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summary

• Paper proposes model for aggregating distributional treatment e�ects from multiple RCTs
• Explicitly deals with point masses at zero for some outcomes (pro�t)
• Bayesian implementation makes inference straightforward
• Methodology requires access to original microdata; not a standard “metastudy”

• Nice illustration of:
1. Value of moving past the ATE
2. Value of estimating “precise null e�ects”

• My discussion will focus on:
1. General considerations when “aggregating evidence”
2. Quantile treatment e�ects with non-continuous outcomes
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general considerations when “aggregating evidence”

• To focus ideas, suppose we’re interested in scalar θk (e.g. QTE at particular quantile), for sites
k = 1, . . . ,K . Model for data at site k , Yik ∼ fk (· | θk ).

• For simplicity, suppose model delivers site-speci�c estimates θ̂k | θk ∼ N(θk ,σ 2
k )

• Hierarchical models complement this with assumption that across sites θk ∼ д.
• Not restrictive if left unrestricted, e.g. д could be empirical distribution of θk

• Possible goals of aggregating evidence {θ̂1, . . . , θ̂k }:
1. Estimate E[θk ] (overall average QTE)
2. Predict θK+1 at new site
3. “Borrow strength” from other sites to improve estimates θ̂1, . . . , θ̂k
4. Estimate д, or features of it, say var(θk ) (learn about TE heterogeneity)
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goal 1: estimate E[θk]

• “Aggregate results” in slides 15–17 of presentation

• Naive approach: report K−1
∑K

i=1 θ̂k , or do “full pooling”

• Hierarchical model estimates typically very similar. Consider partial vs full pooling estimates
for QTE on consumption from paper:
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goal 2: predict θK+1 at new site

• “Predicted quantile e�ects” in slides 18–21 of presentation

• Requires site K + 1 to be drawn from same distribution as sites 1, . . . ,K
• Reasonable in observational studies
• Here across k : not just di�erent location, but also di�erent NGOs, loan contracts, interest rates,

randomization units and encouragement designs
• Requires new site not to learn from results in existing studies

• Can again use naive approach, predict K−1
∑K

i=1 θ̂k

• Similarly to Goal 1, value of hierarchical model mostly in delivering uncertainty assessment for
prediction (but not robust to misspeci�cation in д)

• Turns out posterior mean θ̂k (τ ) = 0 for all quantiles τ and all outcomes. . .
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goal 3: “borrow strength” from other sites to improve estimates

• Shrinkage/Hierarchical models not appropriate if want good (frequentist) MSE individually
for all estimates θ̂k , E[(θ̂k − θk )2 | θk ]

• This is why we don’t do shrinkage in, say, linear regression: shrinkage introduces bias, can
make MSE for individual estimates worse

• Shrinkage appropriate if prioritize favorable group performance over protecting individual
performance, i.e. want good average MSE K−1

∑K
i=1 E[(θ̂k − θk )

2 | θk ].
• Overall variance reduction can outweigh overall increase in bias =⇒ lower average MSE: for

James and Stein (1961) shrinkage (motivated by assuming д Gaussian), this is true irrespective of
true д

• As with Goal 2, uncertainty assessment not robust to misspeci�cation in д, though possible to
“robustify” CIs (Armstrong, Kolesár, & Plagborg-Møller, 2020)
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• Model in paper also shrinks more extreme
quantiles (Bosnia even past overall mean—is
this due to smoothing across quantiles?)

• What are the overall gains in precision of
estimates? What are the gains from doing this
aggregation exercise?
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goal 4: learn about heterogeneity across sites

• What do we learn about д (i.e. TE heterogeneity) from the data? How variable are TE across
sites, relative to prior? Paper only notes that it rejects degenerate д.

• In principle, could estimate д nonparametrically (large nonparametric empirical Bayes
literature) or �exibly (Efron, 2016, 2019), but here K = 7 . . .

• Ideally, with larger K , could try to understand reasons for heterogeneity by letting д depend
on site-speci�c covariates (as, e.g., in Chetty & Hendren, 2018; Vivalt, 2020)
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quantile treatment effects with non-continuous data

• Paper takes non-continuity in outcome data seriously: point mass at zero for some variables
(e.g. pro�t)

• What goes wrong when we ignore it and use standard quantile regression?
• Quantile estimator θ̂k (τ ) for quantiles τ where CDF jumps no longer asymptotically normal
• But, in a sense, discreteness is good news since estimator converges at faster than

√
n-rate, and

puts point mass on F−1(τ ) (intuition: it’s “obvious” from data that there is a jump)
• Could use the same estimator, but validity of inference may be a�ected

• Paper overcomes this by using parametric model fk for Yik that allows for point mass at 0.
• Natural given Bayesian setting
• But would we use fk for estimating QTE at single site? Lose attractive robustness properties of

quantile regression (what if model for tails misspeci�ed?)
• Hard to incorporate covariates
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• (Frequentist) alternatives to parametric modeling:
• Use usual estimator, but make sure inference remains valid in presence of mass points (use

recent method by Chernozhukov, Fernández-Val, Melly, and Wüthrich (2020): construct
con�dence bands for CDF, then “�ip” the picture; or use conservative normal approximation)

• Can we directly model extensive margin decision, say using latent variables as in Powell (1986)?

• But I have not thought through the di�culties of nesting these suggestions within a
hierarchical framework. . .
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