Discussion of "A Model of Scientific Communication"

by Isaiah Andrews and Jesse M. Shapiro February (2020)

James J. Heckman

NBER Summer Institute – Labor Studies July 22nd, 2020

Table of Contents

- 1. Introduction
- 2. Bayesian Statisticians and Remote Clients (Hildreth)
- 3. This Paper

"Knowledge is useful if it helps to make the best decisions."

Jacob Marschak (1953) *"Economic Measurements for Policy and Predictions."*Cowles Monograph 13.

 "Statistical decision theory, following Wald (1950), is the dominant theory of **optimal** estimation in econometrics."

4

- Many economists interested in describing what has been found, not making any specific decision: inference vs. decision (Birnbaum <u>Likelihood Principle</u>, 1962).
- Discovery of unknown phenomena: not optimal estimation of a parameter of a distribution describing the data or useful in some decision.

Return to Table of Contents

Useful Backdrop: Bayesian Statisticians and Remote Clients

$$f(x,\omega) = g(x|\omega)m(\omega) = h(\omega|x)n(x)$$
 (1)

- x is an observation (usually multi-dimensional) from one of a family of populations denoted by g(x|ω), ω ∈ Ω, x ∈ X
- $g(x|\omega)$ is, for fixed ω , a density function for x

- ω is a set of parameters characterizing the distribution of x, sometimes called an "aspect of the world";
- $m(\omega)$ is a client's prior distribution for ω .
- This distribution is determined temporally prior to the client's decision but not necessarily prior to statistical analysis.

7

- The responsibility for choosing m(ω) rests with the client though he may choose a function that the statistician or some other agent formulates or helps formulate.
- $h(\omega|x)$ is the conditional density for ω given x;
- n(x) is the marginal density for x;
- $f(x, \omega)$ is the marginal density for x, ω ;

$$u = u(z) \tag{2}$$

9

- Where z is a substantive outcome of a decisionmaking process (e.g., net revenue, total profit and loss statement and balance sheet, votes, mortality experience);
- *u* is a client's realized utility corresponding to outcome z;
- $k(z|a, \omega, \lambda)$ is a density for outcomes;

- *a* is a decision or action taken by client;
- λ represents factors beyond the control of the client that affect outcome but not observation-another "aspect of the world";
- $r(\lambda)$ is the client's subjective distribution of λ ; and
- X, Ω, A, Z and Λ are sets of possible values of x, ω, a, z and λ.

 Let x₀ be a particular value of x and let [u|a, x₀] denote the client's expected utility corresponding to act a after x₀ has bee observed, viz.,

$$\begin{bmatrix} a & x_0 \end{bmatrix} = \int \Lambda \int \Omega \int z \, \tilde{u}(z) k(z \mid a, \omega, \lambda) h(\omega \mid x_0) r(\lambda) \, dz d\omega d\lambda$$
(3)

Define

$$[u^* * | A, x_0] = \max_{a \in A} [u|a, x_0]$$
(4)

 Let x₀ be a particular value of x and let [u|a, x₀] denote the client's expected utility corresponding to act a after x₀ has bee observed, viz.,

- $a_{\chi_0}^*$ will denote an act which maximizes the integral in equation (3).
- a^{*}_{x₀} and [u^{*}|A, x₀] will be said to be associated with a complete Bayesian solution to the indicated decision problem.

Parcels of Information

- A. The data, x_0 .
- B. The full likelihood function based on the observations, $g(x_0|\omega)$ or on a sufficient statistic, $g(y_0|\omega)$ where $y_0 = \tilde{y}(x_0)$ and \tilde{y} is a sufficient statistic.
- C. A partial likelihood function, $\ddot{g}(\omega_0|\omega)$ where $\omega_0 = \tilde{\omega}(x_0)$ and $\tilde{\omega}$ is a nonsufficient statistic.
- D. A distribution free likelihood function.
- E. Posterior distributions for representative prior distributions.
- F. Solutions to representative decision problems.
- G. Contour maps or systems of snug regions in the parameter space.

Return to Table of Contents

• Distribution of X governed by a parameter $\theta \in \Theta$, with $X | \theta \sim F_{\theta}$, for Θ a finite parameter space.

- The analyst publicly commits to rule $c: \mathcal{X} \times [0,1] \rightarrow \Delta(\mathcal{D})$.
- Maps from realizations of the data X and the public random variable V into a distribution over decisions d ∈ D, for D a finite space.
- Let C denote the set of all such rules.
- $c(X, V) \in \mathcal{D}$ denotes the random realization from a given rule $c \in \mathcal{C}$.

• Rules are evaluated by their performance with respect to a closed set $\mathcal{A} \subseteq \Delta(\Theta)$ of priors on the parameter space: **audience**.

• The ordering of rules under the risk function $\rho(\cdot, \cdot)$ may depend on the prior $a \in \mathcal{A}$.

<u>Definition 1</u>. For a given risk function $\rho(\cdot, \cdot)$ and audience \mathcal{A} , a rule $c^* \in \mathcal{C}$ is

- admissible if there exists no rule $c \in C$ such that $\rho(c, a) \leq \rho(c^*, a)$ for all, with strict inequality for at least one $a \in A$.
- ω -optimal if for a probability measure ω with support equal to \mathcal{A} .

$$\int_{\mathcal{A}} \rho(c^*, a) d\omega(a) = \inf_{c \in \mathcal{C}} \int_{\mathcal{A}} \rho(c, a) d\omega(a).$$
⁽¹⁾

• minimax if

$$\sup_{a \in \mathcal{A}} \rho(c^*, a) = \frac{\inf \sup_{c \in \mathcal{C}} \sup_{a \in \mathcal{A}} \rho(c, a).$$

Definition 2. Fix a loss function $L: \mathcal{D} \times \Theta \to \mathbb{R}_{\geq 0}$. Then:

• The communication model takes $\mathcal{A} = \Delta(\Theta)$

$$\rho(c,a) = R_a^*(c) = E_a \begin{bmatrix} \min_{d} E_a[L(d,\theta)|c(X,V),V] \end{bmatrix},$$

• $R_a^*(c)$ the **communication risk** of rule $c \in C$ for prior $a \in \Delta(\Theta)$ and E_a the expectation under a. • The decision model takes $\mathcal{A} = \Delta(\Theta)$ and

$$\rho(c,a) = R_a(c) = E_a[L(c(X,V),\theta)]$$

for $R_a(c)$ the **decision risk** of rule $c \in C$ for prior $a \in \Delta(\Theta)$.

• The classical model takes \mathcal{A} to be the vertices of $\Delta(\Theta)$, such that each prior $a \in \mathcal{A}$ places probability 1 on some $\theta(a) \in \Theta$, and takes

$$\rho(c,a) = R_{\theta(a)}(c) = E_{\theta(a)}[L(c(X,V),\theta(a))]$$

for $R_{\theta(a)}(c)$ the **frequentist risk** of rule $c \in C$ for the parameter $\theta(a) \in \Theta$.

• **Definition 4.** Let \mathcal{P} be the set of partitions of \mathcal{X} , with generic element $P \in \mathcal{P}$. Let \mathcal{P}^* denote the subset of \mathcal{P} such that for every cell $\mathcal{X}_p \in P \in \mathcal{P}^*$, each agent has at least one decision $d \in \mathcal{D}$ that is optimal for every $X \in \mathcal{X}_p$. That is,

 $= \left\{ P \in \mathcal{P}: \left\{ \bigcap_{x \in \mathcal{X}_p} \operatorname{arg\,min}_{d \in \mathcal{D}} E_a[L(d, \theta) | X] \right\} \neq \emptyset \text{ for all } \mathcal{X}_p \in P, a \in \Delta(\Theta) \right\}.$

• The effective size of the sample space X, denoted N(X), is the minimal size of a partition in \mathcal{P}^* .

 \mathcal{P}^*

Corollary 1.

If (i) there exists a decision $d \in D$ that is dominated in loss, and

(ii) $\mathcal{N}(\mathcal{X}) \geq |\mathcal{D}|$,

then any rule $c \in C$ that is admissible under the classical model is inadmissible under the communication model, and vice versa.

Corollary 4.

If (i) there exists a decision $d \in D$ that is dominated in loss, and

(ii) $\mathcal{N}(\mathcal{X}) \geq |\mathcal{D}|$; then any rule $c^* \in \mathcal{C}$ that is minimax and admissible under the decision (or classical) model is minimax and inadmissible under the communication model.

Return to Table of Contents