Exploited by Complexity

Pengjie Gao, Allen Hu, Peter Kelly, Cameron Peng, and Ning Zhu July 17, 2020

NBER Summer Institute Household Finance

Motivation

- More than a trillion dollars of structured financial products have been sold to households over the last decade or so
- Motives for issuing structured financial products
 - traditional: risk-sharing (Allen et al. 1994; Duffie and Rahi 1995)
 - recent: exploit naive investors via complexity (Bordalo et al. 2016)
- Growing evidence for the exploitation-based view
 - salient headline rates, with risks shrouded (Célérier and Vallée 2017)
 - low or negative returns (Henderson and Pearson 2011; Vokata 2018)

This paper

- heterogeneous effects on investment performance
- 2 redistributional consequences

Intuition

- ► Example of the hotel industry (Gabaix and Laibson 2006)
 - stay cost: basic room rate + various add-ons (e.g., parking)
 - hotels lower basic room rates by upcharging add-ons
 - asymmetry:
 - naive: pay for over-priced add-ons
 - sophisticated: avoid them and take advantage of the cheap rate
 - a cross-subsidization
- Analogy for complex financial products
 - a new product with an upside and a downside is introduced
 - downside: e.g., crash risk
 - issuers make the upside salient and shroud the downside
 - only the sophisticates know about the downside
 - crash risk goes up: smart ones get out and naive ones suffer
 - ► a similar cross-subsidization

Empirical Strategy

Challenges

1 many structured products are sold directly by brokers to households

- brokers misguide their clients into dominated products (Egan 2019)
- \blacktriangleright hard to disentangle the effect of product design from broker activities
- 2 detailed transaction data of structured products are lacking
 - even harder to make comparisons with simple products

3 complex products may also have other features

difficult to isolate the effect of complexity

Strategy

1 setting: exchange-traded structured funds in China

- leveraged funds with time-varying leverage and hidden clauses
- exchange-traded setting: little space for aggressive sales tactics
- 2 data: all exchange-traded products for 3M retail investors
 - compare structured funds against non-structured funds such as ETFs
- **③** event study: 2015 market crash triggered a *hidden* feature
 - ▶ for 52 funds, their value would shrink by half over a two-day window
 - differential responses to quantify the effect of complexity

Performance asymmetry

- on average, an investor broke even from 2014 to 2015
- asymmetry:
 - \blacktriangleright the largest 1% gained 500 million; the remaining 99% lost 500 million
 - similar transfers from the naive to the sophisticated
- population: a total wealth transfer of 8 to 20 billion RMB
- Ocomparison with simple ETFs
 - little evidence of any ETFs-induced wealth transfer
 - the scaling effect of leverage cannot explain the difference

Preview of Results, cont'd

Direct evidence (on the effects of complexity)

- rely on the trigger of a hidden feature: leverage reset
 - ▶ high leverage \rightarrow large premium
 - ▶ too high \rightarrow resets to one
 - after reset, premium disappears, and fund value shrinks by half
- many investors completely ignored these events
 - differential responses: 25% to 45% of the total wealth transfer
 - poor, naive investors were left holding the funds when resets hit
- issuers were aware of the risk but chose to shroud it in prospectuses
- Entry decisions (if time permits)
 - participants: extrapolators entered after positive market returns
 - attracted by the high "headline" returns, but ignored the risks shrouded by complex features (Bordalo et al. 2016)

Structured Funds: AB Funds

· All shares are normalized to a per-share NAV of one

Feature I: Time-Varying Leverage

- $\blacktriangleright~B~funds \rightarrow$ leveraged closed-end funds
 - however, two additional features that make them more complex
- ► Example:
 - with NAV of 200 USD, 100 shares of A and 100 shares of B
 - A tranche annual dividend rate = 8%

Feature I: Time-Varying Leverage

Time	NAV_P	NAV_A	NAV_B	Leverage (NAV_B/NAV_A)
Month 3	1.1	1.02	1.18	0.86
Month 6	1.3	1.04	1.56	0.66
Month 9	0.8	1.06	0.54	1.96
Month 12	0.65	1.08	0.22	4.91

 when the underlying assets go up (down) in value, leverage goes down (up)

Feature II: Restructuring Clause

Feature II: Restructuring Clause

- ► In theory, A is not risk-free
 - if the parent drops by more than 50%, it eats into the A tranche
- ▶ To ensure that A is risk-free
 - if the per-share NAV of B drops below 0.25, funds are restructured
 - NAVs are reset to one for A, B, and the Parent

► Example

Popularity of B Funds

- ► In 2015, the Chinese stock market had a dramatic bubble and crash episode
 - rose 100% in six months and crashed
- B funds became exceedingly popular in the run-up
 - traded by 10% of the active investor population
 - market size comparable to ETFs
- Popularity: embedded leverage
 - Chinese retail investors were (are) leverage-constrained
 - e.g., minimum 500K for a margin account
 - B funds filled this gap
- ► B funds were trading at a large **premium**
 - exceeded 100% in some cases
 - variation mostly explained by leverage (in both TS and CS)

> Transaction data: from a large national brokerage firm in China

- wide geographic coverage
- all exchange-listed securities
 - ► stocks, ETFs, and structured funds
- + 5% of the entire Chinese investor population
- Survey data: survey responses when opening an account
 - self-reported wealth and sophistication
 - control variables such as risk attitudes and investment horizons

Overview: B Returns

B Returns by Account Size

B Returns by Self-Reported Wealth

B Return Rates by Sophistication

(a) Self-reported financial literacy

(b) Education

- Ex-ante, it is perhaps not surprising that rich and sophisticated investors do better
- Our goal is to show that adding *complexity* to simple products widens the return gap
 - **complexity tax**: subsidizes the rich (sophisticated) and taxes the poor (naive)
- ► A natural benchmark *without* complexity: simple ETFs
 - virtually hold the same underlying assets
 - both are exchange-traded with ample liquidity
 - market size is also similar around the bubble

Comparing Return Rates by Account Size

(a) B return rates

(b) ETF return rates

ETF Return Rates by Investor Groups

Summary of Findings

A sharp contrast between B funds and ETFs

- · cannot be explained by the scaling effect of leverage
- average leverage was around 1:1

► However, the effects of leverage may go beyond scaling

- e.g., leverage could exacerbate behavioral biases (Heimer and Simsek 2019; Heimer and Imas 2020)
- a more ideal comparison: B funds vs. leveraged ETFs (with a constant leverage)
 - non-existent in the Chinese market
- ▶ How do we isolate the effects of complexity from leverage?
 - Feature II: leverage resets during restructuring events

Overview of Restructuring Events

▶ 2015 market crash: out of the 115 funds, 52 had to reset leverage

► Example

Time	NAV_B	$Price_B$	Shares	Total value
Month 12	0.22	0.44	100	\$44
Post-restructuring	1.00	1.00	22	\$22

Retail Flows During Restructuring Events

▶ Investors *increased* their holdings by 13% prior to the trigger

- another 3% on day 1
- 400 million RMB wealth vanished when resets hit

Retail Flows by Size Groups

Differences in retail flows explain differences in returns

- leverage resets: 250 million; 21-day window: 450 million
- 25% to 45% of the total wealth transfer
- ▶ Similar results for groups sorted on wealth, literacy, and education
 - albeit with a similar magnitude

Behaviors of Other Participants

Brokers (issuers)

- · discussion about risk is buried in lengthy prospectuses
 - average prospectus length: 130-pages
 - discussion about risk starts on page 86
- issuers were aware of the risk associated with restructuring
 - based on their discussion about leverage-induced premium
- however, they chose not to disclose it explicitly
 - out of 115 funds, only three explicitly disclose this risk

Institutional investors

- they almost completely liquidated prior to leverage resets
 - only a few dozen institutional investors in our data
 - but their behavior is sufficiently telling

Alternative explanations

- rational gambling
- · liquidity provision
- liquidity shocks
- reluctance to realize losses (the disposition effect)
- inattention
- ...
- None of them can explain our results

 \blacktriangleright For individuals i that have not purchased B funds as of month m-1

 $\mathsf{Dummy}_{i,m}^B \times 100 = \alpha + \Theta \times \mathsf{Determinants}_{i,m-1} + \epsilon_{i,m}$

- Dummy $_{i,m}^B$: 1 if i trades B in month m and 0 otherwise
- Determinants $_{i,m-1}$: account characteristics up to month m-1, constructed from transactions of individual stocks
 - extrapolation
 - trading experience
 - gambling preference
 - prior returns

▶ ...

 In other words, we examine what factors triggered people to start investing in B funds

Entry Decisions: Regression Results

	(1)	(2)	(3)	
Market return, in %	0.091***	0.044***	0.057***	
	(0.018)	(0.013)	(0.015)	
Extrapolation		-0.000	-0.003	
		(0.008)	(0.006)	
Market return, in $\% imes$ Extrapolation		0.344***	0.301***	
		(0.067)	(0.062)	
Have a margin account, dummy			0.001**	
			(0.001)	
Experience in stocks			-0.001***	
			(0.000)	
Account size, log			0.001***	
			(0.000)	
Traded warrants before			0.004***	
			(0.001)	
Return rate, in %			0.021***	
			(0.006)	
Volatility			0.008	
			(0.012)	
Skewness			0.000	
			(0.000)	
Turnover			0.000	
			(0.000)	
Survey responses	NO	NO	YES	
Observations	4,541,691	4,541,691	2,520,409	
R-squared	0.002	0.004	0.006	

Discussion: Policy Implications

- ▶ Prior literature: interaction between brokers and households
 - implications about the regulation of broker conduct
- ► This paper: exchange-traded setting
 - · naive investors may self-select into these products
 - implications about product design and investor education
- ► In the U.S.,
 - the pool of exchange-traded assets has expanded dramatically
 - ► leveraged ETNs, inverse ETFs, etc.
 - apps like Robinhood make them more accessible to retail investors
 - no clear evidence that they help investor welfare
 - contributed to personal bankruptcies in the pandemic ("Individual Investors Get Burned by Collapse of Complex Securities", WSJ)
- ▶ Our evidence presents a cautionary tale for policy makers
- ▶ Post-events, the China Securities Regulatory Commission
 - halted the issuance of new structured funds
 - placed a higher barrier to entry for new investors

Conclusion

- There is a growing literature that examines the welfare implications of structured financial products, and we contribute to this literature in two ways
 - existing work focuses on the *average* effect → we document a heterogeneous effect and redistributional consequences
 - 0 existing work shows that naive investors are tricked by brokers \rightarrow we show they can also be exploited by the design of the product itself
- Implications of complexity
 - a form of tax (subsidy)
 - a contributor of cross-subsidization
 - and, perhaps, wealth inequality
 - a source of retail sub-optimal performance

Why Was the B Premium Not Corrected?

- Failure of the main arbitrage mechanism
 - B shares cannot be redeemed or created directly
- Arbitrageurs would have to create parent shares, split them into A and B shares, and sell them on the exchange
 - the entire process could take up to 2-3 days to complete
- A shares were substantially underpriced
 - they could hold on to them, but prices could drop even more

Comparison with ETF Returns: Regressions

Return $Rate_i = \beta_0 + \beta * Dummies_i + \epsilon_i$					
	B Fund Return	ETF Return	B Fund Return		
	(1)	(2)	(3)		
Wealth (>1M)	0.010**	0.005	0.010**		
	(0.004)	(0.005)	(0.004)		
Size (top 1%)	0.035***	0.013	0.035***		
	(0.011)	(0.011)	(0.011)		
Financial literacy (good)	0.019***	-0.008	0.019***		
	(0.004)	(0.005)	(0.004)		
College	0.015***	-0.000	0.015***		
	(0.004)	(0.004)	(0.004)		
Female	0.003	0.018***	0.003		
	(0.004)	(0.004)	(0.004)		
Experienced with B	0.097***	0.009*	0.097***		
	(0.004)	(0.005)	(0.004)		
ETF return			0.041		
			(0.033)		
Observations	17,567	3,341	17,567		
<i>R</i> -squared	0.032	0.007	0.032		