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Abstract

This paper derives conditional cost-of-living indexes (COLI) for the Constant Elas-

ticity of Substitution model in the presence of taste change. Recent proposals to incor-

porate changing tastes reflect a different conceptual target (an unconditional COLI)

from a consumer price index (a conditional COLI), and a strong implicit assumption

(cardinal utility). Using Nielsen retail scanner data for food and beverage products, I

find that tastes can dominate prices in unconditional COLI estimates, while they have

smaller impacts on conditional COLI. Using CPI data, I find that category-level tastes

have a relatively minor average effect on an all-items price index.
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1 Introduction

The target of a consumer price index (CPI) is typically a theoretical construct known as a

cost-of-living index (COLI), which measures the proportional expenditure change required

for a consumer to be indifferent between two price situations, such as periods of time (Pollak,

1989). The consumer models underlying COLI formulas are often specified with constant

preferences or tastes between periods. As many have observed (e.g., Heien and Dunn (1985)),

this is unrealistic empirically. In light of this, the conceptual target of a CPI is commonly

(though not universally) agreed to be a conditional COLI, which aims to isolate the effect

of price change by holding constant non-price factors including tastes (ILO, 2004). For

example, the Tornqvist formula used by the Bureau of Labor Statistics (BLS) for the U.S.

Chained Consumer Price Index for All Urban Consumers (C-CPI-U) approximates the COLI

that conditions on the set of average tastes between those pertaining to the index’s reference

and comparison periods (Caves, Christensen, and Diewert, 1982).

This paper shows that for the Constant Elasticity of Substitution (CES) model, variants

of the formula proposed by Lloyd (1975) and Moulton (1996) are exact for COLI that

condition on either the reference or comparison period tastes.1 I also show that an average

of these indexes is “flexible” in the sense of Diewert (1976), and approximates a COLI

that conditions on an intermediate level of tastes. Using retail scanner data for food and

beverage products, I estimate that COLI conditioning on comparison period tastes exceed

those conditioning on reference period tastes by an average of 0.5 to 2.9 percentage points

per year, depending on the category, with COLI conditioning on intermediate tastes falling

roughly in the middle. Conditional COLI that fix individual product tastes at either the

reference or comparison period levels (rather than averages) are infeasible within current

data constraints at the BLS. However, I find that CPI aggregates that similarly account for

category-level tastes are affected relatively little by the choice of taste vector.

1Per Diewert (1976), a price index formula is exact if it equals a ratio of unit expenditure functions for a
given set of preferences.
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This paper also aims to clarify issues raised by the recent literature concerning taste

change. Several papers have advocated constructing a COLI by evaluating each of its con-

stituent expenditure functions at period-specific taste vectors. In particular, Redding and

Weinstein (2020) (henceforth RW) argue that assuming constant tastes causes a positive

“taste-shock bias” in COLI estimates.2 Using the CES model and household scanner data,

they estimate this bias to be around 0.4 percentage points per year on average, which would

place it among the largest sources of bias in the U.S. CPI (Moulton, 2018). However, a

careful definition of a conditional COLI does not actually assume tastes are constant (F. M.

Fisher and Shell, 1972). The researcher needs to choose a taste vector to condition on, but

indexes like the aforementioned Tornqvist implicitly make a reasonable choice. In contrast,

proposals like RW’s target a different theoretical concept—the unconditional COLI. Further-

more, incorporating preference change implicitly treats utility as cardinal. If treating utility

as ordinal (which more common in economics), there is no way to interpret a variable-taste

price index as “a money metric measure of being equally well off in two periods” (Balk,

1989).3 My empirical analysis suggests estimated taste effects dominate those of prices when

using RW’s method, turning low or moderate conditional COLI increases into unconditional

COLI declines. To interpret differences as evidence of taste shock bias, however, requires a

strong assumption about the underlying utility function and ignores significant differences

in the intended scope of the indexes being compared.

2 Existing literature

The economic approach to consumer price indexes, dating to Konüs (1924), is based on the

expenditure function of an optimizing agent. The final version of the C-CPI-U, for exam-

ple, uses the Tornqvist formula for upper-level aggregation (Cage, Greenlees, and Jackman,

2Among others, Hottman and Monarch (2018), Zadrozny (2019), and Ueda, K. Watanabe, and T. Watan-
abe (2019) also explore indexes of this type.

3F. M. Fisher and Shell (1972) argue that holding well-being constant with changing preferences amounts
to an “arbitrary intertemporal weighting of utilities.”
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2003). The Tornqvist is an example of a “superlative” index (Diewert, 1976), meaning it

approximates an arbitrary expenditure function. The seminal work of F. M. Fisher and

Shell (1972) analyzes conditional and unconditional COLIs in an environment with changing

preferences. The appropriate target for a consumer price index is generally considered to

be a conditional COLI (National Research Council, 2002; ILO, 2004), which isolates the

effect of changing prices by holding preferences (or anything else affecting well-being) fixed.

By referencing a specific indifference surface, a conditional COLI requires only the ordinal

properties of utility functions.

An unconditional COLI, on the other hand aims to track changes in expenditure whether

driven by price change or preference change. As a consequence, the index may increase or de-

crease even if prices are constant. Unconditional COLI seek to answer interesting questions,

and may be more comprehensive as cost-of-living concepts.4 However, they do not contain

any additional information on prices than what is already conveyed by a conditional COLI.

Furthermore, when preferences change, an unconditional COLI must reference a cardinal

utility level in order to compare expenditures across varying indifference maps.5 Allowing

pure taste change effects, therefore, requires a stronger assumption about preferences than is

needed for a conditional COLI. Interested in the unconditional COLI concept, Balk (1989)

proposes an index that attempts to hold constant some notion of well-being without fixing

the cardinal utility level. The method tracks the change in expenditure required to reach an

indifference surface that passes through a fixed bundle. Gábor-Tóth and Vermeulen (2018)

apply this method to European scanner data and find the average annual contribution of

taste change to be −1.1 percentage points.

As noted by F. M. Fisher and Shell (1972), deriving the relationship between preference

change and either type of COLI is difficult without either assuming a specific parameteriza-

4National Research Council (2002) gives several situations where a conditional COLI may be inadequate,
including medical products whose quality is difficult to separate from general health status, and regional
comparisons where fixing weather conditions may make little sense.

5For this reason, unconditional COLI are sometimes called “cardinal,” whereas conditional COLI are
sometimes called “ordinal” (Muellbauer, 1975).
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tion (allowing changes on a small subset of items only), or restricting attention to a particular

utility function (as this paper does). Tastes do not pose much of a measurement challenge

when the objective is a conditional COLI, however, even when the index formula does not

appear to explicitly account for tastes. Caves, Christensen, and Diewert (1982), Diewert

(2001), and Feenstra and Reinsdorf (2007) provide conditions under which the Tornqvist,

Fisher, and Sato-Vartia price indexes, respectively, are exact for or approximate COLI that

condition on some notion of average tastes. Section 3 discusses these results further, while

Section 4 complements them by showing that variants of the Lloyd-Moulton index are also

exact for conditional COLI in the CES case.

In order to isolate the issue of preference change, I focus my empirical analysis on

matched-model indexes, i.e., those defined over a fixed set of specific product varieties with

constant tangible attributes. RW’s taste-shock bias is defined in association with a matched-

model index. This is not to suggest that improvements to a matched model index should not

be pursued for reasons of representativity. For instance, product turnover can cause matched

model indexes to miss initial price declines for new items (Feenstra, 1994), as well as selec-

tion bias in the set of matched items (Pakes, 2003). Appendix B shows how with product

turnover, it is possible to bound a conditional COLI in the CES case by applying Feenstra

(1994). Preference change is also fundamentally different from quality change, though the

two may have similar effects on relative demand. Price change for the matched model is

measurable without quality adjustment, since the set of items and their associated bundles

of attributes are constant by definition. Though the two issues are similar mechanically

(F. M. Fisher and Shell, 1972), taste-shock bias should not be confused with quality bias.

If item definitions are not constant, then whether or not demand shifts are attributed to

quality changes or taste changes can have large effects on index estimation (Nevo, 2003).
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3 Cost-of-living theory

A cost-of-living index is a ratio of two expenditure functions. It is helpful in this case to

first specify a set of preferences rather than jump straight to a utility function. Consider an

ordinal preference relation, denoted �, on a commodity space Q ⊆ RN , which is made up of

bundles q. We assume:

Assumption 3.1 The representative consumer’s preference relation � is i) rational (com-

plete and transitive), ii) continuous, iii) convex, and iv) monotone.

Assumption 3.1 is sufficient for the existence of a utility function, u : Q → R which

represents �, in the sense that we have q � q′ ⇔ u(q;�) ≥ u(q′;�) (Mas-Colell, Whinston,

Green, et al., 1995). Due to the ordinal nature of preferences, the function u, is not unique.

Any positive monotone transformation of u will also represent �. Let p denote a vector of

prices. We then assume:

Assumption 3.2 Facing prices p, the agent chooses q to maximize utility subject to a budget

constraint, or equivalently, to minimize expenditure subject to a utility constraint.

Let h(p, ū;�) = argmin
q

p · q s.t. u(q;�) ≥ ū denote the Hicksian demand function, which

represents the quantities that minimize expenditure. The expenditure function is given as

C(p, ū;�) = p · h(p, ū;�).

3.1 Conditional COLI

A conditional or ordinal COLI is defined as the minimum expenditure required for an agent

to be indifferent between two price situations. I label the reference situation 0 and the

comparison situation 1. This paper focuses on intertemporal comparisons, but the general

theory accommodates other possibilities (e.g., regional comparisons).

Definition 3.1 (F. M. Fisher and Shell, 1972; Pollak, 1989) The class of conditional cost-
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of-living indexes is given by:

Φ(p0,p1, ū;�) =
C(p1, ū;�)

C(p0, ū;�)
, (1)

for a given ū and �.

The combination of � (preference relation) and ū (location) determine the specific indif-

ference surface on which Φ is based. Two immediate candidates for preferences to plug in are

�0 and �1, corresponding to the reference and comparison periods, respectively. It is worth

emphasizing that the oft-cited bounding results for the Laspeyres and Paasche indexes are

one-way only, i.e., the Laspeyres is an upper bound for Φ(p0,p1, ū0;�0), and the Paasche

is a lower bound for Φ(p0,p1, ū1;�1). F. M. Fisher and Shell (1972) argue that from the

standpoint of intertemporal compensation, the most interesting COLI is

Φ(p0,p1, ū
∗
1;ϕ1) =

C(p1, ū
∗
1;ϕ1)

C(p0, ū∗1;ϕ1)
, (2)

where ū∗1 is the hypothetical utility that the consumer would receive facing the period 0

budget constraint with period 1 preferences. F. M. Fisher and Shell (1972) and others argue

that a COLI based on �1 is more relevant for public policy than one based on the obsolete

preferences �0, but Pollak (1989) notes that in principle, � need not be linked to either the

reference or comparison situations. Indeed, two of the parameter-free price indexes discussed

in the next subsection are exact for COLI based on average indifference surfaces.

3.2 Parameter-free COLI

Under Assumption 3.2, the observed market expenditures p0 ·q0 and p1 ·q1 equal the expen-

diture levels C(p0, ū0,�0) and C(p1, ū1,�1), respectively. Since, Eq. 1 holds the indifference

surface fixed, however, estimation generally requires knowledge of the expenditure function

for the given set of preferences.
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Nevertheless, some well-known price index formulas are exact for conditional COLI, pre-

cluding any need for structural estimation. These indexes and their components are defined

below. Let i index items or varieties, and denote the set of items as I, which has dimension

N .

Definition 3.2 The Fisher price index

PF (p0,p1, q0, q1) =
√
PLPP , (3)

where PL(p0,p1, q0, q1) =
∑
i∈I pi1qi0∑
i∈I pi0qi0

is the Laspeyres index, and PP (p0,p1, q0, q1) =
∑
i∈I pi1qi1∑
i∈I pi0qi1

is the Paasche index.

Definition 3.3 The Tornqvist price index

PT (p0,p1, q0, q1) =
∏
i∈I

(
pi1
pi0

)0.5(si0+si1)

, (4)

where sit = pitqit∑
j∈I pjtqjt

, t = 0, 1.

Definition 3.4 The Sato-Vartia price index

PSV (p0,p1, q0, q1) =
∏
i∈I

(
pi1
pi0

)wi
, (5)

where wi =
[

si1−si0
ln si1−ln si0

]
/
[∑

k∈I
sk1−sk0

ln sk1−ln sk0

]
.

Suppose tastes (or environmental variables, as referred to in Diewert, 2001) are repre-

sented by the vector ϕ, as will be the case in the following section on CES preferences.

Diewert (2001) showed that there exists a u∗ and ϕ∗ such that Φ(p0,p1, u
∗;ϕ∗) is bounded

by the Laspeyres and Paasche indexes, where ū0 ≤ u∗ ≤ ū1 and ϕi0 ≤ ϕ∗i ≤ ϕi1, i = 1, . . . , N .

If the Laspeyres and Paasche are close numerically, a symmetric average like the Fisher index

approximates this COLI. In addition, under the assumption that the expenditure function
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is translog, Caves, Christensen, and Diewert (1982) showed that the Tornqvist price index

is exact for the geometric average of the COLI based on period 0 preferences and the COLI

based on period 1 preferences. Due to translog functional form, this is equivalent to the COLI

evaluated at the geometric averages of the taste parameters and utilities, respectively. The

Tornqvist index is also attractive because the translog expenditure function approximates

arbitrary expenditure functions to the second order. Finally, the Sato-Vartia index is exact

for the CES COLI that conditions on intermediate levels of the tastes (Feenstra and Reins-

dorf, 2007). Each of these results relates to an indifference surface that is, loosely speaking,

an average of the base and current period indifference surfaces. Of course, the measurement

of substitution effects (responses to relative price change), may change depending on which

indifference surface the COLI is based, and so interpretations should be made carefully.

3.3 Unconditional COLI

An unconditional or cardinal COLI measures the change in expenditure required for the

consumer to achieve the same utility level in the comparison period as they experienced in

the reference period.

Definition 3.5 (Muellbauer, 1975) The class of cardinal or unconditional COLI is given

by:

ΦU(p0,p1, ū;�0,�1) =
C(p1, ū;�1)

C(p0, ū;�0)
, (6)

for some ū. RW and others estimate this ratio when C(p, ū;�) is the CES unit expenditure

function, but they derive it for other models as well. Unless preferences are constant, the

associated quantities h(p0, ū;�0) and h(p1, ū;�1) do not lie on the same indifference surface,

even though both are labeled ū. Therefore, the expenditure comparison is only meaningful

if the utility levels can be compared. This amounts to starting from the following instead of

Assumption 3.1.
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Assumption 3.3 The utility function u(q;�) is a cardinal measure of the representative

consumer’s well-being.

The following decomposition of an unconditional COLI is illustrative of the difference in

intended scope.

ln ΦU(p0,p1, ū;�0,�1) = ln Φ(p0,p1, ū;�1) + ln

[
C(p0, ū;�1)

C(p0, ū;�0)

]
(7)

Eq. 7 decomposes the unconditional COLI into two parts; a price effect equal to a conditional

COLI, and a pure taste change effect C(p0, ū;�1)/C(p0, ū;�0). It is straightforward to

compare the unconditional COLI with other conditional COLI in a similar fashion. Equation

7 describes the sense in which ΦU is “unconditional” in that the last term aims to capture

the impact of factors other than prices (National Research Council, 2002). It is also apparent

that the contribution of price change is completely captured by the ordinal index, and that

the pure taste change component is what depends on cardinal utility.

4 CES Preferences

Section 3 described a few conditional COLI that can be estimated with prices and quantities

only. In general, however, estimating a COLI requires specifying and estimating a model of

preferences. For comparability to other studies, I focus on the CES model for the rest of

this paper. The CES model is a workhorse for its tractability, though it implies significant

restrictions on price and income elasticities. Appendix D derives similar results for the

homothetic translog expenditure function, which is more flexible, but requires estimating

many more parameters. Specification error is a potential issue for an unconditional COLI,

as well as COLI that condition on a specific period’s tastes, as these depend on the model’s

ability to separate price responses from preference shifts (Martin, 2019).

We now assume:
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Assumption 4.1 The representative agent’s expenditure function has the form:

C(p, ū;ϕ) = ū

[∑
i∈I

(
pi
ϕi

)1−σ
] 1

1−σ

(8)

For the purposes of a COLI, we take ū = 1 without further loss of generality (preferences

are homothetic) and suppress the argument from further notation. The parameter σ 6= 1 is

the elasticity of substitution, which we assume is constant over time, and so the notation

now refers to preferences through the vector of demand shifters ϕ. The agent’s optimal

expenditure shares are given by

si(p;ϕ) =
pihi(p;ϕ)∑
j∈I pjhj(p;ϕ)

=
(pi/ϕi)

1−σ∑
j∈I (pj/ϕj)

1−σ =
(pi/ϕi)

1−σ

[C(p;ϕ)]1−σ
, i = 1, . . . , N. (9)

Under Assumptions 3.2 and 4.1, the observed expenditure shares sit = pitqit∑
j∈I pjtqjt

equal the

optimal expenditure shares si(pt;ϕt). The indexes in the following subsections make use of

this equation to estimate conditional and unconditional COLI.

Eq. 10 shows that under Assumption 4.1, the log expenditure share of item i in period t

can be decomposed into its log price, the log expenditure function, and the log of the taste

parameters.

ln sit = (1− σ) ln pit + (σ − 1) ln [c(pt;ϕt)] + (σ − 1) lnϕit (10)

As RW note, the taste parameters provide a source of idiosyncratic error which is necessary

for empirical analysis.

4.1 Exact Price Indexes for CES Preferences

As previously mentioned, the index proposed by Sato (1976) and Vartia (1976) (see Eq. 5)

is exact for the CES COLI that conditions on an intermediate taste vector ϕ̄ (Feenstra and

Reinsdorf, 2007).6 The salient question then is how do price comparisons using ϕ̄ compare to

6Each element ϕ̄i of ϕ̄ lies between ϕi0/
∏

i∈I ϕ
wi
i0 and ϕi1/

∏
i∈I ϕ

wi
i1 .
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price comparisons using ϕ0, ϕ1 or some other tastes? Exact price indexes for reference period

or current period tastes already exist for the CES model, though to my knowledge, their

interpretation as such is novel. Lloyd (1975) and Moulton (1996) developed the following

price index in the setting of constant tastes.

Definition 4.1 Lloyd-Moulton Index

PLM(p0,p1, q0, q1, σ) =

{∑
i∈I

si0

(
pi1
pi0

)1−σ
} 1

1−σ

(11)

Similarly, the time-antithesis (I. Fisher, 1922), or “backwards” version of the Lloyd-

Moulton index can be formed.

Definition 4.2 Backwards Lloyd-Moulton Index

PBLM(p0,p1, q0, q1, σ) =

{∑
i∈I

si1

(
pi0
pi1

)1−σ
} −1

1−σ

(12)

The Lloyd-Moulton and Backwards Lloyd-Moulton are exact for the COLI that condition

on reference period tastes and comparison period tastes, respectively. To see this, start with

Eq. 4.1 for PLM(p0,p1, q0, q1, σ). Use the right hand side of Eq. 9 to substitute for si0,

re-arrange, and use Eq. 8. We then have

PLM(p0,p1, q0, q1, σ) =

{∑
i∈I

si0

(
pi1
pi0

)1−σ
} 1

1−σ

=

{∑
i∈I

(pi0/ϕi0)
1−σ

[C(p0,ϕ0)]
1−σ

(
pi1
pi0

)1−σ
} 1

1−σ

=

{∑
i∈I (pi1/ϕi0)

1−σ}
C(p0,ϕ0)

1
1−σ

=
C(p1,ϕ0)

C(p0,ϕ0)

= Φ(p0,p1;ϕ0)
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The case of PBLM(p0,p1, q0, q1, σ) is very similar. The following summarizes the result.

Proposition 1 Under Assumption 4.1,

PLM(p0,p1, q0, q1, σ) = Φ(p0,p1;ϕ0), and PBLM(p0,p1, q0, q1, σ) = Φ(p0,p1;ϕ1).

This result implies an additional superlative index may be of interest in the context of

changing tastes. Consider the geometric mean of the Lloyd-Moulton indexes, denoted PLMM .

It has the form:

PLMM(p0,p1, q0, q1, σ) = [PLM(p0,p1, q0, q1, σ)PBLM(p0,p1, q0, q1, σ)]
1
2

=


∑

i∈I si0

(
pi1
pi0

)1−σ
∑

i∈I si1

(
pi0
pi1

)1−σ


1
2(1−σ)

(13)

Eq. 13 shows PLMM is, in fact, the Quadratic Mean of Order r price index, where r = 2(1−σ)

Diewert (1976). This implies the following result.

Proposition 2 Under assumption 4.1, the Quadratic Mean of Order r price index is exact

for the geometric mean of two CES conditional COLI, [Φ(p0,p1;ϕ0)Φ(p0,p1;ϕ1)]
1
2 , where

r = 2(1− σ).

This is important because superlative indexes like this one have been shown to approxi-

mate each other to the second order (Diewert, 1978). This implies PLMM should be somewhat

robust to errors in estimation of σ or departures from CES functional form. Additionally, the

availability of both PLMM and PSV for the CES case offers an interesting potential contrast.

One averages COLI evaluated at different tastes, while the other is a COLI evaluated at

an average of the tastes. A priori, we would not necessarily expect them to give identical

answers, though their estimates in Section 5 are very similar.
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4.2 RW’s CES Common Varieties Index

RW propose a price index to target the CES unconditional COLI. A practical challenge

concerns the scale of tastes. Given knowledge of σ, Eq. 9 implies that observed expenditure

shares and prices identify ϕit up to a time-varying scale factor. The CES conditional COLI

are invariant to the scale of the tastes, but the unconditional is not. RW address this issue

by normalizing the ϕit to have a constant geometric mean over time, in effect allowing only

relative taste changes. Although CES expenditure shares do not depend on the scale of

tastes, expenditure levels do, and so this normalization is not free. Changes in the scale of

tastes between periods affect the magnitude and possibly the direction of the unconditional

COLI, an observation made by Kurtzon (2019).

Using the normalization, RW derive the following estimator for ΦU(p0,p1;ϕ0,ϕ1):

Definition 4.3 RW’s CES Common Varieties Index (CCV) 7

PCCV (p0,p1, q0, q1, σ) = exp

[
1

N

N∑
i=1

ln

(
pi1
pi0

)
+

1

σ − 1

1

N

N∑
i=1

ln

(
si1
si0

)]
, (14)

The time-constant scale factor precludes some potentially interesting situations. First,

it prohibits systematic increases or decreases in the agent’s “efficiency” as a producer of

utility (Muellbauer, 1975). This rules out, among other phenomena, the “hedonic treadmill”

hypothesis discussed in National Research Council (2002), whereby the agent needs to con-

sume higher quantities over time to remain as well-off. Such general trends in well-being

would clearly affect ΦU(p0,p1;ϕ0,ϕ1) conditional on a set of relative taste changes. Second,

the normalization of the unweighted geometric mean is just one of an infinite number of

equivalent normalizations, on which the observed expenditure and price data bear no infor-

mational content (Kurtzon, 2019). Appendix C discusses these issues further and shows how

estimating PCCV over subsets of I implicitly changes the normalization.

7RW’s proposed CES Unified Price Index consists of the CCV plus a product turnover adjustment in the
style of Feenstra (1994).
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Table 1 summarizes the price index formulas discussed in this and the previous section.

The following two sections compare them empirically, first using retail scanner data, and

then using CPI elementary item-area indexes.

5 Application to Retail Scanner Data

5.1 Data and model estimation

I estimate quarterly price indexes for food and beverage product categories using the CES

model introduced in Section 4 and Scantrack, a point-of-sale scanner dataset from The

Nielsen Company.8 The data are similar in scope to Nielsen’s household panel, which RW

use. The Neilsen retail scanner data has been proposed for use in the CPI by Ehrlich et al.

(2019), and similar data is used by the Australian Bureau of Statistics to estimate some food

components of its CPI. The data cover the fourth quarter of 2005 through the second quarter

of 2010, and include expenditures and quantities for roughly 600,000 universal product codes

(UPC) sold by participating grocery, drug, and mass merchandise store chains.9 Because

items are defined by UPC, their characteristics and quality are arguably constant over time

(Broda and Weinstein, 2010; Redding and Weinstein, 2020). UPCs are classified according to

a structure defined by Nielsen. For instance, UPC 003800040500 is described as “Kellogg’s

Eggo Round Chocolate Chip 10 count.” It belongs the brand module “Kellogg’s Eggo,”

product module “Frozen Waffles/Pancakes/French Toast,” product group “Breakfast Foods

8I use data for food and beverage products only, though Scantrack data also covers general merchandise,
personal care, and other non-food grocery items sold in grocery and drug stores. Scantrack expenditures on
nonfood goods equal only about 19% and 12% of comparable Consumer Expenditure Survey and Personal
Consumption Expenditure estimates, respectively, suggesting the majority of consumption on these products
originates from non-covered retailers (Bureau of Labor Statistics, 2019; Bureau of Economic Analysis, 2019).
Furthermore, the degree to which the simple CES model is a suitable approximation for the data may differ
between food and nonfood categories. The model assumes no dynamic behavior, i.e., stockpiling or durable
goods, and expenditure on a nonfood product (e.g., “Kitchen gadgets”) may be a relatively poor proxy for
consumption of that product, even at a quarterly frequency.

9According to a Nielsen representative, the sample covers 90% of such retail chains and is weighted to be
nationally representative. Potential selection bias is a limitation of this and other studies using convenience
samples of transactions.

15



- Frozen,” and department “Frozen Foods.” Like RW, I calculate quarterly expenditure

shares (within product group) and unit value prices by UPC, treating the continental United

States as one market. I then winsorize by dropping items whose change in price or value

were in the top or bottom one percentile for a given quarter.

Table 2 describes some basic attributes of the dataset. Just over 54% of food and beverage

expenditures are from the Dry Grocery department, comprising about two-thirds of the total

number of UPCs. Dairy (15%) and Frozen Foods (11%) are the next largest departments

by expenditure. Use of these data for consumer price indexes treats retail sales as proxies

for consumer expenditures, but they also include purchases by non-households. Total food

and beverage expenditures in Scantrack exceed the BLS’s Consumer Expenditure Survey

(CE) estimates over the same time period by about 66%, while they exceed the Bureau

of Economic Analysis’s Personal Consumption Expenditure (PCE) estimates by about 9%

(Bureau of Labor Statistics, 2019; Bureau of Economic Analysis, 2019).10

For each product group, I calculate a series of indexes of the form P (pt−4,pt, qt−4, qt),

where P () is one of the formulas given in Section 3 or 4. The index for quarter t uses

the same quarter in the year prior as its base period, so index values reflect year-over-

year price changes. Table 3 presents summary statistics for the four-quarter price relatives

pit/pi,t−4 pooled over the sample period. Average price relatives exceed one for all depart-

ments, ranging from 1.021 for Alcoholic Beverages to 1.037 for Dairy. The distributions are

quite dispersed however, with standard deviations within departments ranging from 0.106

for Packaged Meat to 0.165 for Fresh Produce. Relatives are positively skewed in all de-

partments, as one might expect if prices follow an upward trend over time. Compared to a

normal distribution (which has kurtosis equal to 3), the distributions of price relatives have

higher kurtosis, which indicates thicker tails.

Estimation of the substitution elasticities follows the “double-differencing” method of

Feenstra (1994), using panel variation in prices and expenditure shares. This method as-

10CE and PCE cover slightly different target populations and rely on different survey methods. See
Passero, Garner, and McCully (2014) for a discussion.
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sumes σ > 1, which is reasonable for indexes over similar product varieties. I follow the

weighting and estimation procedure of Broda and Weinstein (2010), though as in RW, I do

not distinguish between within-brand and across-brand substitutions. Start with Eq. 10

and difference over time and with respect to a reference variety k, which is chosen to be

the variety with the largest average market share. Denote the doubled-difference of variable

xit as ∆kxit = (xit − xi,t−1) − (xkt − xk,t−1). For varieties i = 1, . . . , N and time periods

t = 1, . . . , T , the double-differenced demand equation is:

∆k ln sit = −(σ − 1)∆k ln pit + ∆k lnuit, (15)

where ∆k lnuit is the double-differenced error. The inverse supply equation is derived by

assuming each variety is produced by a distinct firm in monopolistic competition, leading to

a pricing equation that is linear in log-expenditure share, with slope depending on the inverse

supply elasticity parameter ω. The double-differenced inverse supply equation is then:

∆k ln pit =
ω

1 + ω
∆k ln sit + ∆k ln vit, (16)

where ∆k ln vit is the double-differenced supply error. We assume that the double-differenced

demand and supply errors are drawn from stationary distributions, have variances that

differ by product variety, and are uncorrelated with each other. The parameters can then

be estimated using Generalized Method of Moments (Hansen, 1982) based on the moment

conditions

E
[(

∆k ln pit
)2 − θ1 (∆k ln sit

)2 − θ2∆k ln pit∆
k ln sit

]
= 0, i = 1, . . . , N, (17)

where θ1 = ω
(1+ω)(σ−1) and θ2 = ω(σ−2)−1

(1+ω)(σ−1) . As in Feenstra (1994), Eq. 17 can be written as a

regression of time averaged variables and estimated using weighted nonlinear least squares.11

11From Broda and Weinstein (2006), I include the time average of
(
q−1it + q−1i,t−1

)
as additional regressor to

control for measurement error introduced by aggregating transaction prices into quarterly unit values. This
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When analytical estimates are outside of theoretical bounds (e.g., σ < 1), parameters are

estimated by a grid search over the parameter space.12

Two product groups in the Dairy department have too few varieties for estimation and

are dropped from the analysis. Of the remaining, the procedure yields 55 analytical and

15 grid-searched estimates, the summary of which is presented in Table 4. The overall

median elasticity is 4.32, which is lower than what RW found using the Feenstra method

and Homescan data (6.48), but reasonable given data and time period differences.13 There

is heterogeneity in estimates by product group, as the interquartile range is nearly three.

5.2 Results

As described in the previous subsection, I calculate series of four-quarter CES price indexes

for 70 food and beverage product groups in the Scantrack dataset. For ease of presentation,

figures and tables show statistics that are weighted by comparison-period expenditure shares.

For example, for a set of product groups G indexed by g, Figures 1 and 2 plot averages of the

form
∑

g∈G sgtP (pg,t−4,pgt, qg,t−4, qgt), where sgt =
∑

i∈Igt pitqit/
∑

g∈G
∑

i∈Igt pitqit, Igt is the

set of items available in product group g in period t, P () refers to one of the CES-based price

index formulas, and price and quantity vectors are specific to g. Figure 1 shows averages

across all product groups, while Figure 2 and Table 5 break these out by department. Table

6 gives the percentiles of the distributions of differences between price indexes, while Table

7 presents average differences by department.

As discussed in Sections 3 and 4, these indexes are derived from the same CES model

with time-varying taste parameters. Differences between them reflect differing theoretical

objectives as opposed to biases stemming from improper modeling assumptions. Compar-

means a product group must have at least four varieties for estimation.
12Following the code used for Broda and Weinstein (2010), the grid search, e.g., searches for the value of

σ ∈ [1.04, 50.5], at 4% increments, that minimizes the sample objective function.
13Previously, Kurtzon (2016) found estimated elasticities from Scantrack to be lower than those estimated

using Homescan. The Feenstra method is based on large-T asymptotic arguments, so estimates may have
finite-sample bias from the relatively sample period. See Soderbery (2010) and Soderbery (2015). As
discussed in Section 4, PLMM is robust to small changes in σ used, and comparisons among PCCV , PLM ,
and PBLM are qualitatively similar when using alternative values of σ (e.g. setting all equal to 6.48).
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isons among PLM , PBLM , PLMM , and PSV shed light on the degree to which the estimate of

pure price change is affected by the choice of conditioning taste vector. A difference such as

PCCV −PSV estimates the partial effect of tastes on the unconditional COLI (like in Eq. 7),

provided one treats utility as cardinal.

The Scantrack data show that the contributions of tastes dominate those of prices in

determining PCCV , driving it to be negative in most quarters. From Figure 1, the conditional

COLI estimates tend to be positive, with average four-quarter percent changes ranging from

1.31 for PLM to 3.61 for PBLM . In contrast, PCCV implies unconditional cost-of-living declines

between 0.29 and 6.65 percentage points per year from late 2006 to mid 2010, implying a

strong negative contribution from taste changes. Similar to RW, I find PCCV tends to imply

substantially lower inflation than PSV , though I find a larger average difference of 5.64

percentage points in magnitude. In more than 75% of observations, the difference is greater

than 2 percentage points.14 Figure 1 shows PCCV also tends to be much lower than the other

conditional COLI estimates, though Figure 2 and Table 7 suggest considerable heterogeneity

by department. The average PSV − PCCV spread ranges from 1.51 percentage points for

Dairy products to 11.59 percentage points for Frozen Foods. For the latter category, PCCV

estimates an average annual unconditional COLI decline of 9.65%, while the conditional

COLI estimates range from 1.4% to 2.4% on average. With the exception of Dairy, the gap

between the conditional COLI estimates and PCCV persists over time.

Turning to the conditional COLI, the Scantrack estimates indicate that the choice of

taste vector can impact the measurement of price change, but to a smaller degree than

tastes affect the unconditional COLI. From Table 6, PBLM exceeds PLM by 2.3 percentage

points on average and by 1.21 percentage points at the median. Looking across departments

14My results are most comparable to Redding and Weinstein (2018), which uses the same definition of
common varieties and finds average differences between PSV and PCCV on the order of 2-4 percentage points.
Redding and Weinstein (2020) finds the same sign for PCGG − PSV , but an average magnitude of only 0.4
percentage points. However, the basket of varieties is limited to items that have lifespans of at least six years
and are not within three quarters of their introduction or exit in the reference or comparison quarter. I also
find smaller PCGG−PSV differences when I similarly limit the basket. Appendix C shows also that restricting
the set of varieties has a large effect on the result by implicitly changing the normalization imposed on the
CES taste parameters.
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(Table 7), the average difference ranges from 0.54 for Packaged Meat, to 2.92 for Dry Grocery.

As Figures 1 and 2 illustrate, the average PBLM − PLM gap tends to be smaller than the

gap between PCCV and any one of the other indexes. Conditioning on an intermediate level

of tastes, PSV in most cases is very close to PLMM , the geometric average of reference-taste

and comparison-taste indexes. Overall, they differ by 0.24 percentage points on average, and

0.03 percentage points at median, with average differences by department spanning −0.01

(Fresh Meat) to 0.425 (Dry Grocery) percentage points. Conditioning on current preferences

(as F. M. Fisher and Shell (1972) prefer), PBLM implies that consumers, on average, needed

to increase expenditure by 3.61% to be indifferent between current and year-ago food and

beverage prices. This is 0.93 percentage points greater than if measured using intermediate

tastes (PSV ).15

As discussed in Section 3, it is known in the literature that neither functional form as-

sumptions nor structural parameter estimates are required to estimate conditional COLI

based on intermediate tastes. In fact, the literature finds that even the Sato-Vartia formula,

while not technically superlative, approximates superlatives like the Fisher and Tornqvist

(Diewert, 1978). Appendix A shows this holds for the Scantrack data as well. In contrast,

functional form does matter when estimating either the impact of tastes on a conditional

COLI (e.g., PBLM − PLM) or the pure taste effect on the unconditional COLI, PCCV − PSV .

The reason is PCCV , PLM , and PBLM essentially recover the taste parameters as residuals

in the CES expenditure share equation. Quantification of taste impacts may therefore be

sensitive to model fit. In fact, Martin (2019) uses a simulation study that suggests a ne-

glected nesting structure causes negative biases in PCCV and PLM , positive bias in PBLM ,

and negligible bias in PSV , leading to positive bias in the taste change indicators PCCV −PSV

and PBLM − PLM .

15Across the non-food products, where the data and model are perhaps less representative, differences
among the CES indexes tend to be quite large. They imply department average PSV − PCCV spreads of up
to 18 percentage points and PBLM − PLM spreads up to 43 percentage points. Results are available from
the author by request.

20



6 Application to CPI aggregation

The previous section, while making use of detailed transactions data, applies only to food

and beverage products consumed at home, which constitute less than 10% of CPI-eligible

expenditures (Bureau of Labor Statistics, 2020). To the extent possible, I now use CPI data

to estimate what role changing tastes play in the calculation of price indexes over a broad

consumption basket. Subject to the limitation described below, I find that year-over-year

differences in CES indexes tend to be smaller and less persistent than those found in Section

5.

The basic unit of this analysis is the monthly elementary item-area index (e.g., Mens Suits

in Pittsburgh), which is considerably more aggregated than the UPC-level data employed

in Section 5. Such indexes are the inputs to both the headline Consumer Price Index for

Urban Consumers (CPI-U, which uses the Lowe formula for aggregation) and the C-CPI-U

(which uses the Tornqvist). Currently, the BLS calculates elementary indexes for 243 item

categories in 32 areas, for a total of 7,776 item-area indexes, though these dimensions have

changed over time. Similar to Section 5, I consider an annual frequency of taste change by

estimating a series of direct indexes where the base period for each is the same month during

the prior year. For comparison with BLS methodology, I also include the Tornqvist index,

PT .16

A limitation of this analysis is that the elementary indexes are fixed. Weights for ele-

mentary indexes are available at a lag of up to four years, so indexes like PT , PLM and PBLM

are infeasible. The BLS uses either a weighted geometric mean or a modified Laspeyres for-

mula (Bureau of Labor Statistics, 2018). Therefore, this paper’s exercise is only informative

about category-level tastes (e.g., for ground beef versus chicken) as opposed to variety-level

tastes (e.g., for 85% ground beef versus 90% ground beef). Furthermore, the Lloyd-Moulton

16In contrast, the published C-CPI-U is a series of one-month indexes multiplied together. When calcu-
lating monthly chained versions of the CES indexes, I find monthly percent change differences to be quite
small, but levels can drift apart somewhat over time for some values of σ. Results are available from the
author upon request.
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indexes require the elasticity of substitution σ. Estimation in the style of Feenstra (1994)

requires σ > 1, which is not realistic for this application because it implies all varieties (or

aggregates) are substitutes. Additionally, previous analysis of CPI elementary indexes, such

as Klick (2018), have estimated elasticities less than one. RW also assume σ > 1, and for this

reason, I do not present any estimates of PCCV using CPI indexes. Given the importance

of σ in the CES model’s ability to separate price-related substitutions from taste-related

substitutions, I present conditional COLI estimates for four different elasticities (0.6, 0.7,

0.8, and 0.9), and leave further inquiry into the correct choice of σ to future research.17

6.1 Results

Table 8 presents average 12-month percent changes of PT , PSV , PLM , PBLM , and PLMM over

the period from December 2000 to December 2017. Table 9 gives the average differences

between pairs of indexes.18 Figures 3 to 5 plot these indexes separately for the different

values of σ chosen. For readability, the graphs have been split into three time periods.

While the official C-CPI-U is a series of chained month-over-month indexes, these results

suggest that an alternative accounting for preferences would have a relatively modest average

effect on year-over-year measurements. The Tornqvist, SV and LMM indexes tend to be very

close on average, differing by less 0.03 percentage points in magnitude, again reflecting how

functional form is less important when conditioning on an intermediate taste level. In fact,

average differences among all of the indexes tend to be less than one tenth of one percentage

point. The only exception is when σ = 0.9, PBLM exceeds PLM by 0.16 percentage points on

average. Taking current preferences (i.e., PBLM) as the most relevant reference point, then

PT overstates this conditional COLI by 0.057 percentage points (3.1%) under the assumption

17The initial and interim C-CPI-U use σ = 0.6, based on pooled, biennial regressions of logged, differenced
shares on logged, differenced elementary indexes, in the style of Feenstra and Reinsdorf (2007). The goal
in that case, however, is to predict the final value of the Tornqvist formula once updated expenditures are
available, rather than estimating a true CES COLI.

18Item structure changes in 2008, 2010, and 2013 reduce the number of overlapping item-areas for those
years by 0.47%, 2.84%, and 14.81%, respectively. The averages in Table 9 are qualitatively the same when
excluding these years. Results available from the author upon request. Indexes ending in 2018 were not
calculated due to implementation of a new CPI area sample.
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that σ = 0.6, while it understates it by 0.079 percentage points (4.0%) under the assumption

that σ = 0.09. Overall, compared to individual variety tastes, the effect of category-level

tastes appears relatively small.

Figures 3 to 5 reveal that despite the indexes tending to give similar answers on average,

short term divergences can occur. From November 2008 to September 2009, for example,

with σ set to 0.9, PBLM exceeds PLM by an average of 0.8 percentage points each month, with

individual month differences ranging from 0.34 to 1.22 percentage points. In other periods,

however, differences are quite small. For instance, the average difference from January to

November 2007 is only 0.01 percentage point, with individual month’s differences ranging

from -0.10 to 0.09 percentage points. This is different from Section 5, where differences

between PBLM and PLM indexes using Scantrack are found to be persistent over time.

As noted before, each formula uses the same elementary indexes, and so the most can

be said is that tastes for broader item categories have relatively little impact on the the

conditional COLI. Section 5 suggests a larger role of tastes at the individual item level,

however.

7 Conclusion

The criticism that traditional price indexes assume constant preferences is not quite correct.

It is true that the Fisher, Tornqvist, Sato-Vartia, and Quadratic Mean of Order r indexes

are exact in models with constant tastes, but even when tastes change, these still estimate

interesting conditional COLI. Furthermore, the pure taste change effects RW and others aim

to capture are arguably out of scope for a consumer price index, and are measurable only

under a very strong assumption about utility. This paper’s empirical analysis suggests the

relative contribution of prices to such a cardinal index can be swamped by taste change

effects, as RW’s CCV index tends to imply cost-of-living deflation even as traditional price

indexes show low-to-moderate inflation. If there is interest in a COLI that conditions on a
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specific period’s taste vector, then this paper provides two novel possibilities for the CES

case. Current data constraints for the CPI imply the BLS could only account for category-

level tastes, which appear to have a relatively small impact on year-over-year inflation.

Improvements to the simple CES model are likely possible, and so future research should

include more general demand models to more precisely separate taste changes from price-

related substitutions.
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Tables

Table 1: Summary of Price Index Properties

Index Formula Model Tastes Struct.
parameters?

Fisher
(∑

i pi1qi0∑
i pi0qi0

∑
i pi1qi1∑
i pi0qi1

) 1
2

Un-
specif.

Fixed,
intermed.

No

Tornqvist
∏

i

(
pi1
pi0

).5(si0+si1)
Translog Fixed,

geomean
No

Sato-Vartia
∏

i

(
pi1
pi0

)wi
CES Fixed,

intermed.
No

CCV
∏

i

(
pi1
pi0

) 1
N

×
∏

i

(
si1
si0

) 1
N(σ−1)

CES Vary,
normalized

Yes

Lloyd-Moulton

{∑
i si0

(
pi1
pi0

)1−σ} 1
1−σ

CES Fixed,
reference

Yes

Backwards
Lloyd-Moulton

{∑
i si1

(
pi0
pi1

)1−σ} −1
1−σ

CES Fixed,
comparison

Yes

Table 2: Scantrack Food and Beverage Departments

Department # PG # UPC Exp. Share
Alcoholic Beverages 4 46,656 0.073
Dairy 12 46,686 0.153
Deli 1 22,061 0.022
Dry Grocery 40 412,319 0.541
Fresh Meat 1 1,934 0.006
Fresh Produce 1 20,244 0.052
Frozen Foods 12 64,635 0.115
Packaged Meat 1 18,401 0.039
All 72 632,936 1.000
Note: Based on data provided by The Nielsen Company (U.S.), LLC.
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Table 3: Summary Statistics for pit/pi,t−4 by Department

Obs Mean StDev Skew Kurt Min Max
Alcoholic Beverages 343,007 1.021 0.118 0.415 7.163 0.270 2.098
Dairy 383,519 1.037 0.137 0.908 6.577 0.469 2.256
Deli 128,081 1.025 0.117 0.322 6.578 0.500 1.635
Dry Grocery 2,941,985 1.036 0.141 0.777 9.977 0.210 2.782
Fresh Meat 12,162 1.028 0.117 0.767 6.633 0.557 1.759
Fresh Produce 113,895 1.033 0.165 0.844 6.490 0.458 1.992
Frozen Foods 454,187 1.027 0.125 0.253 6.360 0.281 1.807
Packaged Meat 148,512 1.025 0.106 0.516 5.623 0.625 1.618
All 4,525,348 1.033 0.136 0.74 9.254 0.21 2.782
Note: Based on data provided by The Nielsen Company (U.S.), LLC.

Table 4: Summary of Elasticity of Substitution Estimates by Department

# Prod. Gr. P25 Med P75
Alcoholic Beverages 4 5.96 7.06 8.63
Dairy 10 3.31 3.65 4.05
Deli 1 3.96 3.96 3.96
Dry Grocery 40 3.85 4.68 6.50
Fresh Meat 1 3.37 3.37 3.37
Fresh Produce 1 2.94 2.94 2.94
Frozen Foods 12 3.31 3.94 6.33
Packaged Meat 1 3.12 3.12 3.12
All 70 3.39 4.32 6.29
Note: Based on data provided by The Nielsen Company (U.S.), LLC.

Table 5: Averages of CES Indexes by Department (percent change)

CCV SV LMM LM BLM
Alcoholic Beverages 0.0845 1.8585 1.8283 1.3839 2.2751
Dairy 1.3019 2.8165 2.7756 1.5423 4.0415
Deli −2.4059 1.0556 1.0079 0.3502 1.6703
Dry Grocery −3.4241 3.2381 2.8131 1.3882 4.3103
Fresh Meat −2.0699 2.2678 2.2774 1.6551 2.9040
Fresh Produce −2.0258 1.1468 1.1583 0.1446 2.1833
Frozen Foods −9.6467 1.9408 1.8948 1.4150 2.3794
Packaged Meat −1.0369 1.1688 1.1596 0.8894 1.4307
All −2 .9549 2.6810 2.4373 1.3093 3.6107

Note: Based on data provided by The Nielsen Company (U.S.), LLC. Statistics are averages of product

group-level indexes weighted by the product group’s share of expenditure in the comparison period. CCV

refers to RW’s CES Common Varieties Index, SV refers to Sato-Vartia, LM refers to Lloyd-Moulton, BLM

refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM and BLM.
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Table 6: Summary of CES Index Differences (percentage points)

SV− CCV SV− LMM SV− BLM BLM− LM
P5 −1.3107 −0.1472 −3.2547 0.1450
P10 0.2764 −0.0748 −2.0360 0.3242
P25 2.1239 −0.0104 −1.1504 0.6187
Median 4.9995 0.0297 −0.5556 1.2058
P75 8.5198 0.1095 −0.2796 2.4390
P90 11.9109 0.3279 −0.1494 4.6537
P95 15.3193 1.0874 −0.0862 8.6224
Mean 5.6359 0.2437 −0.9297 2.3014

Note: Based on data provided by The Nielsen Company (U.S.), LLC. Statistics are over product

group-level indexes weighted by the product group’s share of expenditure in the comparison period. CCV

refers to RW’s CES Common Varieties Index, SV refers to Sato-Vartia, LM refers to Lloyd-Moulton, BLM

refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM and BLM.

Table 7: Mean CES Index Differences by Department (percentage points)

SV− CCV SV− LMM SV− BLM BLM− LM
Alcoholic Beverages 1.7740 0.0302 −0.4167 0.8912
Dairy 1.5146 0.0409 −1.2250 2.4992
Deli 3.4615 0.0477 −0.6147 1.3201
Dry Grocery 6.6622 0.4250 −1.0722 2.9221
Fresh Meat 4.3377 −0.0096 −0.6363 1.2490
Fresh Produce 3.1727 −0.0114 −1.0365 2.0388
Frozen Foods 11.5876 0.0460 −0.4386 0.9644
Packaged Meat 2.2057 0.0092 −0.2619 0.5413
All 5.6359 0.2437 −0 .9297 2.3014

Note: Based on data provided by The Nielsen Company (U.S.), LLC. Statistics are average differences

between product group-level indexes weighted by the product group’s share of expenditure in the

comparison period. CCV refers to RW’s CES Common Varieties Index, SV refers to Sato-Vartia, LM refers

to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM

and BLM.

Table 8: CPI: Mean of 12-mo. Indexes over 2000m12-2017m12 (perc. points)

σ Torn. SV LMM LM0 LM1
0.6 1.8834 1.8999 1.8676 1.9090 1.8263
0.7 1.8834 1.8999 1.8773 1.8733 1.8813
0.8 1.8834 1.8999 1.8815 1.8388 1.9243
0.9 1.8834 1.8999 1.8832 1.8045 1.9620

Note: Torn refers to the Tornqvist index, SV refers to Sato-Vartia, LM refers to Lloyd-Moulton, BLM

refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM and BLM.
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Table 9: CPI: Mean Differences in 12-mo. Indexes over 2000m12-2017m12 (perc. points)

σ Torn.− SV SV− LMM SV− LM SV− BLM BLM− LM
0.6 −0.0165 0.0323 −0.0090 0.0736 −0.0827
0.7 −0.0165 0.0227 0.0266 0.0186 0.0080
0.8 −0.0165 0.0184 0.0611 −0.0244 0.0856
0.9 −0.0165 0.0168 0.0954 −0.0621 0.1575

Note: Torn refers to the Tornqvist index, SV refers to Sato-Vartia, LM refers to Lloyd-Moulton, BLM

refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM and BLM.
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Figures

Figure 1: Scantrak CES Price Index Averages (% change versus year ago)
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Note: Based on data provided by The Nielsen Company (U.S.), LLC. Plots are comparison period

expenditure-weighted averages of the four-quarter proportional changes implied by product group-level

indexes for food and beverage products. CCV refers to RW’s CES Common Varieties Index, SV refers to

Sato-Vartia, LM refers to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the

geometric mean of LM and BLM. All but the SV indexes require estimated elasticities of substitution.
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Figure 2: Scantrak CES Price Index Averages By Dept. (% change versus year ago)
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Note: Based on data provided by The Nielsen Company (U.S.), LLC. Plots are comparison

expenditure-weighted averages of the four-quarter proportional changes implied by product group-level

indexes for food and beverage products. CCV refers to RW’s CES Common Varieties Index, SV refers to

Sato-Vartia, LM refers to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the

geometric mean of LM and BLM. All but the SV indexes require estimated elasticities of substitution.
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Figure 3: Comparison of 12-mo. CPI Aggregates, 2002m1-2006m12
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Note: Plots are twelve-month percent changes. Torn refers to the Tornqvist index, SV refers to

Sato-Vartia, LM refers to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the

geometric mean of LM and BLM. The LMM, LM, and BLM indexes are calculated using indicated

elasticity of substitution (sigma).
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Figure 4: Comparison of 12-mo. CPI Aggregates, 2007m1-2011m12

−
4

−
2

0
2

4
6

2007m1
2008m7

2010m1
2011m7

sigma = 0.6

−
2

0
2

4
6

2007m1
2008m7

2010m1
2011m7

sigma = 0.7

−
2

0
2

4
6

2007m1
2008m7

2010m1
2011m7

sigma = 0.8

−
2

0
2

4
6

2007m1
2008m7

2010m1
2011m7

sigma = 0.9

Torn. SV LMM LM BLM

Note: Plots are twelve-month percent changes. Torn refers to the Tornqvist index, SV refers to

Sato-Vartia, LM refers to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the

geometric mean of LM and BLM. The LMM, LM, and BLM indexes are calculated using indicated

elasticity of substitution (sigma).
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Figure 5: Comparison of 12-mo. CPI Aggregates, 2012m1-2017m12
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Note: Plots are twelve-month percent changes. Torn refers to the Tornqvist index, SV refers to

Sato-Vartia, LM refers to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the

geometric mean of LM and BLM. The LMM, LM, and BLM indexes are calculated using indicated

elasticity of substitution (sigma).
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A Traditional price indexes with retail scanner data

As in Section 5, I calculate four-quarter price indexes for each food and beverage product

group in the Scantrack data using the Fisher, Tornqvist, Sato-Vartia, and Laspeyres for-

mulas. All but the Laspeyres are variable-weight indexes, meaning they reflect consumer

substitutions over time. While the Sato-Vartia reflects substitutions according to the CES

expenditure function, the Fisher and Tornqvist are superlative, meaning they approximate

an arbitrary homothetic expenditure function (Diewert, 1976). Figure A1 plots kernel den-

sity estimates of the differences between each index and the Fisher, while Table A1 lists

mean differences and mean absolute differences within Scantrack department.

As many have found previously, there tends to be substantial agreement between the three

traditional variable-weight indexes, with mean differences and mean absolute differences all

less than one tenth of one percentage point in magnitude. In contrast, the Laspeyres indexes

exceeds the Fisher index by about 0.4 percentage points, on average, which is on the order

of estimates from Boskin, et. al. (1996) and others for lower-level substitution bias.

Table A1: Differences from a Fisher Index by Department (percentage points)

Mean Difference Mean Absolute Difference
Torn. SV Lasp. Torn. SV Lasp.

Alcoholic Beverages 0.0005 0.0013 0.2093 0.0041 0.0101 0.2102
Dairy −0.0019 −0.0021 0.2903 0.0071 0.0251 0.2916
Deli −0.0029 0.0093 0.3257 0.0046 0.0252 0.3257
Dry Grocery −0.0170 −0.0454 0.4043 0.0213 0.0683 0.4168
Fresh Meat 0.0031 0.0027 0.6404 0.0154 0.0276 0.6404
Fresh Produce 0.0097 0.0169 0.6203 0.0182 0.0428 0.6203
Frozen Foods −0.0166 −0.0186 0.4255 0.0199 0.0416 0.4350
Packaged Meat −0.0022 0.0012 0.4027 0.0046 0.0075 0.4027
All −0 .0109 −.0257 0.3858 0.0165 0.0495 0.3940

Note: Based on data provided by The Nielsen Company (U.S.), LLC. Statistics are average differences

between index indicated and a Fisher index, weighted by the product group’s share of expenditure in the

comparison period.
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Figure A1: Scanner Data: Differences from a Fisher Index
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Note: Based on data provided by The Nielsen Company (U.S.), LLC. Data are differences between index

indicated and a Fisher index at the product group level, expressed as percent changes over four quarters.

Density estimates use Epanechnikov kernel with bandwidth of 0.05 percentage points.

B Product turnover with CES preferences

Dating back to Feenstra (1994), the CES function is convenient for modeling the cost-of-

living effects of entering and exiting varieties. Following this framework, I consider that some

items may be unavailable in one or more periods. Denote the set of varieties available in each

period as I0 and I1, such that I0 ∪ I1 ⊆ Ī. We assume the consumer has CES preferences

over the superset of varieties Ī. Denote the sets of common varieties as IC = I0∩I1, exiting

varieties as IE = I0 \ IC , and new varieties as IN = I1 \ IC .

An important feature of CES preferences is that optimal expenditure on a subset of

varieties depends only on prices and taste parameters for varieties in that subset. Adjusting
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notation to account for an arbitrary set I, Eq. 8 becomes (taking ū to be one):

C(p;ϕ, I) =

[∑
i∈I

(
pi
ϕi

)1−σ
] 1

1−σ

. (18)

Eq. 9 becomes

si(p;ϕ, I) =
(pi/ϕi)

1−σ∑
j∈I (pj/ϕj)

1−σ =
(pi/ϕi)

1−σ

[C(p;ϕ, I)]1−σ
(19)

If a variety is unavailable, the COLI framework uses the reservation price implied by the

model of preferences. Assuming σ > 1, the CES model implies infinite reservation prices.19

Together, these properties imply C(p;ϕ, Ī) = C(p;ϕt, It)..

The class of conditional COLI is therefore given by

Definition B.1 Conditional Cost-of-living Index with product turnover

Φ(p0,p1;ϕ, Ī) =
C(p1;ϕ, I1)
C(p0;ϕ, I0)

(20)

Let I∗ ⊆ IC . Similar to Feenstra (1994), we can rewrite Eq. 20 as

Φ(p0,p1;ϕ, Ī) =
C(p1;ϕ, I∗)
C(p0;ϕ, I∗)

C(p0;ϕ, I∗)
C(p0;ϕ, I0)

C(p1;ϕ, I1)
C(p1;ϕ, I∗)

≡ Φ(p0,p1;ϕ, I∗)λ0(ϕ)
1

1−σλ1(ϕ)
1

σ−1 , (21)

where Φ(p0,p1;ϕ, I∗) is the conditional COLI over the common set I∗, and

λt(ϕ) =

∑
i∈I∗

(
pit
ϕi

)1−σ
∑

i∈It

(
pit
ϕi

)1−σ , t = 0, 1. (22)

The term λ0(ϕ)
1

1−σ adjusts the COLI for the welfare loss from exiting products, while

λ1(ϕ)
1

σ−1 adjusts it for the welfare gain from new products.

19When σ < 1, consumption of all commodities is necessary for positive utility.
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As before, ϕ0 and ϕ1 are interesting choices. From Feenstra (1994), λt(ϕt) =
∑
i∈I∗ pitqit∑
i∈It

pitqit
≡

λt, which is the share of common varieties expenditure out of total expenditure occurring in

period t. A clear challenge arises, however, with the terms λs(ϕt), s 6= t. Intuitively, Eq. 19

implies the taste parameters for absent varieties are not identified—given an infinite price,

expenditure shares are zero for any finite value of ϕit.

The situation is helped somewhat by the fact that λt(ϕ) ∈ [0, 1], and so λ0(ϕ)
1

1−σ ≥ 1

and λ1(ϕ)
1

σ−1 ≤ 1.20 This implies the following bounds:

P̄LM(p0,p1, q0, q1, σ, I∗) ≡ PLM(p0,p1, q0, q1, σ, I∗)λ
1

1−σ
0 ≥ Φ(p0,p1;ϕ0, Ī) (23)

P̄BLM(p0,p1, q0, q1, σ, I∗) ≡ PBLM(p0,p1, q0, q1, σ, I∗)λ
1

σ−1

1 ≤ Φ(p0,p1;ϕ1, Ī), (24)

where P̄LM(p0,p1, q0, q1, σ, I∗) and P̄BLM(p0,p1, q0, q1, σ, I∗) are Lloyd-Moulton style in-

dexes which include only adjustments for either exit or entry, not both.

Given these bounds, it is possible to apply the method of proof in Konüs (1924) and

Diewert (2001) (Proposition 8) to show that there exists an intermediate taste vector ϕ̌

such that either P̄LM(p0,p1, q0, q1, σ, I∗) ≤ Φ(p0,p1; ϕ̌, Ī) ≤ P̄BLM(p0,p1, q0, q1, σ, I∗) or

P̄BLM(p0,p1, q0, q1, σ, I∗) ≤ Φ(p0,p1; ϕ̌, Ī) ≤ P̄LM(p0,p1, q0, q1, σ, I∗). Of course, these

bounds may not be particularly tight, and a symmetric average (e.g., a geometric mean)

might not be attractive because the missing factors λ1(ϕ0)
1

σ−1 and λ0(ϕ1)
1

1−σ are not likely

to be of comparable magnitudes. For instance, Feenstra (1994), Broda and Weinstein (2010),

and others have found that λ
1

σ−1

1 dominates λ
1

1−σ
0 , resulting in a net downward adjustment to

the COLI. Consequently, P̄BLM(p0,p1, q0, q1, σ, I∗) might be a lot closer to its target than

P̄LM(p0,p1, q0, q1, σ, I∗).

As market entry and exit decisions may themselves be tied to tastes, it seems reasonable

that the welfare loss from exiting varieties is larger if conditioning on reference period pref-

erences, and that the welfare gain from new varieties is larger if conditioning on comparison

20The term λ1(ϕ)
1

σ−1 ≤ 1 is also greater than zero.
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period preferences. This motivates the following assumption:

Assumption B.1 Non-continuing varieties are valued more in the period in which they are

available.

λt(ϕt) ≤ λt(ϕs), t = 0, 1; s 6= t

The implies λ
1

1−σ
0 ≥ λ0(ϕ1)

1
1−σ and λ

1
σ−1

1 ≤ λ1(ϕ0)
1

σ−1 . Assumption B.1 would be true,

for example, if taste parameters for common varieties were constant while taste parameters

were lower for varieties when they were absent from the market.

Suppose we use Feenstra’s adjustment λ
1

1−σ
0 λ

1
σ−1

1 on both PLM and PBLM . Define

PFLM(p0,p1, q0, q1, σ, Ī) = PLM(p0,p1, q0, q1, σ, I∗)λ
1

1−σ
0 λ

1
σ−1

1 (25)

and

PFBLM(p0,p1, q0, q1, σ, Ī) = PBLM(p0,p1, q0, q1, σ, I∗)λ
1

1−σ
0 λ

1
σ−1

1 . (26)

Under assumption B.1, we have:

PFLM(p0,p1, q0, q1, σ, Ī) ≤ Φ(p0,p1;ϕ0, Ī) ≤ P̄LM(p0,p1, q0, q1, σ, I∗) (27)

and

P̄BLM(p0,p1, q0, q1, σ, I∗) ≤ Φ(p0,p1;ϕ1, Ī) ≤ PFBLM(p0,p1, q0, q1, σ, Ī). (28)

A priori, neither of these bounds must be tight enough to be useful, but previous research

has found that the effect of new varieties tends to dominate that of disappearing varieties in

Feenstra-style CES indexes (Broda and Weinstein, 2010). Indeed, using the Nielsen Retail

Scanner data (Table B1), I find the adjustment for exiting varieties is relatively small on

average for many departments, ranging from 0.03 percentage points for Alcoholic Beverages

to 1.43 percentage points for Deli. The adjustments for new varieties is between two and

twelve times larger in magnitude, ranging from −0.38 percentage points for Alcoholic Bev-
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erages to −4.12 percentage points for Deli.21 As a result, the bounds on Φ(p0,p1;ϕ1, Ī)

appear tighter than the bounds on Φ(p0,p1;ϕ0, Ī). Figure B1 plots the average PBLM index

over common varieties versus the upper and lower bounds for Φ(p0,p1;ϕ1, Ī). Overall, the

average difference in bounds is 0.34 percentage points for food products and 0.26 percentage

points for non-food products. As the graph indicates, this margin is small relative to the net

adjustment for product turnover. Consequently, a geometric mean of the observable bounds

seems reasonable to estimate the COLI conditional on comparison period tastes.22 Note,

such an index will imply a smaller welfare effect from exiting varieties, leading to a larger

net adjustment or “new goods bias” for the common varieties index.

Table B1: Mean Product Turnover Adjustments and Bounds by Department

Adj. New Adj. Disapp. LMbar− FLM FBLM− BLMbar
Alcoholic Beverages −0.3824 0.0332 0.3858 0.0336
Dairy −1.4611 0.3869 1.4921 0.3797
Deli −4.1236 1.4308 4.1879 1.3852
Dry Grocery −1.9752 0.2197 2.0076 0.2235
Fresh Meat −2.2178 1.0607 2.2682 1.0673
Fresh Produce −2.0288 0.5090 2.0362 0.5073
Frozen Foods −3.4847 0.4003 3.5433 0.3886
Packaged Meat −1.8188 0.6936 1.8458 0.6886
All −1 .9961 0.3169 2.0284 0.3153

Notes: Based on data provided by The Nielsen Company (U.S.), LLC. Product group differences are

weighted by comparison period expenditure share. BLM is the Backwards Lloyd-Moulton index over

common varieties, BLMbar also includes the Feenstra adjustment for new varieties only, and FBLM uses

the Feenstra adjustments for new and exiting varieties.

21These adjustment magnitudes are significantly larger than what was reported in Broda and Weinstein
(2010) using consumer scanner data over 1994-2003. As my estimates of σ using the retail data are lower,
the larger adjustments are to be expected.

22In the style of Konüs (1924) and Diewert (2001), one can show PFBLM and PFLM bound a COLI
evaluated at an intermediate taste level, though with retail scanner data, I found these bounds to also be
wide for most departments.
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Figure B1: Scanner Data BLM Indexes with Product Turnover (% change versus year ago)
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Note: Based on data provided by The Nielsen Company (U.S.), LLC. Plots are averages of the four-quarter

proportional changes implied by product group-level indexes, weighted by comparison period expenditure

shares. BLM is the Backwards Lloyd-Moulton index over common varieties, BLMbar also includes the

Feenstra adjustment for new varieties only, and FBLM uses the Feenstra adjustments for new and exiting

varieties.

C Scale and normalization of tastes

This appendix discusses how the unconditional CES COLI depends on changes in the scale

of tastes over time, as well as how alternative normalizations of tastes in the RW framework

affect the index. The results I derive are similar to Kurtzon (2019).

For simplicity, suppose that σ is known. Re-arranging the CES expenditure share equa-

tion (Eq. 9) evaluated at pt,ϕt, we see the ϕit are identified only up to a common scale

factor.

ϕitC(pt,ϕt) = pits
1

σ−1

it i ∈ I. (29)

To eliminate the unknown constant (across items) factor C(pt,ϕt), choose a normalization
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x̃ = F (x1, . . . , xN) such that F (a, . . . , a) = a and F (ay1, . . . , ayN) = aF (y1, . . . yN). Leading

examples include a geometric mean, F (x1, . . . , xN) =
∏N

i=1 x
wi
i , where

∑N
i=1wi = 1, or a

reference variety, F (x1, . . . , xN) = xj. Apply F () to each side of Eq. 29 and divide Eq. 29

by the result. This yields Eq. 30 below.

ϕit
ϕ̃t

=
rit
r̃t

≡ ϕ̈it, i ∈ I, (30)

where rit = pits
1

σ−1

it . Note we can plug in ϕ̈it (based on any normalization) into the conditional

COLIs Φ(p0,p1;ϕ1) and Φ(p0,p1;ϕ0) and get exactly PBLM and PLM , respectively, since the

scale factors cancel. In addition, it is straightforward to show that if we use the unweighted

geometric mean as the normalization, set ϕ̃0 = ϕ̃1 = ϕ, plug ϕ̈it into the CES expenditure

function Eq. 8, and then take the ratio C(p1, ϕ̈1)/C(p0, ϕ̈0), we get Eq. 14 for PCCV exactly.

While the conditional COLI estimates are invariant to the normalization, the uncondi-

tional estimate is not. Because the CES expenditure function, Eq. 8, is homogeneous of

degree −1 in ϕ, we have the following relationship:

ΦU(p0,p1;ϕ0,ϕ1) =
ϕ̃0

ϕ̃1

[∑
i∈I

(
pi1
ϕ̈i1

)1−σ] 1
1−σ

[∑
i∈I

(
pi0
ϕ̈i0

)1−σ] 1
1−σ

=
ϕ̃0

ϕ̃1

ΦU(p0,p1; ϕ̈0, ϕ̈1). (31)

The unconditional COLI based on normalized taste parameters therefore differs from the

true unconditional COLI ΦU(p0,p1;ϕ0,ϕ1) by the factor ϕ̃0/ϕ̃1, which is unidentified (RW

assume it to be equal to one by setting ϕ̃0 = ϕ̃1). Therefore, the normalization imposed by

the PCCV is not really “free”, because it implicitly defines the estimand ΦU(p0,p1; ϕ̈0, ϕ̈1).

In reality, we do not even know if ΦU(p0,p1;ϕ0,ϕ1) is greater than or less than one. In fact,

Kurtzon (2019) shows that the taste-shock bias is measured to be identically zero if using
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the geometric mean of tastes weighted by the wi from Eq. 5.

C.1 Alternative normalizations

It is clear from Eq. 31 that an unconditional COLI that uses normalized taste parameters

is not invariant to the normalization chosen, of which there are infinitely many. Another

aspect of the issue, relevant to Redding and Weinstein (2020), occurs when we assume the

constant elasticity model (e.g., Eq. 8) for a commodity set I, but estimate an unconditional

sub-COLI over a smaller set. As a component of their CES Universal Price Index (CUPI),

Redding and Weinstein (2020) actually calculate PCCV over a subset of the varieties that

are available in both the reference and comparison periods. By assumption, however, the

CES expenditure share equation (Eq. 9) holds for all i ∈ It, t = 0, 1. If normalizing using

a geometric mean, then a natural question is whether this mean should be over all varieties

or just the subset.

RW’s CUPI consists of a PCCV and product turnover adjustments from Feenstra (1994).

Restricting the set over which the PCCV is calculated is possible because of the following

decomposition of the CES unconditional COLI with product turnover. We can write

Φ(p0,p1;ϕ0,ϕ1, Ī) =
C(p1;ϕ1, I1)
C(p0;ϕ0, I0)

=
C(p1;ϕ1, I∗)
C(p0;ϕ0, I∗)

C(p0;ϕ0, I∗)
C(p0;ϕ0, I0)

C(p1;ϕ1, I1)
C(p1;ϕ1, I∗)

≡ Φ(p0,p1;ϕ0,ϕ1, I∗)λ
1

1−σ
0 λ

1
σ−1

1 , (32)

where the λt =
∑
i∈I∗ pitqit∑
i∈It

pitqit
as in Appendix B and Φ(p0,p1;ϕ0,ϕ1, I∗) is the unconditional

COLI for some common set I∗. This decomposition holds for any I∗ ⊆ IC = I0 ∩ I1, and

RW use this fact to restrict I∗ to include only products that had a lifespan of six years and

were not within three quarters of birth or death in periods 0 or 1. In contrast, Redding and

Weinstein (2018) uses the full set IC . Using the smaller set, the taste-shock bias estimate in

RW is much lower in magnitude (around 0.4 percentage points per year), than that reported
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in Redding and Weinstein (2018) (around 2-4 percentage points per year).

I attempt to replicate RW’s use of a more restricted set of varieties. Since I have only

about five years of data, my restricted set includes only those products appearing in every

quarter from 2005Q3 to 2010Q2. To avoid products that may have been within three quarters

of birth or death, I focus only on the period from 2007Q3 to 2009Q3. The restricted sets end

up having about half as many UPC’s as the full sets of common varieties. Using the more

restricted sets of common varieties and the CCV formula in Eq. 14 (i.e., normalizing based

on the geometric mean across the narrower set of varieties), I also find lower estimates of

taste-shock bias, as shown in Table C1 (compare to Table 7). For food products, the average

taste-shock bias ranges from -0.17 percentage points per year for Deli, to 3.24 percentage

points per year for Fresh Meat. Across all food and beverage products, the average taste-

shock bias is 1.2 percentage points per year, which is higher than RW, but less than one

fourth of what it was using the full set of common UPCs. Figure C1 plots the index averages.

The patterns of comparisons between LM and BLM indexes for food and nonfood products

largely follow what was observed in Figure 1 using the full set of common varieties.

This could be because the taste shock bias associated with the more restrictive set of

common varieties is smaller than that of the full set. However, this interpretation appears to

be closely dependent on the normalization employed. As discussed in the previous subsection,

computing PCCV over the set I∗ using Eq. 14 is equivalent to using the normalized taste

parameters in Eq. 33 below, which impose ϕ̃∗0 = ϕ̃∗1 = 1.

ϕ̈it =

(
pit
p̃∗t

)(
s∗it
s̃∗t

) 1
σ−1

, i ∈ I∗, (33)

where s∗it = pitqit∑
jinI∗ pjtqjt

, and x̃∗t =
∏

j∈I∗ x
1/N∗

jt for x = p, q.

When using the restricted subset I∗, however, there are additional options for normalizing

the ϕit. The starting point for the CUPI is to assume the CES model over all products

available in either the reference or comparison periods. As in Eq. 19, expenditure shares
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out of an arbitrary subset of goods I depend only on expenditures in that subset. This

means that we could normalize the ϕit using larger sets of items up to and including the full

common goods set IC , or even It. Using IC , this would mean computing

ϕ̄it =

(
pit
p̃Ct

)(
sCit
s̃Ct

) 1
σ−1

, i ∈ I∗, (34)

where sCit = pitqit∑
jinIC pjtqjt

, and x̃Ct =
∏

j∈IC x
1/NC

jt for x = p, q.

I also estimate a version of PCCV over the restricted set of common varieties, but using

the normalization reflected in Eq. 34. Since this is the entire set of common varieties, this is

same normalization used for the CCV indexes presented in Section 5, even though the price

index is for the restricted set only. In Figure C2, I compare the averages for of all these

possible CCV indexes, along with the SV indexes for both sets of common varieties. As in

Section 5, SV and CCV cover all common varieties and are computed using Eq.’s 5 and 14,

respectively. SV(R), CCV(R, 1) and CCV(R, 2) cover the restricted set of varieties. CCV

and CCV(R,2) normalize using Eq. 34 (e.g., geometric means over all common varieties),

while CCV(R, 1) normalizes using Eq. 33 (e.g., geometric means over the restricted set of

varieties). The results indicate a large influence of the choice of normalization on the CCV

index. Comparison of SV and SV(R), or CCV and CCV(R, 2) suggest that there is little

difference in the average price changes across the two sets of varieties. However, the wide

gap between CCV(R, 2) and CCV(R, 1) suggests that the choice of normalization is playing

a large role in the SV to CCV comparison.

When proposing their restricted common goods set, RW argue that expenditure patterns

near the beginning and end of a products life may “make it appear as if consumer tastes

for a common variety are changing rapidly when in fact they are not.” This would seem to

suggest that the CES model fits the data poorly for varieties in the set IC \ I∗, and so CCV

and CCV(R, 2) are unreliable because they include (the latter through the normalization

only) expenditure information for these varieties. But if this is true, it should also call into
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question the validity of the product turnover adjustment terms λt, as these also depend

on expenditure information for the questionable items. If relatively new, relatively old, or

relatively short-lived products follow different expenditure patterns, then it would seem a

richer model might be needed for the entire consumption basket, rather than a shifting of

items out of the CCV component of the CUPI.

Table C1: Mean Differences of CES Indexes Over More Restrictive Common Goods Sets
(percentage points)

SV− CCV SV− LMM SV− BLM BLM− LM
Alcoholic Beverages 0.4516 0.0014 −0.3923 0.7859
Dairy 0.1392 0.0207 −1.4827 2.9646
Deli −0.1797 0.0449 −0.6407 1.3662
Dry Grocery 1.7494 0.0846 −1.1414 2.4202
Fresh Meat 3.2415 −0.0351 −0.6033 1.1329
Fresh Produce 0.8757 0.0072 −0.8923 1.7901
Frozen Foods 1.3658 0.0299 −0.4703 0.9961
Packaged Meat −0.4275 −0.0018 −0.3004 0.5962
All 1.1965 0.0532 −1 .0035 2.0886

Notes: Based on data provided by The Nielsen Company (U.S.), LLC. Product group index differences are

weighted by comparison-period expenditure share. Indexes include varieties observed continuously from

2005Q3 to 2010Q2. CCV refers to RW’s CES Common Varieties Index, SV refers to Sato-Vartia, LM refers

to Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM

and BLM.
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Figure C1: Scanner Data CES Price Indexes Over More Restrictive Common Goods Sets
(% change versus year ago)

−
2

0
2

4
6

8

2007q3 2008q1 2008q3 2009q1 2009q3

CCV (R,1) SV (R) LMM (R)

LM (R) BLM (R)

Note: Based on data provided by The Nielsen Company (U.S.), LLC. Plots are averages of the four-quarter

proportional changes implied by product group-level indexes, weighted by comparison period expenditure

shares. CCV refers to RW’s CES Common Varieties Index, SV refers to Sato-Vartia, LM refers to

Lloyd-Moulton, BLM refers to Backwards Lloyd-Moulton, and LMM refers to the geometric mean of LM

and BLM. Indexes include varieties observed in all quarters between 2005Q3 and 2010Q2.
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Figure C2: Scanner Data SV and CCV Index Comparison (% change versus year ago)
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Note: Based on data provided by The Nielsen Company (U.S.), LLC. Plots are averages of the four-quarter

proportional changes implied by product group-level indexes, weighted by comparison period expenditure

shares. SV and CCV cover all common varieties. SV (R), CCV (R, 1) and CCV (R, 2) cover a restricted

set of varieties with a lifespan of 2005Q3-2010Q2. CCV and CCV (R,2) assume that the taste parameter

geomean across all common varieties is constant across periods. CCV (R, 1) assumes the taste parameter

geomean across the restricted set of varieties is constant across periods.

52



D Homothetic Translog

This section shows how to derive conditional COLI for the homothetic translog model. To

match RW’s parameterization of tastes, the representative agent’s minimized unit expendi-

ture function is given in the following definition.

Assumption D.1 Homothetic translog expenditure function

lnC(p;ϕ) = lnα0 +
∑
i∈I

αi ln

(
pi
ϕi

)
+

1

2

∑
i∈I

∑
j∈I

γij ln

(
pi
ϕi

)
ln

(
pj
ϕj

)
, t = 0, 1. (35)

where the restriction γij = γji is made without loss of generality.

After some algebra, we can rewrite Eq. 35 as

lnC(p;ϕ) = ln [a0(ϕ)] +
∑
i∈I

ai(ϕ) ln pi +
1

2

∑
i∈I

∑
j∈I

γij ln pi ln pj, (36)

where ln [a0(ϕ)] = lnα0−
∑

i∈I αi lnϕi+
1
2

∑
i∈I
∑

j∈I lnϕi lnϕj and ai(ϕ) = αi−
∑

j∈I γij lnϕj.

From Diewert (1976), homogeneity and symmetry then imply the restrictions
∑

i∈I ai(ϕ) = 1

and
∑

j∈I γij = 0.

Eq. 36 reveals two salient points. First, the time variation in ϕ affects the parameter on

the first order ln p terms only, and so the Caves, Christensen, and Diewert (1982) result on

the Tornqvist index applies. Second, the ln [a0(ϕ)] term captures the pure effect of tastes

on unit expenditure, but cancels from the ordinal index that holds tastes fixed.

Under Assumption D.1, the ai(ϕ0) and ai(ϕ1) are recoverable up to estimates of the γij.

To see this, the expenditure share equation for variety i is given by:

si(p;ϕ) =αi +
∑
j∈I

γij ln

(
pj
ϕj

)
=ai(ϕ) +

∑
j∈I

γij ln pj. (37)
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This implies the following counterfactual expenditure shares do not depend on the αi.

si(p1;ϕ0) = si0 +
∑
j∈I

γij ln

(
pj1
pj0

)
, (38)

si(p0;ϕ1) = si1 −
∑
j∈I

γij ln

(
pj1
pj0

)
. (39)

Denote sit = si(pt;ϕt) the observed expenditure share, t = 0, 1, s∗i1 = si(p1;ϕ0) and

s∗i0 = si(p0;ϕ1). Define the following Tornqvist style price indexes.

Definition D.1 Tornqvist Price Index

lnPT =
∑
i∈I

1

2
(si0 + si1) ln

(
pi1
pi0

)
(40)

Definition D.2 Reference taste Tornqvist index

lnPT0 =
∑
i∈I

1

2
(si0 + s∗i1) ln

(
pi1
pi0

)
(41)

Definition D.3 Comparison period taste Tornqvist index

lnPT1 =
∑
i∈I

1

2
(s∗i0 + si1) ln

(
pi1
pi0

)
(42)

Proposition 3 Under Assumption D.1, PT0 = Φ(p0,p1;ϕ0) and PT1 = Φ(p0,p1;ϕ1).

The proof follows from substitution of Eq. 37 into Eq. 36.
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