

The End of Economic Growth? Unintended Consequences of a Declining Population

Chad Jones

NBER Growth Meeting July 2020

- People \Rightarrow ideas \Rightarrow economic growth
 - Romer (1990), Aghion-Howitt (1992), Grossman-Helpman
 - Jones (1995), Kortum (1997), Segerstrom (1998)
 - And most idea-driven growth models
- The future of global population?
 - Conventional view: stabilize at 8 or 10 billion
- Bricker and Ibbotson's Empty Planet (2019)
 - Maybe the future is negative population growth
 - High income countries already have fertility below replacement!

The Total Fertility Rate (Live Births per Woman)

What happens to economic growth if population growth is negative?

- Exogenous population decline
 - Empty Planet Result: Living standards stagnate as population vanishes!
 - Contrast with standard Expanding Cosmos result: exponential growth for an exponentially growing population
- Endogenous fertility
 - Parameterize so that the equilibrium features negative population growth
 - A planner who prefers Expanding Cosmos can get trapped in an Empty Planet
 - if society delays implementing the optimal allocation

Literature Review

- Many models of fertility and growth (but not n < 0)
 - Too many papers to fit on this slide!
- Falling population growth and declining dynamism
 - $\,\circ\,$ Krugman (1979) and Melitz (2003) are semi-endogenous growth models
 - Karahan-Pugsley-Sahin (2019), Hopenhayn-Neira-Singhania (2019), Engbom (2019), Peters-Walsh (2019)
- Negative population growth
 - Feyrer-Sacerdote-Stern (2008) and changing status of women
 - Christians (2011), Sasaki-Hoshida (2017), Sasaki (2019a,b) consider capital, land, and CES
 - o Detroit? Or world in 25,000 BCE?

The Empty Planet Result

A Simplified Romer/AH/GH Model

Production of goods (IRS) $Y_t = A_t^\sigma N_t$ Production of ideas $\frac{\dot{A}_t}{A_t} = \alpha N_t$ Constant population $N_t = N$

Income per person: levels and growth

 $y_t \equiv Y_t / N_t = A_t^{\sigma}$ $\frac{\dot{y}_t}{y_t} = \sigma \frac{\dot{A}_t}{A_t} = \sigma \alpha N$

- Exponential growth with a constant population
 - But population growth means exploding growth? (Semi-endogenous fix)

Negative Population Growth in Romer/AH/GH

 $\begin{array}{ll} \mbox{Production of goods (IRS)} & Y_t = A_t^\sigma N_t \\ & \mbox{Production of ideas} & & \\ & \frac{\dot{A}_t}{A_t} = \alpha N_t \\ & \mbox{Exogenous population decline} & & N_t = N_0 e^{-\eta t} \end{array}$

• Combining the 2nd and 3rd equations (note $\eta > 0$)

$$\frac{\dot{A}_t}{A_t} = \alpha N_0 e^{-\eta t}$$

This equation is easily integrated...

The Empty Planet Result in Romer/GH/AH

• The stock of knowledge A_t is given by

$$\log A_t = \log A_0 + \frac{g_{A0}}{\eta} \left(1 - e^{-\eta t} \right)$$

where g_{A0} is the initial growth rate of A

• A_t and $y_t \equiv Y_t/N_t$ converge to constant values A^* and y^* :

$$A^* = A_0 \exp\left(\frac{g_{A0}}{\eta}\right)$$
$$y^* = y_0 \exp\left(\frac{g_{y0}}{\eta}\right)$$

Empty Planet Result: Living standards stagnate as the population vanishes!

Semi-Endogenous Growth

Production of goods (IRS) $Y_t = A_t^{\sigma} N_t$ Production of ideas $\frac{\dot{A}_t}{A_t} = \alpha N_t^{\lambda} A_t^{-\beta}$ Exogenous population growth $N_t = N_0 e^{nt}, n > 0$

Income per person: levels and growth

 $y_t = A_t^{\sigma}$ and $A_t^* \propto N_t^{\lambda/\beta}$ $g_y^* = \gamma n$, where $\gamma \equiv \lambda \sigma/\beta$

• Expanding Cosmos: Exponential income growth for growing population

Negative Population Growth in the Semi-Endogenous Setting

 $\begin{array}{ll} \mbox{Production of goods (IRS)} & Y_t = A_t^{\sigma} N_t \\ & \\ \mbox{Production of ideas} & & \\ & \\ \hline \dot{A}_t = \alpha N_t^{\lambda} A_t^{-\beta} \\ & \\ \mbox{Exogenous population decline} & & \\ & N_t = N_0 e^{-\eta t} \end{array}$

• Combining the 2nd and 3rd equations:

$$\frac{\dot{A}_t}{A_t} = \alpha N_0^{\lambda} e^{-\lambda \eta t} A_t^{-\beta}$$

Also easily integrated...

The Empty Planet in a Semi-Endogenous Framework

• The stock of knowledge A_t is given by

$$A_t = A_0 \left(1 + \frac{\beta g_{A0}}{\lambda \eta} \left(1 - e^{-\lambda \eta t} \right) \right)^{1/\beta}$$

• Let $\gamma \equiv \lambda \sigma / \beta$ = overall degree of increasing returns to scale.

• Both A_t and income per person $y_t \equiv Y_t/N_t$ converge to constant values A^* and y^* :

$$egin{aligned} A^* &= A_0 \left(1 + rac{eta g_{A0}}{\lambda \eta}
ight)^{1/eta} \ y^* &= y_0 \left(1 + rac{g_{y0}}{\gamma \eta}
ight)^{\gamma/\lambda} \end{aligned}$$

First Key Result: The Empty Planet

- Fertility has trended down: 5, 4, 3, 2, and less in rich countries
 - For a family, nothing special about "above 2" vs "below 2"
- But macroeconomics makes this distinction critical!
 - Negative population growth may condemn us to stagnation on an Empty Planet
 Stagnating living standards for a population that vanishes
 - Vs. the exponential growth in income and population of an Expanding Cosmos

Endogenous Fertility

The Economic Environment

 ℓ = time having kids instead of producing goods

Final output $Y_t = A_t^{\sigma} (1 - \ell_t) N_t$ $\frac{N_t}{N_t} = n_t = b(\ell_t) - \delta$ Population growth $b(\ell_t) = \bar{b}\ell_t$ Fertility $\frac{\dot{A}_t}{A_t} = N_t^{\lambda} A_t^{-\beta}$ Ideas Generation 0 utility $U_0 = \int_0^\infty e^{-\rho t} u(c_t, \tilde{N}_t) dt, \quad \tilde{N}_t \equiv N_t/N_0$ $u(c_t, \tilde{N}_t) = \log c_t + \epsilon \log \tilde{N}_t$ Flow utility Consumption $c_t = Y_t / N_t$

Overview of Endogenous Fertility Setup

- All people generate ideas here
 - Learning by doing vs separate R&D
- Equilibrium: ideas are an externality (simple)
 - We have kids because we like them
 - We ignore that they might create ideas that benefit everyone
 - Planner will desire higher fertility
- This is a modeling choice other results are possible
- · Abstract from the demographic transition. Focus on where it settles

Steady State Knowledge Growth

KNOWLEDGE GROWTH, g_A

Key Features of the Equilibrium and Optimal Allocations

· Fertility in both

$$n = \bar{b}\ell - \delta$$
$$\ell = 1 - \frac{1}{\bar{b}V}$$

where V is the "utility value of people" (eqm vs optimal). Therefore

$$n(V) = \bar{b} - \delta - \frac{1}{V}$$

- Equilibrium: value kids because we love them (only): $V^{eqm} = rac{\epsilon}{
 ho}$
 - We can support n < 0 as an equilibrium for some parameter values
- Planner also values the ideas our kids will produce: $V^{sp} = \frac{\epsilon + \mu \dot{A}}{\rho} \Rightarrow V(n)$

A Unique Steady State for the Optimal Allocation when $n_{eq}^* > 0$

Multiple Steady State Solutions when $n_{eq}^* < 0$

Transition Dynamics

- State variables: N_t and A_t
- Redefine "state-like" variables for transition dynamics solution: N_t and

 $x_t \equiv A_t^{\beta}/N_t^{\lambda}$ = "Knowledge per person"

• Why?

$$rac{\dot{A}_t}{A_t} = rac{N_t^\lambda}{A_t^eta} = rac{1}{x_t}$$

Key insight: optimal fertility only depends on x_t

- Note: *x* is the ratio of *A* and *N*, two stocks that are each good for welfare.
 - So a bigger *x* is not necessarily welfare improving.

Equilibrium Transition Dynamics

POPULATION GROWTH, n(x)

KNOWLEDGE PER PERSON, x

Optimal Population Growth

KNOWLEDGE PER PERSON, x

The Middle Steady State: Unstable Spiral Dynamics

POPULATION GROWTH, n(x)

Population Growth Near the Middle Steady State

0.7 г 50.79 0.6 60.86 Welfare in red 0.5 69.85 0.4 78.01 0.3 0.2 83.74 Middle Steady State 0.1 87.19 69.12 87.19 0 83.67 77.75 83.74 87.30 -0.1 -0.2 -0.3 1000 1500 2000 2500 3000 3500

POPULATION GROWTH, n(x) (percent)

KNOWLEDGE PER PERSON, x

Even the optimal allocation can get trapped

POPULATION GROWTH, n(x)

KNOWLEDGE PER PERSON, x

Conclusion

- Fertility has trended down: 5, 4, 3, 2, and less in rich countries
 - For a family, nothing special about "above 2" vs "below 2"
- But macroeconomics makes this distinction critical:
 - Negative population growth may condemn us to stagnation on an Empty Planet
 - Vs. the exponential growth in income and population of an Expanding Cosmos
- Surprise: Even the optimum can get trapped in the Empty Planet if society delays.

Fertility considerations may be more important than we thought!

Extra Slides

Parameter values

•
$$g_{y0} = 2\%$$
, $\eta = 1\%$

$$\circ \ eta = 3 \ \Rightarrow \ \gamma = 1/3$$
 (from BJVW)

• How far away is the long-run stagnation level of income?

 y^*/y_0

Romer/AH/GH 7.4 Semi-endog 1.9

The Empty Planet result occurs in both, but quantitative difference

A Competitive Equilibrium with Externalities

• Representative generation takes w_t as given and solves

$$\max_{\{\ell_t\}} \int_0^\infty e^{-\rho t} u(c_t, \tilde{N}_t) dt$$

subject to

$$\dot{N}_t = (b(\ell_t) - \delta)N_t$$
 $c_t = w_t(1 - \ell_t)$

- Equilibrium wage $w_t = MP_L = A_t^{\sigma}$
- · Rest of economic environment closes the equilibrium

Solving for the equilibrium

• The Hamiltonian for this problem is

 $\mathcal{H} = u(c_t, \tilde{N}_t) + v_t [b(\ell_t) - \delta] N_t$

where v_t is the shadow value of another person.

- Let $V_t \equiv v_t N_t$ = shadow value of the population
- · Equilibrium features constant fertility along transition path

$$V_t = rac{\epsilon}{
ho} \equiv V_{eq}^*$$
 $\ell_t = 1 - rac{1}{ar b V_t} = 1 - rac{1}{ar b V_{eq}^*} = 1 - rac{
ho}{ar b \epsilon} \equiv \ell_{eq}$

Discussion of the Equilibrium Allocation

$$n^{eq} = \bar{b} - \delta - \frac{\rho}{\epsilon}$$

- We can choose parameter values so that $n^{eq} < 0$
 - Constant, negative population growth in equilibrium
- · Remaining solution replicates the exogenous fertility analysis

The Empty Planet result can arise in equilibrium

The Optimal Allocation

The Optimal Allocation

- · Choose fertility to maximize the welfare of a representative generation
- Problem:

$$\max_{\{\ell_t\}}\int_0^\infty e^{-\rho t}u(c_t,\tilde{N}_t)dt$$

subject to

$$\begin{split} \dot{N}_t &= (b(\ell_t) - \delta) N_t \\ \frac{\dot{A}_t}{A_t} &= N_t^\lambda A_t^{-\beta} \\ c_t &= Y_t / N_t \end{split}$$

Optimal allocation recognizes that offspring produce ideas

Solution

• Hamiltonian:

 $\mathcal{H} = u(c_t, \tilde{N}_t) + \mu_t N_t^{\lambda} A_t^{1-\beta} + v_t(b(\ell_t) - \delta) N_t$

 μ_t is the shadow value of an idea v_t is the shadow value of another person

• First order conditions

$$\ell_t = 1 - \frac{1}{\bar{b}V_t}, \text{ where } V_t \equiv v_t N_t$$

$$\rho = \frac{\dot{\mu}_t}{\mu_t} + \frac{1}{\mu_t} \left(u_c \sigma \frac{y_t}{A_t} + \mu_t (1 - \beta) \frac{\dot{A}_t}{A_t} \right)$$

$$\rho = \frac{\dot{v}_t}{v_t} + \frac{1}{v_t} \left(\frac{\epsilon}{N_t} + \mu_t \lambda \frac{\dot{A}_t}{N_t} + v_t n_t \right)$$

Steady State Conditions

• The social value of people in steady state is

$$V_{sp}^{*}=v_{t}^{*}N_{t}^{*}=rac{\epsilon+\lambda z^{*}}{
ho}$$

where z denotes the social value of new ideas:

$$z^* \equiv \mu_t^* \dot{A}_t^* = \frac{\sigma g_A^*}{\rho + \beta g_A^*}$$

• If $n_{sv}^* > 0$, then we have an **Expanding Cosmos** steady state

$$g_A^* = rac{\lambda n_{sp}^*}{eta}$$

 $g_y^* = \gamma n_{sp}^*$, where $\gamma \equiv rac{\lambda \sigma}{eta}$

Optimal Steady State(s)

• Two equations in two unknowns (V, n)

$$V(n) = \begin{cases} \frac{1}{\rho} \left(\epsilon + \frac{\gamma}{1 + \frac{p}{\lambda n}} \right) & \text{if } n > 0\\ \frac{\epsilon}{\rho} & \text{if } n \le 0 \end{cases}$$

$$n(V) = \overline{b}\ell(V) - \delta = \overline{b} - \delta + \frac{1}{V}$$

• We show the solution graphically

Parameter Values for Numerical Solution

Parameter/Moment	Value	Comment
σ	1	Normalization
λ	1	Duplication effect of ideas
eta	1.25	BJVW
ho	.01	Standard value
δ	1%	Death rate
n^{eq}	-0.5%	Suggested by Europe, Japan, U.S.
leq	1/8	Time spent raising children

Result	Value	Comment
\bar{b}	.040	$n^{eq}=ar{b}\ell^{eq}-\delta=-0.5\%$
ϵ	.286	From equation for ℓ^{eq}
n^{sp}	1.74%	From equations for ℓ^{sp} and n^{sp}
ℓ^{sp}	0.68	From equations for ℓ^{sp} and n^{sp}
$g_y^{sp} = g_A^{sp}$	1.39%	Equals γn^{sp} with $\sigma = 1$

The Economics of Multiple SS's and Transition Dynamics

The High SS is saddle path stable as usual

- Equilbrium fertility depends on utility value of kids
- \circ Planner also values the ideas the kids will produce $\Rightarrow n_t^{sp} > n_t^{eq}$

• Why is there a low SS?

- o Diminishing returns to each input, including ideas
- As knowledge per person, x, goes to ∞ , the "idea value" of an extra kid falls to zero \Rightarrow $n_{sp}(x) \rightarrow n_{eq}$

• Why is the low SS stable?

- Since $n_{eq} < 0$, we also have $n_{sp}(x) < 0$ for x sufficiently high
- \circ With $n_{sp}(x) < 0$, $x = A^{eta}/N^{\lambda}$ *rises* over time

What about the middle candidate steady state?

- · Linearize the FOCs. Dynamic system has
 - imaginary eigenvalues
 - with positive real parts
- So the middle SS is an unstable spiral a "Skiba point" (Skiba 1978)
- Numerical solution reveals what is going on...