Comments on, 'National Transportation Networks, Market Access, and Regional Economic Growth'

Ian Herzog

Matthew A. Turner

Brown University

July 24, 2020

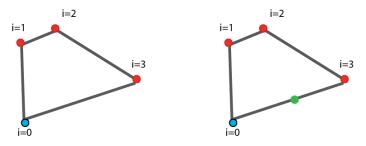
The effects of highways on growth

- Long panel of country level data on population, employment and payroll.
- A model that incorporates the effect of roads on commuting and trade explicitly.
- ► A new instrument. This is the main contribution.

Main regression:

$$y_{it} = ext{employment in county } i$$
, year t
 $R_{it} = ext{Highway km per km}^2 ext{ of county area}$
 $time_{ijt} = ext{travel time between counties } (i, j)$
 $MA_{it} = \sum_{\{j: |i-j| < 100 \text{km}\}} y_{jt_0} [time_{ijt}]^{-1.5}$

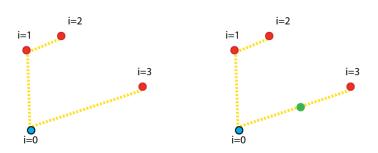
Estimate:


$$\ln y_{it} = A_0 + A_1 \ln MA_{it} + A_2 \ln R_{it} + \epsilon_{it}$$

$$\ln MA_{it} = B_0 + B_1 \ln z_{it}^1 + \eta_{it}$$

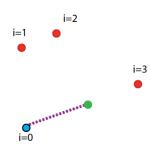
$$\ln R_{it} = C_0 + C_1 \ln z_{it}^2 + \mu_{it}$$

 z^1 is new.


Market Access and Incidental Connections

- ▶ Blue dots LHS cities
- ► Red dots cities targeted by 1947 highway plan. These are 'important places'.
- ► Green dot an 'unimportant place' (i.e., Radiator Springs).
- ▶ Black actual highway in t.

If green dots affect productivity of red dots only through trade, then we can evaluate the effect of MA_0 on y_0 by comparing these two cities. This is a neat generalization of Chandra and Thompson (RSUE 2000).


Market Access and Incidental Connections – highway plan

- ► Blue dots subject cities
- Red dots cities targeted by 1947 highway plan. These are important places.
- ► Green dot an 'unimportant place' (Radiator Springs).
- ► Yellow 1947 plan.

We can also do the corresponding comparison on the basis of planned highways. I don't see why this is better.

Market Access for Incidental Connections – highway plan

- ▶ Blue dots subject cities
- ► Red dots cities targets by 1947 highway plan. These are important places.
- ► Green dot an 'unimportant place' (Radiator Springs).
- ► Purple incidental connection 1947 plan.

We can also do the corresponding calculation for planned highways and incidental connections. This is the instrument the paper uses. Isn't this a little indirect? Recall, everything is in logs.

Other comments

This is an important question and there is now a pretty big literature on this. Differences across papers:

- MSAs vs counties
- ▶ years at 1950 to 2010 you are as good as anyone.
- long-differences versus changes-on-levels. (These nest in distributed lag model).
- ► Market Access versus quantity measures.
- Instruments.
- ... and structural papers.

Technique is clearly first order for the outcome. Please do a literature survey that lays all of this out and where you fit.

Other comments

The structural model doesn't link tightly to the reduced form results.

 Can you state your endogeneity problem and exogeneity condition explicitly in the context of the model? I think your instrument should be

```
z_{it} = (Market access) - (Market access w/o incidental cities)
```

This is the quasi-random component of market access, the part due to incidentally connected cities. I don't think you even need the 1947 highway plan. Stating your endogeneity problem precisely would let you explain why I am wrong (or not).

I expected to see covariance of pairwise transportation costs orthogonal to productivity and amenities in incidental cities as a moment condition used to estimate the model.