Confidence and the Propagation of Demand Shocks

George-Marios Angeletos¹ Chen Lian²

¹MIT and NBER

²UC Berkeley

July 7, 2020

Outline

2 Element 1: Variable Utilization \Rightarrow AS Responds to AD

3 Element 2: Rational Confusion \Rightarrow Confidence Multiplier

Popular Narrative

- Household deleveraging or other AD shocks
 - \implies Consumers spend less
 - \implies Firms produce and hire less
 - \implies Consumers lose confidence and spend even less
 - \implies Firms produce and hire even less
 - $\implies \cdots$
 - \implies The Great Recession!

Does It Make Sense?

In RBC: no

• In GE, interest rates adjust, offsetting AD shock

In NK: perhaps

- Only when MP does not replicate flexible price outcomes
- Effects of AD shock = monetary contraction
- Inflation and output co-move

BUT

- ZLB constraint not relevant in earlier recessions
- Philips curve elusive in the data (Mavroeidis et al., 14)
- Non-inflationary demand shocks prevalent
 - Beaudry & Portier (13), Angeletos et al. (20)

This Paper

• A theory of demand driven fluctuations with flexible prices

Element 1:

• Variable utilization \Rightarrow AS responds to AD

Element 2:

- Rational confusion between idiosyncratic & agg. income fluctuations
- \Rightarrow Confidence multiplier
 - feedback loop between output, consumer & investor expectations
- A broader bounded rationality interpretation

Roadmap

Representative agent, complete info, version model

• Element 1: variable utilization \Rightarrow AS responds to AD

Introduce information frictions

• Element 2: rational confusion \Rightarrow confidence multiplier

Extensions

- Comovement of consumption, output, and investment
- Fiscal policy (front-loading vs back-loading)
- TFP Shock

Outline

2 Element 1: Variable Utilization \Rightarrow AS Responds to AD

3 Element 2: Rational Confusion ⇒ Confidence Multiplier

Preferences and AD Curve

• Preference (representative agent & complete info)

$$U(c_t, n_t) + \beta_t U(c_{t+1}, n_{t+1}) + \beta_t \beta_{t+1} U(c_{t+2}, n_{t+2}) + \cdots,$$

where

$$\log \beta_t = (1 - \rho_\beta) \log \beta + \rho_\beta \log \beta_{t-1} - \bigcup_{\text{AD Shock}} \eta_t$$

• A positive η_t shock = urge to consume = positive AD shock

• AD curve (log-linearized, complete info)

$$y_t = -\sigma \{R_t + \beta_t\} + \mathbb{E}_t [y_{t+1}]$$

Technology and AS Curve

Technology

$$y_t = (l_t)^{\alpha} (u_t k_t)^{1-\alpha}$$
$$k_{t+1} = (1 - \delta (u_t) + \Psi (\iota_t)) k_t,$$

• Tentatively: shut down ι_t and drop $\Psi(\iota_t)$

Technology and AS Curve

Technology

$$y_t = (l_t)^{\alpha} (u_t k_t)^{1-\alpha}$$
$$k_{t+1} = (1 - \delta (u_t) + \Psi (l_t)) k_t,$$

- Tentatively: shut down ι_t and drop $\Psi(\iota_t)$
- AS curve (log-linearized):

$$y_t = (1 - \tilde{\alpha}) (u_t + k_t),$$

$$u_t = \frac{\beta}{\tilde{\alpha} + \beta \phi} R_t + \beta \mathbb{E}_t [u_{t+1}],$$

$$k_{t+1} = k_t - \kappa u_t,$$

where
$$\tilde{\alpha} \equiv 1 - \frac{(1-\alpha)\left(1+\frac{1}{\nu}\right)}{1+\frac{1}{\nu}-\alpha+\frac{\alpha}{\sigma}}$$
 and $\phi \equiv \frac{\delta''(u^*)u^*}{\delta'(u^*)}$.

Equilibrium

Prop. Demand-driven business cycle without nominal rigidity

$$rac{\partial y_t}{\partial \eta_t} = \gamma \;\; ext{and} \;\; rac{\partial R_t}{\partial \eta_t} = rac{\sigma}{\sigma+arsigma},$$

where

$$\gamma \equiv \frac{\varsigma \sigma \beta}{\sigma + \varsigma} \frac{1}{1 - \rho_\beta \beta} \ \, \text{and} \ \, \varsigma \equiv \frac{1 - \tilde{\alpha}}{\tilde{\alpha} + \beta \phi}.$$

• γ increases with variability of u (decreases with $\phi \equiv \frac{\delta''(u^*)u^*}{\delta'(u^*)}$)

- Baseline NK: natural rate of output fixed ($\gamma = 0$ because $\phi = \infty$)
- Here: natural rate of output responsive to AD

Outline

1 Introduction

2 Element 1: Variable Utilization \Rightarrow AS Responds to AD

3 Element 2: Rational Confusion \Rightarrow Confidence Multiplier

4 Extensions

Full Model with Information Frictions

Supply side

• Complete info, same as above

Demand side

- Islands & idiosyncratic shocks
- Know own discount rate, current local income & interest rates
- Incomplete info of, or inattention to, the aggregate
- Rational confusion of idiosyncratic & agg. income fluctuations

AD Curve

Prop. The AD Curve

$$y_t = -\sigma \{R_t + \beta_t\} + \mathbb{E}_t [y_{t+1}] + (\mathscr{B}_t + \mathscr{G}_t).$$

• \mathcal{B}_t captures misperception of permanent income

$$\mathscr{B}_{t} \equiv \frac{1-\beta}{\beta} \sum_{k=0}^{+\infty} \beta^{k} \int \left(E_{t}^{h} [y_{h,t+k}] - \mathbb{E}_{t} [y_{h,t+k}] \right) dh,$$

where $y_{h,t} = y_t + \xi_{h,t}$ is the local income at t.

• \mathcal{G}_t captures misperception of future interest rates

$$\mathscr{G}_{t} \equiv -\sigma \sum_{k=1}^{+\infty} \beta^{k} \int \left(E_{t}^{h} [R_{t+k}] - \mathbb{E}_{t} [R_{t+k}] \right) dh$$

\mathcal{B}_t : Misperception of Permanent Income

Hulten's theorem: agg permanent income $\sum_{k=0}^{+\infty} \beta^k \int y_{t+l}$ invariant to AD

\mathcal{B}_t : Misperception of Permanent Income

Hulten's theorem: agg permanent income $\sum_{k=0}^{+\infty} \beta^k \int y_{t+l}$ invariant to AD

Prop. Pro-cyclical perceived permanent income

$$\mathscr{B}_t \equiv \frac{1-\beta}{1-\beta\rho_{\xi}} (1-\lambda) y_t,$$

- ho_{ξ} is the persistence of the idiosyncratic income shock $\xi_{h,t}$
- 1λ : degree of confusion between idiosyncratic & agg.

Mechanism: current aggregate income y_t drops

- \implies rationally confused as drop in idiosyncratic income $\xi_{h,t}$
- \implies drop in perceived permanent income

Confidence Multiplier

Confidence Multiplier

Focus on the impact of \mathscr{B}_t (as if $\mathscr{G}_t = 0$)

Prop. Equilibrium Impact of Confidence Multiplier

$$\frac{\partial y_t}{\partial \eta_t} = \gamma \cdot m^{\operatorname{conf}} \big(\lambda, \rho_{\xi} \big),$$

where the confidence multiplier

$$m^{\operatorname{conf}}\left(\lambda,
ho_{\xi}
ight)\equivrac{\zeta+\sigma}{\zeta+\sigma-\zetarac{1-eta}{1-eta
ho_{\xi}}\left(1-\lambda
ight)}>1$$

• Increases with the persistence of idiosyncratic income $ho_{\mathcal{E}}$

• Increases with the confusion $1-\lambda$

𝒴_t: Dampening GE of Interest Rate Adjustments

Prop. Misperception of Future Interest Rate Adjustment

$$egin{split} \mathscr{G}_t &= (1\!-\!\lambda)\sigma\sum_{k=1}^{+\infty}eta^krac{\partial\mathbb{E}_t[R_{t+k}]}{\partial\eta_t}\eta_t \ &= (1\!-\!\lambda)rac{\sigma^2}{\sigma\!+\!arsigma}rac{eta
ho_eta}{1\!-\!eta
ho_eta}\eta_t \end{split}$$

Persistent negative AD shock

- Neoclassical GE: future interest rate R_{t+k} drops
 - goes against the impact of the AD shock
- Here: cannot fully perceive R_{t+k} drop
 - \mathscr{G}_t negative
 - Further amplifies the impact of the AD shock

Full Equilibrium

Prop. Full Equilibrium

The equilibrium response of aggregate output is given by

$$\frac{\partial y_t}{\partial \eta_t} = \gamma \cdot \boldsymbol{m}^{\mathsf{conf}}\left(\boldsymbol{\lambda}, \boldsymbol{\rho}_{\boldsymbol{\xi}}\right) \cdot \boldsymbol{m}^{\mathsf{GE}}\left(\boldsymbol{\lambda}, \boldsymbol{\rho}_{\boldsymbol{\beta}}\right),$$

where

$$m^{\mathsf{GE}}(\lambda,\rho_{\beta}) \equiv 1 + \beta \rho_{\beta} \frac{\sigma}{\sigma+\varsigma} (1-\lambda) \geq 1$$

• Increases with the persistence of AD shock ho_{eta}

• Increases with the confusion $1 - \lambda$

Bounded Rationality

Broader interpretation of confidence multiplier \mathcal{B}_t

- Key: the response of $c_{h,t}$ to $y_{h,t}$ independent from idio. vs agg.
- Rule of thumb (Kahnman, 11)
- Extrapolation (Barberis Greenwood, Jin, Shleifer, 14)
- One-factor representation (Molavi, 19)

Broader interpretation of GE dampening \mathscr{G}_t

- Lack of common knowledge (Angeletos & Lian, 18)
- Level-k thinking (Farhi & Werning, 19; Garcia-Schmidt & Woodford, 19)
- Cognitive discounting (Gabaix, 20)

Outline

1 Introduction

2 Element 1: Variable Utilization \Rightarrow AS Responds to AD

3 Element 2: Rational Confusion \Rightarrow Confidence Multiplier

Investment

$$k_{t+1} = \left[1 - \delta\left(u_t\right) + \Psi\left(\iota_t\right)\right] k_t.$$

Complete info (with small wealth effect on labor supply)

- Positive AS & comovement between c and y
- Negative comovement between *i* and *c*
 - ▶ negative AD shock, $c \downarrow$, $R \downarrow$, $i \uparrow$

Investment

$$k_{t+1} = \left[1 - \delta\left(u_t\right) + \Psi\left(\iota_t\right)\right] k_t.$$

Complete info (with small wealth effect on labor supply)

- Positive AS & comovement between c and y
- Negative comovement between *i* and *c*
 - ▶ negative AD shock, $c \downarrow$, $R \downarrow$, $i \uparrow$

Our resolution:

- Investment subject to confidence multiplier too
- Feedback between y_t & investor expectations of returns

Prop. Investment comovement

With strong enough info friction, (c, i, y) all co-move

Fiscal Multiplier

Q: How does confidence multiplier impact fiscal policy?

Here, for simplicity, shut down wealth effect of ${\sf G}$ on labor supply

• Same AS as above

AD:

$$y_t = -\sigma R_t + G_t - E_t [G_{t+1}] + E_t [y_{t+1}] + (\mathscr{B}_t + \mathscr{G}_t)$$

Fiscal Multiplier

Q: How does confidence multiplier impact fiscal policy?

Here, for simplicity, shut down wealth effect of ${\sf G}$ on labor supply

Same AS as above

AD:

$$y_{t} = -\sigma R_{t} + G_{t} - E_{t} [G_{t+1}] + E_{t} [y_{t+1}] + (\mathscr{B}_{t} + \mathscr{G}_{t})$$

Front-loading $G_t \implies$ positive AD shock \implies confidence multiplier

Prop. Front-loading government spending

With strong enough info friction, G_t can crowd in c_t

Back-loading $G_t \implies$ negative AD shock \implies negative multiplier

TFP Shock

$$y_t = -\sigma R_t + E_t [y_{t+1}] + (\mathscr{B}_t + \mathscr{G}_t),$$

No confidence multiplier

- Actual permanent income moves with aggregate TFP
- Rational confusion \implies Ambiguous \mathscr{B}_t
- Useful benchmark $\mathscr{B}_t \approx 0 \ (\rho_{\xi} \approx \rho_A)$
- Dampening of GE has reverse effect
 - Negative TFP Shock \Longrightarrow positive $R_t \Longrightarrow$ **Positive** \mathscr{G}_t

Prop. TFP Shock

Info friction dampens the relative impact of AS vs AD shock

• Consistent with the importance of non-inflationary AD shock

Main Business Cycle Shock (Angeletos, Collard, Dellas, 20)

• u, y, h, c, i comove without TFP & π

- Utilization accounts for pro-cyclicality in labor prod
- Non-accommodative MP and procyclical real R
- Intertemporal substitution in production

- $\bullet\,$ A theory why & how the natural output responds to AD shock
- Main insights go through sticky prices
- Additional mechanism: misperception of output gaps (MP)
 - existing literature on forward guidance etc.

Conclusion

Two contributions:

- A theory of demand-driven fluctuations without sticky prices
- A theory of amplifications for AD shock (but not AS shocks)