Geographic and Socioeconomic Heterogeneity in the **Benefits of Reducing** Air Pollution in the **United States**

TATYANA DERYUGINA, NOLAN MILLER, DAVID MOLITOR, JULIAN REIF

Air pollution is costly for health, even in the modern United States

Acute pollution exposure is harmful to health even in low-pollution areas (e.g., Ward 2015; Knittel et al. 2016; Schlenker and Walker 2016; Deryugina et al. 2019)
There may be substantial social benefits to further reducing US air pollution

But, additional emissions reductions may require increasingly costly measures

<u>Crucial to understand where such reductions would be most beneficial</u>

How should pollution reduction efforts be targeted?

>Typically: Based on current pollution levels

e.g., target areas with high fine particulate matter (PM_{2.5}) concentrations
But what about based on where individuals vulnerable to PM_{2.5} reside?

Q1: How closely related are PM_{2.5} and vulnerability?
A1: in our sample of elderly Medicare beneficiaries, they are (slightly) negatively related

Q2: What kind of areas have more vulnerable beneficiaries?
A2: counties that are lower-income, less urban, hotter, and have worse health behaviors

We build on Deryugina, Heutel, Miller, Molitor, and Reif (2019) [DHMMR]

- Use daily variation in local wind direction to isolate fluctuations in PM_{2.5} that are as good as random
 - Addresses concern about confounding factors (e.g., traffic) and alleviates measurement error issues
- 2. Classify county-days as "high-pollution" or "low-pollution" based on wind direction and how that wind direction affects pollution

Wind direction and $PM_{2.5}$ in the Boston area

Wind direction and $PM_{2.5}$ in the Boston area

Wind direction and $PM_{2.5}$ in the Boston area

Predicting vulnerability

- 1. Construct sample of 23.6 million US elderly (2013 Medicare enrollees with sufficient data on health histories)
- 2. Train machine learning algorithm to separately predict elderly mortality on "high-pollution" and "low-pollution" days as function of many individual and local characteristics
 - e.g., local unemployment rate, income, presence of 27 chronic conditions, history of medical spending and medical events
- 3. Obtain differences in predictions at the individual level
 - <u>Difference in the probability of dying on high-pollution versus low-pollution</u> day is the individual's vulnerability measure

Effect of acute PM_{2.5} exposure as function of vulnerability index

Percentile of vulnerability index

Effect of acute PM_{2.5} exposure as function of vulnerability index

Percentile of vulnerability index

$\begin{array}{c}(1)\\ \text{Bottom } 75\%\end{array}$	(2) Top 25%	(3) Difference
75.3	79.7	4.42***
		(0.00435)
0.421	0.461	0.0408***
		(0.000294)
0.0946	0.239	0.144^{***}
		(0.000197)
0.176	0.343	0.166^{***}
		(0.000241)
0.197	0.386	0.189***
		(0.00025)
0.192	0.412	0.219***
		(0.00025)
0.00965	0.0251	0.0155***
		(0.0000685)
	(1) Bottom 75% 75.3 0.421 0.0946 0.176 0.197 0.192 0.00965	(1) Bottom 75% (2) Top 25% 75.3 79.7 0.421 0.461 0.0946 0.239 0.176 0.343 0.197 0.386 0.192 0.412 0.00965 0.0251

=				
Outcome		(1) Bottom 75%	(2) Top 25%	(3) Difference
Demographics		75.0	70.7	4 40***
Age (years)		(5.3	(9.7	4.42^{444}
Male		0.421	0.461	0.0408***
Chronic conditions		0.0046	0.020	(0.000294)
Alzheimer's or dementia		0.0946	0.239	(0.000107)
Chronic kidney disease		0.176	0.343	0.166***
COPD		0.197	0.386	(0.000241) 9***
Heart failung	Not	0.100	0.419	
Heart lanure	vulnerable	0.192	0.412	(0.00025)
Lung cancer		0.00965	0.0251	0.0155***
				(0.0000685)

-			
Outcome	(1) Bottom 75%	(2) Top 25%	(3) Difference
Demographics			
Age (years)	75.3	79.7	4.42***
			(0.00435)
Male	0.421	0.461	0.0408***
C1 : 1:::			(0.000294)
Chronic conditions	0.0046	0.020	0 1 4 4 * * *
Alzheimer's or dementia	0.0946	0.239	(0.000197)
Chronic kidney disease	0.176	0.343	0.166***
emonie maney disease	0.110	0.010	(0.000241)
COPD	0.197	0.386	0.189***
			(0.00025)
Heart failure	0.192	0.412	0.219***
			(0.00025)
Lung cancer	0.00965	0.0251	0.0155***
			(0.0000685)
		characteristics	

Outcome	(1) Bottom 75%	(2) Top 25%	(3) Difference
Medical spending (dollars) Durable medical equipment	160	333	173^{***}
Hospice	148	394	(0.438) 245^{***} (1.69)
Hospital outpatient	1,177	2,246	$1,068^{***}$ (2.63)
Part B drug	277	637	360*** (3.11)
Part B other	118	264	$(146)^{(112)}$ $(146)^{(112)}$

Predictors of lower vulnerability

Predictors of greater vulnerability

Conclusion

There is substantial geographic variation in vulnerability to acute PM_{2.5} exposure among the US elderly

Vulnerability is negatively related to PM_{2.5} levels, income, urbanicity, and exercising; it is positively related to cooling degree days, poverty, and smoking, obesity and mortality rates

 Considerations of area characteristics other than pollution levels may improve efficiency of targeted pollution reduction strategies
Limitations: study population limited to elderly, chronic exposure not considered

Extra slides

Predictors of lower vulnerability, top 1%

Predictors of greater vulnerability, top 1%

Our first stage has 300 instruments

Allow pollution transport patterns to vary across 100 monitor groups, formed using a clustering algorithm.

- 100 different spatial regions (g)
- 3 different 90-degree bins (b) (1 omitted category)

First stage is group-specific relationship between wind direction and pollution:

$$PM2.5_{cdmy} = \sum_{g=1}^{100} \sum_{b=0}^{2} \beta_{b}^{g} \mathbb{1}[G_{c} = g] \times WINDDIR_{cdmy}^{90b} + [\dots] + \epsilon_{cdmy}$$

$$c = \text{county}, d = \text{day}, m = \text{month}, y = \text{year}$$

$$Y_{cdmy} = \beta PM2.5_{cdmy} + X'_{cdmy} \gamma + \alpha_c + \alpha_{sm} + \alpha_{my} + \epsilon_{cdmy}$$

 $Y_{cdmy} = 3$ -day mortality rate

• Alternative specifications extend outcome window to 28 days

Flexibly control for interactions of temperature (min and max), precipitation, and wind speed

- \circ Control for instruments and weather on days d+1 and d+2 to identify effect of 1-day shock
- Control for instruments on d-1 and d-2 to account for autocorrelation
- In total, about 28,000 control variables

Using $\hat{S}(Z_{it})$ to characterize heterogeneity

1. Estimate average treatment effects for different groups, indexed by \boldsymbol{k}

$$Died_{it} = \alpha + \sum_{k=1}^{K} \gamma_k (T_{it} - \hat{p}(Z_{it})) \cdot 1(G_k) + \theta \widehat{Died^C}(Z_{it}) + \epsilon_{it}$$

- $\hat{p}(Z_{it})$ is the estimated propensity score for person *i* at time *t*
- Coefficients $\gamma_k = E[s_0(Z_{it})|G = k]$
- Groups are percentiles of the proxy predictor $\hat{S}(Z_{it}) \rightarrow$ sorted group average treatment effects (GATES)
- 2. Compare mean characteristics of most-affected versus least-affected group
 - Groups again defined by $\hat{S}(Z_{it})$