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Abstract

Big data technologies change the way in which data and human labor combine to
create knowledge. Is this a modest technological advance or a transformation of our basic
economic processes? Using hiring and wage data from the financial sector, we estimate
firms’ data stocks and the shape of their knowledge production functions. Knowing how
much production functions have changed informs us about the likely long-run changes
in output, in factor shares, and in the distribution of income, due to the new, big data
technologies. Using data from the investment management industry, our results suggest
that the labor share of income in knowledge work may fall from 44% to 27% and we quantify

the corresponding increase in the value of data.

Machine learning, artificial intelligence (AI), or big data all refer to new technologies that
reduce the role of human judgment in producing usable knowledge. Is this an incremental
improvement in existing statistical techniques or a transformative innovation? This nature of
this technological shift is similar to industrialization: Industrialization changed the capital-labor
ratio, allowing humans to be more efficient at goods production. Machine learning is changing
the data-labor ratio, allowing humans to be more efficient at knowledge production. Economists
model industrialization as a change in production technology: a move from a technology with
starkly diminishing returns to capital, to one with less diminishing returns. One measure of
the importance of the industrial revolution is the magnitude of the change in the production

parameter that governs diminishing returns.
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Using labor market data from the financial sector, we estimate two production functions —
one for classical data analysis and one for machine learning. The decline in diminishing returns
shows up as an exponent on on data in the production function that is closer to one: We
estimate that the data exponent rose from 0.560 to 0.734. The magnitude of the change in
the diminishing returns parameter informs us about the importance of the innovation. As the
economy transitions from producing knowledge using old statistical techniques to producing
with new, machine learning technologies, this change in diminishing returns governs changes in
input use, income shares and productivity. In other words, our results inform us about how the
demand for labor and data will change, how to value each in the new economy, and how the
distribution of income is likely to shift, absent policy intervention.

Estimating old and new knowledge production functions is challenging, because for most
firms, we do not know how much data they have, nor how much knowledge they create, nor
do they announce which technology or what mix of technologies they employ. What we can
observe is hiring, skill requirements and wages. A simple model of a two-layer production
economy teaches us how to infer the rest. The two layers of production are as follows: Raw
data is turned into usable, processed data (sometimes called information) by data managers;
processed data and data analyst labor combine to produce knowledge. Thus, we use hiring
of data managers to estimate the size of the firm’s data stock, the skills mix of analysts to
estimate the mix of data technologies at work, and we bypass the need to measure knowledge
by using wage data to construct income shares, which inform us about the returns, and the rate
of diminishing returns, to each factor.

To estimate production functions, it is imperative that we precisely categorize job postings
and match postings by employer. Unlike other work that measures machine-learning-related
employment(e.g., Acemoglu and Restrepo (2018)), our work demands a finer partition of jobs.
We need to distinguish between workers that prepare data to be machine-analyzed, workers
that primarily use machine learning, and workers that use similar statistical skills, that are
frequently co-listed with machine learning, but are of a previous vintage. We also need to know
whether data managers are being hired by the same firm that is also hiring machine-learning
analysts.

Because different industries have different job vocabularies, we can categorize jobs more
accurately by focusing on one industry: finance, more specifically we focus on investment
management. Since investment management is primarily a knowledge industry, with no
physical output, it is a useful setting in which to tease apart these various types of knowledge

jobs.! We use Burning Glass hiring data, including the textual descriptions of each job, to

! According to Webb (2019) and Brynjolfsson et al. (2018b), finance is also the industry with the greatest
potential for artificial intelligence labor substitution.



isolate financial analysis jobs that do and do not predominantly use machine learning, as well
as data management jobs, for each company that hires financial analysts. We adjust the
number of job postings by a probability of job filling. That product is our measure of a
company’s desired addition to their labor force. This series of worker additions, along with job
separations by job category, enables us to build up a measure of each firm’s labor stock.

The next challenge is to estimate the amount of data each firm has. We consider data
management work to be a form of costly investment in a depreciating data asset. Therefore, we
use the job postings for data managers, the job filling and separation rates for such jobs, and an
estimate of the initial data stock to construct data inflows (investments), per firm, each year.
To estimate the 2010 initial stock of data of each financial firm, we estimate which stock best
rationalizes the firm’s subsequent hiring choices. Specifically, we choose an initial stock of data
that minimizes the distance between each firm’s actual hiring and the optimal amount of hiring
in each category, dictated by the firm’s first order conditions. Combining this initial stock, with
a data depreciation rate and a data inflows series gives us an estimate of the size of the data
stock that every financial firm has in its data warehouse.

Armed with data stocks, labor forces in each category, and wages, we estimate the data
and labor income shares. These income shares correspond to the exponents in a Cobb-Douglas
production function. We estimate a constant-returns Cobb-Douglas specification because we
are exploring the analogy that Al is like industrialization. Therefore, we model knowledge
production in a parallel way to industrialization, to facilitate comparison, while recognizing the
non-rival nature of data. By comparing the estimated exponent for classical data analysis and
machine-learning data analysis, we can assess the magnitude of the technological change. Of
course, this knowledge is then combined with capital to generate excess financial returns. But
it turns out that we do not need to model or measure this downstream value-creation to make
inference about knowledge production. Just like we can determine the production function for
milk, without knowing what factors are needed to turn it into ice cream, we can estimate the
production of knowledge, without asking how that knowledge is turned into excess financial
returns.

Our data reveals a shift underway in the employment of knowledge workers in the investment
management sector. We see a steady increase in the fraction of the workforce skilled in new
big data technologies. The number of old technology jobs in the sector has not fallen; it
simply represents a smaller share of employment. While AI job postings were a tiny fraction
of all analysis jobs through 2015, by the end of 2018, about 1/7" of all financial analysts in

investment management firms had big data or Al-related skills.



Related Literature A handful of recent working papers also use labor market data to
investigate how machine learning and artificial intelligence are affecting labor demand. They
primarily use a difference-in-difference approach. Acemoglu and Restrepo (2018), Babina et al.
(2020) and Deming and Noray (2018) identify industries and/or regions that are more exposed
to machine learning-related technology. Then, controlling for other labor-related variables,
they report how many jobs have been lost or gained, relative to unexposed regions or
industries. Others offer useful inputs in this exercise by reporting the number of Al jobs
postings or patents by industry and occupation (Cockburn et al. (2018) and Alekseeva et al.
(2020) paper). Agrawal et al. (2017) and Agrawal et al. (2018b) argue that machine learning
is likely to be a general purpose technology, because of the breadth of industries in which it is
being adopted.

Our paper contributes a structural, production function approach. Estimating how much
the production function has changed allows us a more holistic understanding of the nature of
the transformation. A structural model allows us to forecast, to make inferences about income
redistribution, and to understand the social welfare effects, beyond job counts. The number of
jobs gained or lost due to machine learning to date is an important question; it informs our
work, but it is just one piece of our overall puzzle.

Others examine the productivity gains or potential discrimination costs that follow the
adoption of AI techniques in providing credit (Fuster et al. (2018)), in equity analysis
(Grennan and Michaely (2018)), or in deep learning more generally (Brynjolfsson et al. (2017)
and Brynjolfsson et al. (2018a)). Our emphasis, on how inputs combine to create knowledge,
is complementary to such studies that examine the outputs and effects of machine learning.

Berg et al. (2018) take a similar structural approach, with a more theoretical focus, on a
somewhat different topic. They explore models with different elasticities of substitution between
robots and manual workers. Our focus is on knowledge production, rather than manual task
automation. The scope for computers to replace human thought and judgment may be quite
different from their ability to replicate repetitive physical movements. However, our quantitative
approach using hiring data could be applied to study robotics as well.

Models of the role of data in the process of economic growth (Jones and Tonetti (2018),
Agrawal et al. (2018a), Aghion et al. (2017) and Farboodi and Veldkamp (2019)) share our
model-based approach but equate data and knowledge. In these theories, firms accumulate a
stock of useable knowledge that enhances productivity or facilitates prediction. In contrast, this
study unpacks how raw data is transformed into that valuable output-enhancing knowledge.

Finally, our approach is related to work using Q-theory to impute the value of intangible
assets (Crouzet and Eberly, 2020). Our approaches are different: Q theory backs out a

production function exponent from asset prices and book values, while our approach builds up



a production function from labor inputs. Our objectives are also different: Q-theory is
decomposing the sources of value in a firm. We are interested in how much two technologies,

often both used within the same firm, differ.

1 A Model for Measurement

The objective in writing down this model is not to provide insight into new economic
mechanisms, nor it is to provide the most realistic, detailed description of financial knowledge
production. Rather, the goal is to write down a simple framework that maps objects we
observe into those that we want to measure. It needs to relate hiring to labor as well as
quantities and prices of labor to data stocks and knowledge production. There are three types
of workers: Al (artificial intelligence) analysts, old technology (OT) analysts, and data
managers. We use Al as a shorthand to denote a diverse array of big data technologies. The
data managers create structured data sets, which, along with labor, are the inputs into
knowledge production. Among data managers we also include workers who select, purchase
and integrate externally produced data sets into the firm’s databases. We define as data (D)

only information that is readily available for analysis. This production process is illustrated in

Figure 1.
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Figure 1: Production process for knowledge

The new technology knowledge production function is:
Ky = AYDLI, (1)

where D;; is structured data, L; is labor input for data analysts with machine-learning skills,
and K#T is the knowledge generated using the new technology. The old technology knowledge
production function is:
0] o) 1—
KitT = A TDZflit 7 (2)

where [;; is labor input for data analysts with traditional analysis skills, K7 is the knowledge



generated using the old technology. A and AYT are time-varying productivity parameters.

We use a Cobb-Douglas production function for knowledge because it offers a clear mapping
between incomes shares and the production function parameters and it facilitates our comparison
between new data technologies and the changes induced by industrialization. Notice that our
specification does embody the non-rival nature of data. Both technologies make use of the same
data set, at the same time. In addition, it may well be that each form of knowledge production
has increasing returns. If it did, we would need to make a host of other controversial assumptions
about what the firm chooses as its optimal scale, how profits are shared, and why so many firms
are competing in a sector that ought to give rise to a natural monopoly. In other words, the
intense competition for the provision of investment management services suggests that returns
are not greatly increasing in scale. But that is a set of questions best left for another project
with a different aim.

This structure implies that the nature of the data inputs is the same for both types of
analysis. This simplifies measurement, but the obvious counterfactual would be: Machine
learning can make use of a broader array of data types than traditional analysis. One way to
interpret this is that it is the source of greater decreasing returns to data from the old technology.
Suppose that data is ordered, from easily usable to difficult to use. Once the easiest data is
incorporated, the next additional piece of data for traditional analysis has very low marginal
value. For machine learning, that next piece of data has higher marginal value. Thus, the
difference in the usability of data could be the primary reason for the difference in returns to
data.

Data management and Data Stocks. Data inputs for analysis are not raw data. They need
to be structured, cleaned and machine-readable. This requires labor. Suppose that structured
data, sometimes referred to as “information," is produced according to APMAL"?, where )y
is labor input for data managers and APM is the productivity of data manager (DM) labor.
Labor with diminishing marginal returns can turn raw or purchased data into an integrated,
searchable data source that the firm can use. New processed data is added to the existing stock
of processed data. But data also depreciates at rate 6. Overall, processed data follows the

dynamics below:

t
Dies1) = (1= 0) Dy + APMNT? = Dig(1 = 8)" + > (1= §)' = APMAI?. (3)
s=0
If we estimate the rate of diminishing returns to data management labor )\;, initial data D;g

and the depreciation rate o, we can recover D;; from data management labor \;.



Equilibrium We are interested in a competitive market equilibrium where all firms choose
the three types of labor to maximize firm value. We can express this problem recursively, with
the firm’s data stock as the state variable. In this equilibrium, each firm ¢ solves the following

optimization problem:

Y _ 1
U(Dit) = )\{l’iatxlt A%AIDZL;: + AtOTDZflllt T wL,tLit — wulit - w)\’t>\it + ;U(Di(t—&-l)) (4)

Where Di(t+1) == (1 - 5)th + ADM)\ilt_QS; (5)

and v(D;) is the present discounted value of firm i’s data stock at time ¢. Note that we have
implicitly normalized the price of knowledge to 1. This is not restrictive because knowledge
does not have any natural units. In a way, we are saying that one unit of knowledge is however
much knowledge is worth $1. Seen differently, our A parameters measure a combination of

productivity and price. We cannot disentangle the two and do not need to for our purposes.

Optimal firm hiring and wages. The first order condition with respect to new technology
(AI) analyst labor L;; is
(1—a)K;! —wp Ly =0, (6)

which says that total payments to new technology analysis labor wy,,L; are a fraction (1 — «)
of the value of knolwedge output from AI analysis, K;!. The first order condition with respect
to old tech analyst labor [; is

(1 =) KJ" — w4l = 0. (7)

This says that the total payments to old technology analysis labor wyl;; are a fraction (1 — )
of the value of total output K$7. Taking the ratio of the two first order conditions implies that

(1- a)Kﬁu wreliy
(1 - V)KgT wl,tli,t

(8)

This ratio varies by time ¢ and it measures how much knowledge production technology has

changed. The first order condition with respect to data management labor \; is

1 _
;U/(Di(tﬂ))(l — ¢)APMAL = wy,. (9)



If the marginal value of data today and tomorrow are similar, we can solve for v'(D) and replace
APM\1=¢ by the change in the data stock, to get?

(CYK{?I + "}/Kl(t)T)(l - ¢) Di(t+1) - (1 - 6)D’Lt
r—(1-19) Dy

— w)\Vt)\Z‘t =0. (10)

Intuitively, total payments to data management wy ;\;; are a portion of (aK#! +~vK3$T)(1— ¢),
pdv (Gordon growth), or total output times the percentage increase in the data stock.

Using these expressions for optimal labor choices, we can derive an expression for the optimal
stock of data for a firm. This is an expression we will use to impute the initial data stock of
each firm. We start with (10) and substitute in APM X" in place of D1y — (1 — 6)Dy.
Next, we need to replace K7 and K7 which are the unobserved knowledge produced with
each technology. To do this, we use the first order conditions for AT and OT labor, (6) and (7),
to substitute wage per worker expressions; Kj}' = wr,L;;/(1 — ) and K7 = wy ;i /(1 — 7).
This yields an expression that relates firm ¢ stock of data to production function exponents and

observable hiring and wages:

( _fawL,th',t + = wl,tli,t> (1—29) ADM —9
Dy — - n it _ ), (11)
r—(1-90) Wy

)

2 Data and Estimation

Why look at the investment management industry? Our model is about knowledge
production generally, in any industry. But as we turn to estimating this model, we use asset
management industry labor and data estimates. One reason we do this is that the investment
management industry is primarily a knowledge industry, where information is processed to form
forecasts about asset returns and profitable portfolios. But the main reason is that finance is an
early adopter of AT and big data technology. If we want to study the nascent adoption of this new
technology, it is helpful to look in corners of the economy where adoption is most substantial.
In independent studies with different methodologies, Felten et al. (2018) and Brynjolfsson et al.
(2018¢) both came to the conclusion that the finance/insurance industry was the one with the
greatest potential for labor substitution with AI. Acemoglu et al. (2019) document that finance
has the third most number of Al job postings, behind information and business services.
Finally, the financial industry is a useful laboratory because finance jobs are typically filled.
JOLTS data tell us that finance is an industry with one of the highest vacancy conversion rates

into new employment, presumably because the finance sector pays more than others. Thus,

2See appendix for step-by-step derivation.



when they want a worker with a specific set of skills, they can buy them. Since our work relies
on job postings, it is helpful if many of these postings are, in fact, filled.

Of course, one could argue that we could include the investment management industry, as
well as all other industries, to broaden our sample and sharpen our estimates. The problem
with this approach is that distinguishing which workers combine data and labor to produce
knowledge is tricky. Determining which workers use which technology is even more delicate.
Different industries use different vocabularies to describe this type of work. The type of work
that the investment management industry calls an analyst, the retail industry might call an
online marketing expert. Both are using data and labor to make predictions that will enhance
their company’s profit. But because the language used to describe jobs differs, one needs a
separate dictionary/model to identify relevant jobs in each context. Therefore, restricting our
analysis to the asset management sector allows us to obtain a cleaner sample of job postings

and improve the accuracy of our estimates.

Labor demand Our data is the job postings data set collected by Burning Glass, from
January 2010 through December 2018. These postings are scraped from more than 40,000
sources (e.g. job boards, employer sites, newspapers, public agencies, etc.), with a careful focus
on avoiding job duplication. Acemoglu et al. (2019) show that Burning Glass data covers 60-80%
of all U.S. job vacancies. The finance and technology industries have especially good coverage.
It includes jobs posted in non-digital forms as well. Importantly, for a large portion of job
postings, the data reports employer names, as well as the sector, job title, skill requirements,
and sometimes the offered salary range. In addition to the structured data fields, we also make
use of the full text of the job posting, as written by employers.

The total number of job postings for the employers in our sample is 507,971, we categorize
143,809 of them as searching for old-tech financial analysts, Al financial analysts, or data
managers. The unique number of employers goes from 620 in January 2015 to 797 in December
2018. The total number of unique employers is 928.

In order to construct this data set of interest, we develop various data filters that (1) subset
the Burning Glass data to candidate jobs in the financial industry, (2) identify which of those
jobs require investment management skills, (3) assign all jobs to unique employers and (4) keep
only job postings from employers that significantly hire in investment management. Finally,
among all job postings for the employers of interest, we identify those searching for Al/old-tech
financial analysts or data managers. After keeping only such observations for employers that in
a given month have a non-zero stock of at least one of the three labor types, the total number
of employer-month observations is: 33,610. This is the number of observations used for our

estimation.



In our initial filter (1), we use the jobs’ NAICS, O*NET and proprietary Burning Glass
codes to restrict the Burning Glass data set to candidate jobs in the financial industry. More
specifically, we first drop all job postings that do not belong to one of the following 2-digit NAICS
codes: "Professional, Scientific, and Technical Services’, 'Finance and Insurance’, 'Information’
and ’Management of Companies and Enterprises’. We also keep all jobs for which the NAICS
code is not available. Next we compile lists of O*NET codes and Burning Glass proprietary
codes (BGT Occupation Group, BGT Career Area) of job categories that should clearly not be
contained in our sample®. After eliminating all jobs belonging to those categories, we are left
with a first sample of candidate fincance jobs.

With our second filter (2) we identify investment management jobs in our sample of candidate
finance jobs. For each job we consider the list of required skills as identified by Burning Glass.
These are standardized skills extracted from the full text of the job postings. If the skill is
mentioned at least once in the job posting then Burning Glass includes it in the list of skills
required by the job. We first construct a list of all standardized skills required by any of the
jobs in our sample. From that list we select all investment management related skills (a full
list of the shortlisted skills can be found in Appendix A). If a job requires one or more of these
skills, we categorized it as belonging to the 'Investment Management’ category.

Out third step (3) is to assign all jobs to unique employer identifiers, which we develop
through fuzzy matching of the provided employer names. We exclude jobs for which the employer
is a recruiting company. Combining steps (2) and (3), in step (4) we keep all jobs for employers
that posted at least one job requiring investment management skills between Jan 2010 and Dec
2018.

For all jobs in this sample, we then use the full text of the selected job postings in order to
identify analysis jobs and data management jobs. We define ’data management’ jobs as those
requiring skills related to the cleaning, purchasing, structuring, storage and retrieval of data.
What define as “analysis jobs" those jobs that combine structured data with skilled labor. We
call these analysts because they analyze data in different ways. They are not necessarily what
the financial industry calls analysts. Within the analysis jobs we further distinguish between
those that mostly require old (Old Technology - OT ) or new (Artificial Intelligence - AI) skills.

This classification is obtained by developing a dictionary of words and short phrases that
indicate ’data management’ or ’data analysis’, and then counting the relative frequency of these

words or expressions in each pre-processed job text. Among the 'data analysis’ keywords we

3Examples of excluded 6-digit O*NET codes that were still present in the sample: "Bookkeeping’, ’Accounting,
and Auditing Clerks’, ’"Customer Service Representatives’, ’Cashiers’, 'Retail Salespersons’ ...

4We pre-process the text of each job posting by first removing symbols, numbers and stop-words (e.g. is, the,
and, etc.) and then stemming each word to its root using the Porter stemmer algorithm (thus, e.g. 'mathematic’,
‘'mathematics’, ... = ‘mathemat’ ).
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further identify those clearly indicative of the old and new technologies and we assign jobs to
’Old Tech - OT’ or ’Artificial Intelligence - A" depending on the relative frequency of words of
the two types present in the posting. The full dictionaries used are available in Appendix B.

While this last step is similar in nature to the decompositions by Acemoglu and Restrepo
(2018) or Babina et al. (2020), working with one type of job in a single industry allows us to
partition the data more precisely. The approach of these authors is to define a dictionary of big
data related words in all industries. They then identify job postings that contain those words
in the standardized skills list provided by Burning Glass. Those are categorized as Al jobs;
everything else is non-Al. This approach does not work for our exercise: Burning Glass’ skills
list is not detailed enough to distinguish between different types of data analysis in finance.
Misclassification that might wash out in a job counting exercise is more serious for us. We need
to match data and labor stocks firm-by-firm. This is why we analyze the full text of the job
posting. Analyzing the full text, rather than using the Burning Glass skills list, greatly improves
our classification by allowing us to account for the frequency of mentions of each type of skill.®

Finally, we further restrict the sample to employers that posted at least 5 ’Old Technology’
or 'Machine Learning’ jobs throughout the entire sample and employers for which at least 25% of
all identified ’data analysis’ jobs also belong to the investment management subset. Other types
of analysis jobs include procurement, operations, marketing and sales analysts. This final filter
is needed in order to identify employers for which investment management is a large fraction
of their business. The reason we do this is because data may be collected and used for many
purposes. We want to measure data collection that will primarily be used in combination with
the labor we measure. Of course, we also do robustness checks on less restricted samples.

There is lots of entry in our data set. 58% of firms are in our data set in 2015. The remaining
42% appear for the first time in 2016-2018. That does not mean these 42% are all new firms.
Instead, many of them are existing firms that enter our data set when they hire data workers
for the first time.

Figure 2 illustrates the frequency of all keywords in the job postings categorized as belonging
to each type. Note that even if all 'data analysis’ and ’data management’ keywords are included
in all three word clouds, the keywords specific to the assigned category have a significantly
higher relevance. The word overlap illustrates why counting word frequency is important. At
the same time, the significat differences between the word clouds validates our approach. If a
clear distinction between the three types of job postings did not exist we would observe that

the most frequently mentioned words in each category would be less distinct.

For instance a job that mentions 'Machine Learning’ 10 times withing the job text and then also states
"Masters in Statistics also accepted", in our approach would be clearly classified in the AT’ category. Looking
at the skills lists, instead, the categorization of the job would be ambiguous as it would appear to require both
old and new technology skills in the same proportion: ’Statistics’ and 'Machine Learning’.
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2010-2018.

Wages Many, but not all jobs in Burning Glass list a salary range. We do not believe the
listed salaries are representative of all jobs in this area. They are a starting point. We assume
that they are biased for all types of jobs, in proportion to the listed salary. We typically use the

median of the salary range listed as the salary for that job. We have robustness checks using

the maximum and minimum of the salary range instead.
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Figure 3 shows a distribution of wages (medians if the job lists a salary range) for data

managers, old technology analysts and machine learning analysts. The key insight is that
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Al jobs clearly pay more than traditional analyst jobs. This suggests that Al workers make
more productive use of their data. This difference in wages is a key input that determines the

difference in production function estimates.

Cumulating hiring to get labor. The data series we need in order to estimate production
is the labor force working in a given month, for both knowledge and data processing workers.
We do not observe the stock of labor. Therefore, we use the following procedure to estimate
labor from observed job postings by firm. The number of observed job postings for the three
categories of interest is displayed in Figure 4, together with the number of employers hiring in
each category.
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Figure 4: Job postings: Panel 1 show the fraction of employers hiring in each category. Panel
2 shows the numbers of job postings in each skill category. This sample includes only firms for
which 25% or more of their analysis job postings required investment management skills.

Job postings are not the same as net hiring. There are two key differences: the probability
that a vacancy is filled and the probability that an employed worker separates from their job.
We adjust for both of these using data on vacancy fill rates and job separation rates from the
Bureau of Labor Statistics (BLS).

Each month, the BLS reports the job posting, job filling and separation rate for each
occupation. The three occupation brackets present in the final sample are: ’'Finance and
Insurance’, ’Professional, Scientific and Technical Services’ and 'Information’. Since we want
to map our job postings into expected hires, we multiply each job posting number by the
fraction of job postings that results in a new hire (h).

Of course, machine learning jobs are not an occupation. We need a way to map our

13



technology-based job classification into the BLS occupation classification. Fortunately, each
Burning Glass job posting has a listed occupation. Of course, different postings have different
classifications, even within machine learning, old technology or data management jobs. Thus,
we measure the proportion of jobs in each of our samples that belongs to each occupation.
Each month we compute a vector of occupation weights for machine learning jobs, one for old
tech jobs and one for data management jobs that is the fraction of jobs in each category that
belongs to each occupation. We multiply this weight vector by each of the fill and separation
rates that month, to get the imputed fill and separation rates for machine-learning financial
analysis jobs (R and s/'), the imputed fill and separation rates for old technology financial

hPM and sPM).  See

analysis jobs (h9T and sPT) and those for data management jobs (
Appendix C for more detail on how BLS data is mapped into our job categories and how h
and s are derived from BLS reported rates.

For type = [AI,OT, DM], if s’ are separation rates by type-month, and h;*"* are the
fraction of posted vacancies filled by type-month and j/*** are Burning Glass job postings rates

by type-month, we cumulate labor flows into stocks as follows:

Ly=(1- SfI)Lz’(t—l) + i M, (12)
Ly =(1— S?T)li(t—l) + 37T R, (13)
Air = (1 — StDM)Ai(tfl) + 3N M. (14)

To use this cumulative approach, we need to know the initial number of workers of each
type (Lo, lio and \j9). That information is unfortunately not available, but we know that the
initial number of workers becomes less relevant the further we are from initialization. For this
reason we start the initialization from zero for all job types and we use the first 5 years of data
[2010 — 2014] as a burn-in period. We then use the last 4 years [2015 — 2018] for the structural

estimation of the model’s parameters.

Table 1: Labor Summary Statistics.

Data Management )\;; Al analysts L7/ Traditional analysts L3
mean 22.25 0.84 14.95
stdev 97.26 8.45 56.78
minimum 0 0 0
median 4.27 0 2.89
maximum 1986 594 945
Observations 33,610 33,610 33,610
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Figure 5: Labor stocks. Panel 1 shows the labor stock in each category, measured as a number
of job postings, cumulated, adjusting for filling and separation rates as in (12). This is estimated
on 33,610 relevant job posting observations.Panel 2 shows the same plot for Al jobs jobs only.

Figure 5 shows the imputed labor stocks for each job type. After an initial increasing

phase, notice that by 2015, the effect of the initial distortion due to the accumulation period
has disappeared. AI workers in finance are still a small fraction of the overall labor supply,
suggesting that the transition to a new model of knowledge production is just in its beginnings.
Table 1 reports the summary statistics for the stock of each type of labor. What is salient in
all three categories is the large disperion. This is helpful because the cross-firm heterogeneity

will allow us to estimate the technology parameters.

Cumulating data management to get structured data stocks We measure each firm’s
stock of data in each period by adding the data management inputs to the depreciated stock of
yesterday’s data:

t
Diy = (1=6)'Dig+ Y _(1=06)""A°. (15)
s=0

We fix the depreciation rate of data at 6 = 0.0.25, which is a 2.5% depreciation rate per month.
We also report results for 1% and 10% deprecation. This represents some high-frequency data,
whose value lasts for fractions of a second, as well as longer term data used to value companies.
In future iterations, we will experiment with other values for depreciation.

To use this approach, we need information about firms’ initial data stocks. We estimate this
initial stock, by finding the initial stock that makes all subsequent data levels closest to the
firm’s optimal level. Specifically, the initial data stock of each firm is the D,y that best fits the

sequence of the firm’s data optimality condition (11).
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If we estimate this recursive system of data stocks, production parameters and data inputs
for every firm in our sample, the problem quickly becomes unmanageable. At the same time,
we do not want to lose the interesting cross-firm heterogeneity. Therefore, instead of estimating
D;; for each firm in our sample, we compute it for the average firm and use a rule to map the
average into a firm’s initial data. We use the initial data stocks to estimate the production
function parameters. Then, given the parameters, we can recover the best-fit initial data and
cumulate up a data stock for each firm easily.

Specifically we express the D,y of each firm as a function of a unique average data stock by
setting each firm’s initial data proportional to the average data stock and to their cumulative
hiring in data management from 2010-2015. In other words, we take the estimated data
management labor stock in 2015, Ag15,;, multiply it by the data management productivity
parameter and raise it to the production function exponent to turn it into an amount of data
produced: ADM)\éal‘@ﬂ-, and then choose a constant ¢ so that the average initial data stock is
the estimated average stock: (1/N) >, tAPM A2 . = Dy.

Then we can express equation 15 as follows:

t
Dy = (1= 8)APM A8, + ) (1 —6) A7 (16)

s=0

where ¢ is a function of Dy. For each firm we then cumulate up the data management flows

to construct a stock of data.

t
Dy = (1— )1 APM AL+ 371 — ) APMAL (17)
s=0
The initial data stock that best explains the sequence of data management hiring is the Dy

that minimizes the sum of squared errors or the right hand side of (11), for each firm i.

Estimating production functions The key variables of interest are the two production
function exponents, o and vy from (1) and (2). There are four variables we need to estimate:
a, v, the exponent ¢ on data management in the structured data production function (3), and
finally, we need the initial average data stock Dy. For three of our moment conditions, we use
the first order conditions for each of the three types of labor (6), (7) and (10), for the fourth,
we use the optimal data stock condition, (11).

When we estimate the machine learning labor first order condition, we use only firms that
employ some machine learning workers and some data management workers. Requiring that the

firm currently employs a type of worker does not imply they hired someone that month. Rather,

16



it means that some worker was hired at some time in the past. If we do not exclude these firms,
our production exponent estimate would be heavily influenced by the many observations with
zero labor and abundant data, or vice-versa. Similarly, when we estimate the traditional labor
first order condition, we use only observations from firms that have, at some point, hired a data
manager and a traditional analyst.

We also need to solve for the productivity parameters A2, A9T and APM. Given a set of
guessed parameters (a, v, ¢ and Dy), we solve for APM from equation 11 computed on cross-
sectional and time-series averages. We solve for A A9T using the first order conditions 6 and
7 computed on cross-sectional averages. In other words, the A parameters reconcile the average
magnitudes of knowledge with average wages, while the production exponents are identified off
of the cross-firm heterogeneity.

We then substitute the computed productivity parameters into the four conditions and
compute a vector of residual using the full time-series and cross-sectional variation. The residual
vector contains (33,610 x 4) observations.

Finally we use non-linear least squares to iterate over different combinations of «, ~, ¢
and Dy. The algorithm converges when it finds the combination of parameters that yields the

smallest sum of squared errors.

3 Results
Number of Al and Data Management workers - ex GS - (Employer-month) Number of OldTech and Data Management workers - (Employer-month)
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Figure 6: Firms with more structured data hire more Al analysts (left panel) and more
traditional analysts (right panel). The left panel excludes Goldman Sachs simply because their
hiring is an order of magnitude larger than others. Excluding them makes the rest of the data
set more visible. Source: Burning Glass, 2015-2018.

The first question we ask of our data is whether a very basic premise is satisfied: Do firms
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that hire more data management workers, and thus presumably have larger structured data
sets, also hire more analysis workers? Figure 6 shows that the answer is clearly yes. That tells

us that at least, our data makes sense.

Table 2: Main Results: Production Function Exponents on Data. The estimates are for
the exponents on data in the knowledge production functions in (1) and (2) and the production
of structured data in (3). Standard errors in parentheses.

0=1% 6=25% 6=10%
Data Management o 0.172 0.190 0.144
(0.0025)  (0.0019) (0.0022)
AT Analysis a  0.806 0.734 0.613
(0.0013)  (0.0026)  (0.0038)
Old Technology Analysis | v  0.458 0.560 0.567
(0.0024) (0.0017)  (0.0006)

The other parameter we estimate is the average initial data stock, which is
(0.015,0.00021, 0.000555) for 6 = (0.01,0.025,0.1). From here on, we present results for the
medium depreciation case of 6 = 2.5% and report results for the other two cases in the
appendix.

Our main question is: What are the production function exponents from each technology?
Table 2 reports these main results. The exponents « and v represent the diminishing returns to
data in the old and new technologies. The fact that @ > v means that the rate of diminishing
returns to data is less with the new AT technology. In other words, new data technology has
significantly raised the productivity of analyzing larger data sets. That is not surprising. The
fact that the exponent rose by 31% of its previous value suggests that the improvement is not
trivial.

How can we gauge the size of this change in knowledge production. Since this paper is
pursuing an analogy between knowledge production with big data technologies and the change
in physical production in the industrial revolution, a historical comparison seems most relevant.
Klein and Kosobud (1961) estimate that between 1900 and 1920, the labor share of income fell
from 0.909 to 0.787. Since the labor share of income corresponds to one minus the exponent
on capital in the production function, this estimate suggests that the capital exponent in the
production function rose by 0.122. Our rise of 0.174 is even higher than the industrial revolution
value. That simple comparisons suggests that the magnitude of the technological change in the
big data revolution is at least comparable to that of the industrial revolution. Even when
assuming a very high depreciation rate of data (10% monthly) we still obtain a sizable decrease

of 0.046, which represents a third and a half of the industrial revolution value.
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The labor first order conditions (6) and (7) tell us that these exponents also govern the
distribution of income to factor owners. Our results imply that owners of data have gained
enormously from this technological change. While they used to be paid 56% of the value of the
knowledge output, they can now extract 73.4% of that value. In addition, since more knowledge
is being produced, this is 73.4% of a larger number. This finding is consistent with the overall
economic trend of a decrease in the labor share of income (Karabarbounis and Neiman, 2017).

Of course, owners of data stock had to pay data managers to build these data sets, just like
owners of capital had to pay for the investment in their capital stocks. But once they own these

data stocks, they get the income associated with their factor.

3.1 Data Stocks and Labor Stocks

One of the main concerns people have with new data technologies like Al is that they might be

labor replacing. Our results do not support that concern.
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Figure 7: Data Stocks and Labor Stocks. The left panel displays the aggregate stock of analysis
labor, including both old and new technology skills. The right panel is the sum of all data stocks,
estimated for each firm in our sample. Data depreciation is 2.5% per month (J = 0.025).Source:
Burning Glass and authors’ estimates, 2015-2018.

Figure 7 illustrates the aggregate stock of analysis labor and the aggregate stock of data.
Both grow rapidly, with data slightly outpacing the growth in analyst labor. Analysis labor
here includes both old tech and Al-skilled analysts.

What is most striking about these estimates is that data is not replacing labor. To the
contrary, this technological progress in data processing is accompanied by a hiring boom of
workers to work with the increasing stock of information. The growing labor force is not an
artifact of our parameter estimates. Growing labor is also a feature of the results with 1% or
10% data depreciation. It is also not dependent on model assumotions. The growing labor

result comes from simply counting up the new hires and adjusting for BLS-reported departures.
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It is true that some of this increase comes from there being more firms in our sample. But
the growth of firms working with financial data is hardly a sign of low labor demand. To the
contrary, this technology seems to be increasing not decreasing labor demand. Although it is
true that Al jobs grew at a faster rate (from about 0 to 2000), they account for only about half
of the increase. The other half comes from more hiring of old technology analysts who are also

made more productive by the abundance of structured data.

Data in the Cross-Section of Firms Figure 8 illustrates the evolution of the data stock of
firms in each percentile of the cross-firm distribution. One thing the results make clear is that
the distribution of data is quite skewed. A few firms have enormous troves of data and many

have very little.
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Figure 8: Estimated Stock of Data, Across Firms (§ = 2.5%), 2015-2018.

Notice in Figure 8 what is not happening. It is not increasing. What is going on here is
two-fold. First, the sample of firms is growing over time. Many firms are starting to hire data
workers, and thus entering our sample. As a result, the top decile of firms has a lot more firms
in it at the end and the firm at the 90th percentile is much lower in the rankings. Second, much
of the data accumulation is happening at the top of the distribution.® The top 1% of firms is
not reflected. The 90th percentile is not an average of the top 10% of firms. It is the stock of
the single firm at the 90th percentile. The take-away is that, while the aggregate stock of data

is growing rapidly, for many firms, their stock of data is quite stable.

50Qur data allows us to put names on the firms with these enormous data stockpiles. We hope to be able to
report those in the future.
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3.2 Estimating the Value of Data

One of the big questions in economics and finance today is how to value firms’ data stocks. Four
of the five largest firms in the U.S. economy, by market capitalization, have valuations that are
well beyond the value that their physical assets might plausibly justify. These firms have future
expected revenues based on their accumulated stocks of data. Our structural estimation offers

a straightforward way to compute this value.
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Figure 9: Estimated Value of the Aggregate Stock of Data, in billions of current U.S. dollars,
2015-2018.

Once we have estimated production parameters and data stocks, we can put them back into
our value function, and approximate the value of each firm’s stock of data in each month. This
value is in nominal dollar units, since those are the units of the wages we use. Figure 9 plots
this aggregate value. This is our estimate of the value function in (4) for the aggregate stock of
data. These results are presented with an important caveat: The wage data we have is sparse.
Therefore, it is incredibly volatile. Since the value of data depends very much on the wages of
the workers who work with it, results might change once we repeat the estimation using better
wages data, which we are in the process of acquiring.

The units of Figure 9 are tens of billions of U.S. dollars. Over the time period, 2015-2018,
we see a rise in the value of this data stock from about $ 18 billion to about $ 24 billion, a 33%
increase in value.

Where does this increase in value come from? The first source is simply the accumulation
of data. The right panel of Figure 7 reveals that the aggregate stock of data rose just over
50%. More than half of the increase in the value of data comes from this rise in the size of the

structured data stock. A second contributor to the increase in the value of data is the increase in
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financial analysts that work with data. The more workers there are, the higher is the marginal
value of data and the more valuable the stock of data is. The left panel of Figure 7 reveals that
the financial analyst labor force grew enormously, almost as much as the data stock did.
Finally, firms are becoming more productive at using data. More productivity also
contributes to the rise in the value of data. Figure 10 reports our estimates of the analysis
productivity parameters, A4 and A°T, for each month. While productivity with the old
technology show no trend over time, the productivity of working with the new (AI) data
technologies displays a clear jump in 2017. This productivity jump is additional evidence of

the transformative power of new big data technologies.
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Figure 10: Productivity of Financial Data Analysis, reported for old tech and AT technologies,
2015-2018.

4 Conclusion

Modern discourse describes new big data technologies as the next industrial revolution, or
more specifically, as the industrialization of knowledge production. What does that mean?
Industrialization was the adoption of new production technologies that involved less human
input and less diminishing returns to capital. In other words, the key feature of industrialization
is that factor shares changed. Thus if big data technologies are the industrialization of knowledge
production, they should offer less diminishing returns to data.

We explored this hypothesis by modeling the production of knowledge, in the same why
economists model industrial production. Instead of mixing capital and labor with a Cobb-
Douglas production function to produce goods, we described how labor and data can be mixed
with a Cobb-Douglas production function to produce knowledge. Then, just as 20th-century
economists estimated the exponents of the industrial production function using labor income

shares, we similarly measure the exponents of the knowledge production function using wages
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and labor flows in a particular type of knowledge production, financial analysis. We find a
substantial change in the production function, of magnitude larger than the change due to
industrialization. Thus, describing this change as a new industrialization seems to be a fair
comparison.

Adoption of Al and big data technologies, as well as the accumulation of stocks of data vary
widely by firm. The firms with more data are more prone to hire more big-data or Al workers.
This supports the idea that this is a technology that is changing the factor mix of production.
This finding has important implications for the future of the income distribution: It changes
the future labor share of income. In a model that did not have constant returns to scale, such
a change would alter the optimal size of a firm: Firms with less diminishing returns to data
may well take on a larger optimal size. It also tells us that knowledge will be significantly more
abundant going forward.

Two extensions of the model would be useful next steps. One would be to relax the
assumption of constant returns to scale in knowledge production. It is possible that doubling
data and doubling data workers more than increases the production of knowledge. It is also
possible that there is a form of knowledge crowd-out, where it gets harder and harder to
produce new knowledge (Bernard and Jones, 1996). We use constant returns because it
facilitates a comparison with industrialization, which typically used such production functions.
Constant returns also yields a clear mapping from labor shares to production function
exponents. In the absence of constant returns, there is considerable dispute about the best
way to determine market wages or factor shares. Getting caught up in that debate would
distract from the simple main message of this paper.

Another extension would be to consider market power. Owners of data extract rents
because data is not perfectly substitutable.  Knowledge producing firms also produce
differentiated products that allow them to profit. Market power does interact with equilibrium
wages. Correcting for it would complicate the mathematics of the model, but could also
sharpen the production function estimates.

Of course, this estimation was for workers doing one type of work in one sector. In other
sectors, big data might be more or less of a change to output. It may also be too early to tell
since machine learning is not widely adopted in most other sectors. Much work in this area
remains to be done to understand the magnitude and consequences of the technological changes

in data processing that we are currently experiencing.
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A Appendix: Identifying Investment Management Jobs

We identify Investment management jobs as those that require at least one skill belonging to
the following Burning Glass skill clusters: Asset Management Industry Knowledge’, "Electronic
Trading Systems’, 'Investment Management’, ’Financial Trading’, 'Financial Trading Industry
Knowledge’, "Investment Services Industry Knowledge’, 'Financial Advisement’.

This list of skill clusters was compiled by tabulating all skill clusters required by any of the
jobs in our sample and selecting those most related to investment management.

Since sometimes skills clusters are missing, we compile a list of all skills ever present in the
list of relevant skill clusters and also classify as 'investment management’ those jobs that require
at least one of those underlying skills.

We finally check the full list of skills required by the selected jobs and exclude those jobs
which require the following skills, as we believe these jobs are not likely to be actual
investment management jobs: 'Marketing Strategy’, ’General Marketing’, 'Urban Planning’,
"Technical Support’, ’Telemarketing’, ’Business-to-Business (B2B) Sales’, ’Marketing
Automation’, 'Litigation’, 'Retail Sales’, 'Billing and Invoicing’, ’General Administrative and
Clerical Tasks’, ’Journalism’, ’Claims Processing’, 'Merchandising’, ’Carpentry’, ’Animation
and Game Design’, 'Basic Customer Service’, ’Cash Register Operation’, 'Real Estate and
Rental’, ’Marketing Software’, ’Online Marketing’, ’Accounts Payable and Receivable’,
"Packaging and Labeling’, 'Inventory Management’, "Advanced Customer Service’, "Payroll’,

"Underwriting’, "Marketing Management’, "Supply Chain Planning’.

B Categorizing Jobs

Jobs are first categorized into ’data management’ (DM) and ’data analysis’ by looking at the
relative frequency of the 'data management’ vs. 'data analysis’ keywords listed below in the full
text of the underlying job postings. Jobs identified as 'data analysis’ are further categorized
(where possible) as AT or old technology (OT), by looking at the relative frequency of the Al
and OT keywords listed below - these are subsets of the ’data analysis’ keywords.

All keywords lists are obtained by first tabulating all Burning Glass skills present in the
selected sample and identifying skills that best map to the types of jobs described by the model.
We then also inspected the text of selected job postings requiring most of the selected skills
in order to refine the keywords and phrases to best reflect the format in which they are most
frequently present in the text.

Before computing relative frequencies both the keywords lists and the underlying text are

pre-processed and stemmed to their root using the Porter stemmer.
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Data Management keywords : "Apache Hive’, ’Information Retrieval’, ’Data
Management Platform (DMP)’, "Data Collection’, "Data Warehousing’, 'SQL Server’, ’Data
Visualization’, ’Database Management’, ’'Data Governance’, ’Data Transformation’,
"Extensible Markup Language (XML)’, ’Data Validation’, ’Data Architecture’, ’Data
Mapping’, 'Oracle PL/SQL’, 'Database Design’, ’Data Integration’, ’Teradata’, 'Database
Administration’, ’'BigTable’, ’Data Security’, ’Database Software’, ’Data Integrity’, ’File
Management’, Splunk’, 'Relational DataBase Management System’, "Teradata DBA’, 'Data
Migration’, ’Information Assurance’, ’Enterprise Data Management’, ’'SSIS’, ’Sybase’,
'jQuery’, 'Data Conversion’, ’Data Acquisition’, 'Master Data Management’, 'Data Capture’,
'Data Verification’, ’MongoDB’, 'Data Warehouse Processing’, 'SAP HANA’, ’Data Loss
Prevention’, ’'Data Engineering’, ’Database Schemas’, ’'Database Architecture’, ’Data
Documentation’, 'Data Operations’, ’Oracle Big Data’, ’Domo’, ’Data Manipulation’, 'Data
Management Platform’, 'DMP’, "HyperText Markup Language’, 'Data Access Object (DAO)’,
Structured Query Reporter’, 'SQR’, ’Data Dictionary System’, 'Data Entry’, ’Data Quality’,
"Data Collection’, "Information Systems’, 'Information Security’, ’Change data capture’, 'Data
Management’, ’Data Governance’, ’Data Encryption’, 'Data Cleaning’, ’Semi-Structured
Data’, 'Data Evaluation’, 'Data Privacy’, 'Dimensional and Relational Modeling’, 'Data Loss
Prevention’, ’Data Operations’, ’'Relational Database Design’, ’'Database Programming’,
‘Information Systems Management’, ’'Database Tuning’, ’Object Relational Mapping’,
‘Columnar Databases’, ’Datastage’, ’Data Taxonomy’, ’Informatica Data Quality’, 'Data
Munging’, 'Data Archiving’, "Warehouse Operations’, ’Solaris’, 'Data Modeling’, ’data feed
management’, ’data discovery’, ’exporting large datasets’, ’exporting datasets’, ’database
performance’, ’disigning relational databases’, ’implementing relational databases’, 'designing
and implementing relational databases’, ’database development’, ’data production process’,
'normalize large datasets’, 'normalize datasets’, ’create database’, 'Develop database’, ’data
onboarding’, 'Data Sourcing’, ’data purchase’, ’data inventory’, ’cloud Security’, 'negotiating
data’, 'data attorney’, ’data and technology attorney’, ’reliability engineering’, ’reliability
engineer’, ’data specialist’, ’enable vast data analysis’, ’enable data analysis’, 'Data team’,
‘capturing data’, ’processing data’, ’Supporting data’, error free data sets’, ’error free
datasets’, ’live streams of data’, ’data accumulation’, 'Kernel level development’, "large scale

" multi database web applications’, ’connect

systems’, "Hadoop’, ’distributed computing’,
software packages to internal and external data’, ’explore data possibilities’, ’architect complex
systems’, ’build scalable infrastructure for data analysis’, ’build infrastructure for data
analysis’, 'solutions for at scale data exploration’, 'solutions for data exploration’, 'information
technology security’, ’security engineer’, ’security architect’, ’architect solutions to allow

modelers to process query and visualize higher dimensional data’
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Analysis keywords

e General Analysis:  'Regression Algorithms’, ’Regression Analysis’, ’Quantitative
Analysis’, 'Clustering’, "Time Series Analysis’, 'Economic Analysis’, 'Model Building’,
‘Quantitative Research’, ’pandas’, 'numpy’, ’Hedging Strategy’, ’Quantitative Data
Analysis’, ’Investment Analysis’, 'Economic Models’, 'Predictive Analytics’, 'Market
Trend’, "Portfolio Optimization’, "Portfolio Rebalancing’, 'Financial Derivatives Pricing’,
"Active Alpha Generation’, ’Financial Data Interpretation’, ’Alteryx’, ’Predictive
Models’, ’Exploratory Analysis’, ’Sensitivity Analysis’, ’News Analysis’, ’Asset
Allocation’, 'Research Methodology’, "Mathematical Software’, "Portfolio Construction’,
"Portfolio Analysis’, 'Portfolio Analyst’, '"Market Analysis’, 'Data Techniques’, ’Capital
Allocation’, ’Financial Modeling’, ’Algorithm Development’, ’Securities Trading’,
"Trading Strategy’, 'Statistical Programming’, 'Data Mining’, "Social Network Analysis’,
‘Dimensionality Reduction’, ’Principal Components Analysis (PCA)’, ’Statistical
Software’, "Portfolio Management’, 'Numerical Analysis’, 'Time Series Models’, "Asset
Allocation Theory", ’Analytical Skills’, ’Financial Analysis’, ’Financial Modeling’,
"Modern Portfolio Theory’, "MPT’, "Portfolio Valuation’, ’strategic portfolio decisions’

e Old Technology: ’Linear Regression’, "Logistic Regression’, *Statistic’, ’STATA’, "Emacs’,
"Technical Analysis’, ’Qualitative Analysis’, '’Qualitative Portfolio Management’, "Data
Trending’, ’Stochastic Optimization’, ’Multivariate Testing’, 'Bootstrapping’, Time
Series Models’, "Factor Analysis’, 'Durations analysis’, "Markov’, ’"HMM’, ’Econometrics’,
"Stochastic Processes’, ’Calculus’, ’Statsmodels’, ’'Linear Algebra’, 'Mathematics’,
'Maths’, 'Monte Carlo Simulation’, ’Generalized Linear Model’, 'GLM’, ’Linear
Programming’, ’Bayesian’, ’Analysis Of Variance’, ’ANOVA’, ’Behavioral Modeling’,
'Black-Scholes’, ’'Behavior Analysis’, ’Discounted Cashflow’, ’Numerical Analysis’,
"Correlation Analysis’, 'E-Views’, 'Differential Equations’, "Algebra’, "Value at Risk’,

"Asset Pricing Models’, 'Statistician’, ’Mathematician’, ’Econometrician’

e Al: ’Artificial Intelligence’, "Machine Learning’, 'Natural Language Processing’, 'NLP’,
‘Speech Recognition’, ’Gradient boosting’, 'DBSCAN’, 'Nearest Neighbor’, "Supervised
Learning’, ’Unsupervised Learning’, ’Deep Learning’, ’Automatic Speech Recognition’,
"Torch’, ’scikit-learn’, ’Conditional Random Field’, ’TensorFlow’, ’Tensor Flow’,
"Platfora’, 'Neural Network’, ’CNN’, '/RNN’, ’Neural nets’, 'Decision Trees’, 'Random
Forest’, "Support Vector Machine’, 'SVM’, ’Reinforcement Learning’, "Torch’, ’Lasso’,
"Stochastic Gradient Descent’, ’SGD’, 'Ridge Regression’, "Elastic-Net’, "Text Mining’,
"Classification Algorithms’, 'Image Processing’, 'Natural Language Toolkit’, 'NLTK’,
"Pattern Recognition’, ’Computer Vision’, ’Long Short-Term Memory’, 'LSTM’,
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"K-Means’, 'Geospatial Intelligence’, 'Big Data Analytics’, "Latent Dirichlet Allocation’,
'LDA’, ’Backpropagation’, ’Machine Translation’, ’Caffe Deep Learning Framework’,
"Word2Vec’, "Genetic Algorithm’, 'Evolutionary Algorithm’, 'Data Science’, ’Sentiment
Analysis / Opinion Mining’, ’'Maximum Entropy Classifier’, ’Neuroscience’,

’Computational Linguistics’, ’Semi-Supervised Learning’, 'Data Scientist’

C Constructing the Labor Inflows Data

Job openings, filling and separation data Our data comes from
https://www.bls.gov/news.release/jolts.tn.htm

Job Openings Rate: Job openings information is collected for the last business day of the
reference month. A job opening requires that: 1) a specific position exists and there is work
available for that position, 2) work could start within 30 days whether or not the employer found
a suitable candidate, and 3) the employer is actively recruiting from outside the establishment
to fill the position. The job openings rate is computed by dividing the number of job openings
by the sum of employment and job openings and multiplying that quotient by 100.

Hiring Rate: The hires level is the total number of additions to the payroll occurring at any
time during the reference month, including both new and rehired employees, full-time and part-
time, permanent, short-term and seasonal employees, employees recalled to the location after a
layoff lasting more than 7 days, on-call or intermittent employees who returned to work after
having been formally separated, and transfers from other locations. The hires rate is computed
by dividing the number of hires by employment and multiplying that quotient by 100.

Separations Rate: The separations level is the total number of employment terminations S
occurring at any time during the reference month, and is reported by type of separation - quits,
layoffs and discharges, and other separations. The separations rate is computed by dividing the
number of separations by employment and multiplying that quotient by 100: s = S/E - 100.

Deriving the probability of filling an opening. If no is the total number of posted job openings,
ng is total employment and ng is the number of new hires in this sub-occupation and month,
then the BLS hiring rate is defined to be r, = ngy/ng, while the job opening rate is r, =
no/(ng + no). What we need to adjust the openings data from our model, is the fraction of
openings that result in hires, h = ng/no.

To solve for h, note that rearranging the definition of the opening rate yields r, = (1 —
ro)no/ng. Dividing 7, by this expression yields r, /1, = (ng/ng)/(1 —ro)no/ng) = (ng/no) -

1/(1 —r,). Therefore, we can express the ny/no rate we want as h = r,(1 —r,)/7,.
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Time to Fill a Job Vacancy In our calculations, we have implicitly equated a job posting
with a one-month job vacancy. We do that because most of our job postings remain up and
unfilled for approximately one month. Below, we report the distribution of the average time that
job postings remain open in our data set. This data is for jobs that have the same occupations
and regions as our sample for the years 2015, 2016 and 2017. The average time to fill is available
for 86% of all the occupation (SOC) - region (MSA) combinations in our sample. Below is the
distribution of the average time a Burning Glass job posting stayed online for all the SOC-MSA

combinations in our sample for 2015-2017.

Table 3: Time to Fill Posted Vacancies.

mean 35.6857

std 7.1003
min  14.0000
1% 21.0000
5% 24.0000

10%  27.0000
15%  28.0000
20%  30.0000
25%  31.0000
30%  32.0000
35%  33.0000
40%  34.0000
45%  35.0000
50%  35.0000
55%  36.0000
60%  37.0000
65%  38.0000
70%  39.0000
75%  40.0000
80%  41.0000
85%  43.0000
90%  44.4000
95%  48.0000
99%  54.0000
max  75.0000

If we weight each of these fill times by the number of jobs present in our sample for each the

SOC-MSA combinations, we get an average fill times of 38.12 days.
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D Model derivations

Firm ¢ faces the following optimizing problem:

. B 1
U(Dit) = )\II}/&XZ D;’;Lzlt + D;ytlllt T wL,tLit — wl7tlit — w)\7t)\it + ;U(Di(t+1)) (18)
ity beit,bit

where D1y = (1 —8) Dy + N, °. (19)

Here the state variable is structured data D;;, and the control variables are data management
labor \;;, the machine learning analyst labor L;; and the old technology analysis labor [;.

Plugging (19) into (18), we have

_ 1 _
U(Dit) = )\HiaXl D%L%t_a + D;lzlt e wL,tLit — wulit — w/\,t)\it + ;’U ((1 — 5)th -+ )\llt d)) (20)
ity Leitybit

Taking partial derivative with respect to L;;, we have

(1 - a) K3

(1 — Oé)szL;ta — wLﬂg =0 = I = wL7t. (21)
it
Taking partial derivative with respect to l;;, we have
_ 1—a)K3"
(1—~)D}" —w,, =0 = ( L> L=y (22)
it

Taking partial derivative with respect to \; and rearranging, we have

1 _
~0 (Dig) (1 = O)Ni” = wage (23)
We then total differentiate (20) to get

K4l yKQT
Ul(-Dit) — o it + Y it
D D

/(D)1 - 0). )

If we further assume that the marginal value of data today and tomorrow are similar, then

, (aKg" +yKZT)
D,,) = : : : 2
V(D) Dy r—(1-90) (25)
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Plugging it back to the first order condition (23) and combining it with the structured data

dynamics (19), we arrive at

(aKi{' 4+ vKGT)(1 = ¢) Digy1y — (1 — 6) Dy
r—(1-9) D

= UJ)\)\Z't. (26)

E Robustness

Figures 11 and 12 illustrate the evolution of the data stock of firms in each percentile of the

cross-firm distribution for 1% and 10% monthly rates of data depreciation.

Distribution of data stock per employer-month
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Figure 11: Estimated Stock of Data Processing Workers Per Firm with 1% data depreciation.
Source: Burning Glass, 2015-2018.

Once we have estimated production parameters and data stocks, we can put them back into
our value function, and approximate the value of each firm’s stock of data in each month. This
value is in nominal dollar units, since those are the units of the wages we use. Figures 13 and 14
plot this aggregate value for data depreciation of 1% and 10% per month. This is our estimate
of the value function in (4) for the aggregate stock of data. The units of Figures 13 and 14 are
billions and tens of billions of U.S. dollars respectively. Over the time period, 2015-2018, we see
a rise in the value of this data stock.

Finally, firms are becoming more productive at using data. More productivity also
contributes to the rise in the value of data. Figures 15 and 16 report our estimates of the
analysis productiity parameters, A4 and AT, for each month, for data depreciation rates of
1% and 10% per month. While productivity with the old technology show no trend over time,
the productivity of working with the new (AI) data technologies displays a clear jump in 2017.
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Figure 12: Estimated Stock of Data Processing Workers Per Firm with 10% data depreciation.
Source: Burning Glass, 2015-2018.
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Figure 13: Estimated Value of the Aggregate Stock of Data with 1% data depreciation, in
billions of current U.S. dollars, 2015-2018.
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1e10 Cumulative value of data over time
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Figure 14: Estimated Value of the Aggregate Stock of Data with 10% data depreciation, in
billions of current U.S. dollars, 2015-2018.

Al and OT productivity, A_ DM =3.8e-05
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Figure 15: Productivity of Financial Data Analysis, reported for old tech and Al technologies
with 1% data depreciation, 2015-2018.
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Al and OT productivity, A_DM =7e-06
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Figure 16: Productivity of Financial Data Analysis, reported for old tech and AT technologies
with 10% data depreciation, 2015-2018.
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