Currency Choice in Contracts

Andres Drenik Rishabh Kirpalani Diego Perez Columbia Univ Univ of Wisconsin-Madison New York Univ NBER

> NBER SI 2020 Macroeconomics Within and Across Borders

Introduction and Motivation

- Central role of currency: serve as unit of account in credit contracts
 - Coexistence of currencies in denomination of contracts
 - Especially so in emerging economies
- Use of foreign currency linked to policy instability
- Recent attempts by governments to prevent dollarization

What We Do

- Questions:
 - What determines currency denomination of private contracts?
 - What are the implications for optimal policy?
- Framework:
 - Economy with private contracts & endogenous monetary policy
 - Optimal currency choice trades-off price risk & insurance property
 - Government chooses inflation and is subject to policy risk
 - Complementarities between effectiveness of monetary policy & use of LC contracts

Overview of Main Results

1. Nature of equilibrium depends on level of policy risk

- ► Agents in countries with high (low) policy risk → use of FC more (less) likely
- Intermediate policy risk \rightarrow multiple equilibria
- 2. Room for policy regulation of currency in contracts
 - Equilibria can feature under use of local currency
- 3. Applications
 - Trade-offs extend to model with on-equilibrium default
 - International contracts larger use of dollar, mon. pol. less effective
 - Hysteresis due to currency matching of prior debt stocks
- Literature Review

Outline

1. Baseline Model

- 1.1 Competitive Equilibria
- 1.2 Constrained Efficiency
- 2. Applications & Extensions
 - 2.1 Model with Default
 - 2.2 International Contracts
 - 2.3 Hysteresis

Environment

- Two periods
- Agents: private agents and government
- Buyers and sellers sign bilateral contract
 - Sellers provide special good in exchange of future payments
 - Payments denominated in local and/or foreign currency
- Government chooses price level in local currency
- Foreign currency price exogenous and stochastic
 - Captures real exchange rate risk

Timing

Buyers and Sellers

• Sellers' preferences:

$$u_s = -x + \mathbb{E}[\theta_s c_s]$$

• Buyers' preferences:

$$u_b = (1+\lambda)x + \mathbb{E}[\theta_b c_b]$$

- ▶ x provision of special good. $\lambda > 0 \rightarrow$ gains of trade
- ► c_s, c_b consumption of numeraire good
- θ_s, θ_b stochastic taste shocks w/ support $[\underline{\theta}_i, \overline{\theta}_i]$ and $\mathbb{E}[\theta_i]$

captures reasons for why its desirable to shift resources btw agents

- both endowed with y numeraire good in t = 2
- Assumption 1: $(1 + \lambda)\mathbb{E}[\theta_s] \mathbb{E}[\theta_b] \ge 0$
 - Guarantees seller wants to sell and buyers want to buy

Bilateral Contracts

- Bilateral contract: (x, b_l, b_f)
 - x units of special good provided to buyer in t = 1
 - b_c units of currency c promised to seller in t = 2
- Assumptions:
 - 1. Non state-contingent
 - 2. Denominated in currencies: local (l) and foreign (f)
 - 3. Payments always feasible
- Currencies: units of account, stochastic at t = 1
 - ϕ_c : value of currency c in terms of numeraire good
 - High $\phi_l \leftrightarrow$ low inflation in local currency

Bilateral Contracts

Optimal contract for the buyer solves

$$\max_{x \ge 0, b_l \ge 0, b_f \ge 0} (1+\lambda)x + \mathbb{E}\left[\theta_b \underbrace{(y - b_l \phi_l - b_f \phi_f)}_{c_b}\right]$$

subject to

Participation Const.: $\mathbb{E}[\theta_s(b_l\phi_l+b_f\phi_f)] \ge x$ Payments Feasibility: $b_l\phi_l+b_f\phi_f \le y \quad \forall \phi_l, \phi_f$

Bilateral Contracts

- Participation constraint always binds
- Payment feasibility binds for worst deflation realizations: $\overline{\phi}_l, \overline{\phi}_f$
- Problem simplifies to

$$\begin{split} & \max_{b_l \geq 0, b_f \geq 0} \mathbb{E} \left[\left((1 + \lambda) \theta_s - \theta_b \right) \left(b_l \phi_l + b_f \phi_f \right) \right] \\ & \text{s.t.} \quad b_l \overline{\phi}_l + b_f \overline{\phi}_f = y \end{split}$$

• Solution: choose currency with highest marginal benefit M_c

$$M_{c} \equiv \left(\left(1 + \lambda\right) \mathbb{E}\left[\theta_{s}\right] - \mathbb{E}\left[\theta_{b}\right] \right) \underbrace{\frac{\mathbb{E}[\phi_{c}]}{\overline{\phi}_{c}}}_{\text{Price Risk}} + \underbrace{\operatorname{cov}\left(\theta_{s}(1 + \lambda) - \theta_{b}, \frac{\phi_{c}}{\overline{\phi}_{c}}\right)}_{\text{Insurance Properties}}$$

Bilateral Contracts: Optimal Currency Choice

 M_{l} $M_f = \lambda \frac{\mathbb{E}[\phi_f]}{\overline{\phi}_f}$ b_l $\frac{y}{\phi_1^*}$

Government's Problem

Government's problem is

$$\begin{array}{ll} \max_{\phi_l} & \theta_b C_b + \theta_s C_s - l\left(\phi_l\right) \\ \text{where} & C_b = y - \phi_l B_l - \phi_f B_f \\ & C_s = y + \phi_l B_l + \phi_f B_f \end{array}$$

• $l(\phi_l) = \frac{\psi}{2} \left(\phi_l - \hat{\phi} \right)^2$, loss from deviating from inflation target

• $\hat{\phi}$ stochastic inflation target w/ support $[\underline{\hat{\phi}},\overline{\hat{\phi}}]$

• $\frac{\mathbb{E}[\phi]}{\hat{\phi}}$ captures policy risk, main source of cross-country variation

What is the Inflation Loss?

- Third agent (household)
 - Linear preferences on consumption & quadratic disutility of labor
 - Endowed w/ money claims & consumption s.t. cash-in-advance constraint
- Government
 - Needs to finance stochastic g
 - Can tax labor τ & choose inflation
- HH utility can be expressed as

$$\operatorname{const} - \psi \left(\phi_l - \underbrace{\left(\frac{\hat{\tau}(1 - \hat{\tau}) - g}{m} \right)}_{\hat{\phi}} \right)^2$$

Optimal Monetary Policy

• Optimal inflation policy given by

$$\phi_l(B_l) = \hat{\phi} + \frac{1}{\psi}(\theta_s - \theta_b) B_l$$

- High inflation when buyers value consumption more relative to sellers
- How does B_l affect M_l ?
 - Higher $B_l \rightarrow$ inflation reacts more to $\theta_s, \theta_b \leftrightarrow$ more insurance
 - Higher $B_l \rightarrow$ higher inflation volatility \leftrightarrow more price risk

Assumptions

Assumption 2:

$$\frac{1}{2} \mathsf{var}\left(\theta_s - \theta_b\right) + \lambda \left[\mathsf{var}\left(\theta_s\right) - \mathsf{cov}\left(\theta_s, \theta_b\right)\right] \geq \kappa_1$$

where κ_1 depends on model parameters

Assumptions

Assumption 2:

When θ_b, θ_s are iid:

 $\mathsf{var}(\theta) > (\overline{\theta} - \underline{\theta})$

1. What is needed?

Sufficiently large variation in state-contingent mg. utilities

- 2. What does it imply?
 - Insurance channel > Price risk channel
 - Guarantees M_l increasing in B_l
- 3. What if it does not hold?

Similar characterization of equilibria, policy prescriptions change

Competitive Equilibria for Different Policy Risk

Proposition:

Definition of Equilibrium

Competitive Equilibria

Competitive Equilibria

Competitive Equilibria

Global Games Approach

- Policy risk is no longer common knowledge
- Each buyer-seller pair receives noisy signal

$$\xi_i = \mathbb{E}\left[\hat{\phi}\right] + \epsilon_i$$

where $\epsilon_i \sim U\left[-\eta,\eta\right]$

Proposition: For η small enough, there is a unique eq that satisfies:

$$b_l\left(\xi\right) = \begin{cases} 0 & \xi < \xi^* \\ \frac{y}{\overline{\phi}_l^{**}} & \xi > \xi^* \end{cases}$$

where $\mu_1 > rac{\xi^*}{\hat{\phi}} > \mu_2$

Equilibrium Selection for Different Policy Risk

Outline

1. Baseline Model

- 1.1 Competitive Equilibria
- 1.2 Constrained Efficiency
- 2. Applications & Extensions
 - 2.1 Model with Default
 - 2.2 International Contracts
 - 2.3 Hysteresis

Recent Examples of Policy Regulation

- Is regulating currency denomination of contracts optimal?
- Full prohibition of foreign currency contracts

Brazil, Colombia

- Restrictions in foreign currency borrowing
 - Croatia, Hungary, India, Poland and Turkey
- Full dollarization in 2000
 - Ecuador, El Salvador

Social Planner's Problem

· Choose allocation & inflation s.t. same constraints as private agents

$$\max_{\substack{x \ge 0, \phi_l, \\ B_l \ge 0, B_f \ge 0}} \underbrace{\mathbb{E}\left[-x + \theta_s c_s\right]}_{u_s} + \underbrace{\mathbb{E}\left[(1 + \lambda)x + \theta_b c_b\right]}_{u_b} - \mathbb{E}\left[l\left(\phi_l\right)\right]$$

subject to

Budget Const.:
$$c_b = y - B_l \phi_l - B_f \phi_f$$
 $c_s = y + B_l \phi_l + B_f \phi_f$ Participation Const.: $\mathbb{E} \left[\theta_s (B_l \phi_l + B_f \phi_f) \right] \ge x$ Payments Feasibility: $B_l \phi_l + B_f \phi_f \le y \quad \forall (\phi_l, \phi_f)$ Monetary Policy: $\phi_l = \hat{\phi} + \frac{1}{\psi} (\theta_s - \theta_b) B_l$

Constrained Efficiency for Different Policy Risk

• Given Assumption 2, problem of SP is strictly convex

 \Rightarrow compare utilities at $B_l = 0$ and $B_l = \frac{y}{\phi^*}$

• Trade-off given by:

Local price risk + Insurance - Cost of Inflation \ge Foreign price risk

Proposition: There exists μ_{SP} with $\mu_2 < \mu_{SP} < \mu_1$ such that:

1. if $\frac{\mathbb{E}[\hat{\phi}]}{\hat{\phi}} \ge \mu_{SP}$, solution to Social Planner's problem is $B_l^{SP} = \frac{y}{\phi^*}$; 2. if $\frac{\mathbb{E}[\hat{\phi}]}{\hat{\phi}} \le \mu_{SP}$, solution to Social Planner's problem is $B_l^{SP} = 0$.

Constrained Efficiency for Different Policy Risk

Constrained Efficiency for Different Policy Risk

Applications and Extensions

- 1. Model with Strategic Default
- 2. International Contracts
- 3. Hysteresis

Model with Strategic Default

- Allow buyers to default on payments in period 2
- No taste shocks
- Default is full, seller receives nothing
- If buyers default, suffer cost $\chi(\phi_l b_l + \phi_l b_l)$
 - Cost of default stochastic: $\chi \sim F_{\chi}[\underline{\chi}, \overline{\chi}]$ with $\underline{\chi} < 1 < \overline{\chi}$
 - Default costs depend on the level of defaulted debt
 - Implies buyers optimally default when $\chi < 1$
- If buyers default, government partially inflates away cost of default

Model with Strategic Default

- Allow buyers to default on payments in period 2
- No taste shocks
- Default is full, seller receives nothing
- If buyers default, suffer cost $\chi(\phi_l b_l + \phi_l b_l)$
 - Cost of default stochastic: $\chi \sim F_{\chi}[\underline{\chi}, \overline{\chi}]$ with $\underline{\chi} < 1 < \overline{\chi}$
 - Default costs depend on the level of defaulted debt
 - Implies buyers optimally default when $\chi < 1$
- If buyers default, government partially inflates away cost of default

Proposition:

The baseline model with taste shocks is identical to the model with default in eq outcomes

Economy with International Contracts

- International contracts more likely to be denominated in FC > Figure
- Economy with two symmetric countries: i, j
 - Continuum of buyers trade with continuum of sellers of other country
- Three available currencies: i, j, f
 - Assumption: both countries have same level of policy risk

Economy with International Contracts

- Economy with two symmetric countries: *i*, *j*
 - Continuum of buyers trade with continuum of sellers of other country
- Three available currencies: i, j, f
 - Assumption: both countries have same level of policy risk

Hysteresis in Model with Credit Chains

- Dollarization persists after episodes of inflation stabilization > Figure
- Buyers endowed with y and claims \hat{b}_l, \hat{b}_f
- Assumption: $var(\theta)$ not too large

Hysteresis in Model with Credit Chains

- Buyers endowed with y and claims \hat{b}_l, \hat{b}_f
- Assumption: $var(\theta)$ not too large

Proposition: Optimal contract is given by:

$$\begin{array}{ll} \text{if } M_l \geq M_f: \qquad b_l = \hat{b}_l + \frac{y}{\overline{\phi}_l} \qquad b_f = \hat{b}_f \\ \\ \text{if } M_l < M_f: \qquad b_l = \hat{b}_l \qquad b_f = \hat{b}_f + \frac{y}{\overline{\phi}_f} \end{array}$$

- Policy risk only determines currency of new borrowing flows
- Currency matching of stocks is optimal \Rightarrow path dependence
 - Allows for more borrowing and provision of special good

- Study general equilibrium of economy with private contracts & endogenous monetary policy
- Nature of equilibria depend on degree of policy risk
- Room for policy regulation of currency in contracts

Dollarization and Fiscal Policy Risk

Back

Literature Review

• Currency choice in debt contracts, price setting, means of payment

- Matsutama et al (1993), Uribe (1997), Ize & Levy Yeyati (2003), Caballero & Krishnamurthy (2003), Schneider & Tornell (2004), Engel (2006), Gopinath et al (2010), Doepke & Schneider (2017), Bocola & Lorenzoni (2018), Drenik & Perez (2018)
- Global role of dollar
 - Farhi & Maggiori (2017), Gopinath & Stein (2018), Maggiori et al (2018), Chahrour & Valchev (2018), Eren & Malamud (2019), Jiang, Krishnamurthy & Lustig (2019)
- Currency and policy choice
 - Neumeyer (1998), Chang and Velasco (2006), Rappoport (2009), Arellano & Heathcote (2010), Ottonello & Perez (2018), Du et al (2018), Fanelli (2018), Mukhin (2018)

Back

Equilibrium

Definition: A competitive equilibrium is an allocation for private citizens (x, b_l, b_f) , aggregate denomination choices (B_l, B_f) , and govt policy ϕ_l such that:

- 1. Given $\phi_l,$ and (B_l,B_f) the private allocation solves the contracting problem
- 2. Given B_l , ϕ_l solves govt problem
- 3. Aggregate choices coincide with private ones, $b_l = B_l$ and $b_f = B_f$
- Back

Model with Strategic Default

- Allow buyers to default on payments in period 2
 - Allows private contracts to introduce state contingency
- No taste shocks
- Default is full, seller receives nothing
- If buyers choose to default, suffer cost $\chi(\phi_l b_l + \phi_l b_l)$
 - ▶ Cost of default stochastic: $\chi \sim F_{\chi}[\underline{\chi}, \overline{\chi}]$ with $\underline{\chi} < 1 < \overline{\chi}$
 - Default costs depend on the level of defaulted debt
 - Implies buyers optimally default when $\chi < 1$
- Fixed Costs of Default Model

Contract Problem

• Optimal contract for the buyer solves

$$\max_{x \ge 0, b_l \ge 0, b_f \ge 0} (1 + \lambda) x \\ + \mathbb{E}\left[\underbrace{(y - \phi_l b_l - \phi_f b_f)}_{c_b \text{ if repay}} \mathbb{I}_{\chi \ge 1} + \underbrace{(y - \chi \left(\phi_l b_l + \phi_f b_f\right)\right)}_{c_b \text{ if default}} \mathbb{I}_{\chi < 1}\right]$$

subject to

Partipation constraint:

 $\mathbb{E}\left[\left(b_l\phi_l + b_f\phi_f\right)\mathbb{I}_{\chi\geq 1}\right] \geq x$

Payments feasibility:

 $b_l \phi_l + b_f \phi_f \le y \quad \forall \phi_l, \phi_f$

Default Model: Government Problem

Government maximizes utility of buyers and sellers

$$\max_{\phi_l} \underbrace{-\chi \phi_l B_l}_{\text{loss from default}} \mathbb{I}_{\chi \ge 1} - l\left(\phi_l\right)$$

• Optimal inflation choice

$$\phi_l = \begin{cases} \hat{\phi} & \text{if } \chi \geq 1 \\ \hat{\phi} - \frac{1}{\psi} \chi B_l & \text{if } \chi < 1 \end{cases}$$

• If buyers default, government partially inflates away cost of default

Given policy risk, local currency has a higher marginal benefit

Mapping of Default Model into Baseline

• Define

$$\theta_s = \begin{cases} 0 & \text{if } \chi < 1 \\ 1 & \text{if } \chi \ge 1 \end{cases} \quad \text{and} \quad \theta_b = \begin{cases} \chi & \text{if } \chi < 1 \\ 1 & \text{if } \chi \ge 1 \end{cases}$$

Proposition:

The baseline model with the above taste shocks is identical to the model with default in eq outcomes

Assumption 1':
$$\underbrace{\lambda\left(1-F_{\chi}(1)\right)}_{\text{gains of trade}} > \underbrace{\mathbb{E}\left[\chi|\chi<1\right]F_{\chi}(1)}_{\text{losses from default}}$$

Additionally, if assumption above is satisfied, then the model also satisfies the original assumptions 1 and 2

Dollarization in International & Domestic Contracts

Sources: Gopinath (2015), Ize, Levy-Yeyati (2006) Pack

Economy with International Contracts

• Economy with two symmetric countries: i, j

- Continuum of buyers and sellers in each country
- Buyers trade with sellers of other country
- Three available currencies: i, j, f

Assumption: both countries have same level of policy risk

$$\frac{\mathbb{E}\left[\hat{\phi}_{i}\right]}{\overline{\hat{\phi}}_{i}} = \frac{\mathbb{E}\left[\hat{\phi}_{j}\right]}{\overline{\hat{\phi}}_{j}}$$

• Focus on symmetric eq & region with full use of f as unique eq

Economy with International Contracts

• Optimal contract for buyer in country i and seller in country j solves

$$\max_{x_i, b_{ii} \ge 0, b_{ij} \ge 0, b_{if} \ge 0} (1+\lambda) x_i - \mathbb{E}\theta_{ib} \left(\phi_i b_{ii} + \phi_j b_{ij} + \phi_f b_{if}\right)$$

subject to

Participation Const.: $-x_i + \mathbb{E}\theta_{js} (\phi_i b_{ii} + \phi_j b_{ij} + \phi_f b_{if}) \ge 0$ Payments Feasibility: $\phi_i b_{ii} + \phi_j b_{ij} + \phi_f b_{if} \le y \quad \forall \phi_i, \phi_j, \phi_f$

• Government of country *i* maximizes utility of its citizens only

$$\phi_i = \hat{\phi}_i + \frac{1}{\psi} \left(\theta_{is} B_{ji} - \theta_{ib} B_{ii} \right)$$

CE in Economy with International Contracts

CE in Economy with International Contracts

· Government's ability to provide insurance is undermined

$$\underbrace{\operatorname{cov}\left(\left(\theta_{js}\left(1+\lambda\right)-\theta_{ib}\right),\frac{\phi_{i}}{\overline{\phi_{i}}}\right)}_{\underbrace{} = \underbrace{\operatorname{cov}\left(\left(\theta_{is}\left(1+\lambda\right)-\theta_{ib}\right),\frac{\phi_{i}}{\overline{\phi_{i}}}\right)}_{\underbrace{} = \underbrace{}$$

International Contract

Domestic Contract

$$\phi_i = \hat{\phi}_i + \frac{1}{\psi} \left(\theta_{is} - \theta_{ib} \right) B_i \qquad \phi_i = \frac{1}{\psi} \left(\theta_{is} - \theta_{ib} \right) B_i$$

$$\phi_i = \hat{\phi}_i + \frac{1}{\psi} \left(\theta_{is} - \theta_{ib} \right) B_i$$

Hysteresis in Dollarization

Hysteresis in Model with Credit Chains

• Buyers endowed with y and claims \hat{b}_l, \hat{b}_f

Currency claims from prior contract in which buyer was seller

• Optimal contract for the buyer solves

$$\max_{x \ge 0, b_l \ge 0, b_f \ge 0} (1+\lambda)x + \mathbb{E}\left[\theta_b\left(y - (b_l - \hat{b}_l)\phi_l - (b_f - \hat{b}_f)\phi_f\right)\right]$$

subject to

Participation Const.: $x \leq \mathbb{E} \left[\theta_s (b_l \phi_l + b_f \phi_f) \right]$

Payments Feasibility: $y \ge (b_l - \hat{b}_l)\phi_l + (b_f - \hat{b}_f)\phi_f \quad \forall \phi_l, \phi_f$

- Government's problem remains the same
- Additional assumption: $var(\theta)$ not too large

Hysteresis in Model with Credit Chains

Proposition: Optimal contract is given by:

$$\begin{array}{ll} \text{if } M_l \geq M_f: \qquad b_l = \hat{b}_l + \frac{y}{\overline{\phi}_l} \qquad b_f = \hat{b}_f \\ \\ \text{if } M_l < M_f: \qquad b_l = \hat{b}_l \qquad b_f = \hat{b}_f + \frac{y}{\overline{\phi}_f} \end{array}$$

- Policy risk only determines currency of new borrowing flows
- Currency matching of stocks is optimal
 - Allows for more borrowing and provision of special good
 - Leads to path dependence

Model with Fixed Cost of Default

- Same model as before with different cost of default
 - ▶ If buyers choose to default, suffer cost $\chi \in {\chi_L, \chi_H}$
 - ▶ Implies buyers optimally repay when $\phi_l b_l + \phi_f b_f < \chi$
- No taste shocks $(heta_i=1)$ nor policy risk $(\hat{\phi}_l=\phi_f=1)$
- Government problem

• If
$$\hat{\phi}_l b_l + \phi_f b_f < \chi$$
, set $\phi_l = \hat{\phi}_l$

• If not, set ϕ_l to induce repayment as long as

$$\chi > \frac{\psi}{2} \left(\frac{\chi - \phi_f B_f}{B_l} - \hat{\phi} \right)^2$$

Back

Equilibrium Characterization

Proposition

There exists an eq with full use of FC & another with full use of LC. If ψ is small enough, aggregate welfare is higher in the one with LC.

- Complementarities btw private and govt actions still in place
 - Higher use of LC makes govt use inflation to avoid default
 - State-contingent inflation makes LC more attractive

Back