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Abstract

This paper studies social welfare in markets for natural disaster insurance. I quantify frictions

in uptake, test for adverse selection, and estimate the welfare e�ects of proposed policy

reforms by developing a model of natural disaster insurance markets and compiling new

data. The paper has three main �ndings. First, willingness to pay for natural disaster

insurance is remarkably low. In the high-risk �ood zones throughout all U.S. Atlantic and Gulf

Coast states, fewer than 60% of homeowners purchase �ood insurance even though subsidized

premia are only two-thirds of their own expected payouts. Second, homeowners select into

insurance based on observable di�erences in houses' defensive investments against natural

disasters (i.e., adaptation), but not on private information about risk. Exploiting house-

level variation in �ood insurance prices and construction codes reveals that requirements

to elevate newly constructed homes reduce insurer costs by 31% and insurance demand by

25%. Asymmetric information between homeowners and insurers, however, does not a�ect

average payouts. Third, ignoring how frictions, such as risk misperception, distort demand

understates the welfare cost of currently proposed price increases and changes the sign of

the predicted welfare e�ect. In the presence of such frictions, enforcing a natural disaster

insurance mandate increases social welfare.
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Homeowners are increasingly experiencing the e�ects of climate change �rsthand. In 2017,

total damages from hurricanes and wild�res in the United States exceeded $300 billion. These

losses re�ect a global trend of progressively more severe and costly natural disasters. For ex-

ample, public �ood insurance payouts in the U.S. have increased twentyfold in the past two

decades�approximately seven times the growth rate of public spending on Medicaid over the

same period. This trend in �ood insurance claims is predicted to continue because projected sea

level rise threatens over $1 trillion-worth of U.S. property (Gaul, 2019; Rudowitz et al., 2018).

In response to the rising �nancial burden on �ood, �re, and earthquake insurers, natural disaster

insurance market reform is the current focus of seven U.S. Congressional bills and extensive policy

debate. Proposed natural disaster insurance reforms include rate increases, insurance mandates,

and adaptation policies such as more stringent building codes (Horn and Brown, 2018).

This paper estimates homeowners' willingness to pay for natural disaster insurance, analyzes

how willingness to pay a�ects homeowners' insurance costs, and quanti�es the welfare e�ects of

these proposed reforms. Natural disaster insurance markets are adversely selected if homeowners

with higher willingness to pay for insurance are also costlier to insure (Einav et al., 2010). The

welfare cost of adverse selection in insurance markets is a classic result in public economics, and

a central question in this paper is the extent to which currently proposed price increases will

lead to changes in the risk pool of insured homeowners. For example, administrators of the

public National Flood Insurance Program (NFIP), which underwrites almost all �ood risk in the

U.S., hypothesize that �relatively low-risk homeowners might leave the NFIP because of these

price increases, but the full impact is unclear� (GAO, 2014). Such a response would increase the

average cost of providing insurance to homeowners and undermine the �nancial objectives of the

price reform, and �the concerns of some Members of Congress about adverse selection are among

the most pressing issues likely to be addressed in any long-term NFIP re-authorization� (Horn

and Webel, 2019).

Despite these concerns, much applied research on selection focuses on health and, to a lesser

extent, unemployment, long-term care, and disability insurance. Natural disaster insurance con-

tracts, which pay out only when infrequent, high-cost, and spatially correlated disasters occur,

di�er from most insurance contracts in these other domains. The seminal model of selection of

Rothschild and Stiglitz (1976) does not apply to �risks that cannot be diversi�ed i.e., the risk of

nuclear war (or of a �ood or a plague)� (p. 632). The extreme variability and geographic con-

centration of losses threaten the solvency of private natural disaster insurers, distort homeowners'

perceptions of risk, and distinguish natural disaster insurance from other types of insurance (Jaf-

fee and Russell, 1997). Moreover, local governments can take actions to reduce natural disaster

damages. Hence, in addition to adverse selection, optimal policy in natural disaster insurance

markets must consider frictions in uptake due to, for example, discounting of extreme events and
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interactions with public policies that mitigate climate risk through adaptation.

The �rst part of this paper develops a model that incorporates these key features of natural

disaster insurance markets. The model provides a framework to quantify the welfare implications

of counterfactual reforms in the presence of frictions that I identify. While the model does not need

to specify the precise type of friction, these could include risk misperception, discounting of tail

events, or inertia, for example. I use the model to derive expressions for homeowners' willingness to

pay for insurance in the absence of any frictions, for the welfare e�ects of implementing actuarially

fair pricing, and for the welfare e�ects of an insurance mandate for homes in high-risk �ood zones.

These welfare calculations are relevant for policy: �ood and �re insurance markets are moving

toward actuarially fair pricing as soon as 2021 (CDI, 2018; FEMA, 2019a). High-risk homeowners

with federally backed mortgages are supposed to purchase �ood insurance, but this requirement

is not enforced (NRC, 2015).

The second part of the paper estimates two key parameters that are necessary to understand

how any natural disaster insurance market reform will a�ect social welfare: homeowners' will-

ingness to pay for insurance and the marginal cost of providing insurance to them. To do so, I

compile a novel data set by linking the characteristics of residential houses, �ood insurance poli-

cies, and �ood insurance claims. The data set covers 20 Atlantic and Gulf Coast U.S. states for the

years 2001-2017. These states account for 83% of total �ood insurance policies written nationwide

(NRC, 2015). This data set includes both proprietary parcel-level data on the residential housing

stock and administrative data on over 70 million �ood insurance contracts underwritten by the

NFIP. Compiling these data required �ve Freedom of Information Act (FOIA) requests and over

14 months of processing by the Federal Emergency Management Agency (FEMA). To the best of

my knowledge, this is the most comprehensive set of natural disaster insurance and housing data

in existence.

I estimate homeowners' willingness to pay and cost curves using a di�erences-in-di�erences

research design that exploits exogenous, house-level variation in �ood insurance prices from Con-

gressional reforms in 2012 and 2014. These reforms imposed annual rate increases for houses in

high-risk �ood zones that were built before the implementation of construction standards mandat-

ing a minimum elevation for their foundation. I test the identifying assumptions of this research

design using event study graphs, sensitivity analyses with di�erent controls and data subsamples,

and triple-di�erence regressions that compare outcomes for houses that experience �oods of similar

severity before and after the price reform. The evidence supports the identifying assumptions.

The research design also allows me to test for selection. NFIP administrators have expressed

concern that homeowners could have private information about their �ood risk because �ood

insurance prices are based on a small number of dwelling characteristics and on �ood maps that

are often many years out of date (Horn and Webel, 2019). The slope of the average cost curve
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provides the basis for a test for selection on private information: in an adversely selected market in

which people have private information about their risk, infra-marginal individuals who purchase

insurance are more costly to insure than marginal individuals o�ered the same price (Einav et al.,

2010). If this is the case, then average costs increase when prices do. Comparing demand and

costs for elevated and non-elevated houses (controlling for any insurance price di�erences) also

provides a test for selection on observable determinants of natural disaster risk. In a market that

is adversely selected on the elevation of a house's foundation, houses that are not elevated are

more likely to be insured and are costlier to insure than elevated houses that pay the same price.

The paper has three main �ndings. First, I document that, throughout high-risk �ood zones

in the eastern U.S., the mean price of �ood insurance is only about two-thirds of homeowners'

own expected payouts, but over 40% of homeowners are uninsured. Using these descriptive facts

and exogenous price variation, I estimate that only about half of high-risk homeowners are willing

to pay an amount equal to their expected payout for a �ood insurance contract. These results

contradict standard models of insurance demand, where risk-averse individuals are willing to pay a

risk premium above cost. In textbook models, all risk-averse homeowners purchase insurance if it

is actuarially fair. Flood insurance premia are better than actuarially fair on average. I show that

market failures typically identi�ed in insurance markets, such as adverse selection, moral hazard,

public bail-outs, and credit constraints, seem unable to rationalize low willingness to pay in this

setting. One friction that appears to play an important role is homeowners' underestimation of the

risk that their house will be �ooded. Homeowners' low valuation of �ood insurance is surprising

because �oods decrease land value and labor income in addition to house value; correlated risks

make the consumption smoothing bene�t of insurance more valuable.

The paper's second main �nding is that homeowners select into insurance based on di�er-

ences in observable house characteristics, but not on private information about risk. I estimate

that minimum elevation requirements for new construction reduce demand for natural disaster

insurance by 25% and insurer costs by 31%, conditional on prices. However, I estimate that while

homeowners are price sensitive, the slope of the average cost curve is statistically indistinguishable

from zero after controlling for whether or not a house is elevated. Despite the NFIP's coarse rate

schedule, these results suggest that selection on private information is limited, but that natural

disaster insurance markets are adversely selected because homeowners' willingness to pay and cost

are positively correlated with observables (i.e., house elevation) that the insurer does not price

e�ciently. In the textbook model of an adversely selected market, insurance take-up is ine�ciently

low because the bene�t from insurance for some individuals is below prices set at average cost.

By contrast, I �nd that the expected bene�t from insurance is constant and equal to average cost

across the price distribution that I observe, conditional on house elevation. Di�erences between

marginal and average costs therefore cannot rationalize low take-up in this market.
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The paper's third main results assess how counterfactual policies would a�ect social welfare. I

consider increases in mean insurance prices to actuarially fair levels and also consider a mandate

for all homeowners in high-risk �ood zones to purchase insurance. In most settings, revealed

preference demand accurately re�ects a good's value to consumers and forms the basis for policy

recommendations. However, in this setting, I �nd that frictions (e.g., underestimation of �ood risk)

appear to cause homeowners to substantially undervalue natural disaster insurance, and so welfare

analysis based on observed demand excludes a large expected bene�t. Observed willingness to

pay is actually so low that accounting for frictions changes the sign of the predicted welfare e�ect.

Whereas observed willingness to pay suggests that making �ood insurance actuarially fair would

improve welfare, accounting for frictions in my analysis suggests that increasing prices actually

decreases social welfare by $3.7 billion annually. In the presence of such frictions, I calculate

that enforcing an insurance mandate increases social welfare, by $16.4 billion annually, because it

e�ciently extends insurance coverage to include many homeowners who seem likely to purchase it

in the absence of any distortions in demand. A mandate is the typical solution to adverse selection

on private information (Akerlof, 1970), but is also useful in the absence of such selection because

it corrects the distortion from any frictions.

This paper seeks to contribute to existing literature in four main ways. I believe that this is the

�rst paper to test for or provide evidence of adverse selection into any natural disaster insurance

market. In so doing, the paper also provides the �rst instrumental variables estimate of the price

elasticity of demand for natural disaster insurance. These results extend a voluminous literature on

selection in insurance markets, the focus of which is largely on health (Bundorf et al., 2008; Einav

et al., 2010; Finkelstein et al., 2019; Handel, 2013; Hackmann et al., 2015). Chetty and Finkelstein

(2013) review empirical methods that public economists use to study selection in health insurance,

disability insurance, and speci�c settings such as annuity markets or automobile insurance.1 The

omission of natural disaster insurance from this literature is particularly signi�cant in light of the

NFIP's concern about the �nancial implications of proposed price changes and the necessity of

marginal cost estimates for welfare analysis. There is also limited evidence on the extent to which

homeowners are sensitive to prices for natural disaster insurance�a prerequisite for selection. The

price elasticity of demand for �ood insurance is of independent interest because many proposed

�ood insurance reforms involve price changes. Most estimates of �ood insurance price elasticities

use panel regressions on a few thousand policies or state-level policy totals without instruments

1The only work I am aware of applying any of these methods to natural disaster insurance markets is research in
progress by Matthew Gibson, Jamie Mullins, and Carolyn Kousky. One contemporaneous study suggests that there
is a correlation between average lifetime claims and duration of �ood insurance tenure, which it labels �dynamic
adverse selection� (Mulder, 2019). This other study does not test whether homeowners selectively take up natural
disaster insurance based on observed or unobserved variables; its measure is novel and interesting though di�ers
from the standard measure of adverse selection (Einav et al., 2010).
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or an explicit research design to address endogeneity of prices (Browne and Hoyt, 2000; Dixon

et al., 2006; Kriesel and Landry, 2004). The only quasi-experimental estimate that I am aware of

uses an OLS panel regression with 66 policy counts (Mulder, 2019). I show that instrumenting

for prices is important because OLS estimates of demand and cost elasticities are biased upward

substantially, which is consistent with increases in both insurance demand and prices after �oods.

In addition to selection, the empirical insurance literature also commonly studies moral hazard,

which arises when insurance changes behavior in a way that a�ects cost. I discuss the implications

for my welfare analysis of spatial distortions created by subsidies and by public disaster relief

payments (Bakkensen and Barrage, 2019; Baylis and Boomhower, 2019; Fried, 2019). I also

discuss how changes in homeowners' decisions to invest in adaptive capital could a�ect welfare,

though I leave the test for this type of moral hazard for future work. Homeowners' private capital

investments are di�cult to observe, but the e�ect of an elevated foundation on cost, which I

estimate, suggests that the range of plausible moral hazard costs have small welfare consequences.

The paper's second main contributions are the �rst estimates of the wedge between homeown-

ers' willingness to pay for a natural disaster insurance contract and its expected bene�t, and of

the social welfare implications of �ood insurance subsidies and low take-up. Previous studies mea-

sure take-up using aggregated estimates of houses and contracts or matched microdata for smaller

geographies, such as individual cities, without calculating willingness to pay (Dixon et al., 2006;

Kousky et al., 2018; Kriesel and Landry, 2004).2 Gregory (2017) and Bakkensen and Ma (2019)

use location-choice models to estimate observed willingness to pay for the provision of public nat-

ural disaster relief and for the avoidance of �ood risk, respectively. Other work measures �ood

insurance subsidies using various methods, such as published NFIP rate tables or actuarial models

(CBO, 2017; GAO, 2014; Kunreuther et al., 2017). My paper departs from these studies by com-

paring observed willingness to pay for natural disaster insurance to estimates of risk premia and

costs, which allows me to analyze the normative implications of descriptive patterns of insurance

purchase choices. This analysis contributes to a literature that examines how economic frictions

(e.g., hassle costs) and behavioral biases (e.g., risk misperception) distort take-up of insurance

and social programs (Abaluck and Gruber, 2011; Finkelstein and Notowidigdo, 2018; Spinnewijn,

2015). A subset of this literature shows that homeowners appear to underestimate their �ood

risk (Bakkensen and Barrage, 2019; Gallagher, 2014; Royal and Walls, 2019), which provides one

plausible explanation for the wedge between willingness to pay for natural disaster insurance and

the expected bene�t that this insurance provides.

Additionally, I provide the �rst empirical estimates of the e�ects of minimum construction

standards on natural disaster insurance demand and individuals' average costs. I show that these

defensive investments deliver the largest cost reduction during catastrophic events. In addition

2NRC (2015) reviews �ood insurance take-up estimates in speci�c settings.
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to providing evidence of adverse selection on observables (i.e., house elevation), these estimates

quantify the bene�ts of adaptation policies in mitigating the e�ects of extreme weather on home-

owners. These �ndings contribute to a burgeoning literature that models climate change impacts

on economic outcomes under di�erent assumptions on adaptive behavior (Balboni, 2019; Bar-

reca et al., 2016; Houser et al., 2015). An advantage of merging microdata on houses, insurance

contracts, and claims is that this allows me to estimate the expected bene�t of adaptation for

individuals, rather than on aggregate or only using claims data, which provides a measure of the

reduction in average costs that should be incorporated into insurance prices. Studies of the reduc-

tion in natural disaster damages from residential construction standards, barriers against natural

hazards, and land-use planning typically rely on engineering estimates or calibrated model-based

simulations (EPA, 2017; NIBS, 2018). Kousky and Michel-Kerjan (2017) examine correlations

between �ood insurance payouts and house characteristics conditional on making a claim.

Finally, I contribute to a methodological literature on welfare analysis in insurance markets

using �su�cient statistics� (Chetty, 2009; Einav et al., 2010; Handel et al., 2019; Spinnewijn, 2017).

Standard approaches in public economics that measure welfare using demand and cost curves rely

on the assumption that observed demand re�ects individuals' true valuation of insurance. In

the presence of frictions such as risk misperception, this assumption fails. I derive the welfare-

relevant demand curve as a function of empirically estimable parameters by inverting a method

for calculating risk aversion (Hendren, 2019). This approach requires few assumptions on the

functional form of utility and the distribution of any frictions, and provides a framework for

studying welfare in natural disaster insurance markets.

The rest of this paper proceeds as follows. Section 1 describes the NFIP. Section 2 outlines

a model of natural disaster insurance markets and the empirical quantities needed to evaluate

welfare. Section 3 describes the data. Section 4 presents descriptive evidence on natural disaster

insurance subsidies and purchasing behavior. Section 5 outlines the empirical strategy, and Section

6 presents estimates of the e�ects of prices and adaptation on insurance demand and cost. Section

7 evaluates the welfare implications of counterfactual insurance reforms. Section 8 concludes.

1 Institutional Background

Since its inception in 1968, the NFIP has been the primary provider of �ood insurance in the

United States. Standard property insurance contracts do not cover �oods, but �oods account for

over 90% of natural disasters and cause more damage than wild�res, tornadoes, and earthquakes

combined (GAO, 2007; Gaul, 2019). The NFIP therefore annually underwrites over 5 million

�ood insurance policies that represent $3.2 billion of premia revenue and $1.2 trillion of coverage

for buildings and their contents. Insurance purchased through the NFIP is backed by the federal

government, which bears essentially all �ood risk. The small private market for �ood insurance
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currently accounts for only 3.5 to 4.5% of residential policies written in the country (Kousky

et al., 2018). This di�ers from insurance markets for other natural disasters such as wild�res,

windstorms, and earthquakes, which are mostly private. As a result of cumulative damages from

recent hurricanes, the NFIP is currently over $20 billion in debt, despite regularly borrowing from

the U.S. Department of the Treasury (Horn and Brown, 2018).

In addition to underwriting insurance, the NFIP coordinates hydrological studies to provide

communities with a detailed Flood Insurance Rate Map (FIRM).3 Appendix Figure A.1 shows

an example. These maps serve two primary purposes. First, they delineate two types of local

areas�those at high and at low risk of �ooding. In theory, homeowners with federally backed

mortgages are required to purchase �ood insurance if they live in high-risk �ood zones, but this

condition is not enforced and many homeowners are unaware of its existence (Horn and Brown,

2018; NRC, 2015).4 The second main purpose of the maps is to provide information about the

height of the �ood that has a 1% probability of occurring. The NFIP requires that the foundations

of new construction in high-risk �ood zones are elevated to at least the height of the 1% chance

�ood. This minimum construction requirement a�ects all houses built in high-risk �ood zones

after the later of December 31, 1974 or the date of their community's �rst map. Appendix Figure

A.2 shows that these �post-FIRM� houses are visibly better built to withstand �ooding than �pre-

FIRM� structures with no minimum height requirements. Based on these di�erences in adaptation

policy (i.e., minimum elevation requirements), in this paper I refer to post- and pre-FIRM houses

as adapted and non-adapted respectively.

Flood insurance prices are based primarily on whether houses throughout the country are in

high- or low-risk �ood zones and whether they are built before or after communities are mapped.5

Both adapted and non-adapted homeowners receive an implicit subsidy because many �ood maps

use out-of-date information about risk and because insurance premia have not increased at the

same rate as the cost of �ooding. Real premia were largely unchanged throughout the 1990s and

2000s, but cumulative claims since 2005 exceed the total from the NFIP's entire prior history

(DHS, 2017). However, the NFIP purposefully sets premia for non-adapted houses in high-risk

�ood zones below actuarially fair levels. Flood insurance for these houses was initially subsidized

to maintain property values when the NFIP began and to encourage uptake. Flood maps are

3NFIP communities are �political subdivisions with the authority to enforce �oodplain management� and cor-
respond roughly to metropolitan statistical areas (FEMA, 2011).

4There is limited government oversight of lender compliance with the purchase requirement. One case study
�nds that �ood insurance take-up by high-risk homeowners was 16%, but that 45% of the total had federally backed
mortgages and therefore should have been required to purchase it (NRC, 2015). Gallagher (2014) calculates that
97% of NFIP policyholders purchase �ood insurance by choice rather than requirement.

5The NFIP also adjusts prices if houses have a basement and comply with any elevation standards. High-risk
�ood zones are subdivided depending on, for example, whether they are subject to storm surge. Prices are quoted
per $100 of coverage, and the �rst $60,000 of building coverage and the �rst $25,000 of contents coverage are more
expensive than subsequent amounts. NFIP (2019) discusses these rate setting details.
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revised periodically, and prior construction is grandfathered into new �ood zone designations

without price increases (Horn and Brown, 2018).

Congress is now phasing out the statutory subsidies for non-adapted structures. The Biggert-

Waters Flood Insurance Reform Act of 2012 (Biggert-Waters) mandated premia increases of 25%

per year beginning in 2013 for non-adapted primary residences that are sold, paying subsidized

rates due to grandfathering, or classi�ed as �severe repetitive loss� properties.6 The Homeowner

Flood Insurance A�ordability Act of 2014 (HFIAA) limited this annual rate increase to between

5% and 18% for non-adapted houses that are sold or grandfathered. It also extended the rate

increase to all subsidized non-adapted properties, until premia reach actuarially fair levels (NRC,

2015).7 These Congressional reforms provide exogenous price variation that a�ects non-adapted

houses only. I use this variation to estimate the slopes of the �ood insurance demand and cost

curves.

2 Conceptual Framework

The model of natural disaster insurance markets extends standard models of insurance demand

and cost (Einav et al., 2010; Spinnewijn, 2017) by incorporating adaptation and a more general

expression for frictions in uptake. The welfare implications of natural disaster insurance reforms

depend on marginal costs and on (unobserved) willingness to pay in the absence of any frictions.

I use a novel approach to derive homeowners' frictionless willingness to pay.

2.1 A Model of Natural Disaster Insurance Markets

2.1.1 Demand

Each year, risk-averse homeowner i with exogenous income yi chooses whether to purchase a natu-

ral disaster insurance policy. These contracts are perfectly elastically supplied by the government

at a subsidized price p and provide full insurance in case of damages.8 Houses are characterized by

a level of ex ante adaptation α that provides protection against natural disasters. For �oods, this

adaptation takes the form of minimum elevation requirements for the residential housing stock.

There are frictions that a�ect homeowners' decision to purchase insurance, denoted by φi ≥ 1.

The model is agnostic about which microfoundations give rise to these frictions. Some evidence

suggests that homeowners' underestimation of their �ood risk is an important friction (Bakkensen

6FEMA classi�es about 0.2% of insured structures as �severe repetitive loss� because they have made at least 4
claims that exceed $5,000, or at least 2 claims that, in total, exceed the property's value (Horn and Brown, 2018).

7Biggert-Waters and the HFIAA introduced other changes, such as a $25 surcharge for all policies and a new
deductible option, which did not di�erentially a�ect adapted and non-adapted houses (FEMA, 2015).

8The small intensive margin demand elasticities that I estimate in Section 6 motivate the model's focus on the
extensive margin purchase choice. The assumption of full insurance is based on the empirical observation that total
coverage is non-binding for 93% of claims. Appendix B relaxes this assumption.
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and Barrage, 2019; Gallagher, 2014; Royal and Walls, 2019). However, φi could also represent

other frictions, such as inattention, that have not been tested in the existing literature.9

Homeowners have an underlying type si that captures unobservable factors that a�ect will-

ingness to pay for natural disaster insurance. These unobserved variables could include risk

preferences and private information about location-speci�c natural disaster risk, for example. I

assume that these types are uniformly distributed on the unit interval in the population and that

willingness to pay decreases in si, so that si = 1 is the lowest willingness to pay type. These

assumptions are standard (Finkelstein et al., 2019; Hendren, 2019). The assumption that will-

ingness to pay declines in si means that s has a convenient interpretation as the x-axis on the

demand curve because all types si < s purchase insurance if homeowner of type s does.

In the presence of selection, type si also determines the homeowner's cost f(si, α) to the

natural disaster insurer. The correlation between willingness to pay and cost is the de�ning

feature of selection markets; a positive and negative correlation respectively indicate adverse and

advantageous selection. Damages also depend on the extent of adaptation α. For full insurance

contracts, the terms damages and costs are interchangeable. Damages are distributed Fs,α in the

population.

Homeowners maximize a well-behaved utility function u(ci), subject to a budget constraint

that depends on whether they purchase insurance at price p. With full insurance, the budget

constraint for insured homeowners with consumption cI(p, yi) is:

cI(p, yi) + p ≤ yi

Uninsured homeowners bear the full costs of any realized damages f(si, α). This yields the budget

constraint for uninsured homeowners with consumption cU(si, α, p):

cU(si, α, yi) + f(si, α) ≤ yi

Consider a homeowner of type si with adaptation α and frictions φi and suppress dependence

on yi. The maximum price D̃(si, α, φi) that this homeowner is willing to pay for insurance equates

expected utility over the distribution of possible natural disaster costs when insured or uninsured:

u(yi − D̃(si, α, φi)) = φiE[u(yi − f(si, α))|si]. (1)

Homeowners buy insurance if willingness to pay exceeds price, i.e., when D̃(si, α, φi) ≥ p. Since

all homeowners with types si < s purchase insurance if homeowner of type s does, the type s of the

9Friction parameters that are weakly greater than 1 allow distortions such as overoptimism about �ood risk,
inattention to exclusions from property insurance, inertia when uninsured, myopia, and other frictions that increase
the perceived costs of purchasing insurance. This parametrization rules out overvaluation of insurance or, for
example, inertia when insured. This is consistent with my empirical evidence on low levels of �ood insurance
uptake.
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marginal homeowner, who has D̃(s, α, φ) = p, measures the share of homeowners who purchase

insurance at price p, given the distribution of frictions φ. The identity D̃(s(p, α, φ), α, φ) = p

implicitly de�nes the inverse demand curve s(p, α, φ). To simplify notation, I denote the market

willingness to pay curve by D(p, α, φ) ≡ D̃(s(p, α, φ), α, φ).

Frictions φi > 1 create a wedge between observed willingness to pay D̃(si, α, φi) and frictionless

willingness to pay D̃(si, α, φi = 1). If φi = 1, homeowners accurately equate expected utility in

the insured and uninsured states of the world, and the model simpli�es to the standard model

of insurance demand and cost (Einav et al., 2010). If φi > 1, individuals perceive the uninsured

state to be more attractive than it actually is. One example of φi > 1 is underestimation of the

probability of being �ooded. Note that the probability of �ooding does not appear separately in

equation (1) because it is included in the expectation over the distribution of damages.

In Appendix A.1, I derive comparative statics for how willingness to pay responds to changes

in the model's exogenous parameters by totally di�erentiating equation (1). These expressions

show that insurance take-up is declining in insurance prices, adaptation, and frictions.

2.1.2 Insurer Costs

The expected insurance cost of the marginal type s(p, α, φ) who purchases insurance at price p is:

MC(p, α, φ) = E[f(si, α)|si = s(p, α, φ)].

I assume insurer costs are equal to claims paid and costs f(si, α) are independent of the premiums

charged for insurance, which are standard assumptions (Finkelstein et al., 2019; Hendren, 2019).

The insurer's expected average costs are the expectation over the distribution of costs of the

homeowners who purchase insurance:

AC(p, α, φ) = E[f(si, α)|si ≤ s(p, α, φ)] =
1

s(p, α, φ)

s(p,α,φ)ˆ

0

E[f(si, α)]dsi

with uniform distribution over si. Appendix A.2 derives the e�ects of changes in the exogenous

parameters p, α, and φ on average costs. Adaptation shifts the average cost curve. Conditional

on adaptation, selection on private information changes the slope of the average cost curve. In

general, the comparative statics could all take either sign, which motivates testing empirically for

selection on both observable and unobservable determinants of natural disaster risk.

2.2 Empirical Tests for Selection and Frictions

Data on prices, quantities, costs, and house characteristics permit two tests for selection and

one test for frictions in uptake.
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First, the sign of the slope of the average cost curve ∂AC(p,α,φ)
∂p

is a test for selection on un-

observable determinants of natural disaster risk (Einav et al., 2010). If the market is adversely

selected, homeowners' costs are positively correlated with willingness to pay, and so infra-marginal

homeowners are costlier to insure than marginal individuals. In this case, ∂AC(p,α,φ)
∂p

> 0 because

lower cost individuals cease to purchase insurance at higher prices (Akerlof, 1970). Homeowners'

costs could also be negatively correlated with willingness to pay, which would lead to advantageous

selection. The NFIP's coarse pricing structure, based primarily on �ood zone and a limited num-

ber of dwelling characteristics, creates the possibility for adverse selection: homeowners may base

their insurance purchase decisions on location-speci�c information that the NFIP does not observe

or price, such as groundwater intrusion or the behavior of local sewer systems during storms. The

NFIP considers the potential for such adverse selection to be a barrier to establishing a private

�ood insurance market because pro�t-maximizing insurers with sophisticated risk models may

be able to selectively enroll pro�table homeowners at lower rates, transforming the NFIP into a

residual market for high-risk properties (Horn and Webel, 2019).

Second, we can test for adverse selection on observable house characteristics by estimating the

e�ects of adaptation policies on insurance demand and costs. Natural disaster insurance markets

are adversely selected if adapted houses that are required to be elevated are both less costly to

insure and less likely to be insured, conditional on prices. In terms of the model, this is equivalent

to testing for ∂AC(p,α,φ)
∂α

< 0 and ∂s(p,α,φ)
∂α

< 0. If adaptation policies such as minimum elevation

requirements are negatively correlated with demand and cost even conditional on the prices that

the di�erent types of houses pay, then this is evidence that the insurer does not fully incorporate

these ex ante di�erences in adaptation into the rate schedule. This second test for �asymmetrically

used� information is based on correlations and does not require that I observe exogenous changes

in house characteristics (Finkelstein and Poterba, 2014). By contrast, testing for selection using

the slope of the average cost curve requires exogenous price variation that is uncorrelated with

shocks to demand and cost.

Finally, whether homeowners' observed willingness to pay exceeds their expected insurance

payouts provides a general test for frictions φi > 1. In standard models of insurance demand, risk-

averse individuals are willing to pay their expected bene�t from insurance plus a risk premium. If

homeowners do not purchase insurance when prices are below their own expected payouts, then

this is generally su�cient to establish the presence of frictions in this market. This provides a

simple empirical test for φi > 1, though I consider other explanations in Section 6.3.

In addition to testing for φi > 1, I quantify the distortion in demand by calculating what

homeowners would be willing to pay if φi = 1 for all homeowners. Hendren (2019) derives an

equilibrium condition for willingness to pay for social insurance and uses an approximation of the

utility function in this expression combined with information on insurance demand and costs to
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estimate risk aversion. I invert this approach to recover an expression for willingness to pay in

terms of empirically estimable parameters. I summarize how to derive willingness to pay here;

Appendix B provides the details for the more general case of partial insurance. The �rst step

involves taking a second-order Taylor expansion of equation (1) around the average consumption

c̄ of a given type si. This yields an implicit expression for willingness to pay D̃(si, α, φi). To

write willingness to pay only as a function of the exogenous model parameters, I use the identity

D̃(s(p, α, φ), α, φ) = p that de�nes the willingness to pay of the marginal homeowner at each price

p. I obtain an expression for observed willingness to pay as a function of three terms: expected

cost, a risk premium that depends on a coe�cient of absolute risk aversion and the e�ect of natural

disaster insurance on the variance of consumption, and a wedge from frictions φi > 1:

D(p, α, φ) = E [f(si, α)|si = s(p, α, φ)]︸ ︷︷ ︸
expected cost

+

1

2
× −ucc

uc︸ ︷︷ ︸
coef. of absolute risk aversion

×
(
E
[
(yi − f(si, α)− c̄)2|si = s(p, α, φ)

]
− (yi − p− c̄)2

)︸ ︷︷ ︸
e�ect of insurance on the variance of consumption

+

(1− φi)×
1

uc
× (E [u(yi − f(si, α))|si = s(p, α, φ)])︸ ︷︷ ︸

distortion from φi > 1

(2)

In the absence of any frictions, φi = 1 for all homeowners and (2) simpli�es to an expression

for frictionless willingness to pay:

D(p, α, φ = 1) = E [f(si, α)|si = s(p, α, φ = 1)] +

1

2
× −ucc

uc
×
(
E[(yi − f(si, α)− c̄)2|si = s(p, α, φ = 1)]− (yi − p− c̄)2

)
︸ ︷︷ ︸

risk premium

(3)

For risk-averse individuals, ucc < 0 and frictionless willingness to pay is equal to expected cost

plus a premium for the reduction in consumption risk from insurance. Frictions φi > 1 distort

willingness to pay downward, possibly below expected payouts: the last term of equation (2) is

negative for φi > 1.

2.3 Welfare Implications

Einav et al. (2010) provide a framework for quantifying the welfare implications of counter-

factural policy interventions in insurance markets based on observed willingness to pay and cost

curves.10 In the presence of frictions in uptake, revealed preference demand does not re�ect the

10A limitation of this approach is that it relies on uncompensated (Marshallian) demand curves for welfare
analysis. Accounting for income e�ects would require imposing more structure on the primitives of the utility
function and the ways in which frictions in uptake a�ect homeowners' decisions.
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full value of insurance (Spinnewijn, 2017). Instead, the welfare-relevant willingness to pay curve

is the frictionless willingness to pay curve in equation (3).

Figure 1.a shows a graphical representation of the market equilibrium for a given level of

adaptation α and distribution of frictions φ. The horizontal axis shows the share of insured

homeowners in the market and the vertical axis shows price, cost, and willingness to pay. The

downward-sloping marginal cost curve MC(p, α, φ) indicates adverse selection: at higher prices,

marginal individuals are more costly to insure. The marginal cost curve therefore lies below the

average cost curve, AC(p, α, φ). The insurer sets a subsidized price p′ below marginal cost.11

The e�cient equilibrium occurs at the intersection of the willingness to pay curve that is not

distorted by frictions in uptake, D(p, α, 1), and the marginal cost curve. This is point A in the

graph. It is e�cient for homeowners to purchase insurance if their expected payout plus their risk

premium exceeds their cost to the insurer. However, φi > 1 distorts demand so that homeowners

may not purchase insurance even when their expected bene�t exceeds the price. The �gure shows

the observed willingness to pay curve as a level downward shift of the frictionless willingness to

pay curve for illustration.12

The presence of a wedge between observed and frictionless willingness to pay has important

implications for optimal policy. The intersection of the observed willingness to pay curveD(p, α, φ)

and the marginal cost curve, at point B, occurs at the price pmc above the subsidized price p′. If

observed demand is used as the welfare-relevant metric, the insurer would conclude that increasing

prices from p′ to pmc would lead to a welfare gain equal to the area between the marginal cost and

observed willingness to pay curves, shown in light grey. However, the frictionless willingness to

pay curve implies that it is e�cient to insure all homeowners with D(p, α, 1) > p′. Accounting for

frictions, increasing prices from p′ to pmc actually reduces welfare because the bene�t of insurance

is greater than the cost for all homeowners who become uninsured as a result of the price increase.

The reduction in welfare is given by the dark grey area between the frictionless willingness to pay

and marginal cost curves.

Implementing the e�cient equilibrium at point A actually increases the share of insured home-

owners, from s(p′, α, φ) to s(p∗, α, φ). Figure 1.a illustrates the case where it is optimal for all

homeowners to purchase insurance. Since homeowners' purchase decisions are based on D(p, α, φ),

achieving 100% take-up requires either further subsidizing prices to p∗, or enforcing a mandatory

11Since the insurer does not observe marginal costs, subsidies are based on average cost. I illustrate the case
here where prices are also below marginal cost, consistent with my empirical evidence for �ood insurance.

12The frictionless willingness to pay curve may be more or less steep than the observed demand curve. The
empirical analysis in Section E relaxes the assumption of a level shift illustrated in Figure 1.a. If the frictionless
willingness to pay curve is a level shift of the observed willingness to pay curve, then any individual di�erences
in frictions, marginal utility, and expected utility when uninsured, which give rise to the distortion in demand in
equation (2), o�set on average.
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purchase requirement.13 The mandate makes it possible to sustain prices at a level above p∗ with

the same welfare gain, shown in black.

2.4 From Theory to Data

Evaluating the welfare e�ects of counterfactual price increases and a mandate requires infor-

mation on the marginal cost and frictionless willingness to pay curves.

First, I obtain the marginal cost curve by estimating the observed demand and average cost

curves. Using these empirical quantities, I derive the marginal cost curve as the change in total

cost from an incremental change in demand, i.e., MC(p, α, φ) = ∂(AC(p,α,φ)×s(p,α,φ))
∂s(p,α,φ)

(Einav et al.,

2010). I estimate the slopes of the observed demand and average cost curves using the exogenous

price variation from the Biggert-Waters and HFIAA Congressional reforms. The pre-2013 levels of

prices p′, average costs AC(p′, α, φ), and share of insured homeowners s(p′, α, φ) locate the initial

equilibrium in the market.

Second, I calibrate the frictionless willingness to pay curve from equation (3) using estimates

from the literature of the coe�cient of absolute risk aversion and the e�ect of natural disaster

insurance on the variance of consumption.14 These empirical quantities allow me to calculate the

risk premium, which together with the marginal cost curve pins down the frictionless willingness

to pay curve. I calculate the marginal cost and frictionless willingness to pay curves separately for

adapted and non-adapted houses because adaptation shifts these curves, as shown in Appendix A.

The total welfare e�ects of counterfactual policies are the sums of the welfare e�ects for adapted

and non-adapted homeowners.

It is worth noting what information this approach does not require. Related papers that use

insurance demand and costs curves to analyze welfare in the presence of choice frictions calibrate

a frictionless willingness to pay curve by adjusting the observed willingness to pay curve using

information on how frictions are distributed (Handel et al., 2019; Spinnewijn, 2017). By contrast,

this paper's approach does not require information on the distribution of frictions; frictions φi do

not appear in equation (3). Instead, this approach uses other information on the distribution of the

consumption variance and risk aversion, as well as on marginal costs. As a result, the frictionless

willingness to pay curve is robust to homeowners with lower observed willingness to pay making

bigger or smaller mistakes. Figure 1 illustrates the case where the observed and frictionless

willingness to pay curves have the same slope; I relax this assumption in the empirical welfare

calculations in Section E. Any correlation between individual frictions and observed willingness

13Two other ways to achieve the e�cient equilibrium are imposing a tax on uninsured homeowners equal to
MC(p∗, α, φ) −D(p∗, α, φ) or implementing policies that target the removal of any frictions directly. The second
alternative requires more information on the form of the frictions.

14To do so, I impose the standard assumption of CARA utility (i.e., invariance of risk aversion across the wealth
distribution) (Einav et al., 2010).
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to pay is re�ected in the relative slopes of the two willingness to pay curves.

In comparison with a fully structural model (e.g., Handel and Kolstad, 2015), the main bene�t

of this approach is that it does not require specifying how frictions in uptake a�ect homeown-

ers' decisions. Section 6.3 discusses some possible explanations for low willingness to pay, but

disentangling the roles of di�erent behavioral frictions is an interesting area for future work.

3 Data

This paper uses three administrative data sets on �ood insurance policies, �ood insurance

claims, and residential houses. I supplement these data with spatial data on �ood risk. Additional

details are in Appendix C.

Flood Insurance Policies and Claims � I obtained the �ood insurance policies and claims

data through �ve Freedom of Information Act (FOIA) requests from the Federal Emergency

Management Agency (FEMA). The �ood insurance data are the universe of NFIP policies and

claims for 2001-2017 in the 20 Atlantic and Gulf Coast states shown in Figure 2. Each observation

includes standard variables, such as premium and coverage, for individual contracts. The claims

data include the �ood water depth and the event number that FEMA assigns to catastrophes such

as Hurricane Katrina, to distinguish them from localized �nuisance� �oods.

I impose several sample restrictions. First, I restrict the analysis to houses in high-risk �ood

zones because the minimum elevation requirements and the variation in �ood insurance prices

from Congressional reform target houses in these areas. Second, I limit the analysis to single-

family primary residences. Price increases di�erentially a�ect business owners, multi-unit property

managers, and owners of vacation homes, who may have di�erent incentives and risk aversion than

homeowners.15 Appendix C.1 describes additional restrictions imposed during the data cleaning,

such as excluding houses that have negative coverage totals or that are missing key variables. The

�nal sample includes 11,983,183 policies. Throughout, all monetary values are de�ated to 2017

dollars using the consumer price index for housing, unless otherwise stated.

Spatial Data on Flood Zones � I use geographic information system data on �ood zone designa-

tions from the National Flood Hazard Layer (NFHL). The NFHL is a digital map layer that covers

90% of the U.S. surface area and delineates NFIP �ood zones and communities. It also includes

georeferenced information such as community identi�cation numbers and initial �ood map years.

Housing � The housing data set is from the Zillow Transaction and Assessment Database

(ZTRAX). It comprises parcel-level tax assessment data on the universe of residential properties

in the 20 Atlantic and Gulf Coast states. Using the latitude and longitude coordinates for each

property, I determine the �ood zone for each house in the entire eastern U.S. by spatially linking

15High-risk properties account for around 80% of policies and two-thirds of claims (Kousky et al., 2016). Single-
family primary residences account for about 70% of policies (NRC, 2015).
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the housing data with the NFHL. I also match each house to its NFIP community to determine if

it was built before or after its community's initial �ood map, i.e., whether it is an adapted house.

I impose the same sample restrictions as for the insurance data. The main analysis focuses on

13,433,549 houses in high-risk �ood zones built within a 30-year window centered on the year of

their community's �rst map.

Federal FOIA disclosure laws prohibit the release of addresses in the insurance data. However,

the policy variation that I exploit di�erentially a�ects houses depending on their �ood zone and

when they were constructed relative to the community's �rst �ood map. This means that I need

to know only the average payouts and insured shares of adapted and non-adapted houses in high-

risk �ood zones. Therefore, I link individual policies to houses based on construction year, zip

code, community identi�cation number, and �ood zone. Appendix C.1 discusses possible sources

of measurement error in these variables, such as �ood map updates, and Appendix C.2 describes

the matching procedure in detail.

4 Stylized Facts

This section presents descriptive evidence on �ood insurance purchasing behavior from merging

the microdata on houses, insurance contracts, and claims throughout the Atlantic and Gulf Coast

states. The stylized facts are based on Table 1, which shows comparative summary statistics for

adapted and non-adapted houses in high-risk �ood zones for the years 2001 to 2017. Panel A sum-

marizes demand; Panel B summarizes insurer costs conditional on the purchase of a policy. Panel

B includes all policies written for high-risk houses to provide a complete picture of insurer costs.

Some county tax assessment o�ces do not collect house construction year, and so approximately

70% of these policies are matched to houses.16

First, homeowners who purchase insurance fully insure against expected �ood damages. Pur-

chased coverage exceeds $200,000, but the average claim is made for $60,000. In general, coverage

purchased is non-binding for 93% of claims, and damages are fully reimbursed. This fact reduces

concern about the empirical relevance of intensive margin selection, which arises when homeowners

who purchase more generous coverage make higher claims (Einav et al., 2010). This also provides

an empirical foundation for modeling �ood insurance policies as full insurance contracts.

Second, the average subsidy to homeowners in high-risk �ood zones is about 30% ($1.85 per

$1,000 of coverage, or $450 total) during the 17 years of this study.17 The realized subsidy is

heterogeneous across both space and time. Figure 2 shows that high-risk homeowners in some

16Appendix Table A.1 shows comparative summary statistics for matched and unmatched policies. The main
di�erence is that payouts are lower in the matched subsample. This is because Louisiana does not collect house
construction year for 88% of tax assessment records, and so the matched subsample excludes Hurricane Katrina.

17Model-based estimates of subsidies vary (CBO, 2017; GAO, 2014; Kunreuther et al., 2017), while estimates
based on statutory discounts are similar or larger (Bakkensen and Ma, 2019).
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counties receive more payouts than they pay in premia during the time period of this study, but

many do not. Figure 3 shows that the time series of payouts to high-risk homeowners is highly

variable. In years with relative little �ooding, prices exceed payouts on average. Hurricane Katrina

in 2005 is both an expensive loss year for the NFIP and a large subsidy to Louisiana residents.18

Third, insurance take-up rates are low. Fewer than 60% of homeowners in high-risk �ood zones

purchase �ood insurance. This �nding corroborates take-up rates based on smaller geographies

or aggregate data (NRC, 2015). This low take-up rate is surprising given subsidies of about 30%

of average cost. Appendix Figure A.5 shows that average take-up rates are higher in communities

that are subsidized during this time period, but are still well below 100%.19 However, insurance

purchase decisions are based on a household's own costs, and not on the average cost of the insured

population. A �nding that marginal homeowners are 30% less costly to insure than average could

rationalize this stylized fact. The following section tests for selection on private information to

assess whether such selection can explain this low take-up through willingness to pay and costs

alone. Section 6.3 carefully considers other possible explanations.

5 Econometric Model

5.1 E�ects of Price and Adaptation on Demand and Cost

I estimate homeowners' willingness to pay and cost curves and test for selection by exploiting

the price changes mandated by the Biggert-Waters and HFIAA reforms and the di�erences in the

minimum elevation requirements for adapted and non-adapted houses. Biggert-Waters and the

HFIAA increased prices only for non-adapted houses beginning in 2013, and I use this exogenous

policy variation to construct an instrument for prices. The main estimating equation is:

yit = ρpit + β1[adaptedi = 1] + λzt + νzdf + τfdt + εit (4)

In this equation, the variable yit is a demand outcome (i.e., a purchased coverage amount or

an indicator for purchasing an insurance contract) or a cost outcome (i.e., a payout amount per

$1,000 of insurance coverage or an indicator for making a claim) in year t for house i. The

variable pit is the price per $1,000 of insurance coverage and the variable 1[adaptedi = 1] equals 1

for houses that are subject to the adaptation policy (i.e., minimum elevation requirements). The

�rst parameter of interest, ρ, measures the average e�ect of a $1 increase in the price of �ood

18Figure 3 is consistent with aggregate FEMA payouts. Total NFIP claims during Hurricane Katrina exceeded
the total amount paid out in all years before 2005 (AIR, 2005).

19A positive correlation between average take-up and subsidies is expected because many homeowners purchase
insurance after �oods (Gallagher, 2014). Appendix Figure A.5 compares subsidies and take-up for the same sample,
while the overall subsidy is calculated based on matched and unmatched high-risk policies. Back-of-the envelope
calculations using the total number of houses and policies suggest that overall take-up may be around 5% higher.
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insurance on the demand and cost outcomes. If there is adverse selection on residual information

that is uncorrelated with the model covariates, increasing prices leads to higher average costs of

homeowners who remain insured, and so ρ will be positive in the regressions where payout is the

dependent variable; ρ negative is advantageous selection. The second parameter of interest is β,

which measures the mean e�ect of the adaptation policy on demand and cost. Adapted houses pay

lower prices for insurance even before the price reform; this speci�cation estimates the e�ect of the

adaptation policy holding prices constant. If selection on adaptation is important, adapted houses

are less likely to be insured and less costly to insure, and so β will be negative in regressions where

demand or cost are the dependent variables. The error term εit captures unobserved in�uences

on a homeowners' demand and cost in a given year. Throughout the paper, standard errors are

clustered at the community level to allow arbitrary correlation in the error terms of neighboring

houses that are mapped in the same year.

I use three sets of important covariates to control for temporal and geographic variation in �ood

severity that could drive changes in demand or cost that are unrelated to prices or adaptation.

Unlike other types of insurance such as health, where total annual costs are smooth on average,

�oods vary in magnitude depending on the severity of the hurricane year, are highly spatially

correlated, and may strike areas with concentrations of houses built in di�erent years. The �rst

set of covariates used to address these distinguishing market feastures are zip code×year �xed
e�ects λzt, which control for the average �ood experience of each zip code in each year. These

�xed e�ects are important because houses built in high-risk �ood zones before construction code

changes are concentrated in di�erent parts of the country from houses built after, as shown in

Appendix Figure A.4.

Zip code×decade built×�ood severity �xed e�ects νzdf control for the high variance of �ood

severity across years and for determinants of the rate schedule (i.e., house vintage and local �ood

zone). These �xed e�ects isolate changes in outcomes for neighboring houses built around the

same time that experience similar �oods in di�erent years. I construct two proxies for annual �ood

severity in each zip code. The �rst are indicator variables for the quintile of �ood water depth,

measured from the claims data. The second are indicator variables for FEMA's classi�cation of

the worst �ood event to strike each zip code in a given year (i.e., no �ood, nuisance �ood, or

catastrophe). I interact the zip code×decade built �xed e�ects with both �ood severity proxy

variables.20

I also include decade built×�ood severity linear time trends τfdt. Table 1 shows that adapted

houses purchase more coverage, which could re�ect higher value of newer construction. Decade

built time trends control for di�erential appreciation of newer and older houses between calendar

20Appendix Tables A.3, A.4, and A.5 show almost identical estimates of equation (4) for all outcomes using each
�ood severity proxy separately.
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years 2001 and 2017; I allow for di�erential appreciation of houses of the same vintage that are

struck by �oods of di�erent severity.21

Conditional on the three sets of covariates, the e�ects of prices and adaptation are identi�ed

from annual di�erences between adapted and non-adapted houses built in the same zip code

and the same decade that are struck by �oods of similar severity. The test for selection on the

adaptation policy is based on the correlation of the minimum elevation requirements with demand

and cost, and therefore does not require exogenous variation in house characteristics.

The test for selection on unobservable determinants of natural disaster risk requires price

variation that is uncorrelated with unobserved shocks to insurance demand and cost. For example,

OLS estimates of the e�ects of prices on demand and cost in equation (4) would be biased upward

(i.e., less negative) if a costly �ood event, such as Hurricane Katrina, causes the NFIP to raise

prices and also causes homeowners to purchase more insurance. I isolate price variation that is

uncorrelated with other determinants of demand or cost by instrumenting price in equation (4)

with an indicator for whether a house is treated by the Biggert-Waters and HFIAA price reforms.

Speci�cally, the instrument is 1[t ≥ 2013]×1[adaptedi = 1], where the indicator 1[t ≥ 2013] equals

1 if an observation is from after calendar year 2012 and 1[adaptedi = 1] is de�ned above. The

identifying assumption is that the price reform is the only factor that di�erentially a�ects adapted

and non-adapted houses in 2013, conditional on the model covariates:

E[(1[t ≥ 2013]× 1[adaptedi = 1])× εit|1[adaptedi = 1], λzt, νzdf , τfdt] = 0 (5)

This assumption holds if no other contemporaneous factor generates di�erent trends in demand

and costs for the two types of houses. For example, controlling for �ood severity addresses any

unobserved trends in extreme weather that could di�erentially a�ect places with more new or old

construction. I implement an indirect test of the identifying assumption by examining whether

prices, demand, and costs for adapted and non-adapted houses have similar trends in the years

before the reform. I estimate the coe�cients ψt in these event study graphs from the following

regression equation:

yit =
2017∑
t=2001

ψt1[year = t]× 1[adaptedi = 1] + Ψ20121[adaptedi = 1] + λzt + νzdf + τfdt + εit (6)

I also report the corresponding reduced form estimates of the reform using the di�erences-in-

di�erences regression equation:

21If decade built time trends are excluded, intensive margin demand slopes upward. De�ating total coverage
to $2017 makes it appear that adapted houses purchase more insurance in the early years of the sample because
nominal coverage is about 15% higher for these houses, in all years. This e�ect vanishes when controlling for
di�erential trends in the value of new and old construction using decade built time trends or estimating the e�ect
on nominal coverage, as shown in Appendix Table A.4.
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yit = θ11[t ≥ 2013]× 1[adaptedi = 1] + θ21[adaptedi = 1] + λzt + νzdf + τfdt + εit (7)

Here, the parameter θ1 measures the average e�ect of the price reform on adapted houses in the

post-2012 period shown in the event study graphs. The parameter θ2 measures initial di�erences

in prices, demand, and costs for adapted houses relative to non-adapted houses. When price

enters this equation as the outcome variable, this regression is the �rst stage of the instrumental

variables model (4).

The price and demand models use 13,433,549 observations on approximately 746,308 houses

in high-risk �ood zones in the 20 Atlantic and Gulf Coast states between 2001 and 2017. The cost

models are estimated on 11,983,183 matched and unmatched high-risk policies in these states.

The cost estimates using the subsample of matched policies are similar, though less precise due

to the smaller sample size. Appendix D.1 discusses the matched sample estimates, along with

alternative speci�cations of equation (4) that include di�erent sets of covariates.

5.2 Heterogeneous E�ects by Flood Severity

Equation (4) relies on panel variation in prices to estimate the slopes of the demand and cost

curves. Identifying the e�ect of prices on insurer costs is challenging because the variation in �ood

severity between years is much larger than the variation in prices. For example, Figure 3 shows

that payouts are small in the years immediately before and after the reform; in the extreme case

where no �oods occur, costs for adapted and non-adapted houses are mechanically identical and

equal to zero, regardless of prices. I therefore compare outcomes yit for adapted houses relative

to non-adapted houses during similar �ood events before and after the reform. I estimate the

following equation:

yit =
6∑
q=1

α1,q1[t ≥ 2013]× 1[adaptedi = 1]× 1[Qzt = q] +
6∑
q=1

α2,q1[adaptedi = 1]× 1[Qzt = q]

+
6∑
q=1

α3,q1[t ≥ 2013]× 1[Qzt = q] + λzt + νdf + τfdt + εit (8)

In this equation, 1[Qzt = q] is an indicator for �ood severity in zip code z and year t. I measure

�ood severity using six categories of monotonically increasing water depth, de�ned using the

water depth quintile and FEMA's classi�cation of the �ood event type and described in detail in

Appendix C.1.22 The coe�cients α1,q measure the e�ects of the price changes from Biggert-Waters

and the HFIAA on the outcomes yit for adapted houses relative to non-adapted houses, conditional

22Equation (8) is a triple-di�erence regression that overlays the water depth indicators on the di�erences-in-
di�erences regression (7). The water depth categories are de�ned at the zip code×year level, and so these do not
enter (8) separately from the zip code×year �xed e�ects. The other covariates are interacted with the �ood severity
proxies, which are co-linear with the water depth indicators.
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on experiencing similar �oods. Appendix Table A.8 shows that the results are invariant if �ood

severity is de�ned using fewer water depth categories or only using the �ood event type.

To examine the average e�ect of adaptation on demand and cost across all �ood categories,

I also plot the share of insured homeowners and average payout by year of construction of the

house relative to the year that its community is mapped. The coe�cients γ∆ are estimated from

the regression equation:

yit = Σ∆=10
∆=−10γ∆1[year builti − yearmapc = ∆] + λzt + νdf + τfdt + εit (9)

In this equation, ∆ measures the number of years between the year of construction of house i and

the year of the initial �ood map in the house's community c. The �gures plot γ∆ plus the mean

for adapted houses built in the year after the community is mapped (i.e., ∆ = 1). I focus on

the instrumental variables estimates of equation (4) that control for both prices and adaptation,

rather than regression discontinuity-type estimates of the di�erences in demand and cost shown

in these graphs. I do so because adapted and non-adapted houses face both di�erent construction

codes and di�erent prices.23 Appendix Figure A.7 shows that these di�erences are large.

6 Results and Discussion

6.1 Demand

Figure 4.a shows clearly that the HFIAA and Biggert-Waters reform decreased insurance prices

for adapted houses relative to non-adapted house as of 2013. By 2017, relative prices for adapted

houses have fallen by $1 per $1,000 of coverage. The estimated average e�ect of the reform is an

18% decline in the relative price of insurance (Table 2). This provides a strong �rst stage for the

subsequent instrumental variables analysis (Stock and Yogo, 2005). The lack of a pre-trend in the

years before the reform supports the idea that any changes in demand and cost after 2012 can be

attributed to this price change.

How does this price change a�ect demand? After the reform, adapted homeowners are on

average 1.9 percentage points more likely to purchase insurance (Table 3, Panel A). Figure 4.b

shows that, beginning in 2013, there is a statistically signi�cant increase in the relative share of

adapted houses that are insured, and demand increases as relative prices continue to decline. Five

years after the reform, adapted houses are about four percentage points more likely to be insured.

This is a signi�cant seven percent change in demand because uptake is low even before the price

change. Demand in the years before the reform is statistically indistinguishable from demand in

2012. There is also no reaction to the announcement of the price increases in 2012, which suggests

23Appendix Figure A.8 provides some evidence that the elevation requirement binds: adapted houses that
purchase insurance are built 1 foot above the minimum requirement on average.
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that the change in demand is due to the price changes in 2013, rather than salience or information

e�ects that could be correlated with the reform. The event study graphs that separately examine

the shares of houses purchasing any building coverage or any contents coverage have similar

patterns as the graph for the share of houses purchasing any policy (Appendix Figure A.9).

Insurance demand depends on adaptation as well as on prices. Figure 6.a summarizes demand

by year of house construction relative to the year the house's community is mapped, and shows

that, despite their lower insurance prices, adapted houses are signi�cantly less likely to be insured.

The instrumental variables estimates separately identify the e�ects of prices and adaptation on

demand (Table 3, Panel B). The price e�ect is consistent with the event study graphs in time: a

$1 increase in the price of $1,000 of insurance coverage reduces the probability of purchasing any

insurance by 2.7 percentage points. This estimate is the slope of the observed demand curve, sp,

and implies a price elasticity of about -0.25 (i.e., relatively inelastic).24

As Figure 6.a suggests, the adaptation e�ect is substantial: houses that are required to be ele-

vated are about 25% less likely to be insured, conditional on prices. The coe�cients on adaptation

are larger in the instrumental variables regressions than in the di�erences-in-di�erences regressions

because the instrumental variables models control for prices; the mean e�ect of adaptation in the

di�erences-in-di�erences regressions combines the shift inward of the demand curve from the re-

duction in risk with the o�setting movement along the demand curve from the lower prices paid

by elevated houses. The instrumental variables estimates of the adaptation e�ect isolate the large

inward shift of the demand curve. This result suggests that homeowners treat adaptation policy

as a substitute to formal insurance. One possible explanation is that the average house elevation

of 10 feet conveys a strong visible signal that adapted houses are safer and that the expected

bene�t from �ood insurance is lower.

Conversely, Table 4 shows that the intensive margin price response is small, conditional on

purchase. The relative amount of total coverage purchased by adapted houses in the post-reform

period increases by a marginally statistically signi�cant 1% (Panel A).25 There is some evidence

that the Biggert-Waters reform had a similar, marginally statistically signi�cant e�ect on house

prices (Gibson et al., 2019). This small intensive margin elasticity and the descriptive evidence

of full insurance on the intensive margin discussed previously suggests that homeowners may

generally insure the value of their house, and decrease coverage purchased in response to declining

property value. The limited house price e�ect also suggests that resorting of homeowners plays

24There are few existing estimates against which to compare this natural disaster insurance price elasticity.
Model-derived estimates and case studies that use panel regressions without any quasi-experimental variation
estimate price elasticities for �ood insurance in the range of -0.49 to -0.06 (NRC, 2015). My estimate is also close
to health insurance price elasticities (e.g., Hackmann et al., 2015).

25The limited intensive margin response emphasizes that average price changes are due to changes in the list
price, and not purchased coverage. Appendix Table A.3 also shows that the demand elasticity is robust to using
predicted prices based only on elements of the NFIP rate schedule.
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a relatively small role in the response to the reform. Consistent with the higher value of newer

construction, coverage purchased for adapted houses is about 10% higher than for older, non-

adapted houses.

The instrumental variables estimates are robust to many sensitivity analyses, but di�er sub-

stantially from the OLS estimates. Appendix Table A.3 shows that instrumenting for prices is

important because the OLS estimate of the e�ect of prices on extensive margin demand is biased

upward, consistent with both prices and take-up responding positively to �oods. Appendix Tables

A.3 and A.6 also show instrumental variables estimates of the e�ects of prices and adaptation on

extensive margin demand are similar to the main estimates in sign, magnitude, and precision using

di�erent covariates, restricting to subsamples of the data, and estimating using probit. Appendix

Table A.4 shows sensitivity analyses for intensive margin demand, which are generally qualita-

tively similar but are more sensitive to the inclusion of decade built time trends due to plausible

di�erences in the trends in value of new and old construction. The OLS results of the e�ect of

prices on intensive margin demand are biased downward. The direction of this bias is consistent

with both price increases after �oods and coverage choices that re�ect declining house value after

�oods. Appendix D.1 discusses all of these results in detail.

6.2 Insurer costs

I now turn to discuss the e�ects of prices and adaptation on insurer costs. Since both prices

and adaptation a�ect demand, there is the possibility for selection on both unobservable and

observable determinants of natural disaster risk. If adverse (advantageous) selection on unobserved

variables is important, the relatively lower prices for adapted houses will attract lower (higher)

risk homeowners, and so relative average costs will fall (rise) for adapted houses after the price

reform. If adverse selection on adaptation is present, houses that are subject to the adaptation

policy and that are less likely to be insured will also be less costly to insure, conditional on prices.

Two main pieces of evidence suggest that selection on unobserved variables in this market is

limited. First, Figure 4.c shows that the time series of relative average costs for adapted houses

has no signi�cant trend either before or after the reform; the di�erences in average cost after the

reform are neither consistently positive or negative and are not signi�cantly di�erent from zero.

Second, Figure 5 shows that the e�ect of price on cost is statistically indistinguishable from zero

comparing houses that experience �oods of similar severity before and after the reform. This

�gure shows the di�erences in outcomes for adapted and non-adapted houses for six increasing

water depths, and the e�ect of the price reform on these di�erences. Consistent with the demand

results from the previous section, relative prices fall for adapted houses after the reform, and

demand increases. The NFIP does not price on location-speci�c risk, and so the decline in prices

is the same regardless of �ood severity, with no e�ect on cost. Appendix Tables A.7, A.8, and
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A.9, which use di�erent �ood severity metrics or exclude Hurricane Katrina, all show that the

e�ect of price on cost is statistically indistinguishable from zero, small in magnitude, and neither

consistently positive or negative.26

Consistent with these event study graphs, Table 5 suggests that there is no systematic selection

on unobservables. Both the reduced form and the instrumental variables estimates show that prices

have no signi�cant e�ect on either claim probability or average cost. Figure 5.c shows that the

e�ect of price on cost is a precisely estimated zero except for the most severe �ood category,

which includes highly variable hurricanes; pooling �oods of all severity decreases the precision of

the average price e�ect in the table. Appendix Table A.7 presents the estimates showing the lack

of a price e�ect separately by �ood severity. Appendix Table A.5 also shows additional results

controlling more �nely for �ood severity using �ood event number or date of claim, which increase

the precision of the average price e�ect.

By contrast, the event study graphs and regression estimates suggest that selection on observ-

able house characteristics is important. Figures 5 and 6 show that adapted houses are both less

likely to purchase insurance and less costly to insure. Costs are about one-third lower for adapted

houses on average (Figure 6.b), but there is signi�cant heterogeneity in the cost reduction from the

adaptation policy (Figure 5.c). The di�erence in costs between adapted and non-adapted houses

is mechanically equal to zero if no �ood occurs, but is statistically and economically important

during severe �oods. Costs for adapted houses are almost 40% lower during the most catastrophic

�oods. These results help explain why the coe�cients in the aggregate time series of costs in

Figure 4.c vary around zero depending on whether a given year involves catastrophic losses (e.g.,

Hurricane Katrina in 2005) or little �ooding (e.g., 2009-2010).

Table 5 also underscores the reduction in claim probability and average payout from adaptation

(Panel B). Speci�cally, adapted houses are 18% less likely to make a claim and are 31% less costly

to insure on average.27 I emphasize that the instrumental variables regressions control for prices

and isolate the inward shift of the cost curve from the adaptation policy. Since these results are

based on ex ante di�erences in house characteristics rather than varying the elevation of houses,

these estimates measure the long-run e�ect of the adaptation policy on homeowners' joint decisions

over whether to purchase insurance and adapted houses.28

26The graphs for claim probability show the same patterns (Appendix Figures A.9.f and A.10.b).
27I do not estimate log speci�cations because only 2% of policies have non-zero claims. Appendix Table A.5

shows estimates with inverse hyperbolic sine transformations.
28To calculate the welfare e�ect of subsidizing adaptation, the cost curves should be net of the cost of implement-

ing the adaptation policy. Depending on the foundation type, elevating an existing house costs between $15,000 and
$150,000, but elevating during construction costs only $5,000 (Hurley, 2017). Comparing Appendix Tables A.2 and
A.7 suggests that adapted houses are about $3,000 less costly to insure during �oods that average 0.33-ft in the zip
code. This back-of-the-envelope calculation suggests that adding an elevated foundation during construction pays
for itself in two 0.33-ft �oods and elevating an existing house requires at least �ve 0.33-ft �oods to be worthwhile.
In practice, very few homeowners elevate their houses after construction.
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Overall, this evidence suggests that there is adverse selection on house elevation, but that there

is limited private information that is correlated with willingness to pay. Despite the NFIP's coarse

rate schedule, homeowners seem to have less private information about natural disaster risk than

about their risks of poor health (Einav et al., 2010), unemployment (Landais et al., 2018), death

(Finkelstein and Poterba, 2014), and disability (Hendren, 2013). The lack of evidence of selection

on private information in this market can perhaps be attributed to infrequent risk realizations

and out-of-date �ood maps (DHS, 2017). Though I �nd no evidence of asymmetric information,

whether houses are subject to elevation requirements is an example of �asymmetrically used�

information by insurers because adapted houses are still less costly conditional on the di�erential

rate schedule (Finkelstein and Poterba, 2014). These results suggest that price adjustments that

account for house elevation are e�cient and seem unlikely to lead to substantial changes in average

costs.

Appendix Table A.5 presents OLS estimates and sensitivity analyses of the e�ects of prices

and adaptation on average costs, and Appendix D.1 discusses these other results. The OLS

estimates are biased upward substantially in a way that is consistent with the NFIP increasing

prices in response to costly �ood events. Without instrumenting for prices, the market looks

adversely selected. The sensitivity analyses estimate the instrumental variables models controlling

for di�erent sets of covariates, restricting to subsamples of the data, and excluding Louisiana and

the e�ects of Hurricane Katrina. Most of these estimates are similar to the main estimates in

sign, magnitude, and precision, though some estimates on smaller data samples are less precise.

6.3 Interpreting Low Willingness To Pay

An important implication of the results in the previous section is that adverse selection cannot

rationalize low levels of �ood insurance uptake: observed willingness to pay is 30% below own

costs at current prices. Figure 1.b shows the empirical marginal cost curve MC(p, α, φ) and

observed willingness to pay curve D(p, α, φ) for non-adapted houses; Appendix Figure A.3 shows

the graph for the pooled market. The pre-reform levels of price, average cost, and share insured

are the initial equilibrium at p′. I estimate a slope of sp = −0.03 (s.e. = 0.01) for demand (Table

3). Neither the event study graphs or the regression estimates provide evidence of selection on

unobservables after controlling for di�erences in house elevation. This has two implications for

the graphical representation of the market. First, the marginal cost curve is �at rather than

downward-sloping in the price-share insured space. Second, average and marginal costs are equal

across the range of the willingness to pay distribution that I observe, which means that current

prices are below homeowners' expected bene�t from insurance.29 Overall, the graphical analysis

29I estimate the slopes of the demand and cost curves across adapted and non-adapted houses, which implicitly
assumes that adaptation shifts the levels of demand and cost but not the slopes. Appendix E.1 relaxes the
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suggests that willingness to pay is below cost for approximately 50% of homeowners.

Several standard explanations, other than adverse selection, may contribute to low take-up,

though many seem unable to fully explain the wedge between observed willingness to pay and

own cost for uninsured homeowners. The �rst possible explanation is that public bail-outs depress

insurance demand. Finkelstein et al. (2019) attribute some of the wedge between willingness to

pay and cost in the low-income A�ordable Care Act exchange in Massachussetts to the fact that

uninsured low-income individuals typically do not pay their full medical costs. However, these

�uncompensated care� externalities are unlikely to be a primary driver of low willingness to pay

for �ood insurance. Uninsured homeowners have three funding options if they are �ooded. First,

they can apply for a low-interest Small Business Administration loan, which must be repaid.

Second, they can apply for a grant from FEMA's Individuals and Households Program. FEMA

states that these grants do not replace �ood insurance, but rather �return the primary home to a

safe and sanitary or functioning condition� (FEMA, 2019b). The grants are capped at $33,000,

but the average payout over the program's lifetime is $4,500. This is less than 10% of average

insurance payouts, and less than 15% of the wedge between own cost and willingness to pay for

uninsured homeowners. Consistent with this, Bakkensen and Barrage (2019) �nd survey evidence

that coastal homeowners expect public assistance to cover only 11% of �ood damages if they are

uninsured. The third funding option is Community Development Block Grant Disaster Recovery

assistance, which is administered by local o�cials and capped at an amount speci�c to each

disaster event. However, receiving �ood insurance payouts does not crowd out these block grants

if homeowners use the funds for di�erent purposes (e.g., repairs and mortgage repayments) and

carrying �ood insurance can increase the maximum available grant (Horn, 2018).30

Second, moral hazard also seems to fall short of rationalizing why willingness to pay is so low.

Homeowners' value of insurance would fall if they would have avoided some of their �ood damages

if they were uninsured. However, I estimate that an elevated foundation reduces cost by $2.64 per

$1,000 of insurance. Therefore, even in the extreme case where purchasing insurance substitutes

for elevating one's house, such moral hazard would explain only around 25% of the wedge between

willingness to pay and expected payouts for uninsured homeowners.

Third, observed patterns of homeowner behavior suggest that hassle costs are not the primary

barrier to take-up. The initial purchase of a �ood insurance policy seems to involve some hassle to

acquire purchase information, arrange for an assessor to visit the house and measure its elevation,

and �le paperwork. However, homeowners are most likely to buy �ood insurance shortly after

assumption of linearity.
30For example, the average Individual and Households Program grant after Hurricane Harvey in 2017 was $4,400.

The average �ood insurance payout was $117,000 (Horn and Webel, 2019). The maximum post-Hurricane Katrina
block grant for insured homeowners was 30% higher than the maximum potential grant for uninsured homeowners
(Horn, 2018).
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purchasing their house, when any mandatory purchase requirement is most likely to bind, but often

let their policy lapse the following year (NRC, 2015). This evidence suggests that the contribution

of hassle costs to low take-up is small because the time and information costs associated with the

initial purchase of the policy are greater than the costs of remaining enrolled. Renewal simply

involves mailing a check or paying online.31

Fourth, some homeowners may be uninsured because the net bene�t from insurance is smaller

than their home equity and the costs of walking away from their mortgage (i.e., credit score

penalties and moving costs). Such limited liability may be important for some low-income home-

owners, but seems unlikely to explain the extent of uninsurance. Using American Community

Survey data, I calculate that about 45% of homeowners in the zip codes in the analysis own 100%

of their homes. Over 75% of homeowners have at least 20% equity, which is roughly equal to

the average �ood insurance payout if a claim is made. Almost all homeowners have some equity

from their down payment (Li and Goodman, 2016). More concretely, Ouazad and Kahn (2019)

estimate that hurricanes increase the probability of foreclosure by only 1.6 percentage points,

which seems too small to explain why over 40% of homeowners are uninsured. This study does

not �nd any heterogeneity in the riskiness of loans inside and outside of high-risk �ood zones after

�oods. Moreover, Gallagher and Hartley (2017) �nd that homeowners with �ood insurance are

more likely to move after �oods because they use claims receipts to pay o� their mortgages.

Fifth, credit constraints more generally also appear unlikely to be the primary explanation for

low willingness to pay. Gallagher (2014) documents that insurance take-up increases after �ood

events, which suggests that many uninsured homeowners can a�ord �ood insurance, but choose not

to purchase it. Flood insurance premia are between 0.5% and 1.4% of median household income in

high-risk �ood zones (CBO, 2017). Though there is likely heterogeneity in ability to pay, income

in high-risk �ood zones is generally above average because these areas are also characterized by

desirable coastal amenities; this amenity value is not o�set by �ood zone designations (Bin et al.,

2008). Consistent with this, Appendix Figure A.5 shows that the correlation between average

household income and take-up is small.

A sixth explanation for low willingness to pay that does appear to be important is mispercep-

tion of risk. My results seem to be consistent with existing research that shows that homeowners

underestimate the probability of experiencing a �ood. For example, Bakkensen and Barrage

(2019) �nd survey evidence that about 40% of high-risk �ood zone residents report being �not at

all worried about �ooding in the next decade�, which suggests a low perceived bene�t of insurance;

I �nd that 40% of high-risk homeowners are uninsured. More generally, this survey and others

�nd that 60-70% of coastal homeowners underestimate their �ood risk relative to FEMA's models,

which are conservative, and independent property-speci�c assessments (Bakkensen and Barrage,

31This pattern of take-up and subsequent non-renewal also suggests that inertia is unlikely to explain low uptake.

27



2019; Royal and Walls, 2019). These studies also �nd that homeowners update their �ood risk

beliefs after being �ooded, which is consistent with observed increases in insurance take-up after

�oods (Gallagher, 2014). Homeowners' lack of understanding of their own risk may help explain

the lack of evidence of selection on private information in this market.

Housing markets provide additional support for the hypothesis that homeowners underestimate

their true �ood risk. The weak capitalization of �ood zone designations into home values supports

incomplete internalization of risk (Beltran et al., 2018). Gibson et al. (2019) also show that �ood

map updates decrease property values, and that a recent �ood strongly attenuates the e�ect of

this new information on house prices. If homeowners accurately perceive their risk, we would not

expect such belief updating, nor di�erences between houses that have and have not �ooded.

These ex post �ood risk belief updates suggest that one possible reason for the importance

of risk misperception in this context is that informative signals about natural disaster risk are

infrequent.32 Discounting of tail events may also contribute to underestimation of �ood prob-

abilities. For example, Appendix Table A.1 shows that if the most catastrophic �ood during

the study time period (Hurricane Katrina) is excluded, average cost and price are approximately

equal. Discounting this one catastrophe can explain about 45% of the wedge between own cost

and willingness to pay, though willingness to pay is still below cost for about 40% of homeowners

because demand slopes downwards.

Overall, it seems plausible that �ood risk misperception is a key part of the explanation for

low willingness to pay for natural disaster insurance. This suggests that some caution is advisable

in interpreting homeowners' revealed preference demand as their true valuation of insurance.

Moreover, the extent to which expected payouts exceed willingness to pay underestimates the

distortion in demand because homeowners should be willing to pay a risk premium.

7 Welfare Estimates

7.1 Empirical Implementation

Welfare analysis requires information on the marginal cost and frictionless willingness to pay

curves. Figure 1.b shows the empirical marginal cost curve for non-adapted houses based on the

results from the previous section. The frictionless willingness to pay curve is equal to the marginal

cost curve plus a risk premium. Calculating the risk premium requires two additional parameters:

the coe�cient of absolute risk aversion and the e�ect of insurance on the variance of consumption

for homeowners of each type si.

32Models of insurance demand that assume that willingness to pay is observed after the individual receives
information about their risk pro�le seem less applicable to natural disaster insurance markets, which lack such
informative signals (Hendren, 2019).
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I calibrate the coe�cient of absolute risk aversion using estimates from the literature. Standard

estimates of risk aversion based on health insurance contract choices are generally around 5×10−4

(Handel et al., 2015; Handel et al., 2019). Individuals' willingness to bear risk from natural

disasters may di�er from other risks such as health (Einav et al., 2012). I therefore also consider

estimates based on property insurance deductible choices, though there is limited analysis in this

area and existing parameter estimates are considered implausibly large (Snydor, 2010).33

The e�ect of natural disaster insurance on the variance of consumption does not exist in

the literature to my knowledge and is di�cult to calculate based on available data. It requires

information on the conditional distribution of consumption for individuals with and without �ood

insurance, which is unobserved.34 I observe the overall variance of insurance payouts, and I use

this estimate, combined with existing estimates of the e�ects of natural disasters on household

�nance, to calibrate the average risk premium.

Approximating the e�ect of insurance on the variance of consumption with the variance of

forgone payouts directly from the claims data provides a plausible upper bound on the average

risk premium. The variance of payouts is considerable because of the high variance of �ood sever-

ity. Table 1 shows that the standard deviation of insurance payouts is about $12,000, which

combined with standard estimates of risk aversion of around 5 × 10−4 implies that homeowners

should be willing to pay an average risk premium of $141 to $165 per $1,000 of insurance cover-

age.35 However, homeowners can draw on other sources of income to smooth consumption after

natural disasters, and so the di�erence in the variance of consumption between the insured and

the uninsured states is likely smaller than the variance of payouts.

I incorporate estimates from the literature of the e�ects of �oods on household �nance to ap-

proximate the e�ect of consumption smoothing on the variance of forgone payouts. Consumption

smoothing reduces the variance of payouts and lowers the average risk premium to between $82

and $95 per $1,000 of insurance coverage. Several studies show that homeowners cope with �oods

by using an average of $2,500 from savings withdrawals and tax refunds (Deryugina et al., 2018),

accumulating an average of $500 of credit card debt (Gallagher and Hartley, 2017), and receiv-

33Handel et al. (2015) estimate a mean coe�cient of absolute risk aversion of 4.39 × 10−4, with a range of
4.33 × 10−4 to 4.79 × 10−4. These estimates are over �nancial risk estimated from health insurance contract
choices. Risk aversion may di�er if other natural disaster risks are correlated with �nancial risk. For example,
Einav et al. (2013) estimate a coe�cient of 1.9 × 10−3 over both �nancial risk and health risk. Snydor (2010)
estimates risk aversion of between 1.7× 10−3 and 1.6× 10−2 using property insurance deductible choices.

34Some consumption data sets, such as the Panel Study of Income Dynamics, include information on other
insurance types such as health, but not �oods (Gruber, 1997; Finkelstein et al., 2019). Other insurance valua-
tion methods require either assuming that envelope conditions hold (i.e., no optimization frictions) or completely
specifying the e�ect of insurance on all arguments of the utility function (Finkelstein et al., 2019).

35Based on equation (3), the average risk premium per $1,000 of coverage is calculated as
1
2×γ×V
240.7 , where γ = −ucc

uc

is the coe�cient of absolute risk aversion, V is the variance of forgone insurance payouts, and 240.7 is the average
amount of insurance purchased in thousands.
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ing $1,000 of social security payments (Deryugina, 2017). Homeowners can also apply for up to

$33,000 of public assistance from FEMA's Individuals and Households Program. After deducting

the maximum of these amounts from the claims data, the standard deviation of payouts is about

$9,000.

The consumption smoothing risk premium provides one measure of average frictionless will-

ingness to pay based on empirical measures of household �nancial decisions and the variance of

payouts, and the risk premium without consumption smoothing is a plausible upper bound. As-

suming that homeowners fully mitigate their risk by moving ex post provides a plausible lower

bound on the risk premium. In this case, using a conservative estimate of the maximum out-of-

pocket uninsured loss equal to the U.S. annual average mortgage payment yields an average risk

premium of $6.50 per $1,000 of insurance. Figure 1.b illustrates the case where homeowners with

the lowest willingness to pay have a risk premium of zero, so that the frictionless willingness to

pay curve intersects the marginal cost curve at s = 1.

There are few measures of willingness to pay for natural disaster insurance against which to

compare my estimates. Gregory (2017) uses a location-choice model to calculate willingness to

pay for a public disaster relief program of about half of average �ood insurance premia. Migration

plays a role for 18% of homeowners in the sample, though these grants are also received after any

consumption smoothing bene�ts from insurance have been realized.36 Bakkensen and Ma (2019)

also use a location-choice model to estimate a hedonic measure of willingness to pay to avoid living

in a high-risk �ood zone that is close to the average �ood insurance premium. This estimate is

also based on revealed preference, which would understate the value of avoided natural disaster

risk in the presence of any frictions. Overall, the magnitudes of the risk premia that I calculate

suggest qualitatively that all homeowners would bene�t in expectation from purchasing insurance

against low probability, high cost extreme weather events. These risk premia also exclude the

value of insurance against correlated shocks to land value and labor income.

The average risk premium locates one point on the frictionless willingness to pay curve. The

slope of the frictionless willingness to pay curve depends on how natural disaster damages vary

across distribution of underlying homeowner types as well as possible heterogeneity in risk aversion.

Appendix E.1 provides the details of the calibration of the frictionless willingness to pay curve

allowing for heterogeneity in risk aversion and heterogeneity in the variance of consumption from

di�erences in �ood exposure, which determine the slope of the curve; Figure 1.b depicts the

frictionless willingness to pay curve as a level shift of the observed willingness to pay curve. I

discuss these welfare estimates below, along with estimates using other payouts variances, risk

36Gregory (2017) also assumes that homeowners' risk aversion is about 20% of estimates in Handel et al. (2015),
Handel et al. (2019), and this paper's main analysis. This estimate is closer to risk aversion for a low-income
population; Row 2 of Table 6 uses this estimate to calculate the e�ect of heterogeneous risk aversion across the
willingness to pay distribution.
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aversion parameters, and functional forms.

7.2 Counterfactual 1: Actuarially Fair Pricing

The �rst counterfactual analyzes the social welfare e�ects of increasing �ood insurance prices to

actuarially fair levels. For non-adapted houses, setting an actuarially fair price equal to expected

cost corresponds to an increase of $3.05 per $1,000 of coverage, or $650, as shown in Figure 1.b. For

adapted houses, expected costs are lower, and so the actuarially fair price and willingness to pay

are lower. The total welfare e�ect is the sum of the welfare e�ects for adapted and non-adapted

homeowners. Appendix E provides the algebraic details.

What are the welfare implications of the price increase? Figure 1.b shows that it is e�cient to

insure all homeowners who cease to purchase insurance after the price change. Demand declines

by 15% because homeowners base their purchase decisions on the revealed preference demand

curve. The total welfare loss equals the sum of the risk premia of the homeowners who become

uninsured, shown graphically as the dark grey area between the frictionless willingness to pay and

the marginal cost curves.37

Table 6, column 1 reports the welfare e�ects of actuarially fair pricing using di�erent calibrated

parameters for the frictionless willingness to pay curve. This counterfactual decreases social

welfare for the wide range of parameter values that I consider. The estimate in row 1, based

on the payouts variance that incorporates consumption smoothing and a standard measure of risk

aversion of 5× 10−4, shows a welfare loss of $1,770 per high-risk homeowner, per year. Summing

over about 2 million adapted and non-adapted single-family primary residences in high-risk �ood

zones in the housing data set, the total welfare loss is approximately $3.7 billion. The sign and

magnitude of the welfare estimates are similar using di�erent parametrizations of the slope of the

frictionless willingness to pay curve (rows 2, 3, and 4), allowing adaptation to a�ect the variance

of consumption (row 5), and excluding Hurricane Katrina (row 6). The welfare loss is smaller if

I incorporate consumption smoothing and also restrict the maximum loss to be equal to average

household income (row 7) or equal to the average annual mortgage payment on a new house (row

8). The welfare loss increases for less conservative values of the consumption variance (row 9) and

risk aversion (row 10).38

In contrast, using revealed preference willingness to pay to calculate the welfare e�ect of this

counterfactual leads to a perceived welfare gain. This is equal to the light great area between

37The x-axis in Figure 1.b is the share insured and the y-axis is measured in dollars per $1,000 of coverage; to
obtain the total welfare e�ect in dollars, I multiply the areas in the graph by the number of single-family primary
residences in the Zillow data (2 million) and by average purchased coverage in thousands (240), and sum across all
homeowners.

38Removing the subsidy reduces the distortionary cost of raising the tax revenue to �nance this transfer. Using
a marginal cost of public funds of 0.3, I calculate that removing the subsidy reduces this deadweight loss by about
$110 per high-risk homeowner, which slightly o�sets the welfare loss from the price increase.
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the marginal cost and observed willingness to pay curves in Figure 1.b, which is about $30 per

high-risk homeowner, per year ($60 million total). The welfare e�ect has the opposite sign because

the wedge between frictionless and observed willingness to pay is large enough to drive observed

willingness to pay below marginal cost. Increasing prices looks e�cient because homeowners'

revealed preference value of insurance is below the cost of providing insurance to them.

There are two main qualitative lessons from this analysis. First, ignoring distortions in demand

from optimization frictions leads to the opposite policy recommendation because the welfare e�ect

changes sign. Second, the actual welfare loss from increasing prices appears to be large. The cost

of insuring homeowners is small relative to the value of insurance against the low probability of

a large natural and �nancial disaster, though the exact amount of the welfare loss depends on

the calibrated parameters. These qualitative conclusions also apply to local price changes that

are less reliant on functional form assumptions outside the range of observed prices; Figure 1.b

shows that the realized price increase from Biggert-Waters and the HFIAA, which closed about

one-third of the gap between initial and actuarially fair prices, caused a welfare decline.

7.3 Counterfactual 2: Insurance Mandate

The welfare e�ect of a mandate is equal to the sum of the risk premia of the homeowners who

become insured, shown in black in Figure 1.b. Table 6, column 2 shows that this counterfactual

policy increases social welfare. The welfare gain is between $3,500 and $8,000 per high-risk

homeowner, per year, using di�erent functionl forms and parameter estimates that incorporate

consumption smoothing (rows 1-7). The welfare gain is larger for parameter estimates that increase

the risk premium (rows 9 and 10), and still totals over $600 million in the most conservative

scenario (row 8, with a market size of 2 million).

Though these calculations require assumptions on demand and costs outside the range of

observed prices, a key take-away is it seems to be e�cient to at least incrementally expand re-

quirements to purchase �ood insurance�by enforcing the existing partial mandate to purchase

�ood insurance in order to obtain a federally backed mortgage, for example. In the textbook set-

ting of an adversely selected market, government mandates are welfare-improving because average

cost pricing by private insurers leads to ine�cient underinsurance. Here, a mandate is useful even

in the absence of private information because it corrects distortions from any frictions in uptake.39

The range of risk premia suggests that full insurance is optimal even in the presence of ad-

ministrative costs and distortions in homeowner investments from moral hazard. In general, it is

ine�cient to insure homeowners if the costs of issuing insurance to them are greater than their

39The intuition for a natural disaster insurance mandate parallels the motivation for Corporate Average Full
Economy standards and subsidies for energy-intensive durable goods. Such policies are intended to correct �inter-
nalities� that consumers impose on themselves by making purchase decisions without fully accounting for lifetime
energy costs (Allcott et al., 2014).
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risk premium. It is also ine�cient to insure homeowners who will reduce private investments in

adaptation to the extent that their costs when insured, relative to when uninsured, increase by an

amount greater than their risk premium. However, �ood insurance administrative costs are less

than $1 per $1,000 of insurance (calculation based on CBO (2017)). I also estimate that in the

extreme case where purchasing insurance substitutes for elevating one's house, the e�ect on cost

is $2.64 per $1,000 coverage ($630 per year)�well below the range of estimated risk premia.

With the insurance mandate in place, what is the optimal price of �ood insurance? I calculate

an actuarially fair price for non-adapted houses of $8.54 per $1,000 of insurance ($1,800 per

homeowner, per year). With a mandate, this price can be sustained even in the presence of

frictions in uptake and is economically e�cient because it corrects distortions in house prices.

Unlike other types of insurance, natural disaster insurance subsidies encourage homeowners to

move to at-risk areas, and so prices below actuarially fair levels have a social welfare cost. A

mandate and actuarially fair prices may improve the e�ciency of homeowners' location decisions

more than actuarially fair prices alone. This is because frictions dampen price signals about risk

by causing homeowners to respond to price increases by decreasing insurance demand, rather than

paying an insurance price that accurately re�ects risk; such uninternalized �ood risk in�ates house

values by 10% in coastal areas (Bakkensen and Barrage, 2019). Insurance price changes alone

are insu�cient to address both spatial distortions and frictions in uptake, and �ood insurance

price reform on its own has had small e�ects on house prices thus far (Gibson et al., 2019).

Moreover, if expected payouts do not capture the full social cost of living in a high-risk �ood zone,

the optimal price may exceed $8.54 per $1,000 of insurance. For example, the actuarially fair

insurance price excludes public assistance to mitigate these risks or to restore local public goods

after disasters; Baylis and Boomhower (2019) show that these costs are large implicit subsidies to

at-risk homeowners.

Actuarially fair prices combined with a mandate are e�cient, but raise important equity con-

cerns. Congress reduced the 25% annual growth rate of prices implemented by Biggert-Waters

partially on the grounds that low-income homeowners could not a�ord such price increases. To

address heterogeneity in ability to pay, targeted subsidies modeled after the A�ordable Care Act

may be welfare-improving and could make price reform more politically feasible. Homeowners

for whom credit constraints and low home equity could contribute to low willingness to pay are

individuals with the highest marginal utility of consumption. It is likely e�cient to insure these

homeowners for distributional reasons.

8 Conclusion

This paper develops a model of natural disaster insurance markets and compiles new data

in order to quantify homeowners' willingness to pay for natural disaster insurance, the costs of
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providing insurance to them, and the social welfare e�ects of proposed reforms. In so doing, this

paper demonstrates three ways in which natural disaster insurance di�ers from more commonly

studied insurance types, such as health, unemployment, and long-term care. First, frictions in

uptake are signi�cant in this setting. I �nd that only about half of high-risk homeowners in the

Atlantic and Gulf Coast U.S. are willing to pay an amount equal to their expected payout for a

�ood insurance contract. In comparison with other types of insurable risk, natural disasters are

infrequent and catastrophic. Homeowners may be more likely to misperceive loss probabilities

when informative risk realizations are lacking, which provides one plausible explanation for the

wedge between observed willingness to pay for natural disaster insurance and the expected bene�t

that insurance provides. The extent of underinsurance against �ood risk raises questions about

homeowners' willingness to pay to insure against climate change risks more broadly. People are

gradually accepting that climate change is occurring (Leiserowitz et al., 2019), but this paper's

�ndings suggest that they may only insure themselves after the realization of these risks.

Second, unlike other insurance types such as health or unemployment, I �nd no evidence of

adverse selection on unobservables in natural disaster insurance markets. Homeowners' lack of

private information about their own risk is consistent with their overall misperception of natural

disaster probabilities or with insurers' natural hazard models surpassing homeowners' ability to

predict future extreme weather events. However, I show that adverse selection on observable

determinants of natural disaster risk is important. Adaptation policies (i.e., minimum elevation

requirements) provide salient signals about risk, and so greater adjustment of insurance prices to

account for these di�erences would be e�cient.

Third, mispricing of natural disaster insurance is particularly complex. Recent attempts to

raise �ood insurance prices toward actuarially fair levels have traded o� political interests, �scal

solvency, and a�ordability. The link between property values and location-speci�c insurance prices

adds tension to this debate. These pricing issues threaten the future of public �ood insurance,

with 10 short-term re-authorization bills in the last two years keeping the U.S. government in

the business of backing �ood risk (Horn and Webel, 2019). This paper quanti�es key parameters

relevant for this policy debate and suggests that the welfare loss from proposed price increases

is much larger than revealed preference demand suggests. Without complementary reforms that

target distortions in demand, proposed price changes appear to lead to substantial social welfare

losses. Since adaptation reduces the �nancial burden on insurers by decreasing both demand

and cost, subsidizing adaptation should perhaps be considered as a complement or alternative to

price increases. However, government intervention in natural disaster insurance markets, through

either the direct provision of insurance or in the form of policies to encourage enrollment, may be

required: private insurers cannot break even if homeowners are unwilling to pay their own costs.

Additional research is needed on consumer behavior in natural disaster insurance markets
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to guide implementing information-based policies and modeling the primitives underlying home-

owners' choices. A strength of this paper's approach to welfare analysis is that it requires few

assumptions on the source of any frictions. However, this generality comes at the expense of

stronger assumptions for out-of-sample predictions. Carefully designed surveys could measure the

causes and correlates of frictions in uptake to microfound consumers' choices. Such information

would also permit analysis of policies designed to reduce these frictions directly (Handel et al.,

2019).

Overall, this paper highlights how optimal policy in natural disaster insurance markets is

complicated by frictions in uptake, selection on observables, spatial distortions, and a�ordability

concerns. Insurance against �oods, wild�res, windstorms, and earthquakes all similarly reduce

the impacts of high cost, low probability, and spatially correlated natural hazards. However,

the public �ood insurance market in the U.S. di�ers from many other natural disaster insurance

markets, which are mostly private and often bundle natural disaster coverage with other perils.

Important questions about the design of these private markets remain unanswered. The potential

welfare e�ects that hinge on the choice of policy instruments in all of these markets are large

because of the high cost of extreme weather events. Natural disasters that already cause hundreds

of billions of dollars of damage are intensifying (IPCC, 2018). In light of the amount at stake,

optimal natural disaster insurance market design should be an academic and policy priority.
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Figures and Tables

Figure 1: Graphical Approach to Selection

Panel A: Theoretical Natural Disaster Insurance Market Equilibrium
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Notes: Panel A shows a theoretical equilibrium in the natural disaster insurance market in the presence of

adverse selection, price subsidies, and frictions in uptake. The �gure depicts the average cost curve AC(p, α, φ),
the marginal cost curve MC(p, α, φ), the observed willingness to pay curve D(p, α, φ), and the frictionless

willingness to pay curve D(p, α, φ = 1) for a given level of adaptation α and frictions φ. Panel B shows the

empirical willingness to pay and cost curves for non-adapted houses (i.e., α = 0). See text for a detailed

description.
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Figure 2: Average Realized Flood Insurance Subsidy to High-Risk Houses, By County

Subsidy

< 0

> 0

Notes: This map shows counties included in the analysis where �ood insurance in high-risk �ood zones
is and is not subsidized between 2001 and 2017. The subsidy is calculated as the county-average pay-
out minus price per $1,000 insurance coverage. The 20 states included in the analysis are Alabama,
Connecticut, Delaware, Florida, Georgia, Louisiana, Maine, Maryland, Massachusetts, Mississippi, New
Hampshire, New Jersey, New York, North Carolina, Pennsylvania, Rhode Island, South Carolina, Texas,
Vermont, and Virginia. These 20 states account for 83% of total �ood insurance policies written nation-
wide (NRC, 2015). Counties shown in white in these states have no high-risk �ood insurance policies.
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Figure 3: Total Flood Insurance Payouts to High-Risk, Single-Family, Primary Residences
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Notes: This graph shows total �ood insurance payouts to homeowners in high-risk �ood zones in the
20 Atlantic and Gulf Coast states included in the analysis. The sample includes single-family primary
residences built within 15 years of their community's initial �ood map.
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Figure 4: E�ects of Flood Insurance Reform on Relative Price, Demand, and Cost for Adapted Houses
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Panel B: Share Insured
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Panel C: Insurer Cost
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Notes: These graphs show the average price of �ood insurance, share insured, and cost for adapted houses
relative to non-adapted houses in high-risk �ood zones. Adapted houses are built after communities
are mapped and are required to be elevated. The coe�cients are estimated from equation (6) in the
text. Solid lines show di�erences in outcomes between adapted and non-adapted houses relative to the
di�erence in 2011-2012. Dashed lines are 95% con�dence intervals. Standard errors are clustered by
community.
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Figure 5: E�ects of Flood Insurance Reform on Relative Price, Demand, and Cost for Adapted Houses,
By Flood Severity
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Panel C: Insurer Cost
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Notes: These graphs show the average price of �ood insurance, share insured, and cost for adapted houses
relative to non-adapted houses in high-risk �ood zones, for �oods of di�erent depths. Adapted houses
are built after communities are mapped and are required to be elevated. The coe�cients are estimated
from equation (8) in the text. Squares are the di�erence between adapted and non-adapted houses in the
2001-2012 pre-reform period and triangles are the e�ect of the price reform on this di�erence. Dashed
lines are 95% con�dence intervals. Standard errors are clustered by community.
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Figure 6: Di�erences in Demand and Cost for Adapted and Non-Adapted Houses, By Construction Year
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Notes: These graphs show the share of insured homeowners and average insurer payouts, by year of
house construction relative to the year of the initial �ood map in the community in which the house
is located. Adapted houses are built after communities are mapped and are required to be elevated.
Houses built in the year that a community is mapped are excluded from the analysis since they cannot
be classi�ed as adapted or non-adapted. The coe�cients are estimated from equation (9) in the text.
Data are from the years 2001-2012, before Congress increased prices in 2013. Solid lines show average
outcomes. Dashed lines are 95% con�dence intervals. Standard errors are clustered by community.
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Table 1: Summary Statistics, All Years

All Houses Adapted Houses Non-Adapted Houses
(1) (2) (3)

Panel A: Demand

N 13,433,549 6,921,152 6,512,397

Year Built 1978.7 1985.4 1971.5
(8.9) (5.2) (6.0)

Premium per $1,000 Cov. 4.38 3.11 5.73
(2.79) (2.09) (2.80)

Elevation Requirement (ft) 5.33 10.40 0.00
(6.80) (6.15) (0.00)

Prob. of Purchase
Any Policy 0.58 0.56 0.59

(0.49) (0.50) (0.49)
Building 0.57 0.56 0.58

(0.50) (0.50) (0.49)
Contents 0.41 0.43 0.40

(0.49) (0.49) (0.49)

Coverage ($1,000s, if purchase)
Total 240.7 267.6 217.1

(111.5) (107.0) (107.4)
Building 194.9 213.9 176.8

(84.0) (78.8) (82.8)
Contents 45.8 53.7 40.3

(42.4) (44.1) (40.5)

Panel B: Costs

N 11,983,183 5,317,675 6,665,508

Payout per $1,000 Cov. 6.23 3.79 8.18
(61.06) (47.47) (69.99)

Total Payout ($) 1,216.8 859.5 1,501.8
(12,736.6) (11,272.9) (13,786.7)

Total Payout ($1,000s, if claim) 62.5 60.8 63.3
(65.6) (71.8) (62.5)

Claim Probability 0.019 0.014 0.023
(0.136) (0.117) (0.150)

Notes: Summary statistics are presented for houses in the 20 Atlantic and Gulf Coast states built within 15 years of
a community's �rst map. Adapted houses are built after communities are mapped by the National Flood Insurance
Program and are required to be elevated. Panel A shows summary statistics for all single-family primary residences
in high-risk �ood zones for which year of construction is available; Panel B is all high-risk policies written. Data are
from the years 2001-2017. All monetary values are in $2017. Standard errors are in parentheses.

48



Table 2: First Stage E�ect of Congressional Reform on Flood Insurance Prices

Price
(1) (2)

Adapted × 1[t ≥ 2013] -0.810∗∗∗ -0.701∗∗∗

(0.033) (0.032)
Adapted -2.099∗∗∗ -1.525∗∗∗

(0.098) (0.100)

Non-Adapted Dep. Var. Mean 5.491

N 13,433,549

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variable is the price per $1,000 of �ood insurance coverage ($2017). The coe�cients are
estimated using equation (7) in the text. Adapted houses are built after communities are mapped and are required
to be elevated. The dependent variable mean is for non-adapted houses during the 2001-2012 pre-reform period.
Decade built×�ood severity controls are zip code×decade built×�ood severity �xed e�ects and decade built×�ood
severity time trends. Flood severity is de�ned using �ood water depth and �ood event type (see text). Standard
errors clustered by community are in parentheses.
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Table 3: E�ect of Prices and Adaptation on Extensive Margin Demand

Any Building Contents
Policy Policy Policy
(1) (2) (3)

Panel A: Di�erences-in-Di�erences

Adapted × 1[t ≥ 2013] 0.019∗∗∗ 0.018∗∗∗ 0.008∗∗

(0.005) (0.005) (0.004)
Adapted -0.108∗∗∗ -0.106∗∗∗ -0.051∗∗∗

(0.016) (0.015) (0.013)

Panel B: Instrumental Variables

Price -0.027∗∗∗ -0.025∗∗∗ -0.012∗∗

(0.006) (0.006) (0.006)
Adapted -0.148∗∗∗ -0.144∗∗∗ -0.069∗∗∗

(0.022) (0.022) (0.020)

Non-Adapted Dep. Var. Mean 0.619 0.615 0.423

K-P F−stat 487 487 487

N 13,433,549

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are indicators for purchasing any policy, a policy that includes building coverage,
and a policy that includes contents coverage. The coe�cients in Panels A and B are estimated using equations (7)
and (4) in the text, respectively. In Panel B, price is instrumented using the interaction of indicators for adapted and
post-2012. Adapted houses are built after communities are mapped and are required to be elevated. The dependent
variable mean is for non-adapted houses during the 2001-2012 pre-reform period. Decade built×�ood severity controls
are zip code×decade built×�ood severity �xed e�ects and decade built×�ood severity time trends. Flood severity
is de�ned using �ood water depth and �ood event type (see text). Standard errors clustered by community are in
parentheses.
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Table 4: E�ect of Prices and Adaptation on Intensive Margin Demand

Total Building Contents
Coverage Coverage Coverage

(1) (2) (3)

Panel A: Di�erences-in-Di�erences

Adapted × 1[t ≥ 2013] 1.35∗ 0.62 0.72∗∗

(0.80) (0.60) (0.35)
Adapted 26.32∗∗∗ 18.23∗∗∗ 8.10∗∗∗

(3.86) (3.11) (0.92)

Panel B: Instrumental Variables

Price -1.87∗ -0.87 -1.01∗∗

(1.11) (0.84) (0.46)
Adapted 23.85∗∗∗ 17.08∗∗∗ 6.77∗∗∗

(4.38) (3.76) (1.12)

Non-Adapted Dep. Var. Mean 217.14 176.81 40.33

K-P F−stat 332 332 332

N 11,983,183

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are total amounts of coverage purchased and separate amounts for building and
contents, in 1,000s ($2017). The coe�cients in Panels A and B are estimated using equations (7) and (4) in the
text, respectively. In Panel B, price is instrumented using the interaction of indicators for adapted and post-2012.
Adapted houses are built after communities are mapped and are required to be elevated. The dependent variable
mean is for non-adapted houses during the 2001-2012 pre-reform period. Decade built×�ood severity controls are zip
code×decade built×�ood severity �xed e�ects and decade built×�ood severity time trends. Flood severity is de�ned
using �ood water depth and �ood event type (see text). Standard errors clustered by community are in parentheses.
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Table 5: E�ects of Prices and Adaptation on Insurer Costs

Any Claim Average Cost
(1) (2)

Panel A: Di�erences-in-Di�erences

Adapted × 1[t ≥ 2013] 0.020 0.234
(0.073) (0.469)

Adapted -0.418∗∗∗ -2.211∗∗∗

(0.067) (0.470)

Panel B: Instrumental Variables

Price -0.028 -0.326
(0.101) (0.652)

Adapted -0.455∗∗ -2.641∗∗

(0.179) (1.224)

Non-Adapted Dep. Var. Mean 2.481 8.535

K-P F−stat 332 332

N 11,983,183

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are an indicator for making a claim and the average insurer payout per $1,000
insurance ($2017). Claim probabilities are multiplied by 100. The coe�cients in Panels A and B are estimated using
equations (7) and (4) in the text, respectively. In Panel B, price is instrumented using the interaction of indicators
for adapted and post-2012. Adapted houses are built after communities are mapped and are required to be elevated.
The dependent variable mean is for non-adapted houses during the 2001-2012 pre-reform period. Decade built×�ood
severity controls are zip code×decade built×�ood severity �xed e�ects and decade built×�ood severity time trends.
Flood severity is de�ned using �ood water depth and �ood event type (see text). Standard errors clustered by
community are in parentheses.
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Table 6: E�ects of Counterfactual Policy Reforms on Annual Welfare per High-Risk Homeowner

Counterfactual Policy
Calibration of Actuarially Fair Prices Insurance Mandate
Frictionless WTP Curve (1) (2)

1. Consumption smoothing baseline estimates: -$1,770 $7,900

Alternative slopes:
2. Heterogeneous risk aversion: -$1,810 $5,740

3. Heterogeneous consumption variance: -$1,750 $3,970

4. Iso-elastic (not linear): -$1,090 $7,610

Alternative consumption variances:
5. Consumption smoothing + adaptation-speci�c variance: -$1,840 $7,800

6. Consumption smoothing + exclude Katrina: -$1,120 $5,370

7. Consumption smoothing + cap losses at avg. income: -$830 $3,490

8. Cap losses at avg. mortgage payment: -$140 $300

9. No consumption smoothing: -$3,100 $17,280

Alternative risk aversion:
10. Risk aversion estimated using property insurance: -$6,190 $30,000

Notes: This table shows the welfare e�ects of counterfactual reforms ($ per high-risk homeowner, per year) using
di�erent calibrated parameters for the coe�cient of absolute risk aversion γ and the e�ect of natural disaster insurance
on the variance of consumption V . The baseline estimates in row 1 calculate the average risk premium using a standard
estimate of risk aversion of γ = 5 × 10−4 (Hendren, 2019) and the variance of insurance payouts that incorporates
consumption smoothing V = 9, 0002. Subsequent rows use di�erent functional forms, di�erent consumption variances,
or di�erent risk aversion parameters. Row 2 sets γ = 1.8×10−4 for the homeowner with the lowest willingness to pay,
which is the risk aversion for the low-income population in Hendren (2019). Row 3 sets V = 8042 for the homeowner
with the lowest willingness to pay, which is the variance of payouts in the lowest severity �ood in the claims data.
Row 4 uses a level shift of an iso-elastic observed willingness to pay curve. Row 5 uses V = 8, 0002 and V = 10, 0002

to calculate the average risk premium separately for adapted and non-adapted houses respectively, which are the
variances of payouts for each of these types of houses incorporating consumption smoothing. Row 6 uses V = 7, 0002,
which is the variance of payouts incorporating consumption smoothing and excluding payouts from Hurricane Katrina.
Row 7 uses V = 6, 0002, which is the variance of payouts including consumption smoothing and capping payouts at
average income in the zip codes in the analysis. Row 8 uses V = 2, 5002, which is the variance of payouts if they are
capped at the average annual mortgage payment. Row 9 uses V = 12, 0002, which is the variance of payouts in the
data without consumption smoothing. Row 10 uses γ = 1.7 × 10−3 from Snydor (2010), which is the risk aversion
parameter estimated using property insurance deductible choice. Except in rows 2 and 3, frictionless willingness to
pay is a level shift of observed willingness to pay. See text for a detailed description of the calculation of the risk
premium.
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Appendix

A Comparative Statics Derivations

This section derives comparative statics for the e�ects of changes in natural disaster insurance price

p, adaptation α, and frictions φ on homeowners' willingness to pay for insurance and insurers' costs.

Denote the change in the share of insured homeowners by sθ ≡ ∂s(p,α,φ)
∂θ

for θ ∈ {p, α, φ}. D̃θ and ACθ are

the equivalent expressions for the partial derivatives of willingness to pay and average costs. uc ≡ ∂u(·)
∂c

is the marginal utility of consumption.

A.1 Willingness To Pay

To derive comparative statics for willingness to pay, I use the identities that de�ne the share insured

s(p, α, φ) as a function of the exogenous parameters:

D̃(s(p, α, φ), α, φ) = p (10)

and the willingness to pay for insurance for any given type si:

u(yi − D̃(si, α, φi)) = φiE[u(yi − f(si, α))|si]. (11)

Prices

Totally di�erentiating (10) holding constant adaptation α and frictions φ yields D̃ssp = 1. Rearranging,

the e�ect of a marginal price change on the share of homeowners purchasing insurance is sp = 1
D̃s

< 0.

This expression is negative because D̃s is the change in willingness to pay for a marginal increase in type

si, which is negative by construction. This result shows the equivalence between assuming willingness

to pay decreases in homeowner type and assuming that the demand curve slopes downwards.

Adaptation

Totally di�erentiating (10) holding constant frictions φ and price p yields D̃ssα+D̃α = 0. The total e�ect

of increasing adaptation is made up of two partial e�ects. The �rst term D̃ssα is the movement along

the demand curve from the change in the identity of the marginal type, so that D̃(s(p, α, φ), α, φ) = p

continues to hold at the new value of α. The derivative D̃s is negative by construction.

The second term D̃α is the shift of the demand curve from the adaptation policy. The demand curve

shifts inward when adaptation increases because expected utility when uninsured increases, lowering

willingness to pay for all types. To see this, �x a type si and totally di�erentiate (11) with respect to

α. This yields:

D̃α =
−φi
uc

∂

∂α
E[u(yi − f(si, α

∗))|si]

I evaluate this expression at the new level of adaptation, α∗ = α+ dα. We know φi ≥ 1, so −φi
uc

< 0.

The exact expression for ∂
∂α
E[u(yi − f(si, α

∗))|si] depends on how adaptation a�ects the distribution
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of damages and, by extension, consumption. However, as long as a marginal increase in adaptation

does not reduce expected utility, willingness to pay weakly decreases in adaptation.40 The assumption

that homeowners are weakly better o� with adaptation than without it is equivalent to assuming that

the distribution of consumption at higher levels of adaptation �rst order stochastically dominates the

distribution at lower levels of adaptation. If adaptation makes homeowners strictly better o�, then D̃α

is strictly negative. In this case, sα = −D̃α
D̃s

< 0, and I expect fewer insured homeowners at higher levels

of adaptation.

Frictions in Uptake

Following the same approach and totally di�erentiating (10) holding constant α and p yields D̃ssφ +

D̃φ = 0. The �rst term D̃ssφ again is the movement along the demand curve that ensures that

D̃(s(p, α, φ), α, φ) = p continues to hold at the new value of φi. The second term D̃φ is the shift of

the demand curve that results from increasing the wedge between perceived and actual expected utility

in the uninsured state, for any type si. Totally di�erentiating (11) with respect to φi yields:

D̃φ =
−1

uc
E[u(yi − f(si, α))|si]

This expression is unambiguously negative. Hence, sφ =
−D̃φ
D̃s

< 0 and I expect fewer insured

homeowners when the wedge between perceived and actual expected utility when uninsured is larger.

A.2 Insurer Average Costs

To derive comparative statics for the e�ect of changes in the exogenous parameters price p, adaptation

α, and frictions φ on insurer costs, I start from the de�nition of average costs:

AC(p, α, φ) =
1

s(p, α, φ)

s(p,α,φ)ˆ

0

E[f(si, α)]dsi (12)

Prices

Totally di�erentiating (12) with respect to price p and evaluating at the new price p∗ = p+ dp yields:

ACp =
sp

s(p∗, α, φ)

E[f(s(p∗, α, φ), α)]− 1

s(p∗, α, φ)

s(p∗,α,φ)ˆ

0

E[f(si, α)]dsi


=

sp
s(p∗, α, φ)

[MC(p∗, α, φ)− AC(p∗, α, φ)]

The �rst term, sp
s(p∗,α,φ)

, is the change in market size from the price increase; I showed above that

sp < 0. The second, bracketed term is the selection e�ect: if marginal homeowners have lower costs than

40The e�ect of adaptation on demand will depend on whether adaptation increases expected consumption, reduces
the variance of consumption, or both. This is an open empirical question. Consistent with my empirical context, this
discussion presumes that there is an ex ante level of adaptation and abstracts from costs of e.g., elevating one's house.
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the average of the insured homeowners, then this term is negative and the market is adversely selected.

In this case, ACp > 0 and average costs are increasing in price.

Adaptation

Totally di�erentiating (12) with respect to the level of adaptation α and evaluating this expression at

the new value of α∗ = α + dα yields:

ACα =
1

s(p, α∗, φ)

 s(p,α∗,φ)ˆ

0

∂

∂α
E[f(si, α

∗)]dsi + sα

E[f(s(p, α∗, φ), α∗)]− 1

s(p, α∗, φ)

s(p,α∗,φ)ˆ

0

E[f(si, α
∗)]dsi


=

1

s(p, α∗, φ)

s(p,α∗,φ)ˆ

0

∂

∂α
E[f(si, α

∗)]dsi︸ ︷︷ ︸
protection e�ect (-)

+
sα

s(p, α∗, φ)
[MC(p, α∗, φ)− AC(p, α∗, φ)]︸ ︷︷ ︸

selection e�ect (?)

The �rst term is the mechanical e�ect of adaptation on the mean of the distribution of damages in

the insured population. This is weakly negative by assumption. The second term is the selection e�ect,

and its sign depends on how adaptation changes the distribution of costs of homeowners who continue

to buy insurance. I showed above that sα < 0. If the marginal individuals who opt out of insurance

when they are more protected are also lower cost than average, then the selection e�ect is positive. If

the selection e�ect is large enough, then increasing adaptation may actually increase average costs to

the insurer.

Frictions in Uptake

The expression for the e�ect of a change in frictions φ on cost has a similar form to the expression for the

e�ect of a price change. Totally di�erentiating (12) with respect to φi and evaluating at φ∗i = φi + dφi

yields:

ACφ =
sφ

s(p, α, φ∗)

E[f(s(p, α, φ∗), α)]− 1

s(p, α, φ∗)

s(p,α,φ∗)ˆ

0

E[f(si, α)]dsi


=

sφ
s(p, α, φ∗)

[MC(p, α, φ∗)− AC(p, α, φ∗)]

The term
sφ

s(p,α,φ∗)
is the change in the market size from the marginal increase in φi, which I showed is

negative. The overall sign of the expression depends on the selection e�ect: if reducing the wedge between

expected and perceived utility results in higher cost marginal individuals taking up insurance, then

average insurance costs can increase. This resorting could arise, for example, if informing homeowners

about their actual level of �ood risk leads high-risk homeowners to increase their take-up of insurance

and low-risk homeowners to substitute away from insurance.
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B Derivation of Willingness to Pay

Hendren (2019) provides a method to estimate risk aversion using observed demand and cost curves

and the e�ect of insurance on the variance of consumption. I invert this approach to recover the risk

premium that homeowners should be willing to pay for natural disaster insurance in the absence of

frictions.

The expression for frictionless willingness to pay given by equation (3) is based on the assumption

of full insurance. Here, I derive the expression for willingness to pay for the more general case of partial

insurance. Relative to the full insurance case, the natural disaster insurer only reimburses a fraction δ

of damages f(si, α), where 0 < δ ≤ 1. If δ = 1, the model collapses to the full insurance special case in

Section 2 of the main text.

With partial insurance, the budget constraint for insured homeowners is:

cI(si, α, p, δ, yi) + p+ (1− δ)f(si, α) ≤ yi

The budget constraint for uninsured homeowners is identical to the full insurance case:

cU(si, α, yi) + f(si, α) ≤ yi

The highest price D̃(si, α, φi, δ) that a homeowner of type si with frictions φi is willing to pay for

insurance solves:

E
[
u(yi − D̃(si, α, φi, δ)− (1− δ)f(si, α))|si

]
= φiE [u(yi − f(si, α))|si] (13)

and the fraction of insured homeowners s(p, α, φ, δ) is de�ned by D̃(s(p, α, φ, δ), φ, α, δ) = p.

To derive an expression for frictionless willingness to pay for each type si, the �rst step is to take

a second-order Taylor expansion of (13) around the average consumption c̄ of homeowners of type si.

This yields:

u(c̄)+ucE
[
(yi − D̃(si, α, φi, δ)− (1− δ)f(si, α))− c̄)|si

]
+
ucc
2
E
[
(yi − D̃(si, α, 1, δ)− (1− δ)f(si, α))− c̄)2|si

]
= φi

(
u(c̄) + ucE[(yi − f(si, α)− c̄)|si] +

ucc
2
E[(yi − f(si, α)− c̄)2|si]

)
Note that uc = ∂u(c̄)

∂c
and ucc = ∂2u(c̄)

∂c2
are evaluated at the average consumption c̄ of all homeowners

of type si. Subtracting the Taylor expansion of E [u(yi − f(si, α))|si] from both sides and canceling

deterministic terms from the expectation yields an expression that implicitly de�nes willingness to pay

D̃(si, α, φi, δ) of each type si:

D̃(si, α, φi, δ) = δE[f(si, α)|si]+
1

2
× −ucc

uc
×
(
E
[
(yi − f(si, α)− c̄)2|si

]
− E

[
(yi − D̃(si, α, φi, δ)− (1− δ)f(si, α)− c̄)2|si

])
+ (1− φi)×

1

uc
×
(
u(c̄) + ucE[(yi − f(si, α)− c̄)|si] +

ucc
2
E[(yi − f(si, α)− c̄)2|si]

)
(14)

We can write the last bracketed term more concisely as E [u(yi − f(si, α))|si]. For the marginal indi-
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vidual who purchases insurance at price p, willingness to pay is given by the identity D̃(s(p, α, φ, δ), α, φ, δ) =

p. Replacing this identity into equation (14) yields an expression for the market observed willingness to

pay curve as a function of p:

D(p, α, φ, δ) = δE [f(si, α)|si = s(p, α, φ, δ)]︸ ︷︷ ︸
reimbursed share of costs

+

1

2
×−ucc

uc
×
[
E
[
(yi − f(si, α)− c̄)2|si = s(p, α, φ, δ)

]
− E

[
(yi − p− (1− δ)f(si, α)− c̄)2|si = s(p, α, φ, δ)

]]︸ ︷︷ ︸
di�erence in the variance of consumption between the insured and the uninsured states

+

(1− φi)×
1

uc
× (E [u(yi − f(si, α))|si = s(p, α, φ, δ)])︸ ︷︷ ︸

distortion from frictions φ > 1

(15)

The term E[f(si, α)|si] is the homeowner's expected cost, −ucc
uc

is their coe�cient of absolute risk

aversion, and E [(yi − f(si, α)− c̄)2|si = s(p, α, 1, δ)]−E [(yi − p− (1− δ)f(si, α)− c̄)2|si = s(p, α, 1, δ)]

is the di�erence in the variance of consumption when uninsured relative to when insured. The last term

in (15) is the distortion from frictions in uptake, which is negative for φi > 1. In the absence of frictions,

φi = 1 and homeowners accurately equate expected utility in the insured and the uninsured states.

Therefore, D̃(si, α, φi, δ) < D̃(si, α, 1, δ) for all si: frictions distort willingness to pay downwards.

Replacing φi = 1 into (15) yields an expression for the frictionless willingness to pay curve:

D(p, α, 1, δ) = δE[f(si, α)|si = s(p, α, 1, δ)]+

1

2
×−ucc

uc
×(E

[
(yi − f(si, α)− c̄)2|si = s(p, α, 1, δ)

]
−E

[
(yi − p− (1− δ)f(si, α)− c̄)2|si = s(p, α, 1, δ)

]
)

(16)

The second line of (16) is positive for risk-averse homeowners with ucc < 0. Therefore, this expression

says that, in the absence of frictions, risk-averse homeowners should be willing to pay a risk premium

over reimbursed costs that depends on risk aversion and on the reduction in risk provided by insurance.

With full insurance, δ = 1 and we can further simplify (16) to obtain the full insurance special case in

the main text. Suppressing δ as an argument in willingness to pay, this yields the frictionless willingness

to pay curve in the main text (equation (3)):

D(p, α, φ = 1) = E[f(si, α)|si = s(p, α, φ = 1)]︸ ︷︷ ︸
expected cost

+

1

2
× −ucc

uc︸ ︷︷ ︸
coef. of absolute risk aversion

×
(
E[(yi − f(si, α)− c̄)2|si = s(p, α, φ = 1)]− (yi − p− c̄)2

)︸ ︷︷ ︸
e�ect of insurance on the variance of consumption

(17)

The full insurance frictionless willingness to pay curve (17) di�ers from the partial insurance fric-

tionless willingness to pay curve (16) in two ways. First, the risk premium depends on deterministic

income and prices when insured, rather than the variance of consumption in the insured state.41 Second,

41With full insurance and deterministic income yi for each type si, (yi − p− c̄)2 will be small if there is little variation
in income conditional on willingness to pay.
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the expected bene�t from insurance is equal to the full amount of expected costs because they are fully

reimbursed by the insurer.

C Data

This section provides details on the data sources, the construction of the analysis sample, and the

linking of the data sets.

C.1 Sample Construction

Flood Insurance Policies and Claims � The administrative �ood insurance data are from FEMA's

BureauNet database, which the NFIP uses to track current and historical �ood insurance policies and

claims. The data include over 70 million policies written for single and multi-family residences, condo-

miniums, vacation homes, and businesses in the 20 Atlantic and Gulf Coast states. The 20 states are

Alabama, Connecticut, Delaware, Florida, Georgia, Louisiana, Maine, Maryland, Massachusetts, Mis-

sissippi, New Hampshire, New Jersey, New York, North Carolina, Pennsylvania, Rhode Island, South

Carolina, Texas, Vermont, and Virginia.

The policies data set includes premium paid, purchased coverage for building and contents, year

of construction of the structure, �ood zone, the minimum elevation requirement, and a few dwelling

characteristics, as well as the date the policy was written, NFIP community identi�ers and 5-digit zip

codes. The claims data include the same identifying information, along with the amount of the claim,

the �ood event number assigned by FEMA, and the depth of water that �ooded the house.

I impose several sample exclusions during the cleaning of this data set. I �rst restrict the analysis to

the 25 million policies written for single-family, primary residences in high-risk �ood zones. I follow the

NFIP rating system and classify high-risk �ood zones as A, numbered A, V, or numbered V zones. I drop

1% of policies that are missing the �ood zone or the house's date of construction since this information

is needed to identify whether a house is treated by the price reforms that I study. Additionally, I exclude

4% of policies for which coverage exceeds the maximum allowable coverage for single-family residential

properties or is less than or equal to 0. Since some prices are miscoded relative to the rate schedule

published by NFIP for residential properties (e.g., total premia that exceed $60,000 per year or $16,000

per $1,000 of insurance coverage or less than $0.10 per $1,000 of insurance), I exclude policies that are

smaller than the �rst or greater than the ninety-ninth percentile of premia.42 I similarly drop the less

than 0.5% of claims that are missing the house's construction year or the �ood zone. I exclude the 7%

of claims that reporting damages or payouts that are zero or negative, or realized payouts that exceed

purchased coverage. Zero entries for damages or payouts indicate either that no payout was made or

that the claim is still outstanding.

For the years 2010-2017, 5-10% of policies are missing zip codes. My conversation with the FEMA

FOIA o�ce indicates that these were erroneously deleted when the detailed addresses were removed

during the anonymizing of the FOIA request for the 2010-2017 data. I reconstruct these zip codes by

building a concordance from zip code to �ood map panel identi�er. The �ood map panel identi�er is the

42Prices are generally in the range of $1-15 per $1,000 of coverage (NFIP, 2019).
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subsection of a �ood map that is included in one speci�c hydrological study, is the size of several city

blocks, and is typically fully contained in a 5-digit zip code. I identify policies with the same �ood map

panel identi�er as the policies with the missing zip codes, and assign the same zip code to policies with

the same �ood map panel code. This procedure recovers approximately 75% of the missing zip codes.

I do not observe �ood insurance prices for houses that do not purchase insurance. I impute prices

linearly based on characteristics of the NFIP rate schedule, speci�cally date of construction relative to

map year, year built, �ood zone, minimum elevation requirement, and community id. These variables

alone account for 60% of the variation in prices. The NFIP additionally adjusts prices based on elevation

of the house relative to the construction requirement and on basement, but these variables are not

available in the housing data set.

Minimum Elevation Requirement � I construct a measure of the mean zip code elevation require-

ment for new construction using the policy data. The policy data set includes the minimum elevation

requirement for adapted houses. Non-adapted houses are not required to meet minimum construction

standards, and so this information is not available for these houses; it is also missing for approximately

1% of adapted houses. Averaging over the requirement for policies with available data yields an average

measure of the construction requirement for adapted houses in each zip code. I measure the extent to

which this requirement binds using the available data on the elevation di�erence between the minimum

requirement and the actual construction height in the policy data set.

Flood Type � I use the �ood event number from the claims data to identify the types of �oods that

strike each zip code, in each year. FEMA assigns claims an event number of 0 if they are made during

localized �nuisance� �oods, while claims made during �ood events that are large enough for FEMA to

set up a local claims o�ce are assigned a three-digit code that uniquely identi�es the catastrophe. The

latter includes named disasters, such as Hurricanes Harvey and Katrina. I take the maximum over the

�ood event numbers in each zip code-year to determine whether FEMA classi�es the worst �ood to

strike each zip code as a �nuisance� �ood or a catastrophe. I assign zip codes with no claims to a third,

�not �ooded� category.

Flood Depth � I construct an annual measure of �ood water depth in each zip code using information

on the number of feet of water that �ooded each house, available from the claims data.43 I assign a

�ood depth of zero to policies without claims. Since water depths are rounded to the nearest foot, I set

claims with water depths of zero to 0.0001 to distinguish small �oods from no �oods. Approximately

2% of water depths are negative. I impute the �ood depth for these claims using the average water

depth for claims made by the same type of house (i.e., adapted or non-adapted) in the same �ood zone

with the same �ood event number (e.g., no. 653 is Hurricane Katrina). An additional 7% of claims

have water depths that exceed 25 feet. I treat these �ood depths as missing and impute them following

the same procedure as the negative values. I calculate the annual average level of inundation in feet for

high-risk houses in each zip code by averaging over the water depths for all high-risk policies in each

43I would ideally include external data on �ood severity. The National Oceanic and Atmospheric Administration
(NOAA) measured �ood depths after Hurricane Katrina, but to my knowledge there is no nationwide data set for the
universe of �oods between 2001 and 2017. Some remote sensing data sets (e.g., the MODIS Near Real-Time Global Flood
Mapping Project) record if an area �ooded, but not water depth.
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zip code for each year. To de�ne an index of �ood severity, I bin the average �ood depth into quintiles.

Approximately 40% of zip codes are not �ooded, so this yields three categories of �ood severity and

a fourth �not �ooded� category. Appendix Table A.2 shows that average payouts are higher in deeper

�oods and in catastrophes. For medium and deep �oods, I distinguish between �nuisance� �oods and

catastrophes according to FEMA's classi�cation to obtain six monotonically increasing water depth

categories.44

Housing � I obtain assessment data on the universe of residential houses from the Zillow Transaction

and Assessment Database (ZTRAX), for all states for which I have �ood insurance data. These propri-

etary data are collected from county assessors' records. Coverage of di�erent variables depends on the

legal reporting requirements of each county. Zip code, latitude, and longitude are populated for almost

all properties. I exclude approximately 1% of houses that are missing latitude or longitude coordinates.

Construction year is not a reporting requirement for all counties and is missing for approximately 38% of

residential houses in the Zillow data. Since I cannot categorize houses as built either before or after the

map year of their community (i.e., treated by price changes or not) if I do not observe the construction

year, I exclude houses missing year of construction from the demand analysis.

Using the latitude and longitudes for each house, I merge all single-family residential houses with the

NFIP's publicly available National Flood Hazard Layer (NFHL). I use the Zillow property use code to

identify single-family residences, excluding residential houses in the following categories: Rural Residence

(farm/productive land), Cluster Home, Condominium, Cooperative, Planned Unit Development, Patio

Home, and Landominium. For each house, I extract the �ood zone, the community identi�er, and the

years of the initial �ood map, the current �ood map, and any map revisions from the NFHL. The initial

and current �ood map years are missing from the NFHL for approximately 10% of houses. I �ll in the

missing dates using the online NFIP Community Status Books, which records the same information for

each community. I verify that the dates of the initial map years recorded in the NFHL are accurate by

cross-referencing with the Community Status Books.

I impose several sample restrictions on the merged policies and housing data set. First, as discussed

above, I restrict the analysis to single-family, primary residences in high-risk �ood zones because my

variation in prices and construction codes a�ects these houses. Subsequently, I exclude houses built in

the 2000s so that every house has a positive claim probability in each year of the sample and so that the

composition of the adapted control group does not change. Finally, I drop policies written for houses

built during the initial map year since it is unclear whether they are adapted or non-adapted.

I approximate the �ood insurance market size for each year between 2001 and 2017 by repeating the

cross-sectional assessment data to build a panel and dropping houses built after the sample year. The

main analysis focuses on the panel of 13,433,549 houses built within a 30-year window centered on the

year of a community's �rst �ood map. I focus on houses built around the same time because the match

quality of insurance contracts to houses is poorer for early construction than for late construction. The

year of construction for older houses is more likely to be subject to measurement error (e.g., a house

44Appendix Table A.2 shows that less than 1% of policies are written for houses that experience �oods of the lowest
water depth that are classi�ed as catastrophes. To avoid thin bins in the post-reform period in equation (8), I therefore
do not distinguish between �nuisance� �oods and catastrophes for �oods of the lowest water depth.
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built in 1953 is reported as built in 1950, whereas a house built in 1993 is reported as 1993).

Both the housing and �ood insurance data sets are administrative records, but several sources of

measurement error are possible. First, the NFHL lists current (i.e., 2017) �ood zone designations, but

revisions occur during the time period of my study. To the extent that high-risk �ood zone boundaries

change, merging the housing data set with the NFHL introduces some noise in the market size of high-

risk houses. Second, the latitudes and longitudes in the Zillow data are property centroids, which may

not correspond to the exact location of the house. This also potentially introduces noise in the number

of houses in high-risk �ood zones. Third, as discussed above, some construction dates seem to be

approximated (i.e., rounded to nearest decade). These sources of measurement error mean that I do not

obtain an exact match on construction year, �ood zone, zip code, and community id for all houses. Table

1 suggests that the match rate is somewhat better for newer construction; this means that the higher

rates of uptake that I �nd for older houses may be a lower bound on the di�erence in take-up between the

two house types. Back-of-the-envelope calculations suggest that the share of insured houses including

houses without dates of construction is comparable to the share insured in the matched subsample.

Measurement error from map updates or approximated latitude and longitude coordinates are not likely

to di�erentially a�ect new and old construction, though may generally attenuate the magnitudes of the

coe�cient estimates.

C.2 Matching Algorithm

I match policies to houses using zip code, community id, �ood zone, and construction year. In accor-

dance with federal FOIA disclosure requirements, the �ood insurance policies and claims are anonymized

and do not include street addresses. However, whether a house is subject to higher prices after 2012

and minimum elevation requirements depends on when it was built relative to the community-speci�c

map year and whether it is in a high- or low-risk �ood zone. This means that it important for me to

know the share of insured houses and average insurer costs for the group of houses built in a given year

in each zip code and �ood zone, but not which speci�c house purchased the policy. I therefore link each

policy to a house built in the same year in the same zip code and �ood zone.

I follow a four-step matching procedure. I �rst match 14 million policies to houses based on zip

code, �ood zone, and year of construction. Zip codes change over time, and are occasionally missing

in the NFIP data. Therefore, in step 2, I match an additional 2 million policies and houses based on

community id, �ood zone, and year of construction. Since there is bunching on decades and �ve-year

bins for the year built variable in the Zillow data (e.g., houses built in 1953 reported as 1950), I conduct

a tertiary match of 1 million policies on community id, �ood zone, and the most recent year ending in

5. In a fourth step, I match an additional 150,000 policies based on community id, �ood zone, and the

most recent decal year. In steps 3 and 4, I include the additional constraint that the house and policy

written must both be for houses that are adapted or non-adapted.

This procedure yields a match for approximately 17 million policies, or 70% of the total number

of residential policies in high-risk �ood zones. Of the unmatched policies, approximately 60% are in

counties for which the date of construction variable is populated less than 85% of the time because it is
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not included in the reporting requirements of the assessment o�ces of these counties.

I can obtain an almost exact match of claims to policies because the date the policy was written,

construction year of the house, �ood zone, and zip code uniquely identify 90% of claims. The match rate

of claims to policies is 99%, though only 60% of these policies are matched to houses. The unmatched

policies are concentrated in Louisiana, where the date of construction of the house is not collected for

around 88% of houses but which is responsible for many claims during the time period of my sample

because of Hurricane Katrina. This drives some di�erences in costs between the two samples, as shown

in Appendix Table A.1.

D Sensitivity Analyses

D.1 Demand and Cost Estimates

This section discusses sensitivity analyses of the e�ects of adaptation and price on demand and cost.

The results are generally similar in sign, magnitude, and precision across a range of speci�cations and

subsamples. I highlight di�erences between the instrumental variables and the OLS estimates.

D.1.1 Extensive Margin Demand

Appendix Table A.3 reports sensitivity analyses of equation (4) for the extensive margin demand out-

comes (i.e., the probability of purchasing any policy, a policy that includes building coverage, and a

policy that includes contents coverage). Columns 1-6 show similar results to the estimates in the main

text using di�erent sets of controls. Column 1 shows that the estimates are quantitatively similar if

decade built×�ood severity controls are excluded. Columns 2-5 show that the results are robust to using

di�erent proxies for �ood severity in equation (4), respectively the water depth quintile only, FEMA's

classi�cation the �ood event type only, the unique FEMA catastrophe number assigned to the event,

and the date that a claim was made. Column 6 reports similar results using decade built time trends

that do not vary by �ood severity; de�ning �ood severity using the FEMA catastrophe number, which

is unique for each catastrophic �ood in each year, means that decade built time trends also do not vary

by �ood severity in Column 4. Column 7 includes a separate linear time trend for adapted houses in

addition to decade built×�ood severity time trends, which increases the demand elasticity somewhat.

Columns 8-10 consider di�erent subsamples of the data. Columns 8 and 9 show that the results

are robust to estimating the results on houses built within 20- and 10-year windows around the year a

community is mapped, rather than a 30-year window. These results exclude older houses for which the

match quality is poorer. Column 10 excludes Louisiana because Figures 2 and 3 show that Hurricane

Katrina in 2005 is an outlier that creates a large subsidy to Louisiana residents. The results in Column

10 show that Hurricane Katrina is not a primary driver of the results.

Column 11 shows that the main estimates are robust to using predicted prices for all houses, rather

than only those which do not purchase insurance. This analysis emphasizes that the price variation is

from changes in the list price, and not due to changes in the amount or composition of coverage.
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Columns 12 present results from estimating equation (4) using OLS. These results show that in-

strumenting for prices is important: the OLS estimates of the price elasticities are biased upward,

particularly for the probability of purchasing any insurance or a policy with building coverage. The

positive omitted variables bias is consistent with aggregate NFIP price increases and with spikes in

insurance uptake after �oods, for example.

Appendix Table A.6 compares estimates of equation (7) using a probit regression (Panel A) and a lin-

ear probability model (Panel B). For computational tractability, I compare the di�erences-in-di�erences

estimates of the price reform using equation (7) and state×year �xed e�ects, rather than instrumen-

tal variables probit regressions with high-dimensional zip code×year �xed e�ects. Since around 60%

of homeowners purchase insurance, the linear probability model provides a good approximation of the

e�ects of prices and adaptation on the probability of purchasing insurance, and I focus on the linear

probability model in the main analysis (Wooldridge, 2002).

D.1.2 Intensive Margin Demand

Appendix Table A.4 reports di�erent estimates of the e�ects of prices and adaptation on purchased

coverage. In general, adapted houses purchase more insurance and the e�ect of prices on amounts of

coverage are small. Contents coverage is slightly more elastic than building coverage.

Columns 1 and 2 report results using only zip code×year �xed e�ects, for real and nominal coverage

amounts respectively. These results show that including decade built time trends are important because

adapted houses purchase more nominal coverage throughout the time period of the analysis. Since the

e�ects of the price change do not o�set the di�erences in the amounts of nominal coverage purchased,

de�ating total coverage purchased to $2017 creates the appearance that adapted houses purchase more

insurance in the early years of the sample. De�ating to $2017 therefore results in a positive price elas-

ticity, which vanishes when controlling for decade built time trends in the main estimates or estimating

using nominal coverage (column 2).

Columns 3-8 report results with di�erent sets of controls. As above, the intensive margin results are

similar in sign, magnitude, and precision when I de�ne �ood severity using the quintile of water depth,

the �ood event type, the claim date, or the catastrophe number, or estimate the model without �ood

severity-speci�c time trends. Column 8 suggests that controlling for di�erential time trends for adapted

and non-adapted houses slightly increases the sensitivity of building coverage to prices, but decreases

the sensitivity of contents coverage purchased to prices.

Columns 9-12 show the results of estimating the model on subsamples of the data. The results are

very similar to the estimates in the main text when I use only observations for houses built within 20

or 10 years of the map year, restrict the analysis to policies that can be matched to houses, or exclude

Louisiana.

Column 13 shows the results without instrumenting for prices. The OLS estimates of the price

elasticity are biased downwards. This is consistent with both price increases after severe �oods and

coverage choices that re�ect declining house value after �oods.

Finally, column 14 reports estimates of the e�ect of prices and adaptation on the log of the amount of
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coverage purchased, plus 1. Conditional on purchase, almost all homeowners purchase building coverage,

but the log of one plus the coverage amount accounts for policies with zero coverage for either contents

or building. Consistent with the results in levels, the log results for building coverage are small and

statistically insigni�cant and the results for contents suggest that contents coverage purchased is slightly

more elastic than building coverage.

D.1.3 Insurer Costs

Appendix Table A.5 shows that the e�ects of prices and adaptation on insurer costs are robust to a

range of alternative speci�cations. Columns 1-7 report results using di�erent sets of controls. Column 1

shows similar results to the main estimates excluding decade build×�ood severity controls. Importantly,
these results underscore that the lack of evidence of selection is not because unobservable information is

correlated with these covariates. Columns 2-6 show that the results are robust to using the alternative

de�nitions of �ood severity discussed above as well. Controlling for �ood severity in column 5 using the

date that a claim was made increases the precision of the price e�ects; the e�ect of prices on average cost

allows us to reject that adverse selection in this market is greater than one-third of the amount in health

insurance markets (e.g., Hackmann et al., 2015). The results in column 7, which include separate linear

trends for adapted and non-adapted houses, are similar in sign and magnitude to the main estimates,

but are less precisely estimated due to the relatively limited number of policies that make claims.

Columns 8-11 report results on the di�erent subsamples of the data discussed above. The results are

insensitive to excluding the oldest and newest houses in columns 7 and 8. The results on the matched

data sample and the sample that excludes Louisiana are qualitatively similar, though less precise because

they are estimated on fewer observations; Louisiana accounts for about 40% of the claims in my data

because of Hurricane Katrina.

Column 12 reports OLS results. These results highlight that panel regressions that do not instrument

for prices would lead to erroneous conclusions about selection in this market. Prices are positively

correlated with costs in the OLS regressions because the NFIP can adjust prices in response to �ood

events; the instrumental variables regressions isolate price variation that is uncorrelated with changes

in risk or �ood severity, conditional on the variables in the model.

Column 13 reports results using an inverse hyperbolic sine transformation of the cost outcomes; I

do not estimate log speci�cations since few policies make claims. The results again are qualitatively

similar. The inverse hyperbolic sine transformation in the presence of many zero values means that

the coe�cients on price and adaptation in the payouts regression are smaller and primarily capture

di�erences in the probability of a non-zero payout.

D.2 Flood Severity

The estimates of equation (8) are robust to using di�erent de�nitions of �ood severity and also

to excluding Hurricane Katrina. Appendix Table A.7 reports the main estimates that de�ne �ood

severity using six monotonically increasing �ood water depths; Figure 5 shows the coe�cients from this

regression. Appendix Table A.8 shows that the results across all outcomes are robust to de�ning �ood
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severity only using the water depth quintile or only using the FEMA �ood event type. The results in

this table are summarized graphically in Appendix Figures A.11 and A.12. Appendix Table A.9 reports

the results from estimating equation (8) excluding Louisiana. The e�ects of adaptation before and after

the reform are very similar to the estimates discussed in the main text, which shows that adaptation

matters during catastrophes that are less extreme than Hurricane Katrina. None of these speci�cations

show any evidence of selection since the relative di�erences in claim probabilities and average costs after

the price reform are never statistically di�erent from zero.

E Welfare Calculations

This section provides the details of the welfare calculations in Table 6. I discuss the general approach

for calculating each entry in the table and then illustrate the welfare calculations for both counterfactuals

for the consumption-smoothing benchmark estimate.

E.1 Calibration of the Frictionless Willingness to Pay Curve

Equation (3) in the main text de�nes the frictionless willingness to pay curve D(p, α, φ = 1) for a

given level of adaptation α. In terms of the model parameters, D(p, α, 1) = MC(p, α, φ) +
1
2
×γ(p)×V (p)

240.7
.

The �rst term, MC(p, α, φ) is the marginal cost curve and the second term is the risk premium, which

depends on the coe�cient of absolute risk aversion γ(p) and the e�ect of insurance on the variance of

consumption V (p). To convert the risk premium into dollars per $1,000 of insurance, I divide by the

average amount of insurance purchase in thousands, 240.7. The parameters γ(p) and V (p) are functions

of price because the risk aversion or the variance of damages of the homeowner of type s(p, α, φ) who

is marginal at price p may di�er from the risk aversion and the variance of natural disaster damages of

infra-marginal homeowners. I also consider a case where γ(·) and V (·) depend on adaptation α (row 5,

Table 6).

I calibrate separate frictionless willingness to pay curves for adapted and non-adapted homeowners

because I estimate that their expected costs are di�erent. This di�erence in expected costs also means

that the actuarially fair prices are di�erent for the two types of houses. I therefore calculate the welfare

e�ects of counterfactual reforms separately in the adapted and non-adapted housing markets. The total

welfare e�ect is the sum of the welfare e�ects in the two markets.

I derive the frictionless willingness to pay curves for adapted and non-adapted homeowners by calcu-

lating the risk premium for the average homeowner and considering di�erent calibrations of the slope of

the curve. The risk premium for the average homeowner of type s̄ = 0.5 locates a point on the frictionless

willingness to pay curve. This average risk premium equals
1
2
×γ(p̄)×V (p̄)

240.7
, where p̄ is the price at which

the homeowner of type s̄ is indi�erent between having insurance and not having it. I consider several

alternative parametrizations of γ(p̄) and V (p̄). The starting point for calibrating the e�ect of natural

disaster insurance on the variance of consumption is the variance of payouts forgone if a homeowner is

uninsured. The baseline estimates (row 1, Table 6) and variants with alternative assumptions on the

slope (rows 2-4) use a standard estimate of risk aversion γ(p̄) = 5× 10−4 (Hendren, 2019) and the vari-

ance of payouts that incorporates consumption smoothing estimates from the literature V (p̄) = 9, 0002.
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I discuss the calibration of these parameters in detail in Section 7.1. Row 5 allows V (p̄) to depend

on adaptation α using V (p̄, α = 0) = 10, 0002 and V (p̄, α = 1) = 8, 0002, which are the variances for

non-adapted and adapted houses that incorporate consumption smoothing. Row 6 uses V (p̄) = 7, 0002,

which is the variance of payouts incorporating consumption smoothing and excluding payouts from Hur-

ricane Katrina. Row 7 uses V (p̄) = 6, 0002, which is the variance of payouts if they are capped at $80,000

(i.e., the average income in the zip codes included in the analysis). Row 8 uses V (p̄) = 2, 5002, which

is the variance of payouts if they are capped at the U.S. annual average mortgage payment of $20,000.

This is the most conservative scenario in the table. Row 9 uses V (p̄) = 12, 0002, which is the variance of

payouts directly from the claims data, without consumption smoothing. Row 10 uses the consumption

smoothing variance V (p̄) = 9, 0002, but uses a risk aversion parameter of γ(p̄) = 1.7 × 10−3 estimated

from property insurance deductible choices (Snydor, 2010). Though there are fewer estimates of risk

aversion in this area compared with health insurance, this sensitivity analysis is important because risk

aversion may di�er across contexts (Einav et al., 2012).

I consider several alternative parametrizations of the slope of the frictionless willingness to pay

curve. The �rst is a level shift of the observed demand curve. This parametrization is agnostic about

di�erences in risk aversion and consumption variance that give rise to the estimated slope of sp = −0.03.

Equation (3) shows that the frictionless willingness to pay curve may be more or less steep than the

observed demand curve. Rows 2 and 3 of Table 6 relax the assumption of a level shift. Calculating

the risk premium for the homeowner with the lowest willingness to pay s(pfull, α, φ), together with the

risk premium for the homeowner with the average willingness to pay, implies a slope for the frictionless

willingness to pay curve. Row 2 assumes heterogeneity in risk aversion across the willingness to pay

distribution. In this case, I calculate the risk premium for the homeowner with the lowest willingness

to pay using γ(pfull) = 1.8 × 10−4, which is the extreme value considered by Hendren (2019). Row

3 assumes heterogeneity in the variance of consumption. Here, I calculate the risk premium for the

homeowner with the lowest willingness to pay using V (pfull) = 8042, which is the variance of payouts in

the lowest severity �ood in my data (Appendix Table A.2).

Row 4 of Table 6 considers an iso-elastic frictionless willingness to pay curve, instead of a linear

functional form. I parametrize the observed demand curve as s(p, α, φ) = δpβ, where β = −0.25 is

the demand elasticity implied by my estimates (Table 3). I solve for δ using initial equilibrium prices

and quantities. I approximate the frictionless willingness to pay curve as a level shift of the observed

willingness to pay curve through the point de�ned by the risk premium of the average homeowner, which

I calculate.

With the frictionless willingness to pay and marginal cost curves in hand, calculating the welfare

e�ects of counterfactual reforms is straightforward. The welfare loss from increasing prices and the

welfare gain from the mandate are equal to the sums of the risk premia of the homeowners who cease

to purchase insurance and who become insured, respectively.

Reducing the subsidy with or without an accompanying mandate also reduces the deadweight loss

from the distortionary e�ect of taxation required to fund this subsidy. Using a marginal cost of public

funds of 0.3, the welfare gain from reducing distortionary taxation is $110 per high-risk homeowner per
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year.

E.2 Counterfactual 1: Actuarially Fair Pricing

E.2.1 Actual Welfare Loss

The welfare loss from increasing prices toward actuarially fair levels is equal to the sum of the risk premia

of homeowners who become uninsured. Figure 1.b shows that the welfare loss for non-adapted home-

owners is equal to the dark grey area between the frictionless willingness to pay and the marginal cost

curves. Using the geometry of the �gure, the total e�ect on social welfare for all owners of non-adapted,

single-family homes in high-risk �ood zones in the 20 Atlantic and Gulf Coast states is calculated as:

∆W = ((D(pmc, 0, 1)−MC(pmc, 0, φ)) + (D(p′, 0, 1)−MC(p′, 0, φ)))× (s′ − smc)× 1

2
× 217.1× 1, 043, 345

= (92.00− 8.54 + 89.00− 8.54)× (0.52− 0.61)× 1

2
× 217.1× 1, 043, 345 (18)

The �rst multiplicative term is the sum of the risk premia for the homeowners who are marginal

at the actuarially fair price and at the inital price, respectively. To obtain D(pmc, 0, 1), I calculate

the change in the frictionless willingness to pay for homeowners of type smc relative to s̄ = 0.5 using

γ = 5 × 10−4 and V = 9, 0002 for the average homeowner: D(pmc, 0, 1) = D(p̄, 0, 1) + (smc−0.5)
sp

=

8.54 +
1
2
×5×10−4×9,0002

240.7
− (0.52−0.5)

0.03
= 92.00. An analagous calculation using s′ instead of smc yields

D(p′, 0, 1) = 89.00. The second multiplicative term is the change in demand from the price increase,

which is determined by the observed demand curve. The last two multiplicative terms in this expression

convert the graphical welfare e�ect in dollars per $1,000 insurance coverage per high-risk homeowner

into the total e�ect on social welfare for this market. First, I translate the welfare e�ect from dollars per

$1,000 of insurance purchased to dollars per person by multiplying by the average amount of insurance

coverage purchased by non-adapted homeowners, in thousands. Second, I multiply by the total number

of non-adapted, single-family homes in high-risk �ood zones.45

To obtain the analogous welfare e�ect for adapted houses, I replace prices and quantities in equation

(18) with the equivalent amounts for adapted houses. I estimate the e�ect of adaptation on the price

schedule θp2, on extensive margin demand θs2, on intensive margin demand θi2, and on average costs θc2
using the di�erences-in-di�erences equation (7). These parameters give the distances from the pre-reform

non-adapted equilibrium to the initial equilibrium in the market for adapted houses and are shown in

Panel A of Tables 2, 3, 4, and 5.46 I calculate D(pmc, 1, 1) and D(p′, 1, 1) as for non-adapted houses. The

analogous quantities for adapted houses are the marginal cost curveMC(p, 1, φ) = MC(p, 0, φ)+θc2, the

share of adapted houses that are insured at actuarially fair prices smc + θs2, and the initial share insured

s′+ θs2. Using the estimates that include decade built and �ood severity controls, the expression for the

45I include houses for which dates of construction are unavailable in the Zillow data. Table 1 shows that approximately
half of high-risk houses are non-adapted. Therefore, I calculate the non-adapted market size as the total number of
residential houses in high-risk �ood zones divided by 2.

46The initial equilibrium for adapted houses relative to non-adapted houses is based on the di�erences-in-di�erences
estimates from Panel A, rather than the instrumental variables estimates from Panel B. The di�erences-in-di�erences
estimates include the e�ects of di�erential risk and prices; the instrumental variables estimates would have to be adjusted
to account for the di�erences in the price schedule.
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welfare e�ect in the adapted housing market is:

∆W = ((D(pmc, 1, 1)− (MC(pmc, 0, φ) + θc2)) + (D(p′, 1, 1)− (MC(p′, 0, φ) + θc2))×

((smc + θs2)− (s′ + θs2))× 1

2
× (217.1 + θi2)× 1, 043, 345

= (95.67− 8.54 + 2.21 + 92.67− 8.54 + 2.21)× (0.52− 0.61)× 1

2
× (217.1 + 26.3)× 1, 043, 345

Summing across the two markets yields a total welfare loss from the price reform of $3.7 billion per year,

or approximately $1,770 per high-risk homeowner annually.

E.2.2 Perceived Welfare Gain

Calculating the perceived welfare gain uses the observed willingness to pay and marginal cost curves

only. If the observed willingness to pay curve is used as the welfare-relevant metric, then the removal

of the subsidy leads to a perceived welfare improvement because the marginal cost curve is above

observed willingness to pay at pre-2013 prices. The welfare e�ect is equal to the light grey area between

the marginal cost and the observed willingness to pay curves in Figure 1.b. Summing across the two

markets yields an expression for the perceived welfare e�ect:

∆W =(pmc − p′)× (s′ − smc)× 1

2
× 217.1× 1, 043, 345+

((pmc + θc2)− (p′ + θp2))× ((smc + θs2)− (s′ + θs2))× 1

2
× (217.1 + θi2)× 1, 043, 345

=(8.54− 5.49)× (0.61− 0.52)× 1

2
× 217.1× 1, 043, 345+

((8.54− 2.21)− (5.49− 1.53))× (0.61− 0.52)× 1

2
× (217.1 + 26.3)× 1, 043, 345

Replacing prices and quantities into this expression yields a perceived welfare gain of about $60.0 million

per year, or approximately $30 per high-risk homeowner annually.

E.3 Counterfactual 2: Insurance Mandate

The magnitudes of the risk premia that I calculate suggest that all homeowners would bene�t in ex-

pectation from purchasing �ood insurance. In Figure 1.b, the welfare gain for a representative individual

is equal to the black area between the frictionless willingness to pay and the marginal cost curves. This

�gure illustrates the case where the homeowner with the lowest willingness to pay has a risk premium of

zero. More generally, the willingness to pay of the last homeowner to purchase insurance can be written

as D(pfull, 0, 1) = D(p̄, 0, 1)− (1−0.5
sp

) = 76.00. Calculating D(p′, 0, 1) as above, the welfare e�ect for the

entire market of non-adapted houses is:

∆W = (D(p′, 0, 1)−MC(p′, 0, 1) +D(pfull, 0, 1)−MC(pfull, 0, 1))× (1− s′)× 1

2
× 217.1× 1, 043, 345

= (89.00− 8.54 + 76.00− 8.54)× (1− 0.61)× 1

2
× 217.1× 1, 043, 345
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For adapted houses, we again use the di�erences in the initial equilibrium from the di�erences-in-

di�erences regressions to calculate the welfare e�ect of the mandate for this market:

∆W = (D(p′, 1, 1)−MC(p′, 1, 1) +D(pfull, 1, 1)−MC(pfull, 1, 1))×

(1− (s′ + θss))×
1

2
× (217.1 + θi2)× 1, 043, 345

= (92.67− 8.54 + 2.21 + 76.00− 8.54 + 2.21)× (1− (0.61− 0.11))× 1

2
× (217.1 + 26.3)× 1, 043, 345

Summing across the two markets yields a total gain from the mandate for all high-risk homeowners

of approximately $16.4 billion per year, or $7,900 per high-risk homeowner annually.
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F Appendix Figures

Figure A.1: Flood Insurance Rate Map (FIRM) Example

Notes: This map shows the Flood Insurance Rate Map (FIRM) for the town of Madison, CT (NFIP,
2018b). Dotted areas are high-risk �ood zones. Minimum elevation requirements (in feet) for new
construction are in parentheses for each detailed zone.
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Figure A.2: Adapted Houses

Notes: This �gure shows houses that are built to the National Flood Insurance Program minimum
elevation requirements in the Bolivar Peninsula in Texas (source: Caller/Time).
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Figure A.3: Empirical Willingness to Pay and Cost Curves for Adapted and Non-adapted Houses

𝐴𝐶 𝑝, 𝜙 = 𝑀𝐶 𝑝, 𝜙

𝐷(𝑝, 𝜙)

s𝑚𝑐 = 0.53 s′ = 0.60

𝑝′ = 4.26

𝑝𝑚𝑐= 6.49 

𝑠ℎ𝑎𝑟𝑒 𝑖𝑛𝑠𝑢𝑟𝑒𝑑 

𝐷(𝑝, 1)

𝑝𝑟𝑖𝑐𝑒 
($ per $1,000 coverage) 

Notes: This �gure shows the empirical average cost curve AC(p, φ), the empirical marginal cost curve
MC(p, φ), the empirical observed willingness to pay curve D(p, φ), and the frictionless willingness to
pay curve D(p, φ = 1) for the pooled market of adapted and non-adapted houses, given frictions φ. See
text for a detailed description.
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Figure A.4: Risk of Housing Stock, By County

Panel A: High-Risk Share of Houses

High Risk Share

0−0.05

0.05−0.15

>=0.15

Panel B: Adapted Share of High-Risk Houses

Adapted Share

0−0.33

0.33−0.66

0.66−1.00

Notes: This map shows the share of the residential housing stock in high-risk �ood zones (Panel A)
and the share of high-risk houses that is adapted (Panel B), by county. Adapted houses are built after
a community is formally mapped by the National Flood Insurance Program and are required to meet
minimum elevation requirements for their foundation.
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Figure A.5: Average Flood Insurance Subsidy v. Take-Up

Panel A: Non-Adapted Houses
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Notes: These graphs show the correlation between the average �ood insurance subsidy and average
take-up rate in high-risk �ood zones by community, for non-adapted houses (Panel A) and adapted
houses (Panel B). The subsidy is calculated as average payout minus average premium per $1,000 of
coverage ($2017). For visual clarity, the subsidy is winsorized at 1% and 99%. Each point shows a
community's average subsidy and take-up rate for the years 2001-2017.

Figure A.6: Average Household Income v. Take-Up
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Notes: This graph shows the correlation between average household income and average take-up rate
in high-risk �ood zones by community. Take-up increases by 0.4 percentage points for every $10,000
increase in mean household income. Each point shows a community's average income and take-up rate
for the years 2001-2017.
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Figure A.7: Di�erences in Elevation Requirement and Prices for Adapted and Non-Adapted Houses, By
Construction Date

Panel A: Elevation Requirement
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Notes: These graphs show the minimum elevation requirement for new construction (Panel A) and prices
(Panel B), by year of house construction relative to the year of the initial �ood map in the community
in which the house is located. Adapted houses are built after communities are mapped and are required
to be elevated. The coe�cients are estimated from equation (9) in the text. Data are from the years
2001-2012, before Congress increased prices for non-adapted houses in 2013. Solid lines show average
outcomes. Dashed lines are 95% con�dence intervals. Standard errors are clustered by community.

Figure A.8: Di�erence Between Elevation and Minimum Requirement for Adapted Houses, By Con-
struction Date
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Notes: This graph shows the di�erence between the height of a house's foundation and the minimum
construction requirement, measured from the �ood insurance policy data set. The coe�cients are
estimated from equation (9) in the text, excluding non-adapted policies that are not subject to minimum
elevation requirements and for which these data are not available. Data are from the years 2001-2012,
before Congress increased prices in 2013. Solid lines show the average di�erence between the actual
construction height and the minimum requirement. Dashed lines are 95% con�dence intervals. Standard
errors are clustered by community.
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Figure A.9: E�ects of Flood Insurance Reform on Demand and Cost Outcomes for Adapted Houses

Panel A: Share Insuring Building
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Panel E: Contents Coverage
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Panel F: Claim Probability
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Notes: These graphs show the time series of demand and cost outcomes for adapted houses relative to
non-adapted houses in high-risk �ood zones. The coe�cients are estimated from equation (6) in the
text. Solid lines show di�erences in outcomes between adapted and non-adapted houses relative to the
di�erence in 2011-2012. Dashed lines are 95% con�dence intervals. Standard errors are clustered by
community.
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Figure A.10: E�ects of Flood Insurance Reform on Other Demand and Cost Outcomes for Adapted
Houses, By Flood Severity
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Notes: These graphs show total coverage purchased and claim probability for adapted houses relative
to non-adapted houses in high-risk �ood zones, by �ood severity. The coe�cients are estimated from
equation (8) in the text. Squares are the di�erence between adapted and non-adapted houses in the
2001-2012 pre-reform period, and triangles are the e�ect of the price reform on this di�erence. Dashed
lines are 95% con�dence intervals. Standard errors are clustered by community.
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Figure A.11: E�ects of Flood Insurance Reform on Price, Demand, and Cost for Adapted Houses, By
Water Depth Quintile
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Notes: These graphs show price, demand, and cost outcomes for adapted houses relative to non-adapted
houses in high-risk �ood zones, by water depth quintile. The coe�cients are estimated from equation
(8) in the text using four categories for �ood severity (no �ood, three increasing water depths). Squares
are the di�erence between adapted and non-adapted houses in the 2001-2012 pre-reform period, and
triangles are the e�ect of the price reform on this di�erence. Dashed lines are 95% con�dence intervals.
Standard errors are clustered by community. 79



Figure A.12: E�ects of Flood Insurance Reform on Price, Demand, and Cost for Adapted Houses, By
Flood Event Type
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Notes: These graphs show price, demand, and cost outcomes for adapted houses relative to non-adapted
houses in high-risk �ood zones, by �ood event type. The coe�cients are estimated from equation (8) in
the text using three categories for �ood severity (no �ood, �ood, catastrophe). Catastrophic �oods are
identi�ed using the Federal Emergency Management Agency's Flood Insurance Claims O�ce number.
Squares are the di�erence between adapted and non-adapted houses in the 2001-2012 pre-reform period,
and triangles are the e�ect of the price reform on this di�erence. Dashed lines are 95% con�dence
intervals. Standard errors are clustered by community.
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Figure A.13: E�ects of Prices and Adaptation on Demand and Cost, By Flood Severity
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Notes: These graphs show the separate e�ects of adaptation and prices on demand and cost outcomes
by �ood severity. Squares are the e�ects of adaptation and triangles are the e�ects of prices. Dashed
lines are 95% con�dence intervals. The coe�cients are estimated from equation (8) in the text; the
e�ect of adaptation is calculated from these coe�cients and from the price di�erence for adapted houses
in Panel A as �Adapted - Price x Price Di�erence� because adapted houses also pay lower prices for
insurance. Standard errors are clustered by community.
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G Appendix Tables

Table A.1: Summary Statistics for All High-Risk Policies and Matched Subsample, All Years

All High-Risk Policies Matched High-Risk Policies
All Adapted Non-Adapted All Adapted Non-Adapted
(1) (2) (3) (4) (5) (6)

N 11,983,183 5,317,675 6,665,508 7,720,218 3,893,683 3,826,535

Elevation Requirement (ft) 4.35 9.79 0.00 5.13 10.2 0.00
(6.16) (5.66) (0.00) (6.29) (5.18) (0.00)

Premium per $1,000 Cov. 4.12 2.79 5.18 4.08 2.78 5.39
(3.23) (2.40) (3.41) (3.19) (2.43) (3.32)

Total Premium ($) 803.6 636.6 936.8 819.1 632.3 1,010.7
(646.4) (513.5) (707.7) (677.6) (544.0) (744.2)

Total Cov. Bought ($1,000s) 240.7 267.6 217.1 241.1 262.7 219.1
(111.5) (107.0) (107.4) (110.1) (105.7) (110.0)

Building Cov. Bought ($1,000s) 194.9 213.9 176.8 197.4 212.2 182.2
(84.0) (78.8) (82.8) (83.5) (78.7) (83.2)

Contents Cov. Bought ($1,000s) 45.8 53.7 40.3 43.7 50.5 36.9
(42.4) (44.1) (40.5) (41.5) (42.5) (39.9)

Payout per $1,000 Cov. 6.23 3.79 8.18 3.74 2.12 5.43
(61.06) (47.47) (69.99) (43.86) (32.80) (52.77)

Payout per $1,000 Cov., wo. 2005 3.60 1.95 4.92 3.36 1.81 4.95
(43.51) (31.02) (51.32) (40.76) (28.76) (50.10)

Total Payout ($) 1,216.8 859.5 1,501.8 775.2 508.3 1,047.5
(12,736.6) (11,272.9) (13,786.7) (9,673.1) (8,051.3) (11,079.1)

Total Payout ($), wo. 2005 711.6 453.3 918.0 701.4 433.7 974.7
(9,111.1) (7,515.5) (10,203.6) (9,011.0) (7,176.1) (10,552.0)

Claim Probability 0.019 0.014 0.023 0.015 0.011 0.020
(0.136) (0.117) (0.150) (0.123) (0.107) (0.138)

Claim Probability, wo. 2005 0.014 0.010 0.017 0.014 0.011 0.018
(0.118) (0.101) (0.130) (0.119) (0.106) (0.134)

Notes: Adapted houses are built after communities are mapped and are required to be elevated. Columns 1-3 show
summary statistics for all high-risk policies written; columns 4-6 present summary statistics for the subsample of
policies that are matched to houses. Data are from the years 2001-2017, for single-family primary residences in the 20
Atlantic and Gulf Coast states built within 15 years of a community's �rst map. All monetary values are in $2017.
Standard errors are in parentheses.
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Table A.2: Summary Statistics for Insurer Cost, By Flood Severity

No Flood Water Depth 1 Water Depth 2 Water Depth 3
Flood Catas. Flood Catas. Flood Catas.

(1) (2) (3) (4) (5) (6) (7)
N 5,793,255 1,193,849 117,114 1,884,257 684,522 730,591 1,579,595

Water Depth (ft x 100) 0.000 0.005 0.004 0.180 0.243 6.467 33.368
(0.000) (0.009) (0.008) (0.145) (0.154) (17.153) (59.112)

Total Payout ($) 0.0 13.1 91.0 14.4 37.5 461.9 8,740.0
(0.0) (804.0) (2,506.2) (637.9) (1,281.9) (5,726.3) (33,004.6)

Payout per $1,000 Cov. 0.000 0.084 0.540 0.081 0.210 3.071 45.550
(0.000) (4.903) (14.283) (4.064) (7.300) (35.727) (160.726)

Claim Probability 0.000 0.001 0.005 0.001 0.003 0.019 0.131
(0.000) (0.034) (0.072) (0.038) (0.056) (0.014) (0.337)

Notes: Summary statistics are shown for all policies written for high-risk houses in the 20 Atlantic and Gulf Coast
states built within 15 years of a community's �rst map. Catastrophic �oods are identi�ed according to the Federal
Emergency Management Agency's Flood Insurance Claims O�ce number. Data are from the years 2001-2017. All
monetary values are in $2017. Standard errors are in parentheses.
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Table A.6: E�ect of Prices on Extensive Margin Demand: Probit

Any Building Contents
Policy Policy Policy
(1) (2) (3)

Panel A: Probit

Adapted × 1[t ≥ 2013] 0.027∗∗∗ 0.027∗∗∗ 0.022∗∗

(0.010) (0.010) (0.010)
Adapted -0.057∗∗∗ -0.056∗∗∗ -0.006

(0.020) (0.020) (0.017)

Panel B: Linear Probability Model

Adapted × 1[t ≥ 2013] 0.025∗∗ 0.024∗∗ 0.022∗∗

(0.010) (0.010) (0.009)
Adapted -0.055∗∗∗ -0.054∗∗∗ -0.006

(0.020) (0.020) (0.018)

Non-Adapted Dep. Var. Mean 0.619 0.615 0.423

N 13,433,549

State × Year FE
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are indicators for purchasing any policy, a policy that includes building coverage,
and a policy that includes contents coverage. Panel A estimates equation (7) in the text using probit and state×year
�xed e�ects, and Panel B estimates the same equation using OLS. Adapted houses are built after communities are
mapped and are required to be elevated. The dependent variable mean is for non-adapted houses during the 2001-2012
pre-reform period. Mean marginal e�ects are shown for the probit models. Standard errors clustered by community
are in parentheses.
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Table A.7: E�ects of Prices and Adaptation on Demand and Cost, By Flood Severity

Prices Any Policy Total Cov. Any Claim Average Cost
(1) (2) (3) (4) (5)

No Flood × Adapted -1.73∗∗∗ -0.106∗∗∗ 26.17∗∗∗ 0.000 0.000
-(0.11) (0.013) (3.76) (0.000) (0.000)

Depth 2 × Adapted -1.26∗∗∗ -0.069∗∗ 21.21∗∗∗ -0.024 -0.036∗

(0.20) (0.027) (5.33) (0.015) (0.019)
Depth 3 × Adapted -1.46∗∗∗ -0.104∗∗∗ 25.18∗∗∗ -0.055∗∗∗ -0.038∗∗∗

(0.16) (0.025) (5.01) (0.014) (0.014)
Depth 4 × Adapted -1.26∗∗∗ -0.112∗∗∗ 30.13∗∗∗ -0.151∗∗∗ -0.156∗∗∗

(0.18) (0.028) (4.01) (0.033) (0.031)
Depth 5 × Adapted -1.89∗∗∗ -0.145∗∗∗ 31.26∗∗∗ -0.850∗∗∗ -1.702∗∗∗

(0.09) (0.014) (1.99) (0.158) (0.313)
Depth 6 × Adapted -1.68∗∗∗ -0.131∗∗∗ 29.46∗∗∗ -2.610∗∗∗ -15.642∗∗∗

(0.13) (0.018) (3.60) (0.347) (2.569)
No Flood × Adapted × 1[t ≥ 2013] -0.72∗∗∗ 0.016∗∗∗ 0.84 0.000 0.000

(0.07) (0.004) (0.87) (0.000) (0.000)
Depth 2 × Adapted × 1[t ≥ 2013] -0.60∗∗∗ 0.007 5.02 0.051 -0.027

(0.18) (0.015) (3.68) (0.034) (0.052)
Depth 3 × Adapted × 1[t ≥ 2013] -0.54∗∗∗ 0.014 4.83∗∗∗ 0.017 -0.013

(0.11) (0.011) (1.55) (0.021) (0.029)
Depth 4 × Adapted × 1[t ≥ 2013] -0.47 0.054∗ -0.59 0.017 -0.042

(0.44) (0.030) (6.79) (0.056) (0.078)
Depth 5 × Adapted × 1[t ≥ 2013] -0.65∗∗∗ 0.049∗∗∗ -3.26∗ 0.316 0.344

(0.09) (0.009) (1.85) (0.192) (0.551)
Depth 6 × Adapted × 1[t ≥ 2013] -0.65∗∗∗ 0.034∗∗∗ -1.74 -0.287 0.458

(0.10) (0.011) (2.38) (0.552) (3.867)

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are �ood insurance prices per $1,000 of coverage, an indicator for purchasing a policy,
total coverage in 1,000s, an indicator for making a claim, and the insurer payout per $1,000 of coverage. Claim
probabilities are multiplied by 100. The coe�cients are estimated from equation (8) in the text. Adapted houses
are built after communities are mapped and are required to be elevated. Decade built×�ood severity controls are
zip code×decade built×�ood severity �xed e�ects and decade built×�ood severity time trends. Flood severity is
de�ned using �ood water depth and �ood event type (see text). Columns 1 and 2 are estimated on the sample of
high-risk houses with and without insurance (N=13,433,549); Columns 3-5 are estimated on all high-risk policies
(N=11,983,183). All monetary values are in $2017. Standard errors clustered by community are in parentheses.
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Table A.8: E�ects of Prices and Adaptation on Demand and Cost, Other Flood Severity De�nitions

Prices Any Policy Total Cov. Any Claim Average Cost
(1) (2) (3) (4) (5)

Panel A: Water Depth Quintile

No Flood × Adapted -1.73∗∗∗ -0.106∗∗∗ 26.17∗∗∗ 0.000 0.000
(0.11) (0.013) (3.76) (0.000) (0.000)

Depth 2 × Adapted -1.26∗∗∗ -0.069∗∗ 21.21∗∗∗ -0.024 -0.036∗

(0.20) (0.027) (5.33) (0.015) (0.019)
Depth 3 × Adapted -1.41∗∗∗ -0.105∗∗∗ 26.50∗∗∗ -0.082∗∗∗ -0.071∗∗∗

(0.16) (0.025) (4.74) (0.014) (0.014)
Depth 4 × Adapted -1.75∗∗∗ -0.136∗∗∗ 29.96∗∗∗ -2.124∗∗∗ -11.792∗∗∗

(0.11) (0.015) (2.96) (0.267) (1.894)
No Flood × Adapted × 1[t ≥ 2013] -0.72∗∗∗ 0.016∗∗∗ 0.84 0.000 0.000

(0.07) (0.004) (0.87) (0.000) (0.000)
Depth 2 × Adapted × 1[t ≥ 2013] -0.60∗∗∗ 0.007 5.02 0.051 -0.027

(0.18) (0.015) (3.68) (0.034) (0.052)
Depth 3 × Adapted × 1[t ≥ 2013] -0.51∗∗∗ 0.023∗ 3.59∗ 0.017 -0.020

(0.17) (0.012) (1.88) (0.024) (0.031)
Depth 4 × Adapted × 1[t ≥ 2013] -0.64∗∗∗ 0.040∗∗∗ -2.17 -0.084 0.604

(0.08) (0.008) (1.64) (0.394) (2.697)

Panel B: Flood Event Type

No Flood × Adapted -1.73∗∗∗ -0.104∗∗∗ 26.17∗∗∗ 0.000 0.000
(0.11) (0.013) (3.76) (0.000) (0.000)

Flood × Adapted -1.50∗∗∗ -0.104∗∗∗ 24.57∗∗∗ -0.160∗∗∗ -0.276∗∗∗

(0.16) (0.023) (4.69) (0.037) (0.070)
Catastrophe × Adapted -1.59∗∗∗ -0.128∗∗∗ 29.59∗∗∗ -1.711∗∗∗ -10.038∗∗∗

(0.13) (0.019) (3.53) (0.242) (1.689)
No Flood × Adapted × 1[t ≥ 2013] -0.72∗∗∗ 0.014∗∗∗ 0.84 0.000 0.000

(0.07) (0.004) (0.87) (0.000) (0.000)
Flood × Adapted × 1[t ≥ 2013] -0.58∗∗∗ 0.021∗∗ 3.77∗∗ 0.054 0.005

(0.08) (0.008) (1.52) (0.043) (0.109)
Catastrophe × Adapted × 1[t ≥ 2013] -0.63∗∗∗ 0.039∗∗∗ -0.88 -0.143 0.581

(0.11) (0.010) (1.63) (0.411) (2.721)

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are �ood insurance prices per $1,000 of coverage, an indicator for purchasing a policy,
total coverage in 1,000s, an indicator for making a claim, and the insurer payout per $1,000 of coverage. Claim
probabilities are multiplied by 100. The coe�cients are estimated from equation (8) in the text using four categories
for �ood severity (no �ood, three increasing water depths) in Panel A and using three categories for �ood severity
(no �ood, �ood, catastrophe) in Panel B. Adapted houses are built after communities are mapped and are required to
be elevated. Decade built×�ood severity controls are zip code×decade built×�ood severity �xed e�ects and decade
built×�ood severity time trends. Flood severity is de�ned using �ood water depth and �ood event type (see text).
Catastrophic �oods are identi�ed using the Federal Emergency Management Agency's Flood Insurance Claims O�ce
number. Columns 1 and 2 are estimated on the sample of high-risk houses with and without insurance (N=13,433,549);
Columns 3-5 are estimated on all high-risk policies (N=11,983,183). All monetary values are in $2017. Standard errors
clustered by community are in parentheses.
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Table A.9: E�ects of Prices and Adaptation on Demand and Cost Excluding Louisiana, By Flood
Severity

Price Any Policy Total Cov. Any Claim Average Cost
(1) (2) (3) (4) (5)

No Flood × Adapted -1.57∗∗∗ -0.108∗∗∗ 25.69∗∗∗ 0.000 0.000
(0.09) (0.013) (4.01) (0.000) (0.000)

Depth 2 × Adapted -1.24∗∗∗ -0.072∗∗ 16.36∗∗∗ -0.015 -0.021
(0.18) (0.028) (4.44) (0.016) (0.020)

Depth 3 × Adapted -1.42∗∗∗ -0.107∗∗∗ 19.66∗∗∗ -0.056∗∗∗ -0.028∗∗

(0.14) (0.025) (4.37) (0.015) (0.013)
Depth 4 × Adapted -1.27∗∗∗ -0.112∗∗∗ 25.06∗∗∗ -0.135∗∗∗ -0.148∗∗∗

(0.15) (0.028) (4.27) (0.038) (0.039)
Depth 5 × Adapted -1.69∗∗∗ -0.148∗∗∗ 29.89∗∗∗ -0.788∗∗∗ -1.721∗∗∗

(0.06) (0.014) (2.21) (0.187) (0.352)
Depth 6 × Adapted -1.63∗∗∗ -0.132∗∗∗ 24.62∗∗∗ -2.334∗∗∗ -13.522∗∗∗

(0.11) (0.018) (3.91) (0.282) (2.385)
No Flood × Adapted x 1[t ≥ 2013] -0.70∗∗∗ 0.017∗∗∗ -0.22 0.000 0.000

(0.03) (0.004) (0.75) (0.000) (0.000)
Depth 2 × Adapted × 1[t ≥ 2013] -0.70∗∗∗ 0.012 2.69 0.054 -0.025

(0.13) (0.016) (2.84) (0.039) (0.059)
Depth 3 × Adapted × 1[t ≥ 2013] -0.63∗∗∗ 0.014 0.97 0.021 0.010

(0.08) (0.011) (1.49) (0.023) (0.018)
Depth 4 × Adapted × 1[t ≥ 2013] -0.62∗∗ 0.054∗ -9.65∗∗ -0.094 -0.186

(0.29) (0.030) (4.01) (0.069) (0.116)
Depth 5 × Adapted × 1[t ≥ 2013] -0.65∗∗∗ 0.052∗∗∗ -2.75 0.336∗ 0.281

(0.06) (0.009) (2.18) (0.198) (0.575)
Depth 6 × Adapted × 1[t ≥ 2013] -0.72∗∗∗ 0.034∗∗∗ 2.53 -0.344 2.891

(0.06) (0.011) (2.46) (0.550) (4.047)

Zip code × Year FE
Decade Built × Flood Severity Controls
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are �ood insurance prices per $1,000 of coverage, an indicator for purchasing a policy,
total coverage in 1,000s, an indicator for making a claim, and the insurer payout per $1,000 of coverage. Claim
probabilities are multiplied by 100. The coe�cients are estimated from equation (8) in the text. Adapted houses
are built after communities are mapped and are required to be elevated. Decade built×�ood severity controls are
zip code×decade built×�ood severity �xed e�ects and decade built×�ood severity time trends. Flood severity is
de�ned using �ood water depth and �ood event type (see text). Columns 1 and 2 are estimated on the sample of
high-risk houses with and without insurance (N=13,218,697); Columns 3-5 are estimated on all high-risk policies
(N=10,077,506). All monetary values are in $2017. Standard errors clustered by community are in parentheses.
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