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Abstract

Between 2009 and 2011, the Spanish banking system underwent a restructuring
process based on consolidation of savings banks. The program’s design allows us
to study how alternative forms of consolidation affect credit supply and financial
stability. Compared to bank business groups, we find that bank mergers’ market
power produces a contraction in credit supply, higher interest rates, but also a
reduction in non-performing loans. We then estimate a structural model of credit
demand and supply. We show that short-run welfare gains from improved financial
stability outweigh losses from reduced credit supply, while small long-run cost
efficiencies generate large welfare increases.
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Gavilán, Mariassunta Giannetti, Tomohiro Hirano, Luigi Guiso, Marco Pagano, Ariel Pakes, Andrea Polo, Andrea Pozzi,

Oliver Rehbein, Fabiano Schivardi, Michelle Sovinsky, Steve Tadelis, Elu von-Thadden, and Carlos Thomas. We also

thank conference and seminar participants at the Banco de España, CEU (Budapest), EIEF, HSE (Moscow), LUISS,
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1. Introduction

In banking systems featuring many undiversified banks, fierce competition may induce

these institutions to take on too much risk. If bad risks then translate into problematic

loans, public intervention drawing on government funds and, hence, taxpayers’ money,

may become necessary. A structural policy that is often considered by regulators to solve

the problems of over-banked systems consists in fostering bank consolidation (Corbae and

Levine, 2018). This recently happened in Europe, where, after the crisis, the banking

sector of many countries was significantly affected by restructuring measures (European

Commission, 2017). It also happened in the United States, where the Federal Deposit

Insurance Corporation (FDIC) auction process was used after the crisis to resolve insolvent

banks, equivalent to a regulator-induced consolidation process (Allen, Clark, Hickman,

and Richert, 2019). Finally, it happened earlier in Japan, where after the non-performing

loans (NPL) crisis of the late 1990s, the government injected public capital into the

banking sector, and advised banks to do a merger (Hoshi and Kashyap, 2004).

Financial regulators’ case for bank mergers is supported by the presumption that

consolidation makes troubled institutions more capable to absorb losses. However, the

literature in financial economics has established that, after a merger, banks restrict their

credit supply, especially at the expense of small and medium firms (SME) (see, among

many others, Berger, Saunders, Scalise and Udell, 1998; Peek and Rosengren, 1998;

Sapienza, 2002; Bonaccorsi di Patti and Gobbi, 2007; Degryse, Masschelein and

Mitchell, 2011). Even though these costs could be compensated by the organizational

and informational efficiencies produced by consolidation (Houston, James and Ryngaert,

2001; Focarelli and Panetta, 2003; Panetta, Schivardi and Shum, 2009; Erel, 2011), it is

unclear what the overall effect of consolidation is for the economy.

We study how alternative forms of consolidation can differentially balance the

benefits and the costs of integration. We compare traditional to bank business groups.

In the latter, individual banks that remain legally independent delegate to a central unit

some of their functions, such as risk management operations. Risk management requires

large investments, thus the presence of a central unit allows banks to install information

processing technologies that would not be feasible absent the deal. At the same time,

business groups are less likely to give rise to market power than mergers, because

sharing risk management does not necessarily translate into implementing the same

lending policies. The risk management unit generates information on borrowers’ credit

merit, but the use of that information may well differ across legally independent banks

belonging to the same group. This makes coordination of lending policies more difficult

than in a full-fledged merger.
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The literature is silent regarding the quantification of the relative merits of different

integration modes, and this is true not only in banking. With the exception of Gugler

and Siebert (2007), who compare mergers and research joint ventures in the

semiconductor industry, to our knowledge, there is no other study that deals with this

question. This is unfortunate, especially because of the implications that banking

consolidation programs have for taxpayers. However it is not surprising, given the

challenges posed by the identification of the separate effects of alternative modes of

integration on the exercise of market power and the production of efficiencies.

We fill this gap in the context of the Spanish savings banks sector restructuring

program (the program from now on). In the years before the 2008 crisis head-to-head

competition led savings banks to take poor investment choices, as exemplified by the

hoarding of credit to the construction sector that ultimately led to a NPL problem.

Between 2009 and 2011, the program led to a consolidation wave in the Spanish savings

banks’ sector by which the number of these banks went from 37 to 12. Banks could

choose to integrate doing a standard M&A or a business group, but the choice between

the two modes was largely driven by regional politics considerations. It is not surprising

then that M&A and business group banks were balanced with respect to pre-determined

financial and economic characteristics, and that we can validate the common-trend

assumption for our outcome variables.

Our empirical analysis documents a novel trade-off by comparing standard M&A to

business group consolidation. On the one hand, M&A reduce credit quantity and

increase interest rates. On the other hand, they significantly reduce the amount of NPL

in the economy, and thus improve financial stability. These results are explained by the

differential market power effect of M&A compared to business groups, and not by

differences in the efficiencies produced by the two consolidation modes. Finally, we

quantify the welfare effects of the program by means of a structural model, contributing

to the recent literature applying equilibrium frameworks from empirical industrial

organization to financial markets (Egan, Hortaçsu and Matvos, 2017; Crawford,

Pavanini and Schivardi, 2018).

The program was prompted by European Union (EU) early 2009 decision to fund the

bailout of Spanish savings banks. The government then gave troubled savings banks the

possibility of obtaining public capital from a special fund in exchange of the submission

of a consolidation plan, while the others could simply consolidate. Between November

2009 and December 2010, virtually all major savings banks performed an operation of

consolidation. The value of the assets of these institutions amounted to about 1,300

billion Euro (BE), a figure comparable to the total value of US M&A transactions across
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industries in 2009 and 2010 combined.1

In our empirical analysis, we compare the credit supply and the credit performance

of business groups and M&A banks, before and after the start of the restructuring

program. Our testable prediction is that the market power effect is stronger for M&A.

The crucial difference between M&A and business group banks is that the latter

remained stand-alone legal entities. This makes the organizational structure of a

business group less centralized than that of a M&A. Stein (2002) shows that the loan

officer of a decentralized organization will rely more heavily on soft information when

setting lending conditions, possibly impairing the coordination of credit policies that is

fundamental for the exercise of market power.

Our main data source is the Banco de España Central Credit Register, which allows us

to observe the stock of credit for the virtual universe of bank-firm relationships in Spain.

We complement this information with bank-level data on the interest rate set by banks on

newly issued loans together with banks’ and firms’ balance sheets. The final dataset we use

for estimation has 543,154 firm-bank relationships and 396,534 non-financial corporations

between November 2007 and November 2011.

Our first findings concern the differential effect of bank M&A and bank business groups

on credit supply and the cost of credit. During the period between November 2009 and

November 2011, the credit balance of a given firm dealing with a M&A bank reduced by

19.4% when compared to that of a similar firm dealing with a business group bank, or

about 45,000 euro per firm. For these results, we exploit the variation arising from the

credit conditions applied to firms with the same size and within the same period, SIC-3

industry, and province. Bank fixed effects then absorb any other difference in savings

banks characteristics before the program started. We then find that a loan of less than

one million euro granted by a M&A bank is 17.8 basis points (bp) more expensive than a

loan of similar size granted by a business group bank. In these specifications, we use time

fixed effects to control for macroeconomic and aggregate shocks that affect credit demand

or supply, and bank fixed effects to account for bank-specific shocks. Taken together,

these results establish the effects produced by M&A market power on credit supply.

To determine the differential impact of M&A and bank business groups on financial

stability, we study the selection of borrowers. We first construct the CoVaR (Adrian and

Brunnermeier, 2016) of the Spanish banking system, which gives us the value at risk of

the financial system conditional on a bank being under distress based on the evolution

of its bond yields. We show that the increase of a given bank’s NPL ratio significantly

increases the contribution of this institution to the risk of the banking system. We then

find that, after the program started, M&A banks report less NPL than business group

1See www.statista.com/statistics/420990/value-of-merger-and-acquisition-deals-usa/.
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banks. Specifically, the probability that, after the program, a firm credit turns out to be

non performing is about 3 percentage points (pp) less for M&A banks than for business

group banks. For these results, we exploit variation coming from borrowers with the

same size, SIC-3 industry and province. Thus, the credit supply contraction produced by

M&A’s market power comes with an improvement in M&A banks’ selection of borrowers.

Supporting this result, we find that the differential reduction in credit extended by M&A

banks, as compared to business groups, was significantly larger for ex-ante risky firms.

Our findings are consistent with the results of a model of credit supply with selection

building on Einav and Finkelstein (2011), by which we illustrate the trade-off triggered

by market power between a reduction in credit supply and a better selection of

borrowers. We capture a situation in which competition encourages banks to chase bad

risk by assuming increasing average and marginal costs schedules, or advantageous

selection. In this framework, moving from a competitive allocation to an allocation with

market power causes a restriction of credit supply but also an improvement in

borrowers’ selection (as captured by lower costs). The reason is that, in any allocation,

the marginal borrower is worse than the inframargainal ones. Documenting this

trade-off contributes to a growing literature studying the effects of imperfect

competition in selection markets, both theoretically (Lester, Shourideh, Venkateswaran,

and Zetlin-Jones, 2019) and empirically in insurance (Starc, 2014) and credit markets

(Adams, Einav, and Levin, 2009; Einav, Jenkins, and Levin, 2012; Allen, Clark, and

Houde, 2013). Relative to the extant empirical work, we are the first to provide evidence

of the beneficial effect of a country-wide consolidation program on borrowers’ selection.

To quantify the impact of this trade-off on welfare, we develop and estimate an

equilibrium model with borrowers’ demand for credit from differentiated banks and

banks’ Bertrand-Nash competition on interest rates (see Crawford, Pavanini and

Schivardi, 2018).2 We use the model’s estimates and equilibrium assumptions to

simulate a scenario with M&A and business groups, and compare welfare (borrower

surplus and bank profits) in the pre-program (benchmark) period and in the period with

M&A and business groups. The counterfactual with M&A and business groups based on

estimates obtained in the benchmark produces changes in quantity and price of credit

that are quantitatively comparable to those we obtain in the reduced-form analysis.

Moreover, savings banks marginal costs increase in the quantity of credit, which is

consistent with banks’ marginal borrower being riskier than the infra-marginal ones in

the benchmark.

2There is a long literature in industrial organization that uses pre-merger data to simulate the likely
effects of mergers by using differentiated products models with price setting behavior – see, among others,
Berry and Pakes (1993); Hausman, Leonard, and Zona (1994); Werden and Froeb (1994); Nevo (2000);
and, more recently, Gowrisankaran, Nevo, and Town (2015).
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We use the model to quantify the impact of the restructuring program on welfare and

the profits related to banks’ new loan business. We distinguish between the short-run and

the long-run effects of the restructuring program. In the short-run (that is, absent cost

efficiencies), borrowers’ surplus decreases by about 55ME and total welfare remains fairly

unchanged. To simulate the long-run effects of the restructuring program, we assume that

savings’ banks marginal costs drop by around half of a standard deviation. We obtain

that this small change in marginal costs produces a 906.98ME increase in borrower surplus

and a 1,575.67ME increase in total welfare.

On top of the finance literature on bank mergers,3 and the industrial organization

literature on selection markets, the paper is also related to the literature studying the

link between bank competition and bank risk taking (e.g., Jayaratrane and Strahan, 1996,

and, more recently, Corbae and Levine, 2018, and Carlson, Correa, and Luck, 2020). We

contribute to this debate by analyzing the relative impact of alternative forms of bank

consolidation on credit supply and financial stability.

2. The savings banks’ sector restructuring program

Next, we first describe the main features of the savings banks’ sector restructuring

program and then introduce a theoretical framework to develop our testable predictions.

2.1. Institutional setting

Early in 2009, fearing the contagion of other member states’ banking systems, the EU

leaders agreed to transfer the European rescue program money directly to a fund set up

by the Spanish government. Subsequently, the Royal Decree 9/2009 (Real Decreto-Ley

9/2009 ) of 26 June 2009 (the Law from now on) set up the fondo de reestructuración

ordenada bancaria (FROB), endowing it with 9BE (Banco de España, 2017).4 The target

of the government was the savings banks (cajas de ahorros) sector. As in other countries

(see, e.g., European Commission, 2017), these banks played an important role supporting

the economic development of local areas, in a context featuring the high representation

of regional public authorities into their governing bodies.

By the end of 2009, savings banks’ assets represented about 40% of Spanish banking

assets (European Commission, 2017). On the verge of the crisis, the sector was plagued by

important structural problems. First, tough competition in a highly fragmented market,

coupled with weak governance practices, often translated into poor investment choices.

3A complementary literature studies how bank mergers mediate the propagation of financial shocks
(see, e.g., Petersen and Rajan, 1995; Scharfstein and Sunderam, 2016; Favara and Giannetti, 2017;
Giannetti and Saidi, 2019). These effects are outside the scope of our analysis.

4See en.wikipedia.org/wiki/Fondo_de_Reestructuracion_Ordenada_Bancaria.
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As of 2010, savings banks were exposed to the construction sector for a total of 217BE, of

which about 100BE were problematic. Second, savings banks faced legal restrictions that

complicated their access to capital markets. This meant that they could raise capital only

by retaining earnings, and were thus highly dependant on the wholesale funding sector.

To address these issues, the Law gave troubled savings banks the possibility of

obtaining public capital from FROB in exchange of the submission of a consolidation

plan.5 Those that were not in financial difficulty could simply integrate. The

restructuring program went fast, bringing the number of savings banks from 37 to 12 in

the span of thirteen months (November 2009-December 2010).6 Moreover, the program

featured full compliance, with savings banks accounting for 90% of the credit extended

in the sector involved in an operation of consolidation between November 2009 and

December 2010.

The Law allowed savings banks to consolidate either via a M&A or via a sistema

institucionales de protección (SIP). SIP are a form of business group, featuring analogies

and one crucial difference with respect to a standard M&A. We will start with the

analogies. First, SIP banks were compelled to set up a new, central risk management

system. Second, they were required to establish pacts of full mutual assistance on

liquidity and solvency, and were responsible on a consolidated basis for the fulfilment of

regulatory requirements. Third, the Law required that SIP last at least ten years, and

produce the same efficiencies as M&A.7 Finally, SIP banks have access to consolidated

information on the firms interacting with other savings banks in the same group, so do

not need to tap this info from credit registry.

The key difference between M&A and SIP banks is that the latter remained separate

legal entities. This means that the organizational structure of a SIP is less centralized than

that of a M&A. In modern banking, lending conditions are automatically set by centralized

softwares and risk management directives, with little discretion for loan officers. This

description well reflects what happens within M&A banks. However, SIP banks’ legal

independence may impair coordination of credit policies, due to the possibly different use

of the credit-merit analyses produced by the risk management unit. Indeed, as shown by

Stein (2002), the loan officer of a more decentralized structure will rely more heavily on

soft information when setting borrower lending conditions.

5If the plan was approved by the Banco de España, FROB subscribed the capital of the new institution
on a transitory basis. The recipients had to commit to buying back this capital as soon as possible.

6Table B.I reports the chronological list of the operations of consolidation (SIP and M&A) we consider
in the empirical analysis.

7In the words of the Banco de España former deputy governor (Javier Aŕıztegui): “SIP are expected
to produce the same organizational improvements, efficiencies, economies of scope, diversification, and
quality as traditional M&A. They must do this within the same time period as a classic merger, and must
put all the necessary efforts such that these results be perceived by the market as permanent” (December
2010).
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We now describe how the restructuring program unfolded. The choice between M&A

and SIP was critically influenced by regional politics considerations that are orthogonal

to participating banks’ financial or economic characteristics. In the early phase of the

program, all M&A took place between savings banks operating in the same region. Fearing

the loss of control on banking activities, regional governments stood against across-region

M&A (Banco de España, 2017). Countering these political initiatives, the Constitutional

Court made clear that the program’s chief goal was to foster the stability of the financial

system (Méndez Álvarez-Cedrón, 2011). The Banco de España, then, solicited remaining

savings banks to form a SIP (Banco de España, 2017), which allowed them to consolidate

and at the same time preserve legal independence.

Overall, all M&A happened between banks mainly operating within region and all SIP

happened between banks mainly operating across regions. Yet, as we document below,

there is considerable variation with respect to the extent to which M&A and SIP banks’

operations overlap at the province level before the program started. Moreover, there is

no systematic evidence of assortative matching based on observable characteristics, or

the political parties governing the regions of SIP banks. Two-thirds of SIP took place

between savings banks whose main operations were in regions ruled by different parties.

In what follows, since the first merger after Royal Decree 9/2009 took place in

November 2009, we will refer to this month as to the start of the program.

2.2. Market power, credit allocation and loan performance

In this section, we will use a setting that builds on Einav and Finkelstein (2011) to

show that market power can produce a trade-off between the supply of credit and the

selection of borrowers.8

Assume that banks in the industry offer symmetric loans to borrowers, and that

borrowers face a binary choice between taking the loan or not. We denote by q ∈ [0, 1]

the fraction of borrowers (of given observable type) taking a loan, and by P (q) the

cumulative distribution of borrowers’ willingness to pay, with P ′(q) < 0. Finally, assume

that there is no fixed cost and that C(q) is the convex total cost curve of the industry.

We then denote by MC(q) = C ′(q) and AC(q) = C(q)/q the marginal cost and average

cost curves, respectively.

A crucial difference between traditional markets and selection markets is that in the

latter demand and cost are not independent objects. Specifically, the shape of the cost

curve is driven by the selection of borrowers in the market. We assume that, by

expanding their supply of loans q, banks lend to borrowers with higher probability of

8In this framework, banks can ration a firm only by adjusting the interest rate, not by rejecting firm’s
application. In Section 7, we develop and estimate a full-fledged model of oligopolistic bank competition.
There, we allow banks to reject a firm based on its observable degree of risk.
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default. This means that an increase in q comes with a higher marginal cost and a lower

profit margin.9 More formally, this is equivalent to assuming that the MC and AC

schedules slope upward, MC ′(q), AC ′(q) > 0.10

Moreover, due to the assumption that C(q) is convex, we have that MC(q) > AC(q)

for all q ∈ [0, 1].

Figure 1: Demand-supply model

P(q)

MR(q)

MC(q)

AC(q)

qm qc
q

P(qm)

P(qc )
C

M

To study the impact of market power within this model, we compare the allocations

with perfect competition and monopoly (for simplicity, we impose the linearity of demand

and cost curves). Perfect competition means that banks expand their credit supply up to

the value of q such that P (qc) = AC(qc) (point C in Figure 1). This situation is meant

to capture the stance of credit supply in Spain before the restructuring program, where

a large number of undiversified banks competed chasing bad risk (e.g., the borrowers in

the construction sector).

We then conjecture that the M&A wave brings the economy closer to the monopolistic

outcome. Specifically, the monopoly allocation (M in Figure 1), given by the value of q

such that MR(qm) = MC(qm), where MR(·) denotes the marginal revenue curve, comes

9In this context, this means that an expansion in loan supply disproportionally raises borrowing
among firms with a greater probability of default. This increases the marginal cost and thus reduces
the marginal profit of extending more credit. As discussed in Agarwal, Chomsisengphe, Mahoney, and
Stroebel (2018), this could occur because forward-looking firms, who anticipate defaulting in the future,
strategically increase their borrowing.

10This is equivalent to assuming advantageous selection. Einav, Jenkins, and Levin (2012) find evidence
of advantageous selection in subprime auto loan market, and Mahoney and Weyl (2017) use a model with
advantageous selection in their calibrations. While our results would change if the marginal and cost
curves slope downwards, the slope of these curves is a matter of empirical investigation. We assume here
that it is increasing, and confirm this assumption in our reduced-form and structural analysis.
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with lower supply of credit than with perfect competition, but also a better selection of

borrowers, implying a reduction in the costs borne by banks.

Therefore, this simple setup delivers the following trade-off: on the one hand, we expect

that M&A’s market power gives rise to a reduction in credit supply q and an increase

in the interest rate P (q). On the other hand, we expect that the exercise of market

power produces a reduction in costs, independently of any additional merger-related cost

efficiencies. If consolidation were to produce such efficiencies, however, one should also

expect a further reduction in AC and MC for any given q. Thus, the empirical challenge

is how to identify the separate effects on costs produced by market power and efficiencies.

To address this challenge, we note that, despite we do not expect SIP to generate a

market power effect, they are designed to produce the same level of efficiencies as M&A.

That is, M&A and SIP banks should be on the same cost curves so that, absent differences

in market power, they deliver the same changes in costs. In the reduced form analysis,

then, we estimate the differential impact of M&A and SIP on P (q), q and costs (proxied

by NPL). By comparing M&A and SIP, we do two things. First, we identify the change

in credit supply for given demand and cost. Second, we separately quantify the reduction

in costs produced by M&A’s market power with respect to SIP. In the structural analysis,

we use our model to quantify the effects of both market power and cost efficiencies.

3. Data and descriptive statistics

Our main data source is the Banco de España Central Credit Register, which collects

and maintains information on the stock of credit supplied by Spanish banks. We aggregate

the outstanding amount of firm credit with each bank at a monthly basis to obtain total

credit (both drawn and undrawn in the case of credit lines). Data on the interest rate

applied by banks to newly issued loans is obtained from the Banco de España supervisory

data. Different from outstanding credit, interest-rate information is only available at

bank-month level, with the possibility of distinguishing between distinct classes of loan

size and maturity. We also have information on the volume of NPL reported by banks

in relation to a given firm, but cannot distinguish the firm’s specific loan that then turns

out to be problematic. Finally, we use balance-sheet information collected by the Banco

de España in its role as a supervisory authority.

The dataset we use for the empirical analysis comprises information on a total of

543,154 firm-bank relationships and 396,534 non-financial corporations (307,658 in the

pre-event period and 280,420 in the post period). The sample period goes from November

2007 to November 2011. We consider the savings banks that participated in a M&A or

a SIP between November 2009 and December 2010, which account for about 40% of the
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total credit in the economy. We then track the effects of these operations of consolidation

between November 2009 and November 2011. Our sample period then ends in the semester

preceding the one in which Spain received rescue packages to cope with the effects of the

European sovereign debt crisis.

In what follows, we denote by j the group of banks that is part of a M&A or a SIP.

The savings banks that participate in a M&A stop their individual activity at some point

in time between November 2009 and December 2010, to operate as a single entity. SIP

banks, instead, continued reporting individual information to the credit register until the

end of our sample period. As a consequence, between November 2009 and November

2011, we take the group j-level information that is available for M&A, and aggregate the

information on the savings banks that are part of each SIP (and that of M&A banks before

they start to report information at the group level). In the period between November 2007

to November 2009, instead, to construct our variables at the level of group j, we aggregate

the information on the savings banks that will later be part of a M&A or a SIP.11

3.1. Banks, firms and lending relationships

Table I gives the summary statistics related to the savings banks (Panel A) and firms

(Panel B) in our dataset. We use these variables as controls in our regressions, and take

their value in December 2008 for the period after the program started.

Confirming the high exposure to the real estate and the construction sectors, in Panel

A we see that savings banks extended credit accounting for about one-third of the value of

their assets to these two sectors only. Nevertheless, as of December 2008, the ratio of NPL

over total credit was still relatively low, and equal to about 3.5% on average. We then use

the variable Max(Market Share) to measure a savings banks’ presence in local markets.

To compute it, we take the maximum market share of each savings bank across provinces

in December 2008, based on information on all active banks. While the average value

of this variable is about 20%, we also have savings banks for which this variable takes a

value as small as 1%. Finally, Panel B shows that the firms in our data are rather small,

with average assets’ value of about 2ME (which corresponds to the asset-based threshold

for small firms according to the European Commission Recommendation 2003/361/EC,

which we will use in what follows to distinguish between SME and large firms).

In Panels C and D, we report the characteristics of the bank-firm relationships in the

two years before (Panel C) and the two years after (Panel D) the restructuring program

started. The total volume of credit (in log and thousand euros) decreased more in the

second period than in the first, and the volume of NPL increased over both periods.

11More information on the construction of the dataset is available in Appendix A.
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Table I: Summary statistics
Panel A: Banks

VARIABLES December 2008
Standard 5th 95th

Mean Median Deviation Percentile Percentile N
TA (BE) 28.4 13.10 47.60 1.56 173.00 37
Capital Ratio (%) 5.62 5.04 1.71 3.83 9.58 37
NPL (%) 3.61 3.47 1.49 1.65 6.36 37
Credit/Deposits 1.85 1.83 0.36 1.27 2.62 37
ROA (%) 0.49 0.41 0.22 0.24 0.96 37
(Credit to RE and Construction)/TA (%) 30.57 30.08 8.82 14.80 46.68 37
Max(Market Share) (%) 19.59 17.67 14.47 0.96 48.01 37

Panel B: Firms
VARIABLES December 2008

Standard 5th 95th
Mean Median Deviation Percentile Percentile N

TA (ME) 1.89 0.45 5.36 0.04 6.94 280,420
Total Liabilities/TA (%) 72.75 80.04 73.66 18.66 100.00 280,420
Liquid Assets/TA (%) 9.75 3.20 15.78 0.00 43.82 280,420
ROA (%) 4.35 5.53 18.61 -23.22 28.02 280,420

Panel C: Bank-Firm Relationships
VARIABLES November 2007–November 2009

Standard 5th 95th
Mean Median Deviation Percentile Percentile N

∆Log(Credit) -0.36 -0.19 2.50 -4.74 4.65 421,991
NPL (%) 5.62 0.00 23.33 0.00 0.00 421,991

Panel D: Bank-Firm Relationships
VARIABLES November 2009–November 2011

Standard 5th 95th
Mean Median Deviation Percentile Percentile N

∆Log(Credit) -0.49 -0.21 2.18 -4.39 3.89 370,551
NPL (%) 5.94 0.00 21.27 0.00 0.00 370,551

Notes: This table contains descriptive statistics (mean, median, standard deviation, 5th and 95th percentiles, and number
of observations) for bank and firm characteristics (Panels A and B, respectively) as well as for firm-bank credit balances
(Panels C and D). Bank information is at the level of individual savings banks. Both Panels A and B report the statistics
as of December 2008. Panel C reports descriptive statistics on the change in the credit balance between November 2007
and November 2009 and the level of NPL for the whole sample of firm-bank pairs. Panel D does the same for the period
between November 2009 and November 2011. For additional information on the construction of these variables, see the data
appendix (in Appendix A).

3.2. The systemic impact of NPL

We will use the level of NPL to proxy the effects of M&A and SIP on banks’ costs. In

turn, to establish the impact of NPL on financial stability, we use the CoVaR methodology

(Adrian and Brunnermeier, 2016). Specifically, we adapt the methodology to measure the

sensitivity of the Spanish banking system bond yields to the increase in the yields of the

bonds issued by any single bank.12 The CoVaR we obtain then gives us the value at risk

of the financial system conditional on a bank being under distress based on the evolution

of its bond yields. We then test whether the ratio of NPL reported by a given bank affects

the CoVaR estimated based on the contribution of that bank to the risk of the system.

12The CoVaR relies on the growth rate of the market value of total financial assets, however the savings
banks in our sample are not listed, so we need to rely on information on bond yields. Appendix C provides
a detailed description of the CoVaR methodology and how we implement it.
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In Table II, we report the results of this analysis.

Table II: NPL and risk spillovers to the domestic banking sector
(1) (2) (3)

VARIABLES ∆CoVaR Mergers ∆CoVaR All ∆CoVaR All

NPL 0.023** 0.039*** 0.053***
[0.011] [0.008] [0.006]

Observations 519 519 1,052
R-squared 0.514 0.576 0.651
Bank FE YES YES YES
Bank Controls YES YES YES
Macro Variables YES YES YES

Notes: The set of bank control variables includes: Log(TA), Capital Ratio,
NPL, Credit/Deposits, ROA, (Credit to RE and Construction)/TA and (FROB
funds)/TA (for information on the construction of these variables, see the data
appendix (in Appendix A)). The set of global control variables includes: the VIX
index, the (log) changes in Spanish and European bank bond indices and the
Spanish banks average bond yield. See Appendix C for a description of the CoVaR
methodology and how we construct the dependent variables. Robust standard
errors (in brackets) are clustered at year-month-bank level. One star denotes
significance at the 10% level, two stars denote significance at the 5% level, and
three stars denote significance at the 1% level. For additional information on these
regressions and the methodology, please see Appendix C.

NPL are indeed important for the stability of the banking system. In columns (1)

and (2), the explanatory variable is obtained based on the information on NPL of all the

savings banks that merged between November 2009 and December 2010. The difference

between these two columns concerns how we define the dependent variable and more

specifically, the pool of banks we use in the estimation of the CoVaR. In column (1), we

only consider the savings banks that merged between November 2009 and December 2010,

whereas in column (2) we use all Spanish banks. In both columns we obtain a positive and

significant coefficient. An increase in the NPL ratio of a given bank equal to the standard

deviation of the NPL ratio of the banks in our sample would increase the contribution of

this bank to the risk of the system by 0.12 pp. This increase represents 22% of the average

CoVaR for the banks in our sample. Results in column (3) are obtained considering the

volume of NPL of all Spanish banks (which explains the higher number of observations),

and computing the CoVaR by relying on information related to all banks (as in column

(2)). Results are fully consistent with those in columns (1) and (2). These results are in

line with Mayordomo, Rodriguez-Moreno and Peña (2014), who show that the proportion

of NPL and leverage have stronger impact on systemic risk than alternative sources of

risk, such as derivatives holdings for the United States.

4. Empirical framework

In this section, we develop the empirical strategy we will use to identify how differences

in the market power effect of M&A and SIP affect the supply and the performance of
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credit, controlling for other, informational or organizational efficiencies. Ideally, to identify

the effect of different integration modes on credit supply and performance, we would need

three groups of randomly selected banks: some that participate in M&A, some in SIP

and some that remain untreated. However, practically all savings banks participated in

the program, leaving us with two groups: M&A and SIP banks. The Spanish commercial

banks are not statistically nor economically comparable to the sample of savings banks,

being on average much larger, carrying different business models, and, more importantly,

being better capitalized and much less exposed to critical sectors like the real estate

industry. However, we will use these banks to document the separate effects of M&A and

SIP on credit supply and performance. We will also keep them in the structural analysis,

to study the impact of M&A and SIP on bank competition.

Below, we first discuss our identification strategy. Then, we establish the comparability

of M&A and SIP banks based on their financial and economic characteristics. Finally, we

validate the common-trend assumption for our three main variables of interest: quantity

of credit, interest-rate spreads and NPL. To conclude, we describe our main specifications.

4.1. Identification strategy

The empirical literature in banking has shown that M&A give rise to three separate

effects. First, they strengthen merging entities’ market power (A). The argument is

standard: after the M&A, by coordinating their lending policies, banks can afford a raise

in the interest rate they charge because part of the borrowers they lose will be served by

a merging partner.13 Second, by consolidating their information processing technologies,

M&A produce efficiencies at the risk management stage (Panetta, Schivardi and Shum,

2009) (B).14 Finally, M&A will also produce cost efficiencies related to, for example, the

reorganization of merging banks’ branches and employees (see, e.g., Houston, James and

Ryngaert, 2001; Focarelli and Panetta, 2003; Erel, 2011) (C).

Our empirical strategy aims at identifying how (A) differences in the market power

of M&A and SIP affect credit supply and performance, controlling for (B) informational

and (C) organizational efficiencies. We then construct our tests as follows:

A. First, we conjecture that the market power effect is weaker for SIP than for M&A,

due to the more decentralized structure of SIP when compared to M&A (Stein,

2002). Supporting this presumption, Table B.II shows that there are significant

13In the industrial organization theoretical literature, this result has been proven in settings with
homogeneous and differentiated goods (e.g., Farrell and Shapiro, 1990, and Motta and Tarantino, 2018).

14The informational economies generated by the pooling of borrowers’ data are likely to be limited,
instead, due to the possibility to inspect a new borrower credit profile even absent the merger, on the
credit register of the Banco de España (see Pagano and Jappelli, 1993).
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differences across banks belonging to the same SIP in terms of the decision on the

loan application submitted by the same borrower over a given time period.15

B. Second, we expect that, absent differences in market power, SIP generate the same

informational efficiencies as M&A. In Section 6.1 we provide evidence confirming

the validity of this conjecture by exploiting heterogeneity in the presence of M&A

and SIP banks at the province level.

C. Third, we limit to two years the time frame during which we study the effects of the

program. Previous literature showed that the cost reductions of bank mergers can

take from two to four years to come about (see, e.g., Focarelli and Panetta, 2003),

whereas the market power effect occurs within a shorter period. As a consequence,

our results are unlikely to be confounded by the impact of cost efficiencies.

To sum up, the empirical comparison between M&A and SIP will inform us about

how the stronger market power of M&A differentially affects the stance of credit supply

(price and quantity of credit) and the performance of credit (banks’ costs) as compared

to SIP, controlling for the level of efficiencies generated by these two integration modes.

4.2. Comparability of M&A and SIP banks

A natural worry is that banks with different financial or economic characteristics

self-select into M&A or SIP. In our empirical analysis, we do two things. First, we

compare M&A and SIP banks along a set of observable characteristics that are likely to

drive the decision to team up in an operation of consolidation, and show that there is no

statistical difference across the banks in the two groups. As part of this analysis, we also

show that there is considerable heterogeneity with respect to the province-level overlap of

M&A and SIP banks. Second, we focus on the operations of consolidation that take place

within thirteen months from the start of the restructuring program (i.e., up to December

2010). Our presumption is that it is difficult for a bank to optimally choose its merging

partner(s) in such a time frame.

Financial and economic characteristics In Table III, we compare M&A and SIP

banks’ financial and economic characteristics as of December 2008. In Panel A we report

the mean values of all savings banks’ characteristics. In Panel B, we compute the median

values of the characteristics within each bank group j, and then average across M&A and

SIP. For Panel C, instead, we compute the characteristics of the main savings bank of each

group j, based on its total assets, and then average across the two groups. Finally, for

15We cannot perform the same test for M&A banks, because, different from SIP banks, after
consolidation they only report group-level information on credit to the credit registry.
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Panel D we compute the dispersion of the characteristics of the savings banks averaged

across the two groups. In the last column of each panel, we run a mean test on the

difference of the values of the variables for M&A and SIP banks.

Table III: Comparability of M&A and SIP banks
Panel A: All Savings Banks Panel B: Median

VARIABLES Means Difference Means Difference
M&A SIP M&A SIP

NPL (%) 3.720 3.151 0.205 3.825 3.553 0.272
(0.523) (0.648)

TA (BE) 36.200 23.400 12.800 37.100 14.800 22.300
(16.600) (18.500)

Capital Ratio (%) 4.932 5.888 -0.956 5.004 5.822 -0.818
(0.596) (0.594)

ROA (%) 0.462 0.513 -0.051 0.413 0.519 -0.106
(0.076) (0.060)

Credit/Deposits 1.829 1.859 -0.030 1.808 1.809 -0.001
(0.126) (0.142)

(Credit to RE and Construction)/TA (%) 28.761 31.562 -2.801 28.592 30.737 -2.145
(3.105) (3.028)

Max(Market Share) (%) 17.107 21.830 -4.723 17.791 20.975 -3.184
(5.084) (6.011)

(FROB funds)/TA (%) 1.016 1.115 -0.099 1.115 1.016 0.099
(0.528) (0.528)

Panel C: Main Bank Panel D: Standard Deviation
VARIABLES Means Difference Means Difference

M&A SIP M&A SIP
NPL (%) 4.446 4.991 -0.534 0.596 1.476 -0.880

(0.820) (0.596)
TA (BE) 70.200 46.400 23.800 40.500 15.800 24.700

(43.800) (27.700)
Capital Ratio (%) 4.457 5.422 -0.966 0.613 1.968 -1.355

(0.771) (0.765)
ROA (%) 0.635 0.773 -0.138 0.190 0.229 -0.039

(0.122) (0.083)
Credit/Deposits 2.004 2.004 -0.040 0.264 0.270 -0.006

(0.219) (0.098)
(Credit to RE and Construction)/TA (%) 26.556 25.195 1.361 4.345 11.010 6.665**

(8.544) (2.398)
Max(Market Share) (%) 23.288 31.077 -7.789 7.490 9.411 -1.921

(10.156) (3.126)
(FROB funds)/TA (%) 1.115 1.016 0.099 - - -

(0.528) -

Notes: This table reports bank characteristics for M&A banks and SIP banks at December 2008 (i.e., one year before the
bank consolidation process started). All the characteristics are in percentages but the size, which is in billions of euros, and
the ratio of credit over deposits. In Panel A we report the average characteristics of the individual savings banks that are
part of the consolidation process by type of bank. In Panel B we compare the two types of banks based on the median of
each new institution, which are obtained based on the median of the savings banks within a group. In Panel C we compare
the characteristics of the main saving bank within each new institution. In Panel D we compare the dispersion within the
savings banks forming each new institution based on the standard deviation of each characteristic. The last column of each
panel reports the difference between the values in bank characteristics across the two groups of banks, with the values in
brackets reporting the robust standard errors associated with a test of difference in the means. One star denotes significance
at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For
additional information on the construction of these variables, see the data appendix (in Appendix A).

We find that there is no systematic evidence that the two groups of banks feature

statistically significant differences in their financial or economic characteristics.

Moreover, except for the value of total assets, which tends to be larger for M&A banks

(but the difference is not statistically significant), the two groups also feature

economically comparable values for all the variables we consider, including the ratio of
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NPL over total loans, the exposure to the real estate and construction sector, and,

importantly, bank capital.16 The same holds for the ratio of credit over deposits and

market shares, which suggests two things. First, the savings banks in our sample

featured similar business models and, second, they did not select for a M&A because of

lack of market power in the baseline. Finally, since not all of the operations of

consolidation were supported by FROB (see Table B.I), it is reassuring that the two

groups are balanced with respect to the sums received from the public fund.

We also checked that M&A and SIP banks were balanced in terms of the risk

perceived by bank investors, by comparing their pre-sample bond yields. We find that,

as of December 2008, the difference in the bond yields of individual savings banks in the

two groups was not statistically different from zero (specifically, the bond yield was 4.9%

for M&A banks and 5.1% for SIP banks).

All this gives us confidence that there is no assortative matching based on observables

across the banks in the two groups.17

Geographic overlap of SIP and M&A banks In this section, we establish that there

is considerable variation regarding the extent to which M&A and SIP banks overlap at

the province level. We will use this source of heterogeneity in Section 6.1. There, we first

show that our effects are due to differences in bank organization (SIP and M&A), and

not to differences in the regional presence of M&A and SIP banks. Second, we show that

there is no difference in the efficiencies produced by M&A and SIP when the capability

to exercise market power is comparably small in the baseline.

In Figure 2, we distinguish between the provinces in which all M&A and SIP banks

had a small market share when the program started (November 2009), and the provinces

where they had larger market shares. In practice, we need a measure for how large a

savings bank is compared to the other savings banks in the same province. We rank the

Spanish provinces based on the value of the market share of the largest savings bank in

each province, computed in terms of the volume of lending in November 2009. We then

take the 25th percentile of this distribution, which corresponds to 13%. We classify a

province as one in which M&A and SIP banks had comparably small market shares (light

grey) if all of the M&A and SIP banks operating in that province had a market share

smaller than 13%. For the provinces in which market shares are comparably large (in

dark grey), instead, we require that at least one of the M&A and SIP banks had a market

share above 13% and that the largest M&A and SIP bank was in the top 5 of all banks

16To define bank capital, we follow Jiménez, Ongena, Peydró, and Saurina (2014) and use the ratio
between bank equity plus retained earnings over total assets.

17As mentioned above, we performed similar comparisons between savings and commercial banks and
found statistically significant differences across most of the dimensions we consider.
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Figure 2: Geographical distribution of M&A and SIP

Notes: To construct the distribution of province-level largest market shares, we rank the Spanish provinces based on the
market share of the largest savings bank in each province computed in terms of the volume of lending in November 2009.
We then take the 25th percentile of this distribution, which corresponds to 13%. The provinces in light grey are those where
the market shares of all M&A and SIP banks were smaller than 13% in November 2009. In the provinces in dark grey,
instead, at least one of the M&A and SIP banks involved in the program had a market share above 13%, and the largest
M&A and SIP bank was in the top 5 banks of the region. The remaining provinces are in intermediate grey.

in the province.

4.3. Unconditional evidence

In Figure 3, we plot the pattern of our main outcome variables across four semesters

before, and four semesters after the start of the program. We do this separately for the

M&A and the SIP banks in our sample. Specifically, we plot: (i) the average change in

the amount of outstanding credit granted to the universe of non-financial corporations

(top-left panel); (ii) the average spread between nominal interest rates and the

three-month Euribor (top-right panel); (iii) the value of the ratio between the volume of

NPL and banks’ total assets (bottom panel).

These plots confirm that our main outcome variables satisfy the common trend

property. They also provide unconditional evidence that is in line with our predictions,

outlined above, on the relative effects of M&A and SIP (for the statistical significance of

these effects, see Table B.III). In Appendix B, Tale B.IV reports the results of the

multivariate tests of the parallel-trend assumption, and find results consistent with

Figure 3.

In the top-left panel, the evolution of the new credit granted by M&A and SIP banks

follows a comparable pattern before November 2009. In the two years before November

2009, M&A banks extend between 15BE and 20BE more credit than SIP banks. Starting

from the second semester after November 2009, the sign of the difference reverts. By

the end of the fourth semester after November 2009, M&A banks extend approximatively

10BE less credit than SIP banks. That the change in the differential effect starts one
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Figure 3: Common trend property
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Notes: The plots report the pattern of quantity of credit (top left), interest-rate spreads relative to 3-month Euribor (top
right), and NPL over total loans (bottom) separately for M&A banks (grey line) and SIP banks (black line) in the time
span ranging between 4 semesters before and 4 semesters after November 2009.

semester after the start of the program is to be expected, as most M&A occured at the

end of the first quarter and during the second quarter of 2010.

The pattern of interest-rate spreads in the top-right panel mirrors that of total credit.

M&A and SIP banks’ spreads feature a common trend before November 2009. Moreover,

M&A banks, on average, apply lower spreads than SIP banks before November 2009, and

till the second semester after November 2009. Then, contemporaneously with the reversion

in the patterns of total credit, it is SIP banks that apply cheaper average spreads.

Finally, we see a common trend in the pattern of the NPL reported by the savings

banks in our sample during the two years before the program. Starting from the second

semester after November 2009, the accumulation of NPL by M&A slows down significantly

more than that of SIP banks. Finally, possibly because of the start of the European

sovereign debt crisis, we observe a spike in the volume of M&A and SIP banks’ NPL in

the fourth semester after the start of the program.

4.4. Empirical specifications

Consider bank j dealing with firm i at time t. The baseline econometric model we use

for the analysis of bank credit is:

yjit = α(M&Aj × Postt) + βXjt−1 + γZit−1 + ζFROBjt + δkmst + ηj + εjit. (1)
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Depending on the specification we consider, we denote by yjit either the growth rate of

the (log) volume of total credit in the two years before and after the program started, or

the quarterly average (log) volume of credit. This second variable is constructed as the

average (log) volume of credit over every quarter between November 2007 and November

2009, and in the period spanning between the announcement of the consolidation (M&A

or SIP) and November 2011.

Postt is the time dummy for the period after the start of the restructuring program.

Since yjit is either a two-year growth rate, or a quarterly average, Postt equals zero from

November 2007 till November 2009 and one from November 2009 till November 2011.

M&Aj is a dummy that equals one if the bank participated in a M&A, 0 if SIP. α is the

coefficient of interest. It captures how the program differentially affected the outcome

variable for a M&A relative to a SIP. All the specifications are estimated including

pre-determined control variables, Xjt−1 and Zit−1. Specifically, Xjt−1 includes a bank’s

total assets, capital ratio, NPL, volume of credit over deposits, profitability (ROA),

market share, and exposure to the real estate and construction sector. Zit−1 includes

firm leverage, liquidity, profitability (ROA), and total assets. The value of the variables

in Xjt−1 and Zit−1 is taken in 2006 for the period preceding the start of the program,

and in 2008 for the period after the program started. Finally, FROBjt denotes the value

of FROB’s capital injections received by bank j between 2009 and 2011.

To control for firm-specific shocks, we use industry (k), location (m), size (s), and

time (t) fixed effects (δkmst). This means that we exploit the variation arising from the

credit conditions applied to firms with the same size and within the same period, SIC-3

industry, and province. To control for bank-specific shocks, instead, we include bank

fixed effects (ηj), which absorb any difference in savings banks’ characteristics before the

program started.

In our context, industry-location-size-time fixed effects are more appropriate to control

for demand differences relative to firm-time fixed effects (Degryse, De Jonghe, Jakovljevic,

Mulier and Schepens, 2019). By using the latter, we would restrict the sample of firms

to consider only those that take credit from multiple banks during the sample period.

We nevertheless study the robustness of our results to the inclusion of firm-time fixed

effects, which absorb time-varying borrower-specific shocks to the demand for credit. In

Appendix B, we also consider firm-bank fixed effects, by which the results arise from the

selection of firms that had a previous relationship with the same bank before the start of

the program.

Since the information on interest rates is collected at the bank-month level, we
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aggregate it by maturity and use the following model:

wjt = α(M&Aj × Postt) + βXjt−1 + ζFROBjt + ηj + τt + ιjt, (2)

where wjt denotes the spread between the nominal interest rate and the three-month

Euribor. In this case, since the variable’s value is computed at the monthly level, Postt

is equal to zero from November 2007 and October 2009, and one from November 2009 to

November 2011. Given the structure of information, the specification only includes bank

controls (Xjt−1) and no firm control. We also include bank fixed effects (ηj) and monthly

fixed effects (τt). For the analysis on interest rate spreads, in an alternative specification

we exploit the information on loan maturity. There we augment the model in (2) by

including maturity fixed effects.

For the analysis of NPL, we use:

zjit = αM&Aj + βXjt−1 + γZit−1 + ζFROBjt + δkms + εjit. (3)

The dependent variable is the proportion of NPL over total loans of a given firm i reported

by a bank j in November 2011.

For this analysis, we consider only the firms that have no credit with the savings

banks in our sample during the two years before November 2009. As mentioned above,

we cannot identify the specific loan facility that turns out to be non-performing. If we

were to consider the firms with a relationship with a bank before November 2009, it

could happen that some NPL reported after November 2009 is related to lending taken

before that month.18 This explains why there is no Postt dummy, and the use of

industry-location-size fixed effects. The specification contains firm and bank controls

(Zit−1 and Xjt−1, respectively), and controls for the value of FROB contributions

(FROBjt). In Appendix B, we will study the robustness of our results on NPL

accumulation to the inclusion of firm fixed effects, and when considering the full sample

of firms.

All models are estimated using OLS. For the models in (1) and (3), we cluster standard

errors at the firm level. For the model in (2) we cluster standard errors at bank-type

(M&A, SIP) month level. In Appendix B, we report the results on total lending and NPL

when the clustering is at the industry-province-size-bank level.

18This approach also excludes the possibility that loan refinancing, or loans’ evergreening, impairs the
interpretation of our analysis.
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5. Empirical results

In this section, we establish the differential impact of M&A and SIP on bank credit,

interest-rate spreads and the volume of NPL.

5.1. Supply of bank credit

To begin with, we study the differential effect of M&A and SIP on the supply of

credit in the economy. Columns (1)–(3) and (5)–(7) of Table IV report the estimates of

equation (1) using as dependent variable the growth rate of the (log of) credit granted

by the savings banks in our sample. In columns (4) and (8), we consider the logarithm of

the average credit granted by credit institutions over every quarter of the pre period, and

between the announcement of the M&A or SIP and November 2011 for the post period.

While columns (1), (4), (5) and (8) use the full sample of firms, in columns (2)-(3) and

(6)-(7) we split the sample to consider only, in turn, SME and large firms.

Table IV: Supply of credit

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All SME Large All (Avg Level) All SME Large All (Avg Level)

Post x M&A -0.194*** -0.194*** -0.173 -0.041*** -0.259*** -0.263*** -0.192 -0.054***
[0.024] [0.024] [0.169] [0.008] [0.035] [0.035] [0.159] [0.012]

Observations 792,542 776,962 15,103 756,339 350,700 336,981 13,719 328,414
R-squared 0.118 0.119 0.221 0.477 0.493 0.496 0.445 0.720
Industry-Location-Size-Time FE YES YES YES YES NO NO NO NO
Bank FE YES YES YES YES YES YES YES YES
Firm-Time FE NO NO NO NO YES YES YES YES
Bank Controls YES YES YES YES YES YES YES YES
Firm Controls YES YES YES YES NO NO NO NO

Notes: This table reports the results obtained from a series of regression analyses that relate the variation of credit balance (both drawn an undrawn) of a
given firm i in a bank j before and after the beginning of the bank consolidation process (November 2009). In columns (1)–(3) and (5)–(7), the dependent
variable is the change (log difference) in the credit balance before and after the beginning of the bank consolidation process that we date in November 2009.
We consider the variation of credit between November 2007 and November 2009 for the pre-event and between November 2009 and November 2011 for the
post-event period. In columns (4) and (8) we consider an alternative definition of the dependent variable: the logarithm of the average credit balance granted
by credit institutions over every quarter of the pre-event period and over every quarter of the period spanning between the announcement of the merger and
November 2011. In columns (1), (4), (5) and (8) we use the whole sample of firms whereas in columns (2) and (6) we restrict the sample to SME and the sample
in columns (3) and (7) consists of large firms. The explanatory variable of interest is the interaction of a dummy variable that is equal to one if consolidation
is the result of a standard M&A (and zero if consolidation takes place through a SIP) and a dummy variable that is equal one after November 2009. The
set of control variables includes bank characteristics such as Log(TA), Capital Ratio, NPL, Credit/Deposits, ROA, (Credit to RE and Construction)/TA,
Market Share, and (FROB funds)/TA. We also use the following firm characteristics as control variables: Total Liabilities/TA, Liquidity/TA, ROA, Log(TA).
We saturate the different specifications with alternative sets of fixed effects as reported in the table. With industry-location-size-time fixed effects, splitting
the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of
the observations in columns (2) and (3) does not equal the observations in column (1). The use of firm-time fixed effects implies that firm controls are not
used in columns (5)–(8). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote
significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of all the variables, see the
data appendix (in Appendix A).

Compared to SIP banks, M&A banks extend less credit after the start of the

restructuring program. This result arises independently of whether we use

industry-location-size-time fixed effects, or firm-time fixed effects to control for demand.

Moreover, since we control for savings banks’ market shares before the program started,

and include bank fixed effects, these results cannot hinge on baseline differences in
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market power or other savings banks’ characteristics. Column (1) implies that,

compared to SIP banks, M&A banks cut lending by 19.4% or about 45,000 euro per

firm. Table B.V shows that the same results arise when using firm-bank fixed effects,

and Table B.VI shows the robustness of the results when considering an alternative

clustering.

Credit was cut more for SME than for large firms. This is intuitive, as SME firms are

known to be more risky than their large counterparts (see European Banking Authority,

2016). This finding then contributes to explain the evidence in Banco de España (2016)

that, as of 2011, the percentage of micro firms with financing constraints (26%) doubles

that of large firms (13%).

Taken together, these results are consistent with the prediction that the market power

effect is stronger for M&A than for SIP. Moreover, although our results are similar to

those in the literature on bank mergers (e.g., Berger, Saunders, Scalise and Udell, 1998;

Peek and Rosengren, 1998; Sapienza, 2002; Bonaccorsi di Patti and Gobbi, 2007; Degryse,

Masschelein and Mitchell, 2011), we obtain them as the differential effect of mergers when

compared to business groups.

5.2. Interest-rate spreads

In Table V, we run equation (2) using bank-month level information on newly issued

loans’ interest rates. We report the results distinguishing by loan size (less than one

million euro, and more than one million euro).

We find robust evidence in support of the prediction that, compared to SIP banks,

M&A banks apply higher interest-rate spreads, especially on loans smaller than one

million. As is commonly assumed (see, e.g., Banco de España, 2016), it is smaller firms

that take loans of this size, implying that this result is fully consistent with the

differential impact of M&A on credit. In columns (1) and (2), we perform an OLS

regression in which we take a weighted average of the interest rate across three maturity

buckets using as weights the new operations within each bucket (less than one year,

between one and five years, and more than five years), so that the unit of observation is

at bank-month level. In columns (3) and (4), we use the interest rate corresponding to

each maturity bucket, so that the unit of observation is at the bank-month-maturity

level, and estimate the coefficients of interest using a weighted OLS regression. The

results do not change.

Back-of-the-envelope calculations based on the coefficient in column (1) suggest that

a loan of less than one million euro granted by a M&A bank is 17.8 bp more expensive

than that granted by a SIP bank after November 2009. Thus, the premium charged for

this loan size by M&A banks corresponds to 5.3% of the average baseline spread with the
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Table V: Interest-rate spreads
(1) (2) (3) (4)

OLS, weighted average IR Weighted OLS, three maturity buckets
VARIABLES Loans < 1ME Loans > 1ME Loans < 1ME Loans > 1ME

Post x M&A 0.178*** 0.098* 0.253*** 0.128
[0.034] [0.058] [0.039] [0.087]

Observations 586 586 1,751 1,387
R-squared 0.923 0.736 0.800 0.666
Bank FE YES YES YES YES
Time FE YES YES YES YES
Maturity FE NO NO YES YES
Bank Controls YES YES YES YES

Notes: This table reports the results obtained from a regression analysis in which the dependent variable is
the spread of the average monthly interest rate charged by a given credit institution j to new loans granted in
month t to non-financial institutions over 3-month Euribor. The sample period spans from November 2007
to November 2011. The explanatory variable of interest is the interaction of two dummy variables: a dummy
that is equal to one when consolidation takes place through a standard M&A (and zero if consolidation takes
place through a SIP) and a dummy variable that is equal to one after November 2009. The set of control
variables includes bank characteristics such as Log(TA), Capital Ratio, NPL, Credit/Deposits, ROA, (Credit
to RE and Construction)/TA, and (FROB funds)/TA. In addition, we use bank and time fixed effects. The
information on interest rates is available for different categories of loan maturity (less than 1 year, between
1 and 5 years, more than 5 years) and size (below and above 1 million euro) buckets. We perform two
separate regression analyses depending on the size such that the coefficients in columns (1) and (3) are
obtained using interest rates of loans with size below 1 million euro and those in columns (2) and (4) are
obtained with loan sizes above 1 million euros. In columns (1) and (2) we perform an OLS regression in
which the interest rate is the weighted average across the three maturity buckets, using as weights the new
operations within each maturity bucket, so that the unit of observation is bank-month. In columns (3) and
(4) we use the interest rate corresponding to each maturity bucket, such that the unit of observation is
bank-month-maturity, and estimate the coefficient using a weighted OLS regression with the same controls
and fixed effects used in columns (1) and (2) plus maturity fixed effects. Robust standard errors (in brackets)
are clustered at the bank-type (SIP, M&A) month level. One star denotes significance at the 10% level, two
stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional
information on the construction of these variables, see the data appendix (in Appendix A).

3-month Euribor rate (3.3%).

These results are in line with the fall in credit documented in Table IV, and with the

prediction on the stronger market power effect of M&A.

5.3. Impact on the stability of the banking system: evidence from NPL

To study the differential effect of M&A and SIP on financial stability we run equation

(3) using information on the volume of savings banks’ NPL. Specifically, in columns

(1)–(3) and (5)–(7) the dependent variable is the proportion of NPL over total loans

related to a given firm i in a bank j in November 2011. In columns (4) and (8), we use

as an alternative definition of the dependent variable the average proportion of NPL over

every quarter of the pre period, and between the announcement of each M&A or SIP and

November 2011 for the post period. As mentioned above, we consider the firms that have

no credit with the banks in our sample during the two years before November 2009.

The results are in Table VI. M&A banks report less NPL than SIP banks. The

estimate in column (1) implies that the probability that a firm credit turns out to be non

performing is about 3 pp less for M&A banks than for SIP banks.19 Also in this case, the

19We find the same results when standard errors are clustered at the industry-province-size-bank level
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Table VI: NPL accumulation

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All SME Large All (Avg Level) All SME Large All (Avg Level)

M&A -0.027*** -0.027*** -0.028 -0.018*** -0.028*** -0.029*** -0.028 -0.019***
[0.004] [0.004] [0.020] [0.003] [0.005] [0.005] [0.019] [0.004]

Observations 112,560 109,885 2,442 104,534 38,003 36,024 1,979 34,020
R-squared 0.221 0.222 0.409 0.237 0.725 0.726 0.699 0.803
Industry-Location-Size FE YES YES YES YES NO NO NO NO
Firm FE NO NO NO NO YES YES YES YES
Bank Controls YES YES YES YES YES YES YES YES
Firm Controls YES YES YES YES NO NO NO NO

Notes: This table reports the results obtained from a regression analysis in which the dependent variable in columns (1)–(3)
and (5)–(7) is the proportion of NPL over total loans of a given firm i in a bank j in November 2011. We restrict our sample
to those bank-firm pairs with zero credit balance in November 2009 and the two years before to guarantee that the proportion
of NPL in November 2011 results from credit originated after November 2009. In columns (4) and (8), instead, the dependent
variable is defined as the average proportion of NPL over every quarter of the period spanning between the announcement of
the consolidation (M&A or SIP) and November 2011. The explanatory variable of interest and the set of firm and bank control
variables are the same as in Table IV. In columns (1), (4), (5) and (8) we use the whole sample of firms whereas in columns (2)
and (6) we restrict the sample to SME and the sample in columns (3) and (7) consists of large firms. With industry-location-size
fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that
we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in
column (1). The use of firm fixed effects implies that firm controls are not used in columns (5)–(8). Robust standard errors
(in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5%
level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see
the data appendix (in Appendix A).

result is essentially driven by the sample of SME. Since we compare M&A and SIP, and

limit the post restructuring program period to two years, this effect is produced on top

of any efficiency that can be generated absent market power.

This analysis then shows that the contraction of bank credit supply produced by

the stronger market power effect of M&A comes with an improvement in M&A banks’

selection of borrowers, as proxied by credit performance. Confirming this interpretation,

Section 6.3 shows that, after the program, M&A banks lend to safer firms than SIP banks.

These findings are new: compared to business groups, mergers can improve stability

in the financial system. In Section 6.4 we show that the reduction in NPL reported by

M&A banks is not accompanied by an increase in the NPL reported by the banks that

are not involved in the program.

6. Analysis of the mechanisms

6.1. Organization, market power and efficiency: province-level variation

We first exploit the province-level heterogeneity in the overlap of M&A and SIP banks

to develop two tests on the mechanisms driving our results.

(Table B.VII), or when including firms with credit relationships before November 2009 (Table B.VIII).
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Organizational and geographical differences We now provide further evidence

showing that our results are driven by differences in the organizational structure of

M&A and SIP. Alternatively, they could be explained by differences in the ability to

exercise market power at the local level, because M&A form within region and SIP

across regions. We then run our empirical models on the sample of firms that operate in

the provinces where there is no difference in the market share of M&A and SIP banks.

Specifically, we consider those where they have comparably large market shares in

November 2009. We require that at least one of the M&A and SIP banks had a market

share above 13%, and the largest SIP and M&A bank was in the top 5 banks of that

province (see Figure 2).

Table VII: M&A and SIP banks differences in organization and location
(1) (2) (3) (4) (5) (6)

Comparably large market shares Comparably small market shares
VARIABLES ∆Log(Credit) ∆Log(Credit) ∆(%NPL) ∆(%NPL) ∆(%NPL) ∆(%NPL)

Post x M&A -0.123*** -0.181***
[0.037] [0.056]

M&A -0.021*** -0.032*** 0.006 -0.015
[0.006] [0.009] [0.008] [0.017]

Observations 282,694 122,498 44,421 15,126 14,943 5,864
R-squared 0.111 0.490 0.206 0.723 0.305 0.726
Industry-Location-Size-Time FE YES NO NO NO NO NO
Industry-Location-Size FE NO NO YES NO YES NO
Firm-Time FE NO YES NO NO NO NO
Firm FE NO NO NO YES NO YES
Bank FE YES YES NO NO NO NO
Bank Controls YES YES YES YES YES YES
Firm Controls YES NO YES NO YES NO

Notes: This table reports the results obtained from a regression analysis in which the dependent variable in columns (1) and
(2) is the change (log difference) in the credit balance of a given firm i in a bank j before and after the beginning of the bank
consolidation process. In columns (3) to (6), the dependent variable is the proportion of NPL over total loans of a given firm i
in a bank j in November 2011. In columns (3) to (6), we restrict our sample to those bank-firm pairs with zero credit balance
in November 2009 and the two years before to guarantee that the proportion of NPL in November 2011 results from credit
originated between November 2009 and November 2011. The results in columns (1)–(4) are obtained from the set of provinces
in which the market shares of at least one of the M&A and SIP banks operating in that province is above the 25th percentile
of the distribution of the maximum market shares at province level, and where the largest SIP and M&A bank was in the top
5 banks of that province in November 2009. The results in columns (5)-(6) are obtained from the set of provinces in which the
market shares of all the banks operating in a given province is below the 25th percentile of the distribution of the maximum
market shares at province level in November 2009. The explanatory variable of interest and the set of firm and bank controls
are the same as in Table IV. The use of firm or firm-time fixed effects implies that firm controls are not used in columns (2),
(4) and (6). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two
stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the
construction of these variables, see the data appendix (in Appendix A).

If our findings were driven by the geography of consolidation, and not by organizational

differences, then we should observe no statistically significant differential effect of M&A

on volume of credit and NPL. Table VII, instead, shows that the results we obtain on the

growth rate of lending (columns (1) and (2)), and NPL growth (columns (3) and (4)),20

are comparable to those obtained in Tables IV and VI.

20As in our baseline specification, for the analysis of NPL we consider only the firms that have no
credit with the banks in our sample during the two years before November 2009.
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Impact on NPL absent market power in the baseline A conjecture supporting

our identification strategy is that, absent market power, SIP and M&A banks generate the

same level of efficiencies (thus producing similar effects on the volume of NPL). Then, we

run equation (3) using data from those provinces where all M&A and SIP banks market

share was smaller than 13% in November 2009. Since, as a result, these savings banks

are relatively small in the baseline, even after a M&A, banks are unlikely to have strong

market power. We again restrict the sample to consider only those firms that have no

credit with the banks in our sample during the two years before November 2009.

The results of the analysis are in columns (5) and (6) of Table VII. There is no

statistically significant difference in the volume of NPL reported by M&A and SIP banks

when they are equally small in the baseline. The coefficients are also economically smaller

than those in columns (3) and (4). These outcomes then fail to reject our assumption.

6.2. Separate effects of M&A and SIP on credit supply and NPL

Our empirical analysis has established the differential effects of M&A and SIP on

credit supply and performance. In this section, we use information on commercial

banks, which the Law left out of the program, to document the separate effects of each

integration mode. The fact that the commercial banks were excluded from the

restructuring program, and hence did not perform any form of integration, limits the

threats to identification. Moreover, wherever possible, we use bank fixed effects to

control for the baseline differences in the economic and financial characteristics of

commercial and savings banks.

The results are in Table VIII. As in our main tables, we consider the differential growth

rate of credit and NPL, and the average interest rates of commercial banks as compared

to, separately, M&A and SIP banks.

As compared to commercial banks, we find significant evidence that M&A banks

restrict credit supply after the program started, but also report less NPL. Confirming our

findings in Tables IV–VI, these results are the consequence of the trade-off triggered by

market power between a reduction in credit supply and an improved selection of borrowers.

In line with the presumption that the market power effect is stronger for M&A than for

SIP, we also find that, compared to commercial banks, SIP produce weaker differential

effects on lending and no significant impact on spreads, but also a smaller reduction in

NPL.

6.3. Ex-ante risk taking

We now show the consequences of the differences in the exercise of market power across

M&A and SIP banks on the credit extended to firms with different degree of ex-ante risk.
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Table VIII: Separate effects of M&A and SIP

(1) (2) (3) (4) (5) (6)
OLS Weighted OLS

VARIABLES ∆Log(Credit) ∆Log(Credit) Weighted average IR Three maturity buckets ∆(%NPL) ∆(%NPL)

Post x M&A -0.232*** -0.335*** 0.233*** 0.208***
[0.019] [0.024] [0.047] [0.069]

M&A -0.006*** -0.006***
[0.001] [0.002]

Post x SIP -0.023 -0.061** 0.044 -0.016
[0.019] [0.025] [0.044] [0.057]

SIP 0.001 -0.006***
[0.002] [0.002]

Observations 1,707,488 1,204,581 1,365 3,562 294,386 168,442
R-squared 0.139 0.444 0.785 0.853 0.186 0.680
Industry-Location-Size-Time FE YES NO NO NO NO NO
Industry-Location-Size FE NO NO NO NO YES NO
Bank FE YES YES YES YES NO NO
Firm-Time FE NO YES NO NO NO NO
Firm FE NO NO NO NO NO YES
Time FE NO NO YES YES NO NO
Maturity FE NO NO NO YES NO NO
Bank Controls YES YES YES YES YES YES
Firm Controls YES NO NO NO YES NO
Notes: This table reports the results obtained from a regression analysis in which the dependent variable in columns (1) and (2) is the change
(log difference) in the credit balance of a given firm i in a bank j before and after the beginning of the bank consolidation process. In columns
(3) and (4), the dependent variable is the spread of the average monthly interest rate charged by a given credit institution j to new loans with
size below 1ME granted in month t to non-financial institutions over 3-month Euribor. In columns (5) and (6), the dependent variable is the
proportion of NPL over total loans of a given firm i in a bank j in November 2011. In column (3) we perform an OLS regression in which the
interest rate is the weighted average across the three maturity buckets (less than 1 year, between 1 and 5 years, more than 5 years), using as
weights the new operations within each maturity bucket, so that the unit of observation is bank-month. In column (4), we use the interest rate
corresponding to each maturity bucket, such that the unit of observation is bank-month-maturity, and estimate the coefficient using a weighted
OLS regression with the same controls and fixed effects used in column (3) plus maturity fixed effects. In columns (5) and (6), we restrict our
sample to those bank-firm pairs with zero credit balance in November 2009 and the two years before to guarantee that the proportion of NPL
in November 2011 results from credit originated between November 2009 and November 2011. The explanatory variable of interest and the set
of firm and bank controls are the same as in Tables IV–VI. The use of firm or firm-time fixed effects implies that firm controls are not used in
columns (2) and (6). Robust standard errors (in brackets) are clustered at firm level in columns (1)-(2) and (5)-(6), and at bank-type (SIP, M&A)
month level in columns (3) and (4). One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars
denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

We classify firms as safe or risky based on the distance from default as resulting from a

variation of Altman’s Z-score computed for Spanish firms (see Appendix A for details). We

use the firm-level information in December 2006 and December 2008 to obtain the value of

the risk indicators for the periods before and after the restructuring program, respectively.

We then split the Postt×M&Aj interaction to capture the separate contribution of safe

and risky firms to the differential fall in the growth rate of lending produced by M&A

with respect to SIP. Finally, the use of industry-location-risk-time fixed effects implies

that our results are identified by comparing the firms with similar distance to default,

obtaining credit in the same time period, and operating in similar industry and location.

Overall, the differential impact of M&A and SIP banks on the volume of NPL can be

explained by a differential contraction in the credit supply to small, risky borrowers.

Despite both safe and risky firms see their credit reduced after the program started

(columns (1) and (4)), the differential effect of M&A and SIP banks on lending is

economically larger for the sample of risky, small firms (columns (2) and (5)), and there

is no evidence of credit contraction in the sample of large safe firms (columns (3) and
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Table IX: Banks’ risk taking

(1) (2) (3) (4) (5) (6)
∆Log(Credit) ∆Log(Credit) ∆Log(Credit) ∆Log(Credit) ∆Log(Credit) ∆Log(Amount)

VARIABLES All SME Large All SME Large

Post x M&A x Risky Firm -0.215*** -0.209** -0.405*** -0.315*** -0.308*** -0.411***
[0.065] [0.069] [0.095] [0.049] [0.051] [0.116]

Post x M&A x Safe Firm -0.172* -0.178* 0.173 -0.219** -0.233*** 0.108
[0.091] [0.094] [0.141] [0.074] [0.075] [0.172]

M&A x Risky Firm 0.017 0.013 0.139 0.061 0.054 0.161
[0.048] [0.047] [0.166] [0.059] [0.057] [0.147]

Observations 790,774 778,295 14,932 350,700 336,981 13,719
R-squared 0.062 0.062 0.265 0.493 0.496 0.446
Industry-Location-Risk-Time FE YES YES YES NO NO NO
Bank FE YES YES YES YES YES YES
Firm-Time FE NO NO NO YES YES YES
Bank Controls YES YES YES YES YES YES
Firm Controls YES YES YES NO NO NO

Notes: This table extends the analysis in Table IV to study the differential change in credit supply to safe and risky firms. The
variables of interest in our analysis are: (i) the interaction of Post x M&A with a dummy variable that is equal one for safe firms, (ii)
the interaction of Post x M&A with a dummy variable that is equal one for risky firms, and (iii) the interaction of the dummy variables
denoting risky firms and M&A. Firms are classified as safe or risky based on a variation of an Altman’s Z-score for Spanish firms (see
Appendix A for the details). We use the information on December 2006 and December 2008 to obtain the firm risk indicators for the
pre-event and post-event periods, respectively. In columns (1) and (4) we use the whole sample of firms, in columns (2) and (5) we
use the sample of SME and in columns (3) and (6) the sample of large firms. The set of control variables are the same as in Table IV.
The set of fixed effects we use prevents the estimation of other combinations or interactions of Post, M&A and the dummy variables
denoting safe/risky firms. With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) into SME and
Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2)
and (3) does not equal the observations in column (1). Due to firm-time fixed effects, firm controls are not used in columns (4)–(6).
Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote
significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of
these variables, see the data appendix (in Appendix A).

(6)).21 Finally, the fact that the coefficients on the M&Aj×Risky Firm interaction are

never statistically significant means that there is no differential treatment of risky firms

by M&A and SIP banks before the program.

6.4. Spillover effects

We now establish that the cut in the volume of lending extended by M&A banks, and

the reduction in their volume of NPL, does not come with an increase in the NPL reported

by the banks that did not participate in the program (which include all the commercial

and cooperative banks and a small number of savings banks). If this were to happen, it

would invalidate our conclusion that the program made the banking system more stable.

We then restrict the sample to consider only the banks that were not involved in the

program, and use the Spanish credit register information on loan applications submitted

to a bank by new borrowers. Specifically, in Table X we report the results of a regression

where the dependent variable is a dummy equal to one if firm i’s loan is non-performing

in any of the banks outside the program. The independent variable, instead, is a dummy

21The difference in the coefficients on M&Aj×Risky Firm and M&Aj×Safe Firm is also statistically
significant in columns (3)–(6).
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that equals one if a M&A bank rejected firm i’s loan application in columns (1)-(3), and

if a M&A or a SIP bank rejected firm i’s loan application in columns (4)-(6).

Table X: NPL spillover
NPL of Banks Outside the Restructuring Program

(1) (2) (3) (4) (5) (6)
VARIABLES All Exposed Firms Non-Exposed Firms All Exposed Firms Non-Exposed Firms

Loan Application Rejected by M&A Bank -0.009 -0.024 -0.001
[0.017] [0.026] [0.024]

Loan Application Rejected by M&A or SIP Bank -0.009 -0.022 0.006
[0.017] [0.021] [0.031]

Observations 13,823 7,425 5,619 13,823 10,404 2,777
R-squared 0.127 0.149 0.191 0.127 0.142 0.239
Industry-Location-Size FE YES YES YES YES YES YES
Average Bank Controls YES YES YES YES YES YES
Firm Controls YES YES YES YES YES YES

Notes: We study the performance of loans granted by all commercial banks and the few savings banks that did not participate in a SIP or a M&A,
to firms with loan applications rejected by any of the savings banks that did a M&A (columns (1)–(3)) and a M&A or a SIP (columns (4)–(6)). The
analysis is conducted at the firm level. Hence, the dependent variable in columns (1)–(6) is a dummy variable that is equal to one when a loan of firm
i is non-performing in November 2011 (conditional on being performing on November 2009). The explanatory variable in columns (1)–(3) is a dummy
variable that is equal to one if firm i applied for a loan to one or more savings banks that did a M&A and this application was rejected. In columns
(4)–(6), instead, the dependent variable is a dummy that equals one if firm i applied for a loan to one or more savings banks that did a M&A or a SIP
and this application was rejected. The set of firm-level control variables we use are the same as in Table IV, moreover we add industry-location-size
fixed-effects and the average characteristics of the banks that do not participate in the consolidation process between November 2009 and November
2011, and to which firm i is exposed. In columns (1) (resp., (4)) we use all firms that applied for a loan to one or more savings banks that did a
M&A (resp., a M&A or a SIP). In columns (2) (resp., (5)) we further restrict the sample to those firms that in November 2009 had a positive credit
balance in the savings banks that did a M&A (resp., a M&A or a SIP), and in columns (3) (resp., (6)) we use only the firms with no credit exposure to
M&A banks (resp., M&A or SIP banks). With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) (resp., (4)) into
Exposed and Non-Exposed firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns
(2) and (3) (resp., (5) and (6)) does not equal the observations in column (1) (resp., (4)). Robust standard errors (in brackets) are clustered at firm
level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level.
For additional information on the construction of these variables, see the data appendix (in Appendix A).

We do not find any evidence that the firms rejected by the banks in the program then

go to increase the volume of NPL reported by the credit institutions not involved in the

restructuring program. In columns (1) and (4) we consider the full sample. In columns

(2)-(3) and (5)-(6), we distinguish between exposed and non-exposed firms, where the

latter are those with zero credit from M&A banks before the start of the program. Our

results are robust to these checks.

7. Welfare analysis

We propose a structural analysis to quantify the welfare implications of our results

on credit supply and performance. We develop and estimate an equilibrium model of

borrowers’ demand for credit from differentiated banks. On the supply side, banks

engage in Bertrand-Nash interest rate competition, and can reject borrowers whose

observable risk is above a certain threshold. We use the model’s estimates and

equilibrium assumptions for counterfactuals to simulate scenarios with M&A and SIP

and compare welfare (borrowers’ surplus, banks’ profits) and stability (banks’ default

probabilities) across scenarios.
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7.1. Model

We take as unit of observation a bank j = 1, ..., Jmt in a province m = 1, ...,M at a

month t = 1, ..., T . We assume that borrower i’s demand for loans is determined by the

following indirect utility function:

Uijmt = X ′jmtβ + αPjt + ξjmt︸ ︷︷ ︸
≡δjmt

+εijmt, (4)

where Xjmt is a matrix of bank-province-month characteristics, Pjt is the average interest

rate on that bank’s new loans in that month, ξjmt are unobserved (to the econometrician)

bank-province-month attributes, and εijmt are IID Type 1 Extreme Value shocks. We

allow borrowers to select an outside option, whose indirect utility is normalized to zero,

that we define as a set of small fringe banks.

Banks are differentiated firms that compete Bertrand-Nash on interest rates Pjt to

attract borrowers, and also decide on rationing. Rationing in our context implies that

each bank j at time t sets a threshold of expected default rate of borrowers defined as F jt,

such that any borrower above that threshold cannot have access to credit. This threshold

is a cutoff in the distribution of expected default rates Fjt ∼ N(µFt, σ
2
Ft), which we assume

follows a truncated normal distribution with lower bound at 0 and upper bound at 1. It

reduces the “size of the market” (i.e. the number of potential borrowers that wouldn’t

be rejected) for that specific bank-month combination. We use rationing to model the

actual demand for credit that a bank can face, net of the rejections it makes. To keep the

setting tractable, we do not however allow banks to compete on rationing or adjust it in

the counterfactual scenarios.22

In order to calculate the market shares of bank j in province m at time t, we rank all

banks according to their default threshold every month up to the threshold F jt, from the

lowest for bank k, and assume that default thresholds are public information, such that:

F kt < F k+1t < ... < F jt. (5)

In the spirit of Sovinsky Goeree (2008), the formula for bank j’s market share in

22In practice, F jt is computed based on NPL data, and is not allowed to change in the counterfactuals.
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province m at time t can be defined as:

Sjmt = exp(δjmt)

 Pr
[
Fjt ≤ F kt

]
1 +

∑
k exp(δkmt)

+

j∑
`=k+1

Pr
[
F `−1t < Fjt ≤ F `t

]
1 +

∑
k>`−1 exp(δkmt)


=

exp(δjmt)

Φ
(

1−µFt

σFt

)
− Φ

(
−µFt

σFt

)
Φ

(
Fkt−µFt

σFt

)
− Φ

(
−µFt

σFt

)
1 +
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k exp(δkmt)

+

j∑
`=k+1

Φ
(
F `t−µFt

σFt

)
− Φ

(
F `−1t−µFt

σFt

)
1 +

∑
k>`−1 exp(δkmt)

 .
(6)

Banks’ equilibrium interest rates will be determined by maximizing expected profits:

Πjt = [1 + Pjt −MCjt]Qjt, (7)

where Qjt =
∑M

m SjmtMmt is the quantity of loans granted by bank j at time t, Mmt

is the total potential amount that could be borrowed in a province-month combination,

and MCjt are expected marginal costs, which depend on the quantity of credit. Based

on the first order condition from equation (7) with respect of Pjt we are able to back out

the unobserved (to the econometrician) marginal costs, and express them as a function

of quantities:

1 + Pjt +
Qjt

∂Qjt

∂Pjt

= MCjt = C0jt + C1Qjt, (8)

where Qjt/(∂Qjt/∂Pjt) is the markup calculated based on the estimates from the demand

model, C1 captures the slope of the marginal cost curve, and C0jt allows for heterogeneity

across banks and months in marginal costs. As we will see, we obtain that marginal costs

increase in the amount granted, reflecting the fact that the marginal borrower is riskier

than the infra-marginal ones.

7.2. Estimation

We select the major (savings, cooperative and commercial) banks, compute the volume

of credit that each of them lends asQjmt, and then group the total volume of credit granted

by all other (small) banks into a single outside option defined asQ0mt =Mmt−
∑Jmt

j Qjmt.
We assume that the market share of the outside option also becomes bank j specific Sj0mt,

with a formula equivalent to equation (6). This captures the idea that borrowers above

the threshold F jt are not able to choose not to borrow, but are simply rejected by the

bank. We also need this assumption in order to be able to do Berry (1994)’s inversion to

estimate the demand model with instrumental variables based on the following equation:

ln(Sjmt)− ln(Sj0mt) = X ′jmtβ + αPjt + ξjmt. (9)
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The specification includes various controls for bank size and profitability in Xjmt, and

bank and province-month fixed effects. We use as instrument for interest rates Pjt the

lagged values of NPL. This choice is in line with Egan, Hortaçsu, Matvos (2017), who use

lagged charge-offs in their deposit demand estimation exercise. Like charge-offs, lagged

NPL affect bank profitability, and thus loan rates. Based on the tests we perform, the

instrument is relevant in the first stage, with the expected positive sign. It also satisfies

the exclusion restriction, as past bank NPL are likely to be unobserved by borrowing

firms. This guarantees that they are uncorrelated with bank attributes ξjmt observed by

borrowers but unobserved by the econometrician.23 The sample we use for the estimation

includes market shares in terms of loan volumes at the bank-province-month level, whereas

bank characteristics and interest rates (measured as the spread between loan rates and

the 3 months Euribor) are at the bank-month level. We use the information relative to

the new loans extended by all savings banks and the largest commercial and cooperative

banks, for a total of 68 banks across 50 provinces. Consistent with the reduced-form

analysis, we focus on the 24 months between November 2007 and October 2009, that is,

before the program started.

Table XI reports descriptive statistics for all variables used to in the structural

analysis. On top of the variables defined above, Dkt denotes the bank’s default

probability, constructed as the inverse of a distance to default.24

Estimation results are reported in Table XII. Assuming a 5% bank’s market share and

a 5 percent loan rate (close to the average in the data), borrowers have a demand elasticity

of around -2.05. We also find that borrowers tend to favor larger banks, in terms of assets,

as well as lenders with a larger share of equity over total assets. Last, we estimate C1

in equation (8) using a linear model and find that it is positive and highly statistically

significant. In particular, one standard deviation increase in loan volume Qjt corresponds

to over 43 standard deviation increases in MCjt. This means that, consistent with the

assumption we make in Section 2.2, banks’ marginal-cost schedule is increasing.

7.3. Counterfactuals

We use our estimates from the demand and supply models to conduct two

counterfactual experiments where we quantify the welfare effects of the restructuring

23To conduct the Hansen J statistic we use a second instrument (i.e., the NPL lagged two periods)
which enables us to run the overindentification test.

24Following Laeven and Levine (2009), we compute Dkt at the bank-time level as
SD[ROA]/(Equity/Total assets + ROA), where SD[ROA] is the standard deviation of ROA’s monthly
value in the 12 months before t. We then windsorize its value between 0 and 1. Despite, technically, Dkt

is not a probability of default, it is highly correlated with it: the average correlation between the value
of Dkt and the bond yields of the savings banks in our sample (for which this information is available)
is 0.52 between 09/2007 and 09/2011.
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Table XI: Descriptives – Structural model

Standard 10th 90th
N Mean Deviation Percentile Median Percentile

Market Share (Sjmt) 45,061 2.34 4.10 .01 .46 7.62
Total Loan Volume (Mmt) 24 9,745.22 1,949.89 7,227.44 9,897.50 12,359.95
Loan Volume (Qjt) 1,632 143.31 232.41 5.75 48.89 404.31
Interest Rate (Pjt) 1,632 5.45 1.05 4.01 5.57 6.74
Bank Default Prob (Djt) 1,632 3.52 5.92 1.68 2.80 4.99
Borrowers’ Default (F jt) 1,632 2.70 2.01 .72 2.21 5.49
Marginal Cost (MCjt) 1,632 1.03 0.01 1.01 1.03 1.04
Total Assets 1,632 36 74 3 11 80
Capital Ratio 1,632 6.21 2.04 4.04 5.64 9.20
ROA 1,632 0.41 0.28 0.13 0.36 0.78
Credit/Deposits 1,632 1.82 0.52 1.20 1.78 2.50
(Credit to RE and Construction)/TA 1,632 27.66 9.90 13.81 28.34 39.31
NPL 1,632 2.70 2.01 0.72 2.21 5.49

Notes: Notes: These descriptive statistics are for the main 68 banks in Spain, across 24 months between
November 2007 and October 2009, and across 50 provinces. Interest Rate is in percentage points. Loan
Volume is in millions of euros. The definition of Bank Default is in footnote 25. Total Assets are in BE.
An observation is at the bank-province-month level for Market Share, at the month level for Total Loan
Volume, and at the bank-month level for all other variables. For additional information on the construction
of these variables, see the data appendix (in Appendix A).

Table XII: Demand estimation results

VARIABLES
Interest Rate -42.85**

(21.85)
Log of Total Assets 2.65***

(0.56)
Capital Ratio (%) 18.66***

(5.30)
ROA 2.97

(6.25)
Credit/Deposits 0.25*

(0.09)
(Credit to RE and Construction)/TA -0.96

(0.73)
Bank FE Yes
Province-Month FE Yes
N Obs 45,061
R2 0.480

Notes: We use an instrumental variable regression
model in which we instrument the interest
rate with the NPL ratio lagged one month.
The instrument is relevant (based on the
Kleibergen-Paap rk LM statistic), and the Hansen
J statistic fails to reject the exclusion restriction.
Robust standard errors in brackets. One star
denotes significance at the 10% level, two stars
denote significance at the 5% level, and three
stars denote significance at the 1% level. An
observation is a bank-month-province. For
additional information on the construction of these
variables, see the data appendix (in Appendix A).

program. Specifically, we simulate the effects of M&A and SIP, as they actually would

have later on happened, using data from the pre-restructuring program period. We do

this because only during those months we are able to observe the separate interest rates
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offered by the banks that will then do a M&A (after the actual mergers take place we

can only observe one interest rate for each M&A group).

We define borrowers’ surplus at the province-month level as follows:

E(CSmt) =
1

α
log

[∑
k

exp (δkmt) Pr
[
Fjt ≤ F kt

]
(1−Dkt)

+

j∑
`=k+1

[ ∑
k>`−1

exp(δkmt)Pr
[
F `−1t < Fjt ≤ F `t

]
(1−Dkt)

]]
+ C,

where C is a constant term derived from the functional form of the surplus equation that

cancels out when we take the difference between baseline and counterfactual surplus. The

novel feature of this surplus formula is the fact that we weight the mean utility that

borrowers gain from each bank in their choice set by the survival probability of each bank

(1 − Dkt). This captures the idea that higher stability, that is more solvent banks, can

directly benefit borrowers’ surplus.

Short-run counterfactual scenario In the first counterfactual we run, we quantify

the welfare implications of M&A’s market power in the short-run. We assume that neither

a M&A nor a SIP produces efficiencies in the form of lower marginal costs. SIP banks

set interest rates by maximizing the expected profits of each separate entity, similarly

to banks that did not consolidate at all. M&A banks, instead, set loan interest rates by

maximizing their joint expected profits. More specifically, if bank j merges with any bank

k, its expected profit function will become (the profit function of SIP banks is the same

as in the benchmark):

Πjt = [1 + Pjt −MCjt]Qjt +
∑
k 6=j

[1 + Pkt −MCkt]Qkt. (10)

Each M&A bank then internalizes the effect of own credit supply onto the demand of

other merging banks. This determines an upward pressure in interest rates relative to the

benchmark: M&A banks understand that they can afford an increase in the interest rates

they set because some of the borrowers will switch to a merging party.

Long-run counterfactual scenario In the second counterfactual experiment, we allow

banks engaging in a M&A or SIP to generate cost efficiencies. In this way, we simulate

a long-term beneficial effect of the consolidation process that can outweigh the market

power effect. Notwithstanding the differences in M&A and SIP objective functions, we

assume a reduction in consolidating banks bank-month specific component of marginal

costs C0jt in equation (8). Specifically, their overall marginal costs drop by around half
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of a standard deviation.

7.4. Results

Panel A of Table XIII reports the average percentage changes in interest rates,

quantities, marginal costs, and bank expected profits for the banks engaging in M&A

and SIP relative to the benchmark in both counterfactuals. Panel B, instead, reports

the average results of the baseline and counterfactual levels of loan interest rates and

quantities (i.e. volume of loans) at the bank-month level, as well as total lending volume

(i.e. total quantity) at the monthly level. All our results relate to banks’ new loan

business, which is the focus of our analysis.

Short-run results The counterfactual with no efficiencies generates on average an

increase in interest rates, a decrease in quantities, and a rise in expected profits (Panel

A). Although they are a direct consequence of M&A market power effect, these results

are fairly in line with the reduced form results. Due to the increase in interest rates,

after aggregating across banks, provinces and months, we find that total banks’ profits

increase by 47.65ME. However, the increase in interest rates also makes borrowers worse

off in the short run (Panel B). Aggregating across months, the total drop in borrower

surplus amounts to 55.65ME. We then find a total welfare loss of 8ME. In the last row

of Panel B we compute by how much banks’ solvency should increase to compensate for

the loss in surplus caused by the increase in interest rates. We find that, for borrowers

to be as well off as in the benchmark, M&A banks’ default probability would need to

reduce by about half its standard deviation (1.13/2.01).

Long-run results We now discuss the effects of M&A and SIP on borrowers’ surplus

and total welfare in the presence of cost efficiencies. Panel A, columns (2) and (3),

documents that even for a small reduction in marginal costs consolidating banks

substantially reduce their loan interest rates, on average by around 8%, and hence

increase their supply of loans and expected profits. Specifically, aggregating across

banks, provinces and months, the total increase in banks’ profits as a result of

consolidation with cost efficiencies amounts to 668.69ME. Overall, borrowers are better

off, due to the drop in interest rates, with an aggregate increase in borrower surplus of

906.98ME and in total welfare of 1,575.67ME (Panel B).
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Table XIII: Counterfactual Outcomes

Panel A
Short run Long run

M&A Banks M&A Banks SIP Banks
% Change Interest Rate 3.00 -8.05 -8.74
% Change Loan Volume -5.10 2.00 6.96
% Change Marginal Costs 0.00 -0.64 -0.51
% Change Banks Profit 0.76 10.47 8.42

Panel B
M&A & SIP M&A & SIP

Baseline Short run Long run
Interest Rate 5.45 5.48 5.20
Loan Volume 143.31 142.79 152.77
Total Loan Volume 9,745.22 9,709.94 10,388.57
% Change Borrower Surplus -0.96 15.37
% Change Total Welfare -0.06 12.36
Change in Bank Default Prob -1.13 -

Notes: Interest Rate is in percentage points. Loan Volume is in millions
of euros. In Panel A all values are averages across bank-month level
observations. In Panel B all values are averages across bank-month
level observations (for Interest Rate and Loan Volume) and month level
observations (for all other variables).

8. Conclusions

In 2009, the Spanish banking system underwent a restructuring process based on

consolidation of savings banks. We exploit the institutional design of the program to

study the relative impact of bank mergers and bank business groups on credit supply and

financial stability. We unveil a new trade-off. On the one hand, compared to bank business

groups, the market-power effect of bank mergers produces a reduction in credit supply and

an increase in interest rates, especially to SME. On the other hand, market power causes

a reduction in the volume of non-performing loans, thereby improving financial stability.

To show that these results are not driven by differences in the efficiencies generated by

mergers and business groups, we exploit the province-level variation in the overlap of

M&A and SIP banks. Finally, we quantify the short-run and long-run welfare effects of

the program by means of a structural model.

The validity of our analysis extends beyond the Spanish case. We already mentioned

the American and Japanese restructuring measures in the introduction, and savings banks

are widespread in Europe. As of 2009, the German savings banks sector represented

about one third of the total banking assets (European Commission, 2017), and it landed

into systemic problems during the crisis (International Monetary Fund, 2011). In Italy

a number of savings banks needed help after the crisis, suffering problems from NPL

accumulation. The claim of policy makers was, and still is, that consolidation can be a

means to solve the problems resulting from excessive NPL stockpiling.25

25See, for example, “Banking union: prospects for integration and further consolidation,” by Pentti
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We show that bank mergers can be effective in improving financial stability,

especially as a remedy to crises produced by banks’ excessive risk taking. Our welfare

analysis documents that short-run welfare gains from improved financial stability

outweigh losses from reduced credit supply. In the long run, even small cost efficiencies

generate substantial increases in borrower and total surplus.
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A. For Online Publication – Data appendix

The information on loans is obtained from the Banco de España Central Credit
Register (CCR). The CCR contains detailed monthly information on the credit position
of each Spanish firm with each Spanish bank for all loans above 6,000 euros, including
credit lines. Thus, we observe the virtual universe of bank exposures to non-financial
corporations. For each loan, we know the size of the credit instrument, and other
characteristics such as the maturity, creditworthiness or collateral. We aggregate the
outstanding amount of credit of each firm in each bank at a monthly basis to obtain
total credit (both drawn and undrawn in the case of credit lines).

Since the CCR reports the identifier of each bank and firm, we merge the loan-level
data with the balance sheets of banks and firms. The data on banks is collected by the
Banco de España in its role of banking supervisor. It is used to obtain proxies for bank size
(logarithm of total assets), leverage (total liabilities over total assets), risk (NPL over total
loans), liquidity (credit to deposits ratio), and profitability (ROA). The CCR is merged
with the dataset of the Spanish non-financial firms that respond to the Integrated Central
Balance Sheet Data Office Survey (CBI), which contains information from the accounts
filed with the mercantile registries for more than 830,000 firms in 2006 and almost 850,000
firms in 2008 (as of the version of the dataset available in March 2020). This dataset also
includes information on firms’ identifier, industry of operation, and other items of the
balance sheet that enable us to obtain proxies for firms’ size, leverage and profitability
(constructed analogously to those for the banks), liquidity (liquid assets over total assets)
and risk (based on a Z-score whose construction we explain below). Moreover, we can
identify each bank-firm relationship by aggregating loans within each bank-firm pair. This
feature allows us to trace all the changes in credit flows between a given bank and a given
firm over time. In addition, the dataset reports information on each bank-firm pair in
which either firms have missed to pay back their debt obligations which enables us to
compute the ratio of non-performing loans over total loans at bank-firm level. Finally,
we use information on the FROB funds made available to each bank to assist with the
restructuring, which are obtained from the FROB webpage.

An additional dataset we use consists of all the requests for information made by
banks on firms’ credit situation to the Spanish CCR. Banks submit these requests when
they receive a loan application by a firm to which they have no current exposures. This
information enables us to identify firms that are seeking a bank loan as those that
submit an application to a bank with which they have no outstanding credit balances.
Importantly, given that the CCR contains information on the outstanding credit
balances, we can infer whether or not the firm obtained the loan from either a new bank
that requested information on the firm or from any other bank (including those with a
previous positive exposure). We assume that the loan application is accepted when
there is an increase in the outstanding credit balance between the month prior to the
request for information and the following three months.

With all these sources of information, we build a panel of both real variables and credit
data.26 We use the balance-sheet items of 37 savings banks that merged after November
2009 leading to 12 new institutions. Note that due to the restructuring program, the

26Firm level variables and the log change in credit are winsorized such that we set the observations
above (below) the 99% (1%) percentiles at the value of the 99% (1%) percentile
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individual savings banks that are part of standard M&As stop their individual activity at
some point in time between November 2009 and November 2011 and start to operate as a
single group. Thus, we need to aggregate in a similar way the credit institutions that are
part of M&A and SIP, which continued reporting information at individual savings bank
level until the end of our sample period. For this reason, we consolidate the information
of savings banks that are part of the new credit institutions during the whole sample
period. To this aim, we aggregate each balance-sheet item (total assets, total liabilities,
total credit, NPL, total deposits and total income) of all credit institutions that are part
of each new banking group and then obtain the corresponding ratio.

Finally, we describe the construction of the credit score we use in Table IX. The
version of Altman’s Z-score we use was developed by Amat, Manini, and Renart (2017)
for Spanish firms.27 It is obtained from the following specification:

Z = −3.9 + 1.28 ∗ (Current Assets/Current Liabilities) + 6.1 ∗ (Net Worth/Total Assets)

+6.5 ∗ (Net Profit/Total Assets) + 4.8 ∗ (Net Profit/Net Worth). (11)

We convert this score into a discrete variable that is equal to one if the firm is in the
“distress” zone, which occurs when the resulting Z-score is negative, and zero otherwise.

A.1. Variable definition

Bank-level variables

• Capital Ratio: bank equity plus retained earnings over total assets.

• Credit/Deposits: volume of bank credit over volume of bank deposits.

• (Credit to RE and Construction)/TA: volume of bank credit to real estate and
construction sectors over total assets.

• (FROB funds)/TA: funds made available by FROB to a savings bank relative to
the savings bank’s total assets.

• M&A: dummy equal to one if consolidation takes place through a standard M&A
and zero if consolidation takes place through a SIP.

• Market Share: ratio between the credit extended in a given province by a savings
bank over the sum of credit extended by all savings banks in that province.

• Max(Market Share): the maximum market share of each savings bank across
provinces in December 2008, computed using information on all active banks.

• NPL: the ratio of NPL over total loans.

• Post: dummy variable that is equal to one after the start of the restructuring
program (November 2009) and zero beforehand. The exact timing depends on the
definition of the dependent variable, as we explain in Section 4.4 and in the tables’
notes.

27See Amat, O., Manini, R., and Renart, M. A., 2017. Credit Concession Through Credit Scoring:
Analysis and Application Proposal. Intangible Capital 13, 51–70.
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• ROA: EBITDA over total assets.

• Total Assets (TA): bank total assets in billions of euros (BE).

Firm-level variables

• Liquidity/TA: value of firm liquid assets over total assets.

• Risky Firm: dummy equal to one if the Z-score constructed as in equation (11) is
negative, and zero otherwise.

• ROA: EBITDA over total assets.

• Safe Firm: dummy equal to one if the Z-score constructed as in equation (11) is
positive, and zero otherwise.

• Total Assets (TA): bank total assets in millions of euros (ME).

• Total Liabilities/TA: value of firm liabilities over total assets.

Bank-firm-level variables

• ∆ Log(Credit): change in the log value of credit balance between November 2007
and November 2009 (pre-event) and between November 2009 and November 2011
(post-event) for the firms with which the bank had a pre-existing credit exposure
to the firm.

• Loan Application Rejected by M&A Bank: dummy equal to one if firm i applied
for a loan to one or more savings banks that did a M&A and this application was
rejected.

• Loan Application Rejected by M&A or SIP Bank: dummy equal to one if firm i
applied for a loan to one or more savings banks that did a M&A or a SIP and this
application was rejected.

• NPL: proportion of NPL in November 2011 based on firms that have no credit with
the savings banks in our sample during the two years before November 2009.
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B. For Online Publication – Additional tables and

figures
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Table B.I: Overview of the restructuring program
Date Merging parties New bank Type FROB # Regions

November 2009 Caja Castilla la Mancha, Cajastur SIP 0 2
Cajastur

March 2010 Caixa Sabadell, Unnim M&A 380 1
Caixa Terrasa,
Caixa Manlleu

March 2010 Catalunya Caixa, Catalunya Caixa M&A 1,250 1
Caixa Tarragona,
Caixa Manresa

March 2010 Caja España, Caja Duero, Ceiss M&A 525 1

April 2010 Caja Navarra, Caja Canarias, Banca Ćıvica(*) SIP 977 3
Caja Burgos

May 2010 Unicaja, Caja Jaén Unicaja M&A 0 1

May 2010 La Caixa, Caixa Girona La Caixa M&A 0 1

June 2010 Caja Murcia, Caixa Penedés, BMN SIP 915 4
Sa Nostra, Caja Granada,

June 2010 Caja Madrid, Bancaja, Bankia SIP 4,465 6

Caja Ávila, Caja Segovia,
Caja Rioja, Caixa Laietana,
Caja Insular de Canarias,

June 2010 Caixa Galicia, Caixanova, Novacaixagalicia M&A 1,162 1

July 2010 CAI, Caja Ćırculo de Burgos, Caja 3 SIP 0 3
Caja Badajoz

July 2010 Bilbao Bizkaia Kutxa, Bilbao Bizkaia Kutxa SIP 800 2
CajaSur

Notes: The table uses information from International Monetary Fund (2012), Banco de España (2015), Banco de
España (2017). (*): Banca Ćıvica later acquired Caja Sol-Caja Guadalajara in December 2010.
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Table B.II: Evidence of un-coordinated lending conditions across SIP banks
Rejected Application

Bank1 0.200*
[0.117]

Bank2 0.252*
[0.131]

Bank3 0.065
[0.117]

Bank4 0.038**
[0.016]

Bank5 .
.

Bank6 .
.

Observations 1,005
R-squared 0.884
Bank-Firm FE YES

Notes: In this table, we test whether savings banks within a given SIP have
similar lending policies after forming the group. We restrict our sample to
savings banks that merged through SIPs and to the period that spans from
November 2009 to November 2011. Our dependent variable is a dummy variable
that is equal to one if a given savings bank has requested information on a firm
during the previous period and there is not a later increase in the firm-bank
credit balance, which can be interpreted as a rejection of a loan application. The
dependent variable is equal to zero when the request of information is followed
by an increase in the firm-bank credit balance, which can be interpreted as a
successful credit application. We regress this variable on dummy variables for
each specific savings bank and on SIP group-firm fixed effects. The use of these
fixed effects allows us to control for the common treatment of a given firm within
the SIP group, such that if all savings banks treat the firm “loan application”
in the same way, the individual savings bank dummy variables should not be
statistically significant. Note that due to the use of these fixed effects, our
sample is restricted to those observations for which two savings banks within a
given SIP group request information on the same firm during the period under
consideration. Given that each SIP involves a different number of savings
banks, to guarantee confidentiality, we just report the coefficient with lowest
p-value within each SIP. A significant coefficient would support the statement
that savings banks within a given SIP apply different lending policies to the
same firm. Our sample consists of six SIP but due to the lack of observations
on common requests of information within each SIP, we can only estimate the
coefficients for four of the six SIP in our sample. One star denotes significance
at the 10% level, two stars denote significance at the 5% level, and three stars
denote significance at the 1% level.
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Table B.III: Comparison between M&A and SIP trends
Panel A: M&A

Credit (BE) Interest Rate Spread (%) NPL (%)
Pre Mean 79.33 0.90 1.49

Standard Deviation 4.45 0.36 0.98
Post Mean 32.15 2.20 3.10

Standard Deviation 23.00 0.59 0.39
Difference -47.18*** 1.30*** 1.61***

Panel B: SIP
Credit (BE) Interest Rate Spread (%) NPL (%)

Pre Mean 61.00 1.19 1.87
Standard Deviation 8.13 0.41 1.21

Post Mean 34.63 2.03 4.32
Standard Deviation 10.27 0.17 0.91
Difference -26.38*** 0.84*** 2.45***

Panel C: Comparison M&A – SIP
Credit (BE) Interest Rate Spread (%) NPL (%)

Difference -20.80*** 0.45*** -0.84***

Notes: Panel A compares the average credit, interest rates and NPL of savings banks that did a M&A
before and after November 2009 based on the same semi-annual information used in Figure 3. We
report the semi-annual mean and standard deviation for each subperiod and the difference of the two
means. Panel B is analogous to Panel A but using savings banks that were part of SIP during the bank
consolidation period. Panel C reports the difference between the last rows of Panel A and Panel B, which
corresponds to the difference in differences mean. One star denotes significance at the 10% level, two stars
denote significance at the 5% level, and three stars denote significance at the 1% level. For additional
information on the construction of these variables, see the data appendix (in Appendix A).
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Table B.IV: Tests on pre-trends for M&A and SIP

(1) (2) (3) (4)
OLS, weighted average IR Weighted OLS, three maturity buckets

VARIABLES ∆Log(Amount) ∆Log(Amount) Spread Loans < 1M Spread Loans < 1M

M&A -0.036 0.044 -0.061 -0.005
[0.022] [0.033] [0.043] [0.032]

Observations 421,991 194,865 299 895
R-squared 0.109 0.492 0.860 0.709
Industry-Location-Size FE YES NO NO NO
Firm FE NO YES NO NO
Time FE NO NO YES YES
Maturity FE NO NO NO YES
Bank Controls YES YES YES YES
Firm Controls YES NO NO NO

Notes: Columns (1) and (2) report the results obtained from a regression analysis in which the dependent variable is the variation in the credit balance (both
drawn an undrawn) of a given firm i in a bank j between November 2007 and November 2009 (i.e., before the beginning of the restructuring program). The
dependent variable in columns (3) and (4) is the spread of the average monthly interest rate charged by a given credit institution j to new loans with size
below 1 million euro granted at month t to non-financial institutions over 3-month Euribor. More specifically, in column (3) the interest rate is obtained as
the weighted average across three maturity buckets (less than 1 year, between 1 and 5 years, more than 5 years), using as weights the new operations within
each maturity bucket, such that the unit of observation is bank-month. In column (4) we use the interest rate corresponding to each maturity bucket, such
that the unit of observation is bank-month-maturity and estimate the coefficients using a weighted OLS regression instead of the standard OLS regression we
run in columns (1)–(3). The set of control variables in columns (1) and (2) includes the bank and firm characteristics in Table IV whereas in columns (3) and
(4) we just use the bank characteristics (as listed in Table IV). We saturate the different specifications with alternative set of fixed effects: in column (1), we
use industry-location-size-time fixed effects whereas in column (2) we use firm fixed effects. The specifications in column (3) and (4) include year-month fixed
effects, and in column (4) we also add maturity fixed effects. The use of firm or time fixed effects implies that firm controls are not used in columns (2)–(4).
Standard errors, in brackets, are clustered at firm level in columns (1) and (2) and at bank level in columns (3) and (4). One star denotes significance at the
10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction
of these variables, see the data appendix (in Appendix A).
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Table B.V: Credit volume results – Specification with firm-bank fixed effects
(1) (2) (3)

VARIABLES All All All

Post x M&A -0.194*** -0.259*** -0.145***
[0.024] [0.035] [0.017]

Observations 792,542 350,700 527,614
R-squared 0.118 0.493 0.543
Industry-Location-Size-Time FE YES NO NO
Bank FE YES YES NO
Firm-Time FE NO YES NO
Firm-Bank FE NO NO YES
Time FE NO NO YES
Bank Controls YES YES YES
Firm Controls YES NO YES

Notes: This table is analogous to Table IV, with the only difference that in
column (3) we use a different specification of fixed effects. Specifically, columns
(1) and (2) correspond to columns (1) and (5) of Table IV, respectively, and are
included for comparability. Instead, in column (3) we use firm-bank and time
fixed effects. The use of firm fixed effects or firm-time fixed effects implies that
firm controls are not used in column (2). Robust standard errors in brackets
are clustered at firm level. One star denotes significance at the 10% level, two
stars denote significance at the 5% level, and three stars denote significance at
the 1% level. For additional information on the construction of these variables,
see the data appendix (in Appendix A).
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Table B.VI: Credit volume results – Clustering at the industry-province-size-bank level

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All SME Large All (Avg Level) All SME Large All (Avg Level)

Post x M&A -0.194*** -0.194*** -0.173 -0.041*** -0.259*** -0.263*** -0.192 -0.054***
[0.022] [0.022] [0.154] [0.011] [0.036] [0.037] [0.157] [0.017]

Observations 792,542 776,962 15,103 756,339 350,700 336,981 13,719 328,414
R-squared 0.118 0.119 0.221 0.477 0.493 0.496 0.445 0.720
Industry-Location-Size-Time FE YES YES YES YES NO NO NO NO
Bank FE YES YES YES YES YES YES YES YES
Firm-Time FE NO NO NO NO YES YES YES YES
Bank Controls YES YES YES YES YES YES YES YES
Firm Controls YES YES YES YES NO NO NO NO

Notes: This table is analogous to Table IV, with the only difference that robust standard errors in brackets are clustered at industry-location-size-time-bank
level. With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons
that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in column (1). The use of
firm-time fixed effects implies that firm controls are not used in columns (5)–(8). One star denotes significance at the 10% level, two stars denote significance
at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix
(in Appendix A).
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Table B.VII: NPL – Clustering at the industry-province-size-bank level

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All SME Large All (Avg Level) All SME Large All (Avg Level)

M&A -0.027*** -0.027*** -0.028 -0.018*** -0.024*** -0.024*** -0.028 -0.017***
[0.004] [0.004] [0.020] [0.003] [0.005] [0.006] [0.020] [0.004]

Observations 112,560 109,885 2,442 104,534 38,003 36,024 1,979 34,020
R-squared 0.221 0.222 0.409 0.237 0.724 0.726 0.698 0.803
Industry-Location-Size FE YES YES YES YES NO NO NO NO
Firm FE NO NO NO NO YES YES YES YES
Bank Controls YES YES YES YES YES YES YES YES
Firm Controls YES YES YES YES NO NO NO NO

Notes: This table is analogous to Table VI, with the only difference that robust standard errors in brackets are clustered at
industry-location-size-time-bank level. With industry-location-size fixed effects, splitting the full sample of firms in column (1) into SME and Large
firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal
the observations in column (1). The use of firm fixed effects implies that firm controls are not used in columns (5)–(8). One star denotes significance
at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the
construction of these variables, see the data appendix (in Appendix A).
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Table B.VIII: NPL – Sample with all firms
(1) (2) (3) (4)

VARIABLES All SME Large All (Avg Level)

Post x M&A -0.021** -0.022** -0.007 -0.043***
[0.009] [0.009] [0.068] [0.006]

Observations 792,542 776,962 15,103 756,339
R-squared 0.132 0.131 0.301 0.160
Industry-Location-Size-Time FE YES YES YES YES
Bank FE YES YES YES YES
Bank Controls YES YES YES YES
Firm Controls YES YES YES YES

Notes: This table is analogous to Table VI, with two differences. The first concerns the
dependent variable. In columns (1) - (3), it is defined as the difference between the log of NPL
between November 2009 and November 2007 for the pre period and between November 2011
and November 2009 for the post period. In column (4) we consider an alternative definition, as
given by the log of the average NPL over every quarter of the pre-event period and over every
quarter of the period spanning between the announcement of the merger and November 2011
for the post period. The second is that we use the full sample of firms, so that the number of
observations is the same as in Table IV, columns (1)–(4). With industry-location-size-time fixed
effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to
additional singletons that we exclude from our regressions; thus, the sum of the observations in
columns (2) and (3) does not equal the observations in column (1). One star denotes significance
at the 10% level, two stars denote significance at the 5% level, and three stars denote significance
at the 1% level. For additional information on the construction of these variables, see the data
appendix (in Appendix A).
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C. For Online Publication – Construction of the

CoVar regression

We measure the marginal contribution of each credit institution to the risk of the
system based on the CoVaR (i.e., the value at risk (VaR) of the financial system
conditional on an institution being under distress) of Adrian and Brunnermeier (2016).
This measure relies on the growth rate of the market value of total financial assets,
which is defined as the growth rate of the product of the market value of a given
institution i and its ratio of total assets to book equity. However, the shares of the
savings banks involved in the restructuring program of the Spanish banking system over
the period 2009–2011 were not listed. For this reason, we estimate a type of CoVaR
measure based on bonds issued by Spanish banks. These issuances are collected in a
proprietary dataset at the Banco de España.28 Thus, we adapt the CoVaR to measure
the sensitivity of a representative Spanish banking system bond yield to the increase of
the bonds yields of each specific credit institution. We first use quantile regressions at
the percentiles 50 and 90 to estimate the following equations using weekly data:29

Xj
t = αj + γjMt−1 + εjt (C.1)

Xsystem
t = αsystem|j + βsystem|jXj

t + γsystem|jMt−1 + ε
system|j
t (C.2)

where Xj
t is the percentage change of institution j average bond yield which is obtained

as a weighted average of the yields at a given week t of all individual outstanding bonds
issued by intuition j. Xsystem

t is the percentage change of the bond index yield. This yield
is just the equally weighted average of the average of yields of all institutions excluding
institution j. We consider two alternative measures of the system bond yield. First,
we consider the average yield obtained from the the bonds issued by the savings banks
used in our previous analyses. Second, we consider the average yield of a wider sample
of banks, which consists of all Spanish banks with outstanding bonds during the period
November 2007–November 2011. Mt−1 is a set of state variables that includes the VIX, the
percentage change in one-year Spanish sovereign bond, the spread of 12-month Euribor
over 1-year sovereign bond, the slope (10-year minus 1-year sovereign bonds), and the
differential of 10-year BBB corporate bond index minus 10-year sovereign bond.

We replace the coefficients obtained from equations (C.1) and (C.2) using quantile
regressions, in the following equations to obtain VaR and CoVaR at level q% as follows:

VaRj
t(q) = α̂jq + γ̂jqMt−1 (C.3)

CoVaRj
t(q) = α̂system|jq + β̂system|jq VaRj

t(q) + γ̂system|jq Mt−1 (C.4)

28We verify that all securities in Dealogic are part of our sample, which in addition contains some
others that are not in Dealogic. The sample of bonds used to estimate the CoVaR consists of those
securities for which we have information on their yields in Datastream. This information is available for
32 out of 37 credit institutions that are used in our sample. In total, we use information on 372 senior
unsecured bonds for which daily yields are available. Moreover, for some tests, we extend our sample
with the issuances of 13 additional Spanish banks and savings banks.

29The 90th percentile is associated to a higher risk than that of the 50th percentile, given that the
higher the increase in bond yields, the higher the increase in the risk of that bond.

53



Then, we obtain the marginal contribution of a given institution j to the overall risk of
the system, which is denoted by ∆CoVaRj

t , as the difference between CoVaRj
t conditional

on the distress of institution j (i.e., q=0.9) and the CoVaRj of the “normal” state of that
institution (i.e., q=0.5):

∆CoVaRj
t(90%) = CoVaRj

t(90%)− CoVaRj
t(50%) (C.5)

The CoVaR is estimated on a weekly basis and we convert it to a monthly frequency
by taking the maximum of the weekly CoVaRs within a given month. After estimating
the monthly ∆CoVaRj

t(90%) for each institution, we perform a regression analysis in
which the dependent variable is the ∆CoVaR of a given institution j in a given month
t (∆CoVaRj

t(90%)) and regress it on the ratio of NPL of institution j plus a series of
individual bank (Xjt) and global (Wt) control variables:

∆CoVaRj
t(90%) = αj + βNPLjt−1 + δXjt−1 + ηWt−1 + εjt (C.6)

where αj denotes the use of bank fixed effects and Xjt refers to the use of monthly bank
characteristics such as size (logarithm of total assets), leverage (total liabilities over total
assets), risk (ratio of NPL), liquidity (credit over deposits), profitability (ROA), and
FROB funds made available to each bank (relative to total assets). The set of global
control variables includes: VIX index, (log) changes in Spanish and European bank bond
indices and Spanish banks average bond yield.
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