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“Knowledge is useful if it helps to make the best 
decisions.”

- Jacob Marschak (1953) 
“Economic Measurements for Policy and Predictions.” 
Cowles Monograph 13. 
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• “Statistical decision theory, following Wald (1950), is 
the dominant theory of optimal estimation in 
econometrics.”
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• Many economists interested in describing what has been 
found, not making any specific decision: inference vs. 
decision (Birnbaum Likelihood Principle, 1962).

• Discovery of unknown phenomena: not optimal 
estimation of a parameter of a distribution describing the 
data or useful in some decision.

Return to Table of Contents
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𝑓 𝑥, 𝜔 = 𝑔 𝑥 𝜔 𝑚 𝜔 = ℎ 𝜔 𝑥 𝑛(𝑥) (1)

• x is an observation (usually multi-dimensional) from 
one of a family of populations denoted by 
𝑔 𝑥 𝜔 ,𝜔 ∈ Ω, 𝑥 ∈ 𝑋

• 𝑔 𝑥 𝜔 is, for fixed 𝜔, a density function for x

Useful Backdrop:
Bayesian Statisticians and Remote Clients
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• 𝜔 is a set of parameters characterizing the distribution 
of x, sometimes called an "aspect of the world"; 

• 𝑚(𝜔) is a client's prior distribution for 𝜔. 

• This distribution is determined temporally prior to the 
client's decision but not necessarily prior to statistical 
analysis. 
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• The responsibility for choosing m(𝜔) rests with the 
client though he may choose a function that the 
statistician or some other agent formulates or helps 
formulate. 

• ℎ(𝜔|𝑥) is the conditional density for 𝜔 given 𝑥; 

• 𝑛(𝑥) is the marginal density for x;

• 𝑓(𝑥, 𝜔) is the marginal density for x, 𝜔;
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• Where z is a substantive outcome of a decision-
making process (e.g., net revenue, total profit and loss 
statement and balance sheet, votes, mortality 
experience); 

• u is a client's realized utility corresponding to outcome 
z; 

• 𝑘(𝑧|𝑎, 𝜔, 𝜆)is a density for outcomes; 

𝑢 = 𝑢 ̅(𝑧) (2)
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• a is a decision or action taken by client; 

• 𝜆 represents factors beyond the control of the client 
that affect outcome but not observation-another 
"aspect of the world"; 

• 𝑟(𝜆) is the client's subjective distribution of 𝜆; and 

• 𝑋,Ω, 𝐴, 𝑍 and Λ are sets of possible values of 𝑥, 𝜔, 𝑎, 𝑧
and 𝜆.
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• Let 𝑥0 be a particular value of x and let 𝑢 𝑎, 𝑥0
denote the client’s expected utility corresponding to 
act 𝑎 after 𝑥0 has bee observed, viz., 

[𝑎│𝑎, 𝑥_0 ]

= ∫ 𝛬∫ 𝛺∫ 𝑧 𝑢 ̃(𝑧)𝑘(𝑧│𝑎, 𝜔, 𝜆)ℎ(𝜔│𝑥_0 )𝑟(𝜆) 𝑑𝑧𝑑𝜔𝑑𝜆

(3)

• Define

[𝑢^ ∗ │𝐴, 𝑥_0 ] =
max
𝑎 ∈ 𝐴

[𝑢|𝑎, 𝑥_0] (4)

• Let 𝑥0 be a particular value of x and let 𝑢 𝑎, 𝑥0
denote the client’s expected utility corresponding to 
act 𝑎 after 𝑥0 has bee observed, viz., 
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• 𝑎𝑥0
∗ will denote an act which maximizes the integral in 

equation (3).

• 𝑎𝑥0
∗ and 𝑢∗ 𝐴, 𝑥0 will be said to be associated with a 

complete Bayesian solution to the indicated decision 
problem. 
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A. The data, 𝑥0.

B. The full likelihood function based on the observations, 𝑔(𝑥0|𝜔)or on a 
sufficient statistic, 𝑔(𝑦0|𝜔) where 𝑦0 =  𝑦(𝑥0) and  𝑦 is a sufficient 
statistic.

C. A partial likelihood function,  𝑔(𝜔0|𝜔) where 𝜔0 =  𝜔(𝑥0) and  𝜔 is a 
nonsufficient statistic.

D. A distribution free likelihood function.

E. Posterior distributions for representative prior distributions.

F. Solutions to representative decision problems.

G. Contour maps or systems of snug regions in the parameter space. 

Parcels of Information

Return to Table of Contents
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• Observe data 𝒳 ∈ 𝒳 for 𝒳: a finite sample space,
𝒳 < ∞.

This Paper
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• Distribution of 𝑋 governed by a parameter 𝜃 ∈ Θ, 
with 𝑋|𝜃~𝐹𝜃, for Θ a finite parameter space.
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• 𝐹𝜃 has support equal to 𝒳 for all 𝜃 ∈ Θ.
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• The analyst publicly commits to 
rule c: 𝒳 × 0,1 → Δ 𝒟 .

• Maps from realizations of the data 𝑋 and the public 
random variable 𝑉 into a distribution over decisions 𝑑 ∈
𝒟, for 𝒟 a finite space. 

• Let 𝒞 denote the set of all such rules.

• 𝑐 𝑋, 𝑉 ∈ 𝒟 denotes the random realization from a 
given rule 𝑐 ∈ 𝒞.
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• Rules are evaluated by their performance with 
respect to a closed set 𝒜 ⊆ Δ(Θ) of priors on the 
parameter space: audience.
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• The ordering of rules under the risk function 𝜌(⋅,⋅)
may depend on the prior 𝑎 ∈ 𝒜.
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Definition 1. For a given risk function 𝜌(⋅,⋅) and audience 𝓐, a 
rule 𝑐∗ ∈ 𝒞 is 

• admissible if there exists no rule 𝑐 ∈ 𝒞 such that 𝜌 𝑐, 𝑎 ≤
𝜌 𝑐∗, 𝑎 for all, with strict inequality for at least one 𝑎 ∈ 𝓐.

• 𝜔-optimal if for a probability measure 𝜔 with support equal to 
𝓐.

• minimax if 
sup
𝑎 ∈ 𝒜

𝜌 𝑐∗, 𝑎 =
inf
𝑐 ∈ 𝒞

sup
𝑎 ∈ 𝒜

𝜌 𝑐, 𝑎 .

 
𝒜

𝜌 𝑐∗, 𝑎 𝑑𝜔 𝑎 =
inf
𝑐 ∈ 𝒞

 
𝒜

𝜌 𝑐, 𝑎 𝑑𝜔 𝑎 .
(1)
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Definition 2. Fix a loss function 𝐿:𝒟 × Θ → ℝ≥0. Then: 

• The communication model takes 𝒜 = 𝛥(𝛩)

𝜌 𝑐, 𝑎 = 𝑅𝑎
∗ 𝑐 = 𝐸𝑎

min
𝑑
𝐸𝑎 𝐿 𝑑, 𝜃 𝑐 𝑋, 𝑉 , 𝑉 ,

• 𝑅𝑎
∗ 𝑐 the communication risk of rule 𝑐 ∈ 𝒞 for prior 𝑎 ∈ Δ Θ

and 𝐸𝑎 the expectation under 𝑎.
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• The decision model takes 𝒜 = Δ(Θ) and

𝜌 𝑐, 𝑎 = 𝑅𝑎 𝑐 = 𝐸𝑎[𝐿(𝑐 𝑋, 𝑉 , 𝜃)]

for 𝑅𝑎 𝑐 the decision risk of rule 𝑐 ∈ 𝒞 for prior 𝑎 ∈ Δ Θ .
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• The classical model takes 𝒜 to be the vertices of Δ Θ , such 
that each prior 𝑎 ∈ 𝒜 places probability 1 on some 𝜃 𝑎 ∈ Θ, 
and takes

𝜌 𝑐, 𝑎 = 𝑅𝜃 𝑎 𝑐 = 𝐸𝜃(𝑎)[𝐿(𝑐 𝑋, 𝑉 , 𝜃 𝑎 )]

for 𝑅𝜃 𝑎 (𝑐) the frequentist risk of rule 𝑐 ∈ 𝒞 for the parameter 

𝜃 𝑎 ∈ Θ.
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• Definition 4. Let 𝒫 be the set of partitions of 𝒳, with generic 
element 𝑃 ∈ 𝒫. Let 𝒫∗ denote the subset of 𝒫 such that for every 
cell 𝒳𝑝 ∈ 𝑃 ∈ 𝒫∗, each agent has at least one decision 𝑑 ∈ 𝒟 that 

is optimal for every 𝑋 ∈ 𝒳𝑝. That is,

𝒫∗

= 𝑃 ∈ 𝒫: ∩𝑥∈𝒳𝑝
argmin
𝑑 ∈ 𝒟

𝐸𝑎 𝐿 𝑑, 𝜃 𝑋 ≠ ∅ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒳𝑝 ∈ 𝑃, 𝑎 ∈ Δ Θ .

• The effective size of the sample space 𝓧, denoted 𝑁(𝒳), is the 
minimal size of a partition in 𝒫∗.
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Corollary 1.

If (i) there exists a decision 𝑑 ∈ 𝒟 that is dominated in loss, and 

(ii) 𝒩 𝒳 ≥ |𝒟|, 

then any rule 𝑐 ∈ 𝒞 that is admissible under the classical model is 
inadmissible under the communication model, and vice versa.
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Corollary 4. 

If (i) there exists a decision 𝑑 ∈ 𝒟 that is dominated in loss, and 

(ii) 𝒩 𝒳 ≥ |𝒟|; then any rule 𝑐∗ ∈ 𝒞 that is minimax and 
admissible under the decision (or classical) model is minimax and 
inadmissible under the communication model. 
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