The End of Economic Growth?
 Unintended Consequences of a Declining Population

Chad Jones

NBER Growth Meeting

July 2020

Key Role of Population

- People \Rightarrow ideas \Rightarrow economic growth
- Romer (1990), Aghion-Howitt (1992), Grossman-Helpman
- Jones (1995), Kortum (1997), Segerstrom (1998)
- And most idea-driven growth models
- The future of global population?
- Conventional view: stabilize at 8 or 10 billion
- Bricker and Ibbotson's Empty Planet (2019)
- Maybe the future is negative population growth
- High income countries already have fertility below replacement!

The Total Fertility Rate (Live Births per Woman)

- Exogenous population decline
- Empty Planet Result: Living standards stagnate as population vanishes!
- Contrast with standard Expanding Cosmos result: exponential growth for an exponentially growing population
- Endogenous fertility
- Parameterize so that the equilibrium features negative population growth
- A planner who prefers Expanding Cosmos can get trapped in an Empty Planet - if society delays implementing the optimal allocation

Literature Review

- Many models of fertility and growth (but not $n<0$)
- Too many papers to fit on this slide!
- Falling population growth and declining dynamism
- Krugman (1979) and Melitz (2003) are semi-endogenous growth models
- Karahan-Pugsley-Sahin (2019), Hopenhayn-Neira-Singhania (2019), Engbom (2019), Peters-Walsh (2019)
- Negative population growth
- Feyrer-Sacerdote-Stern (2008) and changing status of women
- Christians (2011), Sasaki-Hoshida (2017), Sasaki (2019a,b) consider capital, land, and CES
- Detroit? Or world in 25,000 BCE?

The Empty Planet Result

A Simplified Romer/AH/GH Model

Production of goods (IRS)

Production of ideas

Constant population

$$
Y_{t}=A_{t}^{\sigma} N_{t}
$$

$$
\frac{\dot{A}_{t}}{\bar{A}_{t}}=\alpha N_{t}
$$

$$
N_{t}=N
$$

- Income per person: levels and growth

$$
\begin{aligned}
& y_{t} \equiv Y_{t} / N_{t}=A_{t}^{\sigma} \\
& \frac{\dot{y}_{t}}{y_{t}}=\sigma \frac{\dot{A}_{t}}{A_{t}}=\sigma \alpha N
\end{aligned}
$$

- Exponential growth with a constant population
- But population growth means exploding growth? (Semi-endogenous fix)

Negative Population Growth in Romer/AH/GH

Production of goods (IRS)

Production of ideas

Exogenous population decline

$$
Y_{t}=A_{t}^{\sigma} N_{t}
$$

$$
\frac{\dot{A}_{t}}{A_{t}}=\alpha N_{t}
$$

$$
N_{t}=N_{0} e^{-\eta t}
$$

- Combining the 2nd and 3rd equations (note $\eta>0$)

$$
\frac{\dot{A}_{t}}{A_{t}}=\alpha N_{0} e^{-\eta t}
$$

- This equation is easily integrated...

The Empty Planet Result in Romer/GH/AH

- The stock of knowledge A_{t} is given by

$$
\log A_{t}=\log A_{0}+\frac{g_{A 0}}{\eta}\left(1-e^{-\eta t}\right)
$$

where $g_{A 0}$ is the initial growth rate of A

- A_{t} and $y_{t} \equiv Y_{t} / N_{t}$ converge to constant values A^{*} and y^{*} :

$$
\begin{aligned}
A^{*} & =A_{0} \exp \left(\frac{g_{A 0}}{\eta}\right) \\
y^{*} & =y_{0} \exp \left(\frac{g_{y 0}}{\eta}\right)
\end{aligned}
$$

- Empty Planet Result: Living standards stagnate as the population vanishes!

Semi-Endogenous Growth

$$
\begin{aligned}
\text { Production of goods (IRS) } & Y_{t}=A_{t}^{\sigma} N_{t} \\
\text { Production of ideas } & \frac{\dot{A}_{t}}{A_{t}}=\alpha N_{t}^{\lambda} A_{t}^{-\beta} \\
\text { Exogenous population growth } & N_{t}=N_{0} e^{n t}, n>0
\end{aligned}
$$

- Income per person: levels and growth

$$
\begin{aligned}
& y_{t}=A_{t}^{\sigma} \quad \text { and } \quad A_{t}^{*} \propto N_{t}^{\lambda / \beta} \\
& g_{y}^{*}=\gamma n, \text { where } \gamma \equiv \lambda \sigma / \beta
\end{aligned}
$$

- Expanding Cosmos: Exponential income growth for growing population

Negative Population Growth in the Semi-Endogenous Setting

$$
\begin{aligned}
\text { Production of goods (IRS) } & Y_{t}=A_{t}^{\sigma} N_{t} \\
\text { Production of ideas } & \frac{\dot{A}_{t}}{A_{t}}=\alpha N_{t}^{\lambda} A_{t}^{-\beta} \\
\text { genous population decline } & N_{t}=N_{0} e^{-\eta t}
\end{aligned}
$$

- Combining the 2nd and 3rd equations:

$$
\frac{\dot{A}_{t}}{A_{t}}=\alpha N_{0}^{\lambda} e^{-\lambda \eta t} A_{t}^{-\beta}
$$

- Also easily integrated...

The Empty Planet in a Semi-Endogenous Framework

- The stock of knowledge A_{t} is given by

$$
A_{t}=A_{0}\left(1+\frac{\beta g_{A 0}}{\lambda \eta}\left(1-e^{-\lambda \eta t}\right)\right)^{1 / \beta}
$$

- Let $\gamma \equiv \lambda \sigma / \beta=$ overall degree of increasing returns to scale.
- Both A_{t} and income per person $y_{t} \equiv Y_{t} / N_{t}$ converge to constant values A^{*} and y^{*} :

$$
\begin{aligned}
A^{*} & =A_{0}\left(1+\frac{\beta g_{A 0}}{\lambda \eta}\right)^{1 / \beta} \\
y^{*} & =y_{0}\left(1+\frac{g_{y 0}}{\gamma \eta}\right)^{\gamma / \lambda}
\end{aligned}
$$

First Key Result: The Empty Planet

- Fertility has trended down: 5, 4, 3, 2, and less in rich countries
- For a family, nothing special about "above 2" vs "below 2"
- But macroeconomics makes this distinction critical!
- Negative population growth may condemn us to stagnation on an Empty Planet - Stagnating living standards for a population that vanishes
- Vs. the exponential growth in income and population of an Expanding Cosmos

Endogenous Fertility

$\ell=$ time having kids instead of producing goods

Final output
Population growth
Fertility

$$
\begin{aligned}
& Y_{t}=A_{t}^{\sigma}\left(1-\ell_{t}\right) N_{t} \\
& \frac{\dot{N}_{t}}{N_{t}}=n_{t}=b\left(\ell_{t}\right)-\delta
\end{aligned}
$$

$$
b\left(\ell_{t}\right)=\bar{b} \ell_{t}
$$

Ideas

$$
\frac{\dot{A}_{t}}{A_{t}}=N_{t}^{\lambda} A_{t}^{-\beta}
$$

Generation 0 utility
Flow utility

$$
U_{0}=\int_{0}^{\infty} e^{-\rho t} u\left(c_{t}, \tilde{N}_{t}\right) d t, \quad \tilde{N}_{t} \equiv N_{t} / N_{0}
$$

$$
u\left(c_{t}, \tilde{N}_{t}\right)=\log c_{t}+\epsilon \log \tilde{N}_{t}
$$

Consumption

$$
c_{t}=Y_{t} / N_{t}
$$

Overview of Endogenous Fertility Setup

- All people generate ideas here
- Learning by doing vs separate R\&D
- Equilibrium: ideas are an externality (simple)
- We have kids because we like them
- We ignore that they might create ideas that benefit everyone
- Planner will desire higher fertility
- This is a modeling choice - other results are possible
- Abstract from the demographic transition. Focus on where it settles

Steady State Knowledge Growth

KNOWLEDGE GROWTH, g_{A}

Key Features of the Equilibrium and Optimal Allocations

- Fertility in both

$$
\begin{aligned}
n & =\bar{b} \ell-\delta \\
\ell & =1-\frac{1}{\bar{b} V}
\end{aligned}
$$

where V is the "utility value of people" (eqm vs optimal). Therefore

$$
n(V)=\bar{b}-\delta-\frac{1}{V}
$$

- Equilibrium: value kids because we love them (only): $V^{\text {eqm }}=\frac{\epsilon}{\rho}$
- We can support $n<0$ as an equilibrium for some parameter values
- Planner also values the ideas our kids will produce: $V^{s p}=\frac{\epsilon+\mu \dot{A}}{\rho} \Rightarrow V(n)$

A Unique Steady State for the Optimal Allocation when $n_{e q}^{*}>0$

Multiple Steady State Solutions when $n_{e q}^{*}<0$

Transition Dynamics

- State variables: N_{t} and A_{t}
- Redefine "state-like" variables for transition dynamics solution: N_{t} and

$$
x_{t} \equiv A_{t}^{\beta} / N_{t}^{\lambda}=\text { "Knowledge per person" }
$$

- Why?

$$
\frac{\dot{A}_{t}}{A_{t}}=\frac{N_{t}^{\lambda}}{A_{t}^{\beta}}=\frac{1}{x_{t}}
$$

Key insight: optimal fertility only depends on x_{t}

- Note: x is the ratio of A and N, two stocks that are each good for welfare.
- So a bigger x is not necessarily welfare improving.

Equilibrium Transition Dynamics

POPULATION GROWTH, $n(x)$

Optimal Population Growth

POPULATION GROWTH, $n(x)$

The Middle Steady State: Unstable Spiral Dynamics

POPULATION GROWTH, $n(x)$

Population Growth Near the Middle Steady State

POPULATION GROWTH, $\mathrm{n}(\mathrm{x})$ (percent)

Even the optimal allocation can get trapped

Conclusion

- Fertility has trended down: 5, 4, 3, 2, and less in rich countries
- For a family, nothing special about "above 2" vs "below 2"
- But macroeconomics makes this distinction critical:
- Negative population growth may condemn us to stagnation on an Empty Planet
- Vs. the exponential growth in income and population of an Expanding Cosmos
- Surprise: Even the optimum can get trapped in the Empty Planet if society delays.

Fertility considerations may be more important than we thought!

Extra Slides

- Parameter values
- $g_{y 0}=2 \%, \quad \eta=1 \%$
- $\beta=3 \Rightarrow \gamma=1 / 3 \quad$ (from BJVW)
- How far away is the long-run stagnation level of income?

	y^{*} / y_{0}
Romer/AH/GH	7.4
Semi-endog	1.9

- The Empty Planet result occurs in both, but quantitative difference

A Competitive Equilibrium with Externalities

- Representative generation takes w_{t} as given and solves

$$
\max _{\left\{\ell_{t}\right\}} \int_{0}^{\infty} e^{-\rho t} u\left(c_{t}, \tilde{N}_{t}\right) d t
$$

subject to

$$
\begin{gathered}
\dot{N}_{t}=\left(b\left(\ell_{t}\right)-\delta\right) N_{t} \\
c_{t}=w_{t}\left(1-\ell_{t}\right)
\end{gathered}
$$

- Equilibrium wage $w_{t}=\mathrm{MP}_{L}=A_{t}^{\sigma}$
- Rest of economic environment closes the equilibrium

Solving for the equilibrium

- The Hamiltonian for this problem is

$$
\mathcal{H}=u\left(c_{t}, \tilde{N}_{t}\right)+v_{t}\left[b\left(\ell_{t}\right)-\delta\right] N_{t}
$$

where v_{t} is the shadow value of another person.

- Let $V_{t} \equiv v_{t} N_{t}=$ shadow value of the population
- Equilibrium features constant fertility along transition path

$$
\begin{gathered}
V_{t}=\frac{\epsilon}{\rho} \equiv V_{e q}^{*} \\
\ell_{t}=1-\frac{1}{\bar{b} V_{t}}=1-\frac{1}{\bar{b} V_{e q}^{*}}=1-\frac{\rho}{\bar{b} \epsilon} \equiv \ell_{e q}
\end{gathered}
$$

Discussion of the Equilibrium Allocation

$$
n^{e q}=\bar{b}-\delta-\frac{\rho}{\epsilon}
$$

- We can choose parameter values so that $n^{\text {eq }}<0$
- Constant, negative population growth in equilibrium
- Remaining solution replicates the exogenous fertility analysis

The Empty Planet result can arise in equilibrium

The Optimal Allocation

The Optimal Allocation

- Choose fertility to maximize the welfare of a representative generation
- Problem:

$$
\max _{\left\{\ell_{t}\right\}} \int_{0}^{\infty} e^{-\rho t} u\left(c_{t}, \tilde{N}_{t}\right) d t
$$

subject to

$$
\begin{gathered}
\dot{N}_{t}=\left(b\left(\ell_{t}\right)-\delta\right) N_{t} \\
\frac{\dot{A}_{t}}{A_{t}}=N_{t}^{\lambda} A_{t}^{-\beta} \\
c_{t}=Y_{t} / N_{t}
\end{gathered}
$$

- Optimal allocation recognizes that offspring produce ideas

Solution

- Hamiltonian:

$$
\mathcal{H}=u\left(c_{t}, \tilde{N}_{t}\right)+\mu_{t} N_{t}^{\lambda} A_{t}^{1-\beta}+v_{t}\left(b\left(\ell_{t}\right)-\delta\right) N_{t}
$$

μ_{t} is the shadow value of an idea v_{t} is the shadow value of another person

- First order conditions

$$
\begin{gathered}
\ell_{t}=1-\frac{1}{\bar{b} V_{t}}, \text { where } V_{t} \equiv v_{t} N_{t} \\
\rho=\frac{\dot{\mu}_{t}}{\mu_{t}}+\frac{1}{\mu_{t}}\left(u_{c} \sigma \frac{y_{t}}{A_{t}}+\mu_{t}(1-\beta) \frac{\dot{A}_{t}}{A_{t}}\right) \\
\rho=\frac{\dot{v}_{t}}{v_{t}}+\frac{1}{v_{t}}\left(\frac{\epsilon}{N_{t}}+\mu_{t} \lambda \frac{\dot{A}_{t}}{N_{t}}+v_{t} n_{t}\right)
\end{gathered}
$$

Steady State Conditions

- The social value of people in steady state is

$$
V_{s p}^{*}=v_{t}^{*} N_{t}^{*}=\frac{\epsilon+\lambda z^{*}}{\rho}
$$

where z denotes the social value of new ideas:

$$
z^{*} \equiv \mu_{t}^{*} \dot{A}_{t}^{*}=\frac{\sigma g_{A}^{*}}{\rho+\beta g_{A}^{*}}
$$

- If $n_{s p}^{*}>0$, then we have an Expanding Cosmos steady state

$$
\begin{aligned}
& g_{A}^{*}=\frac{\lambda n_{s p}^{*}}{\beta} \\
& g_{y}^{*}=\gamma n_{s p}^{*}, \text { where } \gamma \equiv \frac{\lambda \sigma}{\beta}
\end{aligned}
$$

Optimal Steady State(s)

- Two equations in two unknowns (V, n)

$$
\begin{gathered}
V(n)= \begin{cases}\frac{1}{\rho}\left(\epsilon+\frac{\gamma}{1+\frac{\rho}{\lambda n}}\right) & \text { if } n>0 \\
\frac{\epsilon}{\rho} & \text { if } n \leq 0\end{cases} \\
n(V)=\bar{b} \ell(V)-\delta=\bar{b}-\delta+\frac{1}{V}
\end{gathered}
$$

- We show the solution graphically

Parameter Values for Numerical Solution

Parameter/Moment	Value	Comment
σ	1	Normalization
λ	1	Duplication effect of ideas
β	1.25	BJVW
ρ	.01	Standard value
δ	1%	Death rate
$n^{e q}$	-0.5%	Suggested by Europe, Japan, U.S.
$\ell^{e q}$	$1 / 8$	Time spent raising children

Result	Value	Comment
\bar{b}	.040	$n^{e q}=\bar{b} \ell^{e q}-\delta=-0.5 \%$
ϵ	.286	From equation for $\ell^{e q}$
$n^{s p}$	1.74%	From equations for $\ell^{s p}$ and $n^{s p}$
$\ell^{s p}$	0.68	From equations for $\ell^{s p}$ and $n^{s p}$
$g_{y}^{s p}=g_{A}^{s p}$	1.39%	Equals $\gamma n^{s p}$ with $\sigma=1$

The Economics of Multiple SS's and Transition Dynamics

- The High SS is saddle path stable as usual
- Equilbrium fertility depends on utility value of kids
- Planner also values the ideas the kids will produce $\Rightarrow n_{t}^{s p}>n_{t}^{e q}$
- Why is there a low SS?
- Diminishing returns to each input, including ideas
- As knowledge per person, x, goes to ∞, the "idea value" of an extra kid falls to zero $\Rightarrow n_{\text {sp }}(x) \rightarrow n_{\text {eq }}$
- Why is the low SS stable?
- Since $n_{\text {eq }}<0$, we also have $n_{\text {sp }}(x)<0$ for x sufficiently high
- With $n_{s p}(x)<0, x=A^{\beta} / N^{\lambda}$ rises over time

What about the middle candidate steady state?

- Linearize the FOCs. Dynamic system has
- imaginary eigenvalues
- with positive real parts
- So the middle SS is an unstable spiral — a "Skiba point" (Skiba 1978)
- Numerical solution reveals what is going on...

