Markups, Labor Market Inequality and the Nature of Work

Greg Kaplan Piotr Zoch

NBER Summer Institute 17 July 2020

Overview

- Goal: Develop a framework to understand how changes in markups affect income distribution:
 - 1. Profits versus labor
 - 2. Different types of workers

Overview

- Goal: Develop a framework to understand how changes in markups affect income distribution:
 - 1. Profits versus labor
 - 2. Different types of workers

- Why? Markups central to trends and fluctuations in macroeconomic models
 - Long run: Trends in competition and technology
 - Short run: Monetary or demand shocks in New Keynesian models

Uses of Labor in a Modern Economy

- Two ways that workers contribute to generating revenue for firms
 - 1. Y-type labor: Marginal production of existing goods for sale in existing markets
 - 2. N-type labor: Facilitate expansion or replication into new goods or new markets

Uses of Labor in a Modern Economy

- Two ways that workers contribute to generating revenue for firms
 - 1. Y-type labor: Marginal production of existing goods for sale in existing markets
 - 2. N-type labor: Facilitate expansion or replication into new goods or new markets

- Key distinction: Factor inputs that generate revenue by
 - 1. Moving along demand curves

vs

2. Shifting out demand curves

Uses of Labor in a Modern Economy

- Two ways that workers contribute to generating revenue for firms
 - 1. Y-type labor: Marginal production of existing goods for sale in existing markets
 - 2. N-type labor: Facilitate expansion or replication into new goods or new markets

- Key distinction: Factor inputs that generate revenue by
 - 1. Moving along demand curves

vs 2. Shifting out demand curves

Markups shift input demand between factors

- 1. Theory: importance of N-type labor in Representative Agent model
 - Effect of markups on overall labor share versus profit share
 - Markups redistribute labor income between different workers

- 1. Theory: importance of *N*-type labor in Representative Agent model
 - Effect of markups on overall labor share versus profit share
 - Markups redistribute labor income between different workers
- 2. Measurement: extent and identity of N-type labor in US economy
 - Extent: co-movement of labor share and markup
 - Identity: co-movement of occupational income shares and aggregate labor share

CHICAGO

- 1. Theory: importance of *N*-type labor in Representative Agent model
 - Effect of markups on overall labor share versus profit share
 - Markups redistribute labor income between different workers
- 2. Measurement: extent and identity of N-type labor in US economy
 - Extent: co-movement of labor share and markup
 - Identity: co-movement of occupational income shares and aggregate labor share
- 3. Quantitative: quantify forces in Heterogeneous Agent model (NOT TODAY)
 - Short-run: distributional effects of monetary / demand shocks in HANK
 - Long-run: distributional effects of changes in market power and technology

1. Theory: Representative Agent Model

2. Measurement

Estimation Stage 1: Aggregate Parameters Estimation Stage 2: Occupation-Specific Parameters

3. Conclusion

Upstream Sector

- Representative upstream producer hires production labor in a competitive market
- Produce a homogenous intermediate good Y that is sold in a competitive market

$$\Pi_U = \max_{L_Y,Y} P_U Y - W_Y L_Y$$

subject to
$$Y = Z_Y L_Y^{\theta_Y}$$

- *P*_U: upstream price of intermediate goods
- Π_U : profits of upstream sector

Downstream Sector: Product Lines

- Measure 1 of downstream firms hire expansionary labor to manage product lines.
- Decide measure of product lines *N* to operate

$$\Pi_{D} = \max_{L_{N},N} \int_{0}^{N} \Pi_{j} dj - W_{N} L_{N}$$

subject to
$$N = Z_{N} L_{N}^{\theta_{N}}$$

- Π_j : gross profits per product line *j*
- Π_D : net profits of downstream sector

Downstream Sector: Product Lines

- Measure 1 of downstream firms hire expansionary labor to manage product lines.
- Decide measure of product lines *N* to operate

$$\Pi_{D} = \max_{L_{N},N} \int_{0}^{N} \Pi_{j} dj - W_{N} L_{N}$$

subject to
$$N = Z_{N} L_{N}^{\theta_{N}}$$

- Π_j : gross profits per product line *j*
- Π_D : net profits of downstream sector

Downstream Sector: Pricing

- Produce differentiated goods *y_i* using homogenous goods as only input
- Sell to consumers at price p_j , markup μ over marginal cost P_U
- Gross profits in each product line:

$$\begin{array}{rcl} \Pi_{j} & = & y_{j}\left(p_{j}\right)\left(p_{j}-P_{U}\right) \\ & = & y_{j}\left(p_{j}\right)p_{j}\left(1-\frac{1}{\mu}\right) \end{array}$$

• Results that follow apply to wide array of micro-foundations for μ

→ microfoundations for markups

- Symmetric equilibrium: $p_j = p \ \forall j, y_j = y \ \forall j$
- Market clearing: $yN = Y \Rightarrow$ nominal GDP = pY

- Symmetric equilibrium: $p_j = p \ \forall j, y_j = y \ \forall j$
- Market clearing: $yN = Y \Rightarrow \text{nominal GDP} = pY$

Labor Share S.	Production	$S_Y := \frac{W_Y L_Y}{pY}$	$\frac{1}{\mu}\theta_Y$	
	Expansionary	$S_N := \frac{W_N L_N}{pY}$	$\left(1-\frac{1}{\mu}\right) heta_N$	
Profit Share S_{Π}	Downstream	$S_D := \frac{\Pi_D}{pY}$	$\left(1-\frac{1}{\mu}\right)\left(1- heta_N ight)$	
	Upstream	$S_U := \frac{\Pi_U}{pY}$	$\frac{1}{\mu} \left(1 - heta_Y ight)$	

- Symmetric equilibrium: $p_j = p \ \forall j, y_j = y \ \forall j$
- Market clearing: $yN = Y \Rightarrow \text{nominal GDP} = pY$

Labor Share S.	Production	$S_Y := \frac{W_Y L_Y}{pY}$	$\frac{1}{\mu}\theta_Y$	
	Expansionary	$S_N := \frac{W_N L_N}{pY}$	$\left(1-rac{1}{\mu} ight) heta_N$	
Profit Share Sa	Downstream	$S_D := \frac{\prod_D}{pY}$	$\left(1-\frac{1}{\mu}\right)\left(1- heta_N ight)$	
	Upstream	$S_U := \frac{\Pi_U}{pY}$	$\frac{1}{\mu}(1- heta_Y)$	

Special cases:

1. $\theta_N = 0 \Rightarrow$ standard one-sector model

- Symmetric equilibrium: $p_j = p \ \forall j, y_j = y \ \forall j$
- Market clearing: $yN = Y \Rightarrow \text{nominal GDP} = pY$

Labor Share S	Production	$S_Y := \frac{W_Y L_Y}{pY}$	$\frac{1}{\mu}\theta_Y$	
	Expansionary	$S_N := \frac{W_N L_N}{pY}$	$\left(1-rac{1}{\mu} ight) heta_N$	
Profit Share Sn	Downstream	$S_D := \frac{\prod_D}{pY}$	$\left(1-\frac{1}{\mu}\right)\left(1- heta_N ight)$	
	Upstream	$S_U := \frac{\Pi_U}{pY}$	$\frac{1}{\mu}(1- heta_Y)$	

• Special cases:

1. $\theta_N = 0 \Rightarrow$ standard one-sector model

2. $\theta_Y = 1 \Rightarrow$ only downstream profits, reflect rents from monopoly power

- Symmetric equilibrium: $p_j = p \ \forall j, y_j = y \ \forall j$
- Market clearing: $yN = Y \Rightarrow \text{nominal GDP} = pY$

Labor Share S.	Production	$S_Y := \frac{W_Y L_Y}{pY}$	$\frac{1}{\mu}\theta_{Y}$	
	Expansionary	$S_N := \frac{W_N L_N}{pY}$	$\left(1-rac{1}{\mu} ight) heta_N$	
Profit Share Sa	Downstream	$S_D := \frac{\prod_D}{pY}$	$\left(1-\frac{1}{\mu}\right)\left(1- heta_N ight)$	
	Upstream	$S_U := \frac{\Pi_U}{pY}$	$\frac{1}{\mu}(1- heta_Y)$	

• Special cases:

CHICAGO

1. $\theta_N = 0 \Rightarrow$ standard one-sector model

- 2. $\theta_Y = 1 \Rightarrow$ only downstream profits, reflect rents from monopoly power
- 3. $\theta_N = 1 \implies$ only upstream profits, reflect rents from fixed factor

Observations About Markups

Q1: How do markups redistribute labor income between production vs expansionary labor ?

- $\mu \uparrow \Rightarrow S_Y \downarrow$: production labor is negatively exposed to markups
- $\mu \uparrow \Rightarrow S_N \uparrow$: expansionary labor is positively exposed to markups
- Implication for workers:
 - $\theta_N = 0$: Only production labor, all workers negatively exposed to markups
 - $\theta_N > 0$: Some expansionary labor, some workers positively exposed to markups

Observations About Markups

Q2: How do markups redistribute total income between profits and labor?

• Ambiguous effect on labor share S_L relative to profit share S_{Π} :

$$\frac{\partial S_L}{\partial \mu} \stackrel{<}{=} 0 \text{ if and only if } \theta_N \stackrel{<}{=} \theta_Y$$

• Co-movement of labor share S_L and markups μ informative about $\theta_N \leq \theta_Y$

Observations About Markups

Q2: How do markups redistribute total income between profits and labor?

• Ambiguous effect on labor share S_L relative to profit share S_{Π} :

$$\frac{\partial S_L}{\partial \mu} \stackrel{<}{=} 0 \text{ if and only if } \theta_N \stackrel{<}{=} \theta_Y$$

- Co-movement of labor share S_L and markups μ informative about $\theta_N \leq \theta_Y$
- One-sector NK models ($\theta_N = 0$):

CHICAGO

- Always negative co-movement between S_L and μ
- Conversely always positive co-movement between S_{Π} and μ
- Result hinges on whether profits reflect rents from monopoly power or fixed factor

Taking Stock

- Questions:
 - Relative size of θ_N vs θ_Y : How much *N*-type labor?
 - Who performs *N*-type activities? Occupations, wages, etc
- Challenges: notion of N is abstract
 - Reflects activities that shift demand curves, most workers do some of each activity

1. Theory: Representative Agent Model

2. Measurement

Estimation Stage 1: Aggregate Parameters Estimation Stage 2: Occupation-Specific Parameters

3. Conclusion

Overview of Estimation

Estimation Stage 1: Aggregate Parameters: (θ_Y, θ_N)

- Co-movement of labor share and markups reveals relative size of (θ_Y, θ_N)
- Identify overall share of N-type labor from data on labor share and markup

Overview of Estimation

Estimation Stage 1: Aggregate Parameters: (θ_Y, θ_N)

- Co-movement of labor share and markups reveals relative size of (θ_Y, θ_N)
- Identify overall share of *N*-type labor from data on labor share and markup

Estimation Stage 2: Occupation-specific Parameters

- Introduce notion of an occupation into framework
- Labor income shifts towards *N*-intensive occupations in response to a markup-induced increase in overall labor share
- Identify *N*-intensity of occupation from data on occupational income shares

1. Theory: Representative Agent Model

2. Measurement

Estimation Stage 1: Aggregate Parameters Estimation Stage 2: Occupation-Specific Parameters

3. Conclusion

Identification of θ_Y , θ_N

• Introduce capital:

• Factor shares:

$$S_{L_{Y}} = (1 - \alpha_{Y}) \frac{1}{\mu} \theta_{Y}$$

$$S_{L_{N}} = (1 - \alpha_{N}) \left(1 - \frac{1}{\mu}\right) \theta_{N}$$

Identification of θ_Y , θ_N

• Introduce capital:

$$\begin{array}{lcl} Y & = & Z_Y \left(K_Y^{\alpha_Y} L_Y^{1-\alpha_Y} \right)^{\theta_Y} \\ N & = & Z_N \left(K_N^{\alpha_N} L_N^{1-\alpha_N} \right)^{\theta_N} \end{array}$$

• Factor shares: $S_{L_{Y}} = (1 - \alpha_{Y}) \frac{1}{\mu} \theta_{Y}$

$$S_{L_N} = (1 - \alpha_N) \left(1 - \frac{1}{\mu}\right) heta_N$$

• Assume all capital used in Y sector ($\alpha_N = 0$):

$$S_{L} = \theta_{N} + \left[\theta_{Y}\left(1 - \alpha_{Y}\right) - \theta_{N}\right] \frac{1}{\mu}$$

- Intuition: Recover θ_N , $(1 \alpha_Y)\theta_Y$ from levels of (μ, S_L) and sensitivity of S_L to μ
- Assumption on S_{Π} need to to recover α_Y

CHICAGO

Labor Share Data

- Quarterly data from National Economic Accounts from BEA from 1947:Q1 2019:Q2
- Follow Gomme-Rupert (2004) to adjust for ambiguous components
- Mean $S_L = 65\%$. Of remaining 35%, assume $S_{\Pi} = 10\%$

Labor Share Data

- Quarterly data from National Economic Accounts from BEA from 1947:Q1 2019:Q2
- · Follow Gomme-Rupert (2004) to adjust for ambiguous components
- Mean $S_L = 65\%$. Of remaining 35%, assume $S_{\Pi} = 10\%$

Markup Data

- Existing approaches inappropriate in our context
 - 1. Inverse labor share e.g. Bills(1987), Nekarda-Ramey(2019)
 - 2. Ratio estimator e.g. De Loecker-Warzynski(2012), De Loecker-Eeckhout-Unger(2019))

Markup Data

- Existing approaches inappropriate in our context
 - 1. Inverse labor share e.g. Bills(1987), Nekarda-Ramey(2019)
 - 2. Ratio estimator e.g. De Loecker-Warzynski(2012), De Loecker-Eeckhout-Unger(2019))
- Markup in model is ratio:
 - Downstream price: price of differentiated goods paid by consumers, over
 - Upstream price: price of undifferentiated goods produced by raw materials, capital and labor
- Ratio of PPI series produced by BLS similarly to Barro-Tenreyo(2006)
 - WPSFD49207: finished demand
 - WPSID61: processed goods for intermediate demand
- Assumption required about mean level of markup: baseline $E[\mu_t] = 1.2$ CHICAGO 15

Labor Share and Markup Data

THE UNIVERSITY OF CHICAGO

Kaplan and Zoch (2020)

Estimates of Overall N-type Share

	(1)	(2)	(3)	(4)	(5)
	Baseline	Low	High	Low	High
		Profit Share	Profit Share	Markup	Markup
θ_Y	0.934	0.994	0.874	0.908	0.963
	(0.005)	(0.005)	(0.005)	(0.001)	(0.008)
θ_N	0.730	0.730	0.730	0.741	0.721
	(0.024)	(0.024)	(0.024)	(0.027)	(0.021)
	100/	100/	100/		000/
Implied value of $\frac{S_{L}}{S_{L}}$	19%	19%	19%	5%	29%
Assumed mean markup //	1 20	1 20	1 20	1 05	1.35
Assumed profit share S_{-}	10%	5%	15%	10%	1.00
	0.20	0.26	0.07	0.00	0.25
Capital share parameter, α_Y	0.32	0.36	0.27	0.29	0.35

Table: First stage estimation results

1. Theory: Representative Agent Model

2. Measurement Estimation Stage 1: Aggregate Parameters Estimation Stage 2: Occupation-Specific Parameters

3. Conclusion

Occupational Framework

• Fixed set of occupations, $j = 1 \dots J$, each used in both sectors

$$L_{Y} = \prod_{j=1}^{J} L_{jY}^{\eta_{jY}}, \qquad L_{N} = \prod_{j=1}^{J} L_{jN}^{\eta_{jN}}, \qquad \sum_{j=1}^{J} \eta_{jY} = \sum_{j=1}^{J} \eta_{jN} = 1$$

• Labor market clearing in each occupation *j*: $L_j = L_{jY} + L_{jN} \quad \forall j$ where L_j is labor supplied by workers in occupation *j*

Occupational Framework

• Fixed set of occupations, $j = 1 \dots J$, each used in both sectors

$$L_Y = \prod_{j=1}^J L_{jY}^{\eta_{jY}}, \qquad L_N = \prod_{j=1}^J L_{jN}^{\eta_{jN}}, \qquad \sum_{j=1}^J \eta_{jY} = \sum_{j=1}^J \eta_{jN} = 1$$

- Labor market clearing in each occupation *j*: $L_j = L_{jY} + L_{jN} \quad \forall j$ where L_j is labor supplied by workers in occupation *j*
- Income share of labor in occupation *j* is a weighted sum of sectoral labor share

$$S_j = \eta_{jY} S_{Y,L} + \eta_{jN} S_{N,L}$$

• Define occupational labor income share of occupation *j* as $s_j = \frac{S_j}{S_j}$

Identification of $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$

• Occupations differ in terms of exposure to movements in overall labor share:

$$s_{j} = \eta_{jY} + (\eta_{jN} - \eta_{jY}) \left(1 - \frac{\theta_{Y} \left(1 - \alpha_{Y}\right)}{\theta_{N}}\right)^{-1} \left(1 - \theta_{Y} \left(1 - \alpha_{Y}\right) \frac{1}{S_{L}}\right) \forall j$$

• Recover $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$ from level of s_j and sensitivity of s_j to labor share S_L

Identification of $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$

• Occupations differ in terms of exposure to movements in overall labor share:

$$s_{j} = \eta_{jY} + \left(\eta_{jN} - \eta_{jY}\right) \left(1 - \frac{\theta_{Y}\left(1 - \alpha_{Y}\right)}{\theta_{N}}\right)^{-1} \left(1 - \theta_{Y}\left(1 - \alpha_{Y}\right) \frac{1}{S_{L}}\right) \forall j$$

- Recover $\{\eta_{jY}, \eta_{jN}\}_{i=1}^{J}$ from level of s_j and sensitivity of s_j to labor share S_L
- Three possible sources of variation:
 - 1. De-trended Markup \Rightarrow IV with de-trended markup as instrument for inverse labor share
 - 2. De-trended Labor Share: \Rightarrow OLS with de-trended inverse labor share
 - 3. Lagged Monetary Policy Shocks ⇒ IV with identified monetary policy shocks as instrument for inverse labor share → SVAR IRF

Occupational Labor Shares

 Intuition for identification: right panel plots de-trended occupational income shares for three-broad groups against predicted de-trended overall labor share $\stackrel{\text{The University of}}{CHICAGO}$

Baseline Estimates of Occupation N-intensity

THE UNIVERSITY OF

				P-val	Elasticity	Share
		η_Y	η_N	$\eta_Y=\eta_N$	$\boldsymbol{\varepsilon}_{S_j,S_L}$	$\frac{S_{jN}}{S_i}$
Panel A: Instrument: De	d Marku	ıp (IV)				
High-tech Occs		0.041	0.055	0.027	3.38	24%
Service Occs		0.078	0.094	0.050	2.54	22%
Admin, Clerical		0.105	0.127	0.014	2.49	22%
Managerial Occs		0.206	0.243	0.007	2.30	21%
Prof. Specialty		0.227	0.226	0.909	0.96	19%
Sales Occs		0.100	0.090	0.083	0.21	17%
Production, Repair		0.068	0.051	0.022	-0.92	15%
Constr., Extract., Farm		0.054	0.038	0.014	-1.38	14%
Machinists, Transp.		0.121	0.076	0.002	-1.98	13%
First stage: R2	0.16					
First stage F	11.2					

Table: Stage 2 estimates of occupational factor share parameters

 \rightarrow OLS: de-trended labor share

IV: monetary policy shocks

Characteristics of *N*-intensive Occupations

Median Wages, 2015

Growth in Median Wages, 1980-2015

- Both high and low wages among *N*-intensive occupations
- N-intensive occupations experienced fastest wage growth •
- Wage data from 1980 Census and 2015 ACS CHICAGO 22

Characteristics of N-intensive Occupations

• Broad task measures from Autor-Katz-Kearney (2006)

1. Theory: Representative Agent Model

2. Measurement

Estimation Stage 1: Aggregate Parameters Estimation Stage 2: Occupation-Specific Parameters

3. Conclusion

Summary

- Differentiate between two uses of labor in a modern economy:
 - N-type expansionary activities
 - Y-type traditional production activities
- Co-movement of labor share with markup: ~ 20% of US labor income compensates N-type activities
- Co-movement of occupational shares with overall labor share: heterogeneity in *N*-intensity:
 - N-intensive occupations are those associated with white-collar jobs
 - Y-intensive occupations are those associated with blue-collar jobs
- N-intensive occupations experienced fasted wage and employment growth in last 35 years
- Recognizing labor's expansionary role:
 - Study distributional consequences of monetary policy, demand shocks and competition

THANK YOU !

Micro-foundations for the Markup

- 1. Monopolistic competition:
 - CES Dixit-Stiglitz: exogenous shifts in demand elasticity
 - Translog demand Feenstra, Bilbie-Melitz-Ghironi: changes in Z_N, Z_Y
 - Linear demand Melitz-Ottaviano: changes in Z_N, Z_Y
 - Sticky prices Blanchard-Kiyotaki: Calvo or Rotemberg
- 2. Oligopoly: Atkeson-Burstein, Jaimovich-Floettotto, Mongey
 - · Bertrand or Cournot: changes in number of sellers of each variety
- 3. Limit Pricing: Milgrom-Roberts, Barro-Tenreyo
 - Change in fringe production cost
- 4. Product market search: Burdett-Judd, Alessandria, Kaplan-Menzio
 - Exogenous or endogenous changes in consumer search effort

Identification of θ_Y , θ_N

• Introduce deterministic trends in θ_Y , θ_N , μ , measurement error and shocks to S_L , μ

$$S_{L,t} = \theta_{N,t} + [\theta_{Y,t} (1 - \alpha_Y) - \theta_{N,t}] \frac{1}{\mu_t} + \epsilon_{L,t}$$

$$\theta_{N,t} = g_{\theta_N} (\beta_{\theta_N}, t)$$

$$\theta_{Y,t} = g_{\theta_Y} (\beta_{\theta_Y}, t)$$

$$\frac{1}{\mu_t} = g_{\mu} (\beta_{\mu}, t) + \epsilon_{\mu,t}$$

Moment conditions for estimation

$$E [\epsilon_{L,t}] = 0 \forall t$$
$$E [\epsilon_{L,\tau} | \epsilon_{\mu,t}] = 0 \forall (t,\tau)$$

Identification of $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$

• Occupations differ in terms of exposure to movements in overall labor share:

$$\left| s_{j} = \eta_{jY} + (\eta_{jN} - \eta_{jY}) \left(1 - \frac{\theta_{Y} \left(1 - \alpha_{Y} \right)}{\theta_{N}} \right)^{-1} \left(1 - \theta_{Y} \left(1 - \alpha_{Y} \right) \frac{1}{S_{L}} \right) \forall j$$

• Recover $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$ from level of s_j and sensitivity of s_j to labor share S_L

Identification of $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$

• Occupations differ in terms of exposure to movements in overall labor share:

$$s_{j} = \eta_{jY} + (\eta_{jN} - \eta_{jY}) \left(1 - \frac{\theta_{Y} (1 - \alpha_{Y})}{\theta_{N}}\right)^{-1} \left(1 - \theta_{Y} (1 - \alpha_{Y}) \frac{1}{S_{L}}\right) \forall j$$

- Recover $\{\eta_{jY}, \eta_{jN}\}_{j=1}^{J}$ from level of s_j and sensitivity of s_j to labor share S_L
- Empirical specification with trends and shocks:

$$\begin{split} s_{j,t} &= \eta_{jYt} + (\eta_{jNt} - \eta_{jYt}) \left(1 - \frac{\theta_Y \left(1 - \alpha_Y \right)}{\theta_N} \right)^{-1} \left(1 - \theta_Y \left(1 - \alpha_Y \right) \frac{1}{S_{Lt}} \right) + \epsilon_{s_j,t} \forall j \\ \eta_{jY,t} &= g_{\eta_{jY}} \left(\beta_{\eta_{jY}}, t \right) + \epsilon_{jY,t} \\ \eta_{jN,t} &= g_{\eta_{jN}} \left(\beta_{\eta_{jN}}, t \right) + \epsilon_{jN,t} \\ \mathsf{Define} \ \epsilon_{j,t} &:= \left(\epsilon_{jY,t}, \epsilon_{jN,t}, \epsilon_{s_j,t} \right) \end{split}$$

 \rightarrow back

Three Sources of Variation

1. De-trended Markup

 $E\left[\epsilon_{j, au} | \epsilon_{\mu,t}
ight] = 0 \; \forall (t, au), \; \forall j$

 \Rightarrow IV with de-trended markup as instrument for inverse labor share

Three Sources of Variation

1. De-trended Markup

 $E\left[\epsilon_{j, au} | \epsilon_{\mu,t}
ight] = 0 \; orall \left(t, au
ight), \; orall j$

 \Rightarrow IV with de-trended markup as instrument for inverse labor share

2. De-trended Labor Share:

$$\begin{split} S_{L,t} &= g_{S_L} \left(\beta_{S_L}, t \right) + \epsilon_{S_L,t} \\ E \left[\epsilon_{j,\tau} \right| \epsilon_{S_L,t} \right] &= 0 \; \forall \left(t,\tau \right), \; \forall j \end{split}$$

 \Rightarrow OLS with de-trended inverse labor share

 \rightarrow back

Three Sources of Variation

3. Lagged Monetary Policy Shocks

Instrument Z_t that moves the markup

$$rac{1}{\mu_t} = g_\mu \left(eta_\mu, t
ight) + \gamma Z_t + \epsilon_{\mu,t}$$

with $\gamma \neq 0$, $E[Z_t] = 0$ and

$$E\left[\left.\epsilon_{j, au}
ight|Z_{t}
ight]=0\;orall\left(t, au
ight)$$
 , $orall j$

 \Rightarrow IV with identified monetary policy shocks as instrument for inverse labor share

- Cantore-Ferroni-Leon-Ledesma (2020): counter-cyclical IRF of labor share to monetary policy shocks, peak response after 1-2 years, robust to identification schemes, country ...
- Combine three series: Romer-Romer(2004), Miranda-Agrippino-Ricco(2018), Gertler-Karadi(2015)

Impulse Response to Contractionary Monetary Policy Shock

- Impulse response from Cantore-Ferroni-Leon-Ledesma (2020)
- Blue line uses recursive identification scheme. Black line uses instruments from Romer and Romer (2004), Gertler and Karadi (2015) and Miranda-Agrippino (2016)

Baseline Estimates of Occupation N-intensity

			P-val	Elasticity	Share	P-val
	η_Y	η_N	$\eta_Y=\eta_N$	$oldsymbol{arepsilon}_{S_j,S_L}$	$\frac{S_{jN}}{S_i}$	overid
Panel B: Instrument: De-tr	ended La	abor Sha	are (OLS)			
High-tech Occs	0.043	0.046	0.194	1.60	20%	
Service Occs	0.080	0.082	0.398	1.19	19%	
Admin, Clerical	0.108	0.117	0.025	1.65	20%	
Managerial Occs	0.211	0.220	0.068	1.30	19%	
Prof. Specialty	0.227	0.228	0.731	1.05	19%	
Sales Occs	0.099	0.096	0.374	0.79	18%	
Production, Repair	0.065	0.062	0.122	0.58	18%	
Constr., Extract., Farm	0.052	0.047	0.021	0.17	17%	
Machinists, Transp.	0.115	0.102	0.000	0.13	17%	

Table: Stage 2 estimates of occupational factor share parameters

Baseline Estimates of Occupation N-intensity

				P-val	Elasticity	Share	P-val
		η_Y	η_N	$\eta_Y=\eta_N$	$\boldsymbol{\varepsilon}_{S_j,S_L}$	$\frac{S_{jN}}{S_i}$	overid
Panel C: Instrument: Lag	gged N	lonetary	Shocks	(GMM)			
High-tech Occs		0.043	0.047	0.287	1.68	20%	0.214
Service Occs		0.079	0.088	0.022	1.80	20%	0.556
Admin, Clerical		0.105	0.126	0.000	2.39	22%	0.287
Managerial Occs		0.210	0.224	0.060	1.48	20%	0.650
Prof. Specialty		0.224	0.239	0.067	1.51	20%	0.341
Sales Occs		0.101	0.088	0.006	0.04	17%	0.222
Production, Repair		0.066	0.061	0.096	0.43	18%	0.670
Constr., Extract., Farm		0.054	0.039	0.001	-1.19	14%	0.437
Machinists, Transp.		0.117	0.092	0.000	-0.68	15%	0.244
First stage: R2	0.16						
First stage F	3.14						

Table: Stage 2 estimates of occupational factor share parameters

Estimates from a New Keynesian DSGE Model

- Modify Smets-Wouters (2007) to include N-type labor
- Re-estimate model using de-trended quarterly data on output, wages, consumption, investment, nominal interest rate and labor share from 1955-2007
- Posterior mode estimates:
 - $\alpha_Y = 0.36$
 - $\theta_Y = 0.88$
 - $\theta_N = 0.83$
 - $\mu = 1.30$
 - *N*-type share = 25%
- Model generates counter-cyclical labor share in response to monetary policy shocks

Occupational Labor Share Data

Quarterly *s_{j,t}*

- Current Population Survey Outgoing Rotation Group data.
- January 1989 to December 2018. Monthly data aggregated to quarterly.
- Age > 15, employed.
- 389 OCC1990 occupation codes aggregated to 9 broad categories
- · Seasonally adjusted.

