areas see

very few or no housing transactions, thus using all residences provides a more widely applicable measure.
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other side of the border.47 This nearest-neighbor approach also avoids some computational
issues in calculating border distance when borders take complicated forms, since I can calculate
border distance by minimizing the distance to residences in neighboring municipalities.48

B Appendix

B.1 Descriptive Figures and Tables

Figure A.2: Residential Density Around Borders

This graph shows how residential density varies with border distance. Density is defined as at the household level as the log of the
number of households living within 1 km. The figures plot estimated coefficients of living in a given distance bin. The regressions
include the baseline housing controls Hi,2009, but these are not allowed to vary at the border area level. Panel A uses distance in
kilometers, and panel B uses scaled distance. All households in the analysis sample (with Taxable Net Wealth ≥ 0 in 2009) are
included.

47The exact algorithm for calculating the distance variables is provided in the appendix.
48Complex borders may require linearization or division of the border into a finite set of points. This could lead

to sizable approximation errors, in relative terms, for households very close to the border.
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Figure A.3: Geographic Distribution of Households

This figures provides histograms illustrating the distribution of households in the analysis sample according to the different distance
measures. All households in the analysis sample (with taxable net wealth ≥ 0 in 2009) are include, except those with distance
measures outside the visible range of the graphs. Panel A uses (signed) distance in kilometers, Panel B uses scaled distance, and
Panel C uses relative location, where the darker shade indicates membership to the high-assessment side of the boundary.

Figure A.4: Verifying The House Price Model Coefficients

This figure plots actual assessed tax values against tax values predicted using the real-estate data and
coefficients from the hedonic pricing model. The Y-axis has the actual tax values are retrieved from
individuals’ tax returns for 2010, presumably based on the coefficients from the model estimated with
2004–2009 data. The X-axis has predicted tax values based on 2009 real-estate data and coefficients
estimated with 2004–2008 data, which are the same coefficients used in providing preliminary tax values
to households in during 2010. Predicted and actual values may differ for the following main reasons:
(1) coefficients changed due to the inclusion of 2009 data in the estimation sample; (2) households can
move or have a complaint approved that assessed tax values are too high; or (3) households may own a
second home.

65



Figure A.5: Example of Data Source for House Price Model
Coefficients

The regression output below is for s=detached homes, in the price region, R, corresponding to Aust-Agder county.
Estimated coefficients are: αR = 11.83711, γ1 = 0, γ2 = −0.15054,..., γ7 = −0.72255, ζsizeR = −0.38555, ζDenseR =
0.06373, ζAge1,R = 0, ζAge2,R = −0.09434,..., ζAge4,R = −0.21287, and σR = 0.28800.
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Figure A.6: Example of non-linearities in pooled boundary
region

I create this example the following way. First create 100 border areas, indexed by b. Each border
area has a length of 200*b, and thus a centroid distance in thousands, e.g., kilometers, (CD) of
100b/1000. Each b has 100 households, equidistantly populated in G=[-100b, 100b]. Within each
b, house prices move linearly according to their location, g ∈ G: p = ∆

100 . By construction,
the mean difference between houses with g < 0 (low-side) and g > 0 (high side) is constant
across bs, and is ∆. I set ∆ to 1. In the first plot, I provide a binscatter of ps against g,
separately for b = 10, 25, 50, 75, 100. In the second plot, I perform a pooled binscatter of p, for
b ∈ {10, 25, 50, 75, 100}. The red line is a second-order RD polynomial, estimated separately for
each side, allowing for a discontinuity at zero. Point estimates correspond to the within-bin means
for 20 equal-sized bins.
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Table A.1: Summary Statistics by Initial Wealth (Appendix)
Summary statistics are provided for households in the sample. Only households who are assigned a signed border distance variable are included. GFW is Gross Financial Wealth.
GFW , censored winsorizes GFW at the 95th percentile. TGW is Taxable Gross Wealth. TNW is TGW minus Debt. Total Taxable Labor Income is the sum of wage earnings,
self-employment income, UI benefits and labor-related pension income, and transfers (e.g., parental leave). SMW is the sum of mutual-fund and direct holdings of listed stocks.
TaxV al is the assessed tax value (housing wealth) as observed in tax returns. wtax is the amount of wealth taxes paid. wtax/GFW is set to be the min(wtax/GFW,1). RiskyShare
is the ratio of SMW, plus foreign held financial assets (excl. deposits), plus nonlisted stocks (e.g., private equity) to GFW. Foreign/GFW is the share of GFW that is held abroad.
Self -rep/GFW is the share of GFW that belongs to self-reported asset classes, such as outstanding claims and foreign assets. wtax > 0 is a dummy for whether a household paid
wealth taxes. r,Deposits is the realized (symmetric) return on deposits. r,Debt is similarly defined, but excludes household who in either the current or subsequent period had
Debt < 10, 000.

Full sample Households above wealth tax threshold in 2009 Households below wealth tax threshold in 2009

N mean sd p25 p50 p75 N mean sd p25 p50 p75 N mean sd p25 p50 p75
2010–2015
GFW 1820892 1177 2300 224 580 1321 1005096 1739 2859 491 1026 2014 815796 484 933 117 284 579
GFW, censored 1820892 1000 1109 1005096 1432 1235 815796 466 589
Debt 1820892 510 1035 0 138 617 1005096 417 1144 0 6 332 815796 625 869 71 385 813
TGW 1772724 2261 2765 970 1550 2600 977374 2967 3369 1353 2100 3437 795350 1394 1314 750 1097 1648
TNW 1772724 1741 2559 586 1181 2157 977374 2541 3061 1139 1837 3022 795350 758 1154 285 638 1081
Labor Income 1824466 692 483 378 579 891 1007252 698 526 365 567 887 817214 685 424 392 595 895
Earnings 1824466 429 566 0 203 741 1007252 405 602 0 60 676 817214 459 515 0 355 793
SMW 1820892 151 559 0 0 82 1005096 225 717 0 8 153 815796 59 223 0 0 31
Deposits 1820892 722 970 153 408 916 1005096 1029 1154 308 700 1337 815796 343 448 87 215 445
TaxVal 1780154 828 706 466 659 969 981670 908 805 495 707 1062 798484 730 545 436 609 865
wtax 1819622 11 25 0 2 13 1004801 18 30 2 10 22 814821 2 9 0 0 1

2004–2009
TaxVal 1873872 406 222 257 367 511 1038598 434 237 277 391 544 835274 371 196 236 340 471

2010–2015
SMW/GFW 1805548 0.108 0.202 0.000 0.000 0.118 995132 0.115 0.203 0.000 0.008 0.135 810416 0.099 0.199 0.000 0.000 0.092
RiskyShare 1805548 0.164 0.266 0.000 0.006 0.224 995132 0.189 0.282 0.000 0.032 0.282 810416 0.133 0.242 0.000 0.000 0.152
Deposits/GFW 1805548 0.803 0.291 0.690 0.977 1.000 995132 0.772 0.308 0.615 0.944 1.000 810416 0.841 0.264 0.780 1.000 1.000
Foreign/GFW 1805548 0.008 0.054 0.000 0.000 0.000 995132 0.009 0.058 0.000 0.000 0.000 810416 0.006 0.049 0.000 0.000 0.000
Self-rep/GFW 1805548 0.025 0.106 0.000 0.000 0.000 995132 0.030 0.113 0.000 0.000 0.000 810416 0.019 0.096 0.000 0.000 0.000
wtax/GFW 1797249 0.009 0.036 0.000 0.005 0.011 990509 0.012 0.037 0.004 0.009 0.013 806740 0.006 0.035 0.000 0.000 0.004
wtax>0 1819622 0.600 0.490 0.000 1.000 1.000 1004801 0.817 0.387 1.000 1.000 1.000 814821 0.332 0.471 0.000 0.000 1.000

2009
r, Deposits 315208 0.0202 0.0116 0.0117 0.0203 0.0274 174786 0.0237 0.0108 0.0174 0.0244 0.0299 140422 0.0158 0.0111 0.0075 0.0148 0.0218
r, Debt 196473 0.0441 0.0144 0.0384 0.0433 0.0499 79305 0.0408 0.0169 0.0361 0.0416 0.0485 117168 0.0464 0.0118 0.0397 0.0441 0.0508
Age (hh. avg) 315328 61.93 13 53.0 62.0 71.0 174814 64.08 13 55.0 64.0 73.0 140514 59.25 13 50.0 59.0 68.0
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B.2 Additional figures

Figure A.7: Graphical Presentation of the Reduced-Form Effects on
Pre-Period Wealth Tax Exposure

This graph shows the reduced-form effects of increased tax assessment on the following pre-period outcomes: (A) How
much of household savings is subject to a wealth tax, i.e., the amount of wealth above the tax threshold; (B) Whether or not
a household pays a wealth tax. These outcomes are measured during 2010–2015. The first row uses distance in kilometers,
where households on the low-assessment side are given a negative distance. The second row uses (similarly signed) distance
scaled by the distance between the two municipal centroids. The fitted lines and discontinuities for correspond to reduced-
form regressions using the regression specification in equation 19. 95% Confidence bands are represented by dashed lines.
All panels consider post-period saving outcomes for the full sample of households with initial positive taxable net wealth
in 2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than
estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The size of each circle correspond approximately to the relative
number of observations in that bin.
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Figure A.8: Graphical Presentation of the Effects of
Increased Tax Assessment on Financial Saving

Above Sample
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B.3 Additional results figures

Figure A.9: Total Taxable Labor Income
Subsample: Households initially above tax threshold

The dependent variable is one-year log-differenced labor income. This figure provides results for the sample of households above
the tax threshold in 2009. See description in Figure 8.

71



Figure A.10: Salaries and Self-Employment Income
Subsample: Households initially above tax threshold

The dependent variable is one-year log-differenced salary and max(Self-Employment Income,0). This figure provides results for
the sample of households above the wealth tax threshold in 2009 See description in Figure 9.
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B.4 Robustness

B.5 Additional Results Tables

Table A.2: Robustness: Excluding 2015 and controlling for property tax
rate

This table provides the main (reduced-form) results when controlling for municipal property tax rates and excluding 2015.

Adj. ∆ log(GFW ) ∆log(Debt) ∆SMS ∆log(Labor Income) ∆ log(Labor Income)
Broad Salary + Self. Empl.

(1) (2) (3) (4) (5)

Full sample

log( ̂TaxV al) 0.0211*** 0.0004 0.0003 0.0044 0.0191
(0.0077) (0.0123) (0.0014) (0.0045) (0.0119)

Prop. Tax (%) -0.0062* -0.0009 -0.0009 0.0024* 0.0086***
(0.0032) (0.0051) (0.0006) (0.0014) (0.0028)

N [1232832] [1232845] [1229001] [1234293] [1234293]

Households Initially Above Threshold

log( ̂TaxV al) 0.0219** -0.0131 0.0017 0.0135** 0.0344***
(0.0107) (0.0180) (0.0018) (0.0066) (0.0127)

Prop. Tax (%) -0.0056 0.0025 -0.0003 0.0008 0.0122***
(0.0041) (0.0067) (0.0008) (0.0020) (0.0043)

N [685156] [685168] [682439] [686177] [686177]

Households Initially Below Threshold

log( ̂TaxV al) 0.0192* 0.0173 -0.0013 -0.0042 0.0038
(0.0107) (0.0182) (0.0021) (0.0057) (0.0168)

Prop. Tax (%) -0.0064 -0.0029 -0.0015** 0.0054*** 0.0055
(0.0046) (0.0063) (0.0007) (0.0018) (0.0042)

N [547581] [547582] [546467] [548022] [548022]

Geo-Controls

Scaled Border Distance Yes Yes Yes Yes Yes
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Table A.3: Robustness: Main IV Estimates using Triangular Weights

This table provides regression results when the main IV regression specifications are run with triangular weights. For the case of scaled border distance, dscaledi ∈ [−0.6, 0.6],
weights are assigned as 1-abs(dscaledi /0.6). For the relative location measure, RLi ∈ [−1, 1], weights are assigned as 1-abs(RLi).

Adj. ∆ log(GFW ) ∆ log(Debt) ∆ Stock Market Share ∆log(Labor Income) ∆log(Salary + SE Income)

(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b)

Full sample

log(TaxV al) 0.0264*** 0.0254*** 0.0022 -0.0060 0.0000 0.0001 0.0061 0.0074 0.0263** 0.0230**
(0.0102) (0.0086) (0.0135) (0.0119) (0.0014) (0.0012) (0.0056) (0.0048) (0.0126) (0.0104)

N 1472113 1649293 1472130 1649429 1466682 1643325 1473585 1650966 1473585 1650966
Households above tax threshold in 2009

log(TaxV al) 0.0345** 0.0261** -0.0019 -0.0025 -0.0004 -0.0008 0.0164* 0.0107 0.0307* 0.0320**
(0.0137) (0.0120) (0.0186) (0.0168) (0.0022) (0.0020) (0.0085) (0.0074) (0.0178) (0.0158)

N 817214 912399 817229 912482 813335 908075 818244 913560 818244 913560
Households below tax threshold in 2009

log(TaxV al) 0.0170 0.0183 0.0098 -0.0024 0.0003 0.0001 -0.0038 0.0038 0.0206 0.0161
(0.0145) (0.0117) (0.0194) (0.0164) (0.0023) (0.0018) (0.0069) (0.0058) (0.0181) (0.0139)

N 654804 736802 654806 736855 653253 735043 655247 737315 655247 737315

Geo-Controls

Scaled Border Distance Yes – Yes – Yes – Yes – Yes –
Relative Location – Yes – Yes – Yes – Yes – Yes
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Table A.4: Robustness: Significance and Standard Errors of Main Reduced-form Results using Different
Levels of Clustering

Table reports estimated standard errors on log(TaxV al
∧

) using different levels of clustering. All regressions are reduced-form, and consider post-period (2010–2015) outcomes.

Adj. ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(Labor Income) ∆ log(Salary + S.E.Income)

Level of clustering (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b)

Full sample

Household 0.0195*** 0.0182*** 0.0018 -0.0047 0.0000 0.0001 0.0044 0.0049 0.0191** 0.0214***
(0.0076) (0.0063) (0.0113) (0.0093) (0.0012) (0.0010) (0.0043) (0.0036) (0.0091) (0.0075)

Census tract 0.0195*** 0.0182*** 0.0018 -0.0047 0.0000 0.0001 0.0044 0.0049 0.0188** 0.0207***
(0.0073) (0.0063) (0.0111) (0.0093) (0.0012) (0.0010) (0.0041) (0.0035) (0.0095) (0.0078)

Municipality 0.0195*** 0.0182*** 0.0018 -0.0047 0.0000 0.0001 0.0044 0.0049 0.0188** 0.0207***
(0.0073) (0.0060) (0.0104) (0.0091) (0.0013) (0.0011) (0.0039) (0.0033) (0.0105) (0.0075)

Households above tax threshold in 2009

Household 0.0201* 0.0230** -0.0016 -0.0020 0.0005 0.0006 0.0118* 0.0094* 0.0290** 0.0316***
(0.0108) (0.0090) (0.0163) (0.0135) (0.0017) (0.0014) (0.0069) (0.0057) (0.0132) (0.0110)

Census tract 0.0201** 0.0230*** -0.0016 -0.0020 0.0005 0.0006 0.0118* 0.0094* 0.0284** 0.0306***
(0.0102) (0.0089) (0.0157) (0.0133) (0.0017) (0.0014) (0.0064) (0.0057) (0.0135) (0.0112)

Municipality 0.0201** 0.0230*** -0.0016 -0.0020 0.0005 0.0006 0.0118** 0.0094* 0.0284** 0.0306***
(0.0091) (0.0075) (0.0158) (0.0132) (0.0015) (0.0012) (0.0059) (0.0051) ( 0.0122) (0.0101)

Geo-Controls

Scaled Border Distance Yes – Yes – Yes – Yes – Yes –
Relative Location Controls – Yes – Yes – Yes – Yes – Yes
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Table A.5: Effect on the Risky Share of Gross Financial Wealth
which includes non-listed stocks and foreign-held

financial assets (excl. foreign deposits).

This table shows the (IV) effect of tax assessment on the (one-year differenced) share of wealth allocated to “risky assets”
during 2010–2015. Risky Assets is defined as the sum of listed and non-listed stocks, plus securities (excl. deposits) held
abroad. This implies RiskyShare ≥ SMS.

∆RiskyAssets/GFW (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) -0.0003 -0.0005 -0.0006 -0.0028 -0.0035 -0.0019
(0.0002) (0.0008) (0.0017) (0.0018) (0.0026) (0.0016)

N [1835781] [1835687] [1454510] [1466682] [1466682] [1643325]
F 41012 3021 857 697 331 849

Households Initially Above Threshold

log(TaxV al) -0.0001 0.0009 -0.0014 -0.0024 -0.0030 -0.0019
(0.0003) (0.0011) (0.0023) (0.0026) (0.0039) (0.0023)

N [1008692] [1008586] [813160] [813335] [813335] [908140]
F 28269 1819 509 386 165 430

Households Initially Below Threshold

log(TaxV al) -0.0009*** -0.0020* -0.0006 -0.0035 -0.0035 -0.0021
(0.0003) (0.0011) (0.0027) (0.0026) (0.0035) (0.0021)

N [827089] [826985] [641250] [653253] [653253] [735094]
F 24918 1955 432 379 193 466

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table A.6: Bandwidth Robustness, Scaled Border Distance.

This table shows the results from the main IV specification, using different cut-offs for scaled border distance. bw=0.9 implies
keeping all households with a scaled border distance inside [-0.9,0.9]. The main specification uses bw=0.6. All specifications
consider outcomes during the post-period of 2010–2015.

Adj. ∆ log(GFW ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(Income) ∆ log(Salary + S.E.Inc.)
Bandwidth (1) (2) (3) (4) (5) (5)

Full sample

bw = .9 0.0199** 0.0110 -0.0032 0.0002 0.0044 0.0311***
(0.0078) (0.0080) (0.0119) (0.0012) (0.0044) (0.0100)

bw = .8 0.0208*** 0.0118 -0.0020 0.0000 0.0027 0.0305***
(0.0079) (0.0081) (0.0121) (0.0012) (0.0044) (0.0102)

bw = .7 0.0212*** 0.0123 -0.0027 0.0003 0.0027 0.0295***
(0.0080) (0.0082) (0.0124) (0.0013) (0.0045) (0.0105)

bw = .5 0.0204** 0.0110 0.0067 0.0007 0.0054 0.0293**
(0.0100) (0.0102) (0.0153) (0.0016) (0.0056) (0.0125)

bw = .4 0.0247** 0.0147 0.0081 0.0003 0.0043 0.0200
(0.0119) (0.0122) (0.0179) (0.0019) (0.0066) (0.0146)

bw = .3 0.0390** 0.0282* -0.0081 -0.0010 0.0121 0.0353*
(0.0156) (0.0159) (0.0236) (0.0025) (0.0086) (0.0193)

bw = .2 0.0647** 0.0526** 0.0015 -0.0013 0.0121 0.0647**
(0.0253) (0.0256) (0.0365) (0.0037) (0.0135) (0.0275)

Households above tax threshold in 2009

bw = .9 0.0201* 0.0114 -0.0004 0.0015 0.0094 0.0412***
(0.0104) (0.0109) (0.0160) (0.0016) (0.0066) (0.0136)

bw = .8 0.0201* 0.0111 -0.0018 0.0014 0.0060 0.0375***
(0.0106) (0.0111) (0.0164) (0.0017) (0.0066) (0.0138)

bw = .7 0.0178* 0.0085 -0.0086 0.0014 0.0058 0.0347**
(0.0107) (0.0113) (0.0168) (0.0017) (0.0067) (0.0143)

bw = .5 0.0263* 0.0168 0.0088 0.0008 0.0147* 0.0350**
(0.0135) (0.0142) (0.0210) (0.0023) (0.0085) (0.0177)

bw = .4 0.0395** 0.0292* 0.0036 -0.0008 0.0137 0.0161
(0.0161) (0.0169) (0.0251) (0.0027) (0.0102) (0.0205)

bw = .3 0.0526** 0.0415* -0.0118 -0.0045 0.0270** 0.0474*
(0.0214) (0.0223) (0.0340) (0.0036) (0.0134) (0.0281)

bw = .2 0.0875** 0.0733* 0.0148 -0.0052 0.0204 0.1084**
(0.0376) (0.0387) (0.0585) (0.0060) (0.0227) (0.0481)

Households below tax threshold in 2009

bw = .9 0.0194* 0.0102 -0.0048 -0.0018 -0.0010 0.0195
(0.0114) (0.0113) (0.0174) (0.0019) (0.0055) (0.0148)

bw = .8 0.0214* 0.0122 -0.0006 -0.0023 -0.0006 0.0218
(0.0115) (0.0114) (0.0176) (0.0019) (0.0056) (0.0149)

bw = .7 0.0235** 0.0146 0.0057 -0.0016 -0.0015 0.0235
(0.0119) (0.0119) (0.0182) (0.0019) (0.0058) (0.0153)

bw = .5 0.0149 0.0055 0.0005 0.0002 -0.0045 0.0215
(0.0142) (0.0142) (0.0215) (0.0023) (0.0070) (0.0180)

bw = .4 0.0074 -0.0021 0.0151 0.0008 -0.0049 0.0290
(0.0176) (0.0175) (0.0260) (0.0028) (0.0084) (0.0215)

bw = .3 0.0146 0.0043 0.0016 0.0017 -0.0036 0.0222
(0.0225) (0.0223) (0.0319) (0.0037) (0.0106) (0.0285)

bw = .2 0.0423 0.0328 0.0141 0.0026 0.0104 0.0296
(0.0331) (0.0329) (0.0440) (0.0049) (0.0149) (0.0373)
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Table A.7: Bandwidth Robustness, Border Distance (km)

This table shows the results from the main IV specification, using different cutoffs for scaled border distance. bw=10 implies
keeping all households with a border distance, in km, inside [-10,10]. The main specification uses bw=10. All specifications
consider outcomes during the post-period of 2010–2015.

Adj. ∆ log(GFW ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(Income) ∆ log(Salary + S.E.Inc.)
Bandwidth (1) (2) (3) (4) (5) (5)

Full sample

bw = 14 0.0228*** 0.0111 0.0022 0.0012 0.0057 0.0322***
(0.0070) (0.0072) (0.0109) (0.0012) (0.0039) (0.0091)

bw = 12 0.0226*** 0.0102 0.0059 0.0005 0.0055 0.0367***
(0.0077) (0.0079) (0.0118) (0.0013) (0.0042) (0.0101)

bw = 8 0.0252*** 0.0119 0.0101 0.0001 0.0110** 0.0379***
(0.0094) (0.0097) (0.0145) (0.0016) (0.0050) (0.0120)

bw = 6 0.0327*** 0.0179 0.0025 -0.0005 0.0102* 0.0290**
(0.0109) (0.0113) (0.0176) (0.0019) (0.0059) (0.0143)

bw = 4 0.0436*** 0.0285** 0.0156 -0.0023 0.0109 0.0319*
(0.0139) (0.0143) (0.0216) (0.0023) (0.0075) (0.0174)

bw = 2 0.0361 0.0184 -0.0276 -0.0055 -0.0002 0.0650**
(0.0251) (0.0258) (0.0396) (0.0041) (0.0132) (0.0307)

bw = 1 -0.0238 -0.0504 0.0132 -0.0170* -0.0239 0.0278
(0.0549) (0.0573) (0.0860) (0.0099) (0.0283) (0.0684)

Households above tax threshold in 2009

bw = 14 0.0184** 0.0073 0.0017 0.0014 0.0126** 0.0437***
(0.0093) (0.0098) (0.0147) (0.0015) (0.0057) (0.0124)

bw = 12 0.0183* 0.0071 0.0058 0.0009 0.0127** 0.0482***
(0.0101) (0.0106) (0.0159) (0.0017) (0.0060) (0.0136)

bw = 8 0.0218* 0.0101 0.0194 0.0003 0.0164** 0.0489***
(0.0123) (0.0130) (0.0195) (0.0020) (0.0073) (0.0165)

bw = 6 0.0381*** 0.0245 0.0051 -0.0017 0.0187** 0.0324*
(0.0142) (0.0150) (0.0226) (0.0024) (0.0085) (0.0190)

bw = 4 0.0460** 0.0329* -0.0115 -0.0031 0.0166 0.0288
(0.0179) (0.0190) (0.0279) (0.0030) (0.0109) (0.0231)

bw = 2 0.0302 0.0190 -0.0476 -0.0044 -0.0050 0.0231
(0.0301) (0.0321) (0.0479) (0.0048) (0.0180) (0.0356)

bw = 1 0.0005 -0.0184 0.0195 -0.0091 -0.0057 0.0414
(0.0595) (0.0636) (0.0853) (0.0090) (0.0317) (0.0634)

Households below tax threshold in 2009

bw = 14 0.0245** 0.0119 0.0045 0.0007 -0.0035 0.0126
(0.0109) (0.0109) (0.0163) (0.0019) (0.0053) (0.0135)

bw = 12 0.0243** 0.0107 0.0080 0.0000 -0.0040 0.0197
(0.0118) (0.0118) (0.0174) (0.0020) (0.0059) (0.0145)

bw = 8 0.0246* 0.0091 0.0010 -0.0004 0.0009 0.0148
(0.0144) (0.0144) (0.0211) (0.0025) (0.0064) (0.0174)

bw = 6 0.0190 0.0025 0.0050 0.0012 -0.0034 0.0148
(0.0174) (0.0174) (0.0255) (0.0030) (0.0077) (0.0217)

bw = 4 0.0376* 0.0197 0.0529* -0.0019 0.0043 0.0251
(0.0221) (0.0220) (0.0311) (0.0038) (0.0098) (0.0267)

bw = 2 0.0422 0.0169 0.0316 -0.0057 0.0036 0.1192**
(0.0405) (0.0398) (0.0579) (0.0070) (0.0185) (0.0530)

bw = 1 -0.0978 -0.1517 0.0493 -0.0276 -0.0623 -0.0352
(0.1304) (0.1346) (0.1747) (0.0232) (0.0601) (0.1548)
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Table A.8: Bandwidth Robustness, Relative Location

This table shows the results from the main IV specification, using different cutoffs for scaled border distance. bw=0.5 implies
keeping all households with Relative Location in inside [-0.5,0.5]. The main specification uses bw=1.0. All specifications
consider outcomes during the post-period of 2010–2015.

Adj. ∆ log(GFW ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(Income) ∆ log(Salary + S.E.Inc.)
Bandwidth (1) (2) (3) (4) (5) (5)

Full sample

bw = .9 0.0223*** 0.0129 -0.0090 -0.0002 0.0059 0.0230**
(0.0082) (0.0084) (0.0128) (0.0013) (0.0046) (0.0103)

bw = .8 0.0217** 0.0121 -0.0034 0.0003 0.0040 0.0206*
(0.0088) (0.0091) (0.0140) (0.0014) (0.0051) (0.0109)

bw = .7 0.0250*** 0.0152 -0.0038 -0.0000 0.0058 0.0182
(0.0095) (0.0098) (0.0149) (0.0015) (0.0054) (0.0113)

bw = .6 0.0312*** 0.0201* 0.0047 -0.0012 0.0094 0.0188
(0.0104) (0.0107) (0.0164) (0.0017) (0.0060) (0.0127)

bw = .5 0.0326*** 0.0221* -0.0090 -0.0010 0.0127* 0.0280**
(0.0117) (0.0120) (0.0180) (0.0018) (0.0066) (0.0134)

bw = .4 0.0321** 0.0196 -0.0154 -0.0002 0.0134* 0.0181
(0.0130) (0.0133) (0.0193) (0.0020) (0.0072) (0.0149)

bw = .3 0.0352** 0.0205 -0.0283 -0.0000 0.0086 0.0213
(0.0146) (0.0150) (0.0235) (0.0022) (0.0083) (0.0171)

Households above tax threshold in 2009

bw = .9 0.0259** 0.0157 -0.0071 -0.0000 0.0110 0.0383**
(0.0118) (0.0124) (0.0185) (0.0019) (0.0074) (0.0152)

bw = .8 0.0218* 0.0115 -0.0018 -0.0000 0.0068 0.0349**
(0.0127) (0.0134) (0.0202) (0.0021) (0.0080) (0.0164)

bw = .7 0.0234* 0.0126 0.0004 -0.0003 0.0045 0.0281
(0.0137) (0.0145) (0.0218) (0.0022) (0.0085) (0.0174)

bw = .6 0.0292** 0.0174 0.0074 -0.0018 0.0088 0.0195
(0.0148) (0.0158) (0.0234) (0.0024) (0.0092) (0.0189)

bw = .5 0.0367** 0.0252 -0.0057 -0.0027 0.0138 0.0217
(0.0169) (0.0179) (0.0268) (0.0026) (0.0100) (0.0208)

bw = .4 0.0256 0.0116 0.0033 -0.0025 0.0228** 0.0240
(0.0182) (0.0192) (0.0288) (0.0030) (0.0105) (0.0225)

bw = .3 0.0326 0.0152 -0.0225 -0.0026 0.0167 0.0251
(0.0211) (0.0225) (0.0381) (0.0034) (0.0126) (0.0283)

Households below tax threshold in 2009

bw = .9 0.0197* 0.0109 -0.0051 -0.0006 0.0009 0.0079
(0.0116) (0.0115) (0.0170) (0.0018) (0.0056) (0.0143)

bw = .8 0.0215* 0.0127 0.0005 -0.0001 0.0006 0.0082
(0.0124) (0.0124) (0.0187) (0.0020) (0.0061) (0.0152)

bw = .7 0.0174 0.0084 0.0030 -0.0005 0.0057 0.0109
(0.0131) (0.0130) (0.0194) (0.0021) (0.0065) (0.0155)

bw = .6 0.0182 0.0081 0.0120 -0.0008 0.0083 0.0232
(0.0144) (0.0143) (0.0219) (0.0023) (0.0074) (0.0174)

bw = .5 0.0111 0.0012 -0.0006 0.0005 0.0103 0.0400**
(0.0156) (0.0155) (0.0228) (0.0024) (0.0081) (0.0180)

bw = .4 0.0192 0.0072 -0.0159 0.0026 0.0012 0.0208
(0.0171) (0.0169) (0.0247) (0.0027) (0.0089) (0.0202)

bw = .3 0.0194 0.0057 -0.0098 0.0028 -0.0002 0.0232
(0.0187) (0.0186) (0.0278) (0.0030) (0.0094) (0.0215)
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Table A.9: First Stage Effects on Wealth Tax Outcomes: Using Distance in
KM

This table provides the reduced-form using scaled border distance as the geographic measure. Column (1) considers the
tax value of housing, as observed in tax returns. Column (2) considers the effect on being above the wealth tax threshold.
Column (3) considers the effect on the marginal rate-of-return, by isolating extensive margin effects from wealth taxation.
This is done by defining the dependent variable to be −τt1[TNWi,t > Thresholdt]. Column (4) examines the effect on
the amount above the wealth tax threshold, 1[TNWi,t > Thresholdt](TNWi,t − Threshold). Column (4) considers isolates
the effect of increased wealth taxation on the average rate-of-return. This is done by defining the dependent variable as
−τt1[TNWi,t > Thresholdt](TNWi,t−Threshold)/TNWi,t, which is evaluated as 0 if TNWi,t ≤ 0. pp is short for percentage
points, and indicates that coefficients (SEs) are multiplied by 100. Standard errors, provided in parenthesis, are clustered at
the census tract level.

Extensive margin Extensive and intensive margin

log(TaxV al) 1[TNW > Threshold] rmarginal AmountAbove raverage

(1) (2) (3) (4) (5)

Full sample

log(TaxV al
∧

) 0.872693*** 0.259342*** -0.002724*** 865278*** -0.001898***
(0.030300) (0.012781) (0.000133) (87379) (0.000082)

F(β̂ = 0) 830 412 419 98 539

Households above tax threshold in 2009

log(TaxV al
∧

) 0.906123*** 0.157144*** -0.001654*** 1158019*** -0.001737***
(0.041042) (0.014319) (0.000149) (135316) (0.000103)

F(β̂ = 0) 487 120 123 73 284

Households below tax threshold in 2009

log(TaxV al
∧

) 0.827092*** 0.386843*** -0.004059*** 375749*** -0.002017***
(0.040108) (0.020063) (0.000209) (58352) (0.000115)

F(β̂ = 0) 425 372 378 41 309

Border Distance Controls
– KM Yes Yes Yes Yes Yes

B.6 Effect on municipal finances

Households in high taxation municipalities may see the negative income effect partially offset
by a higher provision of public goods or a lowering of municipal fees. While this may generally
be a cause for concern, I argue that this effect is likely negligible in my empirical setting for the
following key reasons: First, wealth taxes are disproportionately paid by the very wealthy, who
were not disproportionately affected by this reform given that the housing wealth accounts for
a very small fraction of net worth among the very wealthy.49 Thus, changes in tax assessments
are not likely to lead to meaningful changes in the aggregate amount of wealth tax revenues in
a given municipality. In addition, wealth taxes only account for 10% of aggregate municipal tax
revenues, a share that drops to only 4% of when considered relative to aggregate municipal total
incomes. Finally, due to the government’s revenue equalization scheme, increasing per capita
49See Fagereng, Guiso, Malacrino, and Pistaferri (2018)
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tax revenues by 1 NOK lowers transfers from the central government by 0.6 NOK. Therefore,
even if wealth tax revenues do change, the effect on local public services would be likely muted,
due to a limited effect on municipality finances. Calculations that I present below, suggest that
a municipality where assessed tax values of housing are 0.5 log points higher will have 0.26%
more revenue.50 Thus any reasonable bounds on household sensitivity to municipal finances
suggest that the effect will be negligible.

B.7 Communication of policy change

The implementation of a new methodology to assess housing wealth was primarily com-
municated through a letter sent to all home-owners in August of 2010. The letter was titled
“Information for the calculation of new tax values for residential properties,”51 and provided
registered information about the house, namely structure type, construction year and size.
Home-owners were asked to verify and possibly correct this information, either by via mail or
online. At the same time, “tax calculators” were made available online on the tax authorities’
website, where households could enter the characteristics of their home and see their estimated
new tax value. This tax value differed somewhat from the actual assessed values, since the
online calculators used pricing coefficients based on 2004–2008 transaction data, while the final
assessment for 2010 used coefficients based on 2004–2009 data. The fact that a new assessment
methodology was introduced was therefore salient, and the effect on a household’s wealth tax
base (TNW) readily available already in the early fall of 2010. On December 15th 2010, prelim-
inary tax information (“tax cards”) was sent out to all tax payers, containing estimated taxes
to be paid for that year, which included the new housing assessment and TNW. Households
should thus have been aware of the financial impact of the new assessment methodology before
Christmas of 2010, at the latest.

On the tax authorities’ website, they inform that tax values are assessed as the size of
the home multiplied with a price-per-square meter coefficient, which is based on Statistics
Norway’s real estate transaction statistics:“Boligens boligverdi er lik boligens areal multiplisert
med kvadratmeterpris basert p̊astatistikk over omsatte boliger.” (March 2019). See the tax
50I utilize the distribution of wealth tax payers from SSB (https://www.ssb.no/statbank/table/08231/tableViewLayout1/),

and assume that this distribution holds for all municipalities. In my empirical setting, 0.5 log point increase
in TaxV al increases the amount subject to a wealth tax by 478,000 for households initially above the wealth
tax threshold. This increases wealth tax payments by approximately 5,000. Using the distribution of wealth
tax payers, I increase everyone’s tax payments by 5,000, and find an increase in total tax payments of 25%.
Assume that this occurred in one municipality, but not it’s neighbor. Since the municipal share of the wealth
tax is only 64%, the high-side municipality now has 0.64*0.25=16% more wealth tax revenue. The wealth
tax’s share of tax revenue is 10%. Thus the high-side will have 1.6% more tax revenue, but only 1.6% * 40%
= 0.64% more total revenue, since tax revenues account for 40% of total incomes on average. Only 40% of
this difference will pass through after applying the government revenue equalization scheme, leaving only.
0.26% more revenue for the high assessment side municipality.

51My own translation.
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authorities’ website. There are no details provided on the exact methodology.

B.8 Calculating distances

For each household i, dUi ,is the signed distance, in meters, to the nearest residential building
in a different municipality (or within-city district), m′i, with which mi shares a border which
is not in the ocean or a fjord.52,53 In the following, m is referred to as a municipality, where,
for purposes of brevity, I denote within-city districts in the largest 4 cities as municipalities.
Household i is then assigned to the border area bi = mi ∪m′i = m′i ∪mi. Household i is defined
to be in the low assessment side, if the average household in bi would receive a lower assessment,
were it assessed as if it were in mi. If the assessment would be higher in mi, household i lives
on the high assessment side. If they are equal, the household (and all households in this border
area) is dropped from the sample. If household i lives in the low (high) assessment side, dUi is
signed to be negative (positive).

For all municipal pairs, m, m′, distance between their housing centroids is calculated. A
centroid is the vector average of the coordinates of all owner-occupied houses in a municipality.
This disregards which bi you belong to. This number then enters in the denominator when
scaling dUi to get the scaled (and signed) border distance, di.

B.9 Two-period model with endogenous labor supply

Consider the modified household optimization problem. L ≥ 0 is hours worked in period 1,
W is the exogenous hourly wage, 1

ν
> 0 is the Frisch Elasticity, and ψ > 0 is the (dis)utility

weight on labor supply. Y1, and Y2 are the exogenous incomes in periods 1 and 2, respec-
tively.

max
C1,C2,S,L

U(C1, C2, S, L) = 1
1− γC

1−γ
1 − ψ L

1+ν

1 + ν
+ β

1
1− γC

1−γ
2 (32)

s.t. C1 + S = Y1 + LW

and C2 = Y2 + R̃ + Ṽ

The first order conditions with respect to S, together with the budget constraints, imply
that:
52All distances are calculated as the euclidean distance between coordinate vectors measured in meters. This

assumes that the world is flat, which seems like a reasonable approximation for distances between neighboring
municipalities. This assumption speeds up the time it takes to calculate a large combination of distances
required to find the nearest household in a different municipality.

53For computational reasons, only one building per 1002-square-meter square in neighboring municipalities is
kept, and the search is conducted over a grid of the coordinates of these “representative” buildings.
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S = [βR̃]
1
γ (Y1 + LW )

R̃ + [βR̃]
1
γ

− Y2 + Ṽ

R̃ + [βR̃]
1
γ

(33)

The first order conditions with respect to L, together with the budget constraints, imply
that:

dL ·W = γ[Y1 + LW − S]−γ−1W 2

(ψνLν−1 + γ[Y1 + LW − S]−γ−1W 2)dS ≡ fdS (34)

Since ψνLν−1 > 0, and C1 = Y1 +LW −S > 0, this implies that the labor earnings response
is a fraction, f ∈ (0, 1), of the savings response to rate-of-return shocks.

I now totally differentiate equation 33 with respect to R̃, and substitute dL ·W with the
expression in equation 34, and solve for dS/dR̃ to get:

dS

dR̃
=

1− f [βR̃]
1
γ

R̃ + [βR̃]
1
γ

−1(Y1 + LW )1− γ
γ

[βR̃]
1
γ

(R̃ + [βR̃]
1
γ )2

+ (Y2 + Ṽ )
1 + β

γ
[βR̃]

1
γ
−1

(R̃ + [βR̃]
1
γ )2

(35)

I then totally differentiate 33 with respect to Ṽ , and substitute dL ·W with the expression
in equation 34, and solve for dS/dṼ to get:

dS

dṼ
=

1− f [βR̃]
1
γ

R̃ + [βR̃]
1
γ

−1− 1
R̃ + [βR̃]

1
γ

 (36)

The expressions for dS/dR̃ and dS/dṼ are qualitatively similar to the case without endoge-
nous labor supply, but are scaled up (in magnitude), since (1 − f [βR̃]

1
γ /(R̃ + [βR̃]

1
γ ))−1 > 1.

The expression for the rate-of-return sensitivity in equation 35 now also contains labor earnings
as period 1 income. There is therefore no change to the qualitative conclusions in the previous
section. The new conclusion is that the effect on labor earnings should be of a same sign as,
but smaller in magnitude than, the effect on savings.
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