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Abstract

California is now home to over 650,000 electric vehicles (EVs), less than 5% of which are

charged at home using a meter dedicated to EV use. State policy has thus been forced to rely

upon either survey data or approximations based on selected samples to estimate the extent

and timing of residential electricity use devoted to EVs. We match a novel dataset comprised

of 1.7 billion household electricity meter readings to electric vehicle adoption events at the

address-level from 2014-2017 in California. We use these rich data in conjunction with a panel

fixed effects approach to estimate the effects of EV adoption on electricity load. In our sam-

ple, EVs increase household load by 0.10 to 0.15 kWh per hour, or 17-25 kWh per week, the

majority of which is concentrated during evening and nighttime hours. While these estimates

are roughly half of the estimates used as an input into state EV-related forecasts and policies,

the load impacts are concentrated in the late night and early morning, corresponding to higher

marginal emissions factors than if charging had taken place mid-day.
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1 Introduction

Increasingly, plans for future reductions in carbon emissions are working toward a rapid reduc-

tion in the carbon intensity of electricity production coupled with a transition of other sectors

toward the adoption of electricity as a substitute fro conventional fossil fuels. This process is

often referred to as electrification. In California, for example, Senate Bills 32 and 100, commit the

state to aggressive new greenhouse gas (GHG) reductions through a strategy focusing on the

electrification of the residential, industrial, commercial, and, most significantly, transportation

sectors. In particular, the state has devoted substantial financial resources to a broad suite of

policies aimed at electrifying passenger transportation.

An overarching strategy of transitioning transportation and other energy use applications

to electricity has profound implications for the electricity sector. This sector has itself experi-

enced massive changes to the profiles of both end-use energy consumption and production.

Residential electricity demand has been flat or declining for a decade, and mid-day electricity

demanded from the grid has declined significantly due to the expansion of residential rooftop

solar production. Strategies promoting electrification of transportation, home heating, and

other applications raise the prospect of additional massive shifts in both the level and timing

of electricity demand. This in turn creates large implications for the economics and reliability

of electric systems.

Despite this prospect, relatively little empirical evidence is available about the impacts that

electrification has had on residential electricity consumption to date. Although California is

now home to over 650,000 electric vehicles (EVs), less than 5% of these vehicles are charged

at home using a meter dedicated to EV use. Infrastructure planning and the implementation

of important policies such as EV incentive programs and the Low Carbon Fuel Standard have

had to rely upon either survey data or heuristic approximations to estimate the amount and

timing of electricity use devoted to EVs.

In this paper we present what we believe to be the first attempt to rigorously and empir-

ically measure the impacts of EV adoption on household electricity consumption. We apply

hourly electricity consumption data from 2014 to 2017 for a purpose-built sample of 10% of the

households in California?s three large investor-owned utilities (IOUs): Pacific Gas and Electric

(PGE), Southern California Edison (SCE), and San Diego Gas and Electric (SDGE). We com-

bine these data with household-level EV registration data to estimate the impact of EVs on

residential consumption.

Our main analysis deploys an event study approach in which we pair household-level data
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on EV adoption with household-level data on electricity consumption to estimate the change

in load resulting from EV adoption. This approach enables us to estimate the relationship be-

tween EV adoption and load for the average EV-owning household, something that has been

challenging in prior analyses because of the lack of data. We compare our estimates of house-

hold usage to load at EV-dedicated meters to demonstrate the potential selection bias involved

in current estimates of EV-load that rely exclusively upon directly measured households. Our

results indicate that this bias is substantial and significant. Households with dedicated EV-

meters consume roughly 2-3 times the amount of electricity per day than our estimates indicate

is being consumed at households without dedicated meters. This implies that the expected im-

pact on electricity demand, as well as the amount of usage of EVs, may be substantially inflated

due to this selection bias.

We also examine the hourly breakdown, or “load-profile,” of EV charging electricity de-

mand. The bulk of EV charging is happening in the early morning hours, when the California

electricity system is not capacity constrained and is also clean. We also examine the hetero-

geneity in charging behavior by vehicle type and by electricity rate class. There is substantial

variation across vehicle types, with Tesla owners consuming much more electricity than those

of other vehicle makes. There is also evidence that those choosing to enroll in EV-specific rate

plans consume more electricity both before and after they purchase their EV.

Section 2 provides further background on the anticipated impact of EVs on the electricity

sector. Section 3 summarizes our data sources. In Section 4 we describe our empirical approach

and in Section 5 we present our results. Our conclusions are summarized in Section 6.

2 Background

Over the last decade California has experienced a sharp reduction in the GHG intensity of its

electricity production. According to the Emissions Inventory maintained by the California Air

Resources Board, GHG emissions from the commercial electricity sector (excluding industrial

self-generation) have declined from roughly 120 mmTons in 2007 to just over 50 mmTons in

2017 (Borenstein et al. (2019)). At the same time overall electricity consumption, after experi-

encing a sharp contraction during the financial crises and its aftermath, has been relatively flat.

This appears to signal progress on the GHG front in the dimension of reduced intensity and

per-capita consumption; however, the overall emissions picture is more complicated.

While electricity purchases from the grid have declined slightly over the decade, both natu-

ral gas and gasoline consumption have risen. These facts illustrate the challenging fact that the
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share of energy consumption has been shifting toward the more carbon-intensive fossil fuels.

California policy and the planning apparatus are heavily invested in reversing that trend.

As described below, there are a ambitious programs promoting the adoption and use of

EVs. The growth in EVs is anticipated to be a contributor to a reversal in the decline of elec-

tricity consumption over the next decade. As illustrated in Figure 1, recent forecasts from the

California Energy Commission’s California Energy Demand (CED) indicate a rise in consump-

tion to over 330 TWh per year by 2030 in the “mid” case.1 Current charging by EVs is estimated

to account for less than 1% of statewide electricity consumption in 2018, but is forecast to grow

by up to 10 times over the next decade by the CEC.

Figure 1: Load forecast estimates from the California Energy Demand report by the California
Energy Commission.

While the contribution of EVs may seem modest at first glance, it is important to note that

they account for almost all the expected growth in the electric system over the next decade and

that the timing of these charging loads could result in their comprising a much larger share of

system net peak consumption (i.e. net of renewable, primarily solar output).

The timing of EV load will be a crucial factor in determining how electricity markets will be

affected. The profile of residential load is already changing rapidly as a result of investments

in behind-the-meter solar generation. Figure 2 presents net residential electricity demand by

1Electricity and Natural Gas Demand Forecast (2018).
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hour-of-day in PG&E territory from 2014-2017 according to our subsample (which we will

describe in Section 3). When considering the impact that a given amount of EV-related demand

will have on the system, whether is falls during the mid-night trough or near the evening peak

will materially affect the economic value and potentially environmental impact of the energy

consumed.

Figure 2: Hourly residential net electricity load, PG&E 2014-17

2.1 EV Policy in California

As mentioned above, transportation electrification is a central pillar of California’s decarboniza-

tion goals. Despite some concerns over the ultimate carbon benefits of electrification (Holland

et al. (2018)), EVs do provide some benefits over conventional vehicles (Archsmith et al. (2015).

These aspirations were articulated in the form of a 2012 executive order by Governor Brown

to have 1.5 million EVs on the road by 2025, and a separate goal of 5.0 million EVs by 2030.

Both the state and federal governments have adopted policies that are at least partly intended

to promote the supply and demand of EVs. The California Zero Emission Vehicle (ZEV) Man-

date generates credits for manufacturers that sell EVs, and requires all manufacturers to either

produce or purchase these credits. Similarly, the Corporate Average Fuel Economy standards

offer an additional incentive to manufacturers that produce EVs.
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On the demand side, there are large federal and state subsidies. As part of the American

Clean Energy and Security Act of 2009, up to $1.5 billion in federally-funded tax credits were

made available to consumers of each manufacturer. In California, the Clean Vehicle Rebate

Project (CVRP) offers new EV buyers between $1,500 and $2,500 for new Plug-in Hybrid Elec-

tric Vehicles (PHEV) and Bettery Electric Vehicle (BEV) purchase, respectively. These are often

augmented by an array of other state and local incentives such as high-occupancy vehicle lane

access and/or free or subsidized charging. Despite some concerns about the distributional im-

pacts of these subsidies (Borenstein and Davis (2016)), the California and Federal incentives

are clearly having an impact on EV adoption (Muehlegger and Rapson (2018)). Through 2017,

roughly 700,000 EVs claimed a total of an estimated $4.7 billion in federal subsidies have been

paid to EV buyers nationwide. In California, 340,000 EVs have been purchased under the

CVRP for a total of over $770 million in subsidies as of October 25, 2019.

Figure 3 displays heat maps of where EV purchases are concentrated in California in 2014

and 2017. Most EV purchase activity occurs in cities along the cost, with major concentrations

in the Bay Area, Los Angeles and San Diego. At the end of our sample in December 2017, there

are 423,297 plug-in EVs registered in California. This represents a 2.9% share of the 14.6 million

passenger vehicles that were registered in California that year. Table 1 shows the number of

EVs we observe in our sample (see Section 3 below for a description of our sampling approach)

relative to the total number of EVs in the state.

While the stated goals for the adoption of EVs in the state are straightforward, understand-

ing the translation of EVs on the road to electricity demand is a more complicated task. The

challenges involved are described in more detail in the following section.

Table 1: EV Counts Within the Study by
IOU, and the California Total.

Utility EV Count
PGE 74,468
SCE 64,378

SDGE 3,125
Study Total 141,971

California Total 423,297

2.2 Measuring EV Electricity Consumption

By far the largest challenge in evaluating the impact of EV growth on the electric system is the

lack of directly-measured consumption data for residential home charging. Home charging
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Figure 3: EV distribution and growth between 2014 and 2017 throughout California.

of EVs does not require a separate meter or even separate equipment for low-voltage charg-

ing. Consequently, less than 5% of EVs are directly metered when charging at home (Electric

(2019)). While charging at networks operated either by commercial charging businesses or ve-

hicle manufactures such as Tesla is directly metered, the ARB estimates that upwards of 80% of

EV households charge at home some or all of the time. Thus the vast majority of EV charging

is currently unmeasured.2

Absent any detailed data on the un-metered customers, California planning and policy has

come to rely upon projections based on the small share of EVs that are directly metered. This

is problematic because these meters were not deployed randomly. They were chosen to be

installed, at potentially high cost, by individual customers. This creates a significant potential

‘selection bias’ that could cause projections based solely upon this non-random sample to be

inaccurate and unreliable. The extent of this bias is, as of yet, untested.

2The best data on EV charging use is probably within the vehicles themselves. Most Original Equipment Manufac-
tures (OEMs) collect charging data from the cars they have sold, but these data are held closely due to strategic business
interests and privacy concerns.
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2.2.1 EV Rate Options

The interaction of electricity rates, vehicle adoption, and energy use is an area that deserves

considerable attention. Despite the fact that many customers do not fully respond to com-

plex rate structures (Ito (2014)), the disparity between marginal electricity prices and social

marginal cost in California is large enough that it could be a significant impediment to electri-

fication (Borenstein and Bushnell (2018)). Electricity prices may very well be influencing the

decision to enroll in an EV rate and whether or not to install a dedicated EV meter. All three

investor owned utilities in California offer generally two rates: first an EV rate for the whole

house, whereby the entire house is on the time-of-use (TOU) rate, or the option to submeter

the EV itself. All EV-specific TOU rates are time-varying by season (summer and winter), and

weekends and holidays. When the EV is submetered, only the EV meter is on the TOU rate; the

rest of the household remains on their current tariff schedule. Over time, the EV rates at each

IOU have changed names and structures. However, they generally include either a whole-

house rate that is TOU or an EV-specific TOU rate that leaves the house itself on its existing

tariff.

EV rates are typically only offered to individuals with battery electric or plug-in electric

vehicles, not hybrid electric vehicles.3 Thus, a household wishing to make the transition an

EV rate need only demonstrate proof of EV ownership. In some cases, the distribution system

may require an upgrade in order to support the increase in load. However, these are limited

(see CPUC proceeding 19-IEPR-04). To obtain a designated EV (submetered) rate requires the

purchase and installation of the meter itself. This can cost between a few hundred and a few

thousand dollars.

However the California Public Utilities Commission (CPUC) has required the IOUs to run

pilot programs for designated meters. In this case the IOUs have subsidized the meters, and

with the case of Pacific Gas and Electric, their most recent pilot program subsidized thee meters

by $210, with an additional $17.50 per month. In the case the customer is not satisfied with their

EV rate, they are always welcome to opt-out of the tariff structure and revert back to their old

tariff. In addition to the ability to opt-out of the EV tariff during the pilot program, PGE also

is only keeping participants in the pilot program on the tariff for 12 billing cycles unless the

participant decides to remain on the program. Program enrollment for dedicated metering of

the EV has been a small fraction of total EV ownership.

3The household TOU rate that is currently offered by SCE is an exception. It is open to all households, irrespective
of EV ownership.
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3 Data description

We have assembled a novel and extremely rich dataset on household electricity consumption

and billing and electric vehicle ownership. These data come from two main administrative

sources: California’s investor-owned utilities and the California Department of Motor Vehicles

(DMV). We describe each source in turn below.

3.1 Investor-owned utilities

We obtained electricity consumption and billing data from the three investor-owned utilities

in California: Pacific Gas and Electric (PGE), Southern California Edison (SCE), and San Diego

Gas and Electric (SDGE). In this draft, we focus our analysis on PGE, but we are working to

expand our approach to SCE and SDGE as well.

3.1.1 Sampling

In an ideal world, we would obtain the universe of meters for PGE for all years. In order to

reduce the burden on PGE, our sample is limited to 10 percent of the service territory, from

2014 to 2017.4 We designed a two-part sampling strategy to allow us to capture a large share

of the IOU’s EVs, while also providing coverage of the utility territory as a whole.

Main analysis sample For our main analysis sample, we aimed to select ZIP codes to over-

sample both regions with a high number of electric vehicles and areas with low power supply

reliability.5 For these ZIP codes, we obtained the universe of residential meters, which allows

us to include non-EV owners as controls in our analysis. In particular, the sampling occurred

as follows:

• We ranked ZIP codes based on 2016 customer-hours of power outages based on a list

provided by PGE. We selected ZIP codes on this list in descending order until we had

accumulated 4% of the total population of the service territory. We sampled 100% of the

residential meters in each of these ZIP codes.

• We ranked ZIP codes based on EV penetration6, and selected ZIP codes on this list in

descending order until we had accumulated 4% of the total population of the service

territory. We sampled 100% of the population in each of these ZIP codes.

4We are in the process of initiating a data request that would allow us to extend the sample through the end of 2019.
5This sampling strategy was designed to allow us to study both EVs and blackouts; we focus on EVs in this paper.
6This original dataset on EV penetration by ZIP code was derived from Experian Automotive.
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This approach yields a sample of 8% of the PGE service territory, weighted towards high EV

penetration and low reliability ZIP codes.

Random sample In addition to our main analysis sample, we also sampled an additional

2% of the service territory to use as a comparison group. For this sample, we simply took a 2%

random sample of all households in the PGE service territory, excluding the ZIP codes in the

main analysis sample.

3.1.2 Electricity data

We obtained three types of data from PGE: monthly billing information, hourly electricity con-

sumption data, and customer details. In addition to the consumption and billing data, we

observe each customer’s street address, latitude and longitude, rate class, and a solar panel in-

terconnection date, where applicable. Our sample consists of 362,945 households, and over 1.7

billion hourly electricity consumption observations. Table 2 presents summary statistics from

our sample, divided between EV owners and non-EV owners. We observe that EV households

are much more likely to have solar, additional meters, and consume more electricity per hour.

They also have higher bill consumption and bill amounts than their non-EV-owning counter-

parts.

3.2 DMV

In addition to our electricity consumption data, we obtained California DMV registration records

for the period 2008 to 2019. Our main dataset contains the universe of EVs registered in the

state during this time period, selected using 7-digit VIN stems.7 This is a uniquely detailed

dataset: for each EV, we observe the address, make, model, year, and VIN stem, as well as a

series of other vehicle characteristics. We also observe an anonymized unique vehicle identi-

fier, which allows us to track vehicles over time, as well as the registration date. We observe

423,297 unique vehicles in the state of California during this period, 74,468 of which are in ZIP

codes belonging to the sample of the PGE service territory that matches our analysis sample.

63,765 of these are in the PGE service territory between 2014 and 2017, the time period of our

electricity use information. Figure 4 presents summary statistics on the EVs in our sample. We

observe that incremental EV additions are increasing over time: the increase in EVs is happen-

ing at an increasing rate in the PGE service territory. In addition, we see that Chevrolet, Nissan,

7We are in the process of obtaining similar data for ICE vehicles to use as placebos.
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Table 2: Summary statistics on electricity consumption

Non-EV households EV-A EV-B Other EV households

Panel A: AMI data
Number of meters 327,582 7,979 69 14,389
Portion of meters with solar .05578 .2243 .1009 .2111
Average kWh per hour .7439 1.412 .3363 .7836
Median kWh per hour .567 .8938 .2771 .6421
Minimum kWh per hour -21.8 -5.729 -2.65 -50.73
5th Percentile kWh per hour .003988 .01024 0 .002381
95th Percentile kWh per hour 1.865 4.468 .8643 1.896
Observations 68,071,384 1,661,695 9,347 3,022,370

Panel B: Billing data
Number of billing accounts 594,998 7,871 60 38,338
Average bill consumption 559.1 1,389 247.3 629.5
Average bill amount 111.1 243.9 34.93 139.7
Median bill consumption 439 798.2 214 499
Median bill amount 69.27 142.4 28.17 81.91
Observations 15,666,187 182,913 1,419 804,499

Notes: This table provides basic summary statistics on households in our sample, throughout our sample period.
Observations in Panel A have collapsed hourly data to the week-hour level to ease computational burden.

Tesla, and Toyota are the majority manufacturers.

Matching We use a string matching algorithm to assign EVs to PGE households. We begin

by cleaning the data so that common words are represented in the same way in both datasets

(e.g. “ave” vs. “avenue”; “st” vs “street”; etc). Next, we perform an exact match on address.

Finally, we use a fuzzy string match to finalize our merge. Out of the more than 63,000 vehicles

registered in ZIP codes in our main PGE analysis sample, we matched 57,290 cars to PGE

addresses: a match rate of 89.8 percent.8

With access to this unique dataset on both electricity use and EV registration, we are able to

empirically estimate the effects of EV ownership on energy use among PGE households.

8Some of the remaining addresses belong to municipal and other local utilities which share ZIP codes with PGE, so
we would not expect them to match to PGE addresses.

11



Figure 4: Incremental EV additions over time

Notes: This figure plots data on our sample of EVs. The left panel displays EV registrations by
vehicle manufacturer in the PGE service territory during our sample period. Chevrolet, Nissan,
Tesla, Toyota, and to a lesser extent, Ford, are the largest manufacturers by volume. The right
panel plots the number of incremental EV additions during our sample over time. The number
of EV additions each month is clearly trending upwards.

4 Empirical Approach

In order to estimate the effect of EV charging on residential load, we leverage our high-frequency

consumption data in conjunction with our address-level data on EV registration dates, using a

panel fixed effects research design.

In our baseline analysis, we simply estimate the effect of an EV being registered in a difference-

in-differences specification:

Yith = βEVit + γSolarit + αi + δt + εith (1)

where Yith is electricity consumption in household i during week t in hour h.9 EVit is an integer-

valued variable, equal to the number of EVs registered at household i by week t, and zero for

households without EVs. β, our variable of interest, describes the effect of EV registration on

electricity consumption, scaled to be in units of kWh per hour. Solarit is an indicator, equal

to one if week t is after household i’s solar interconnection date, and zero otherwise. We in-

clude this control because many households that purchase EVs also install solar panels, which

substantially reduce their net load. Without this control, we run the risk of substantially atten-

uated estimates. αi are household fixed effects, and δt are week-of-sample fixed effects. This

is a representation of our baseline specification. We also present variants, including no con-

9In some specifications, we collapse the data to the week-by-hour level to speed computation time. As we show
in ?, collapsing high-resolution data to an aggregated level has a limited impact on the estimates, while speeding
computation time dramatically. In a future draft, we intend to estimate this and other regressions using the full hourly
sample.
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trols whatsoever; household-by-year fixed effects; household-by-month-of-year fixed effects;

week-of-sample fixed effects; and various combinations thereof. εith is an error term, which we

two-way cluster at the Census block group and week-of-sample levels.

In addition to this specification, we also produce event study estimates, using the following

equation:

Yith = βs
s=S

∑
s=−S

EVit · 1[t = s] + γs
s=S

∑
s=−S

Solarit · 1[t = s] + αi + δt + εith (2)

This equation is the same as Equation 1 above, except now we plot coefficients for weeks s ∈

{−S, S} separately. This allows us to provide evidence on pre-treatment trends, as well as to

trace the effects of EV adoption through time.

Identification The identifying assumption for both of these models is that, conditional on

our choice of fixed effects, households that did and did not adopt EVs would have had electric-

ity consumption that was, and would have continued to be, trending similarly in the absence of

EV adoption. Figure 5, which estimates a version of Equation 2 supports this assumption: even

with no controls, we see that there is no trend in electricity consumption prior to the arrival of

an EV. We do see some evidence of noise in our EV dates. It appears that our DMV registration

data lags the actual arrival dates somewhat, generating a negative (level) pre-period estimate.

However, because there is no trend, this supports our identification assumption.10

4.1 Heterogeneity

We are interested in going beyond average treatment effects to understand how EVs affect load

shapes, and to compute treatment effects for households on different electricity tariffs. To do

this, we extend Equation 2 to allow for heterogeneous treatment effects.

Hourly effects To estimate effects by hour of day, we fully interact all of the terms in Equa-

tion 2 with 24 hour-of-day dummies:

Yith = βs,h
s=S

∑
s=−S

23

∑
r=0

EVit · 1[t = s, hour = h]+γs,r
s=S

∑
s=−S

23

∑
r=0

Solarit · 1[t = s, hour = h]+ αi + δt + εith

(3)

10We are in the process of running specifications where we exclude a few weeks before and after an EV arrives to
deal with measurement error.
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Figure 5: Event study of EV registration on electricity consumption (limited controls)

Notes: Each dot reflects the estimated coefficient on an event-time dummy variable, where the
EV registration date corresponds to event time -1. The specification includes fixed effects for
household. Standard errors clustered at the Census block group level and week-of-sample.

Rate-specific estimates Because households on different electricity tariffs face substantially

different pricing schedules, including the potential for time-of-use pricing, we estimate rate-

specific effects by, fully interacting all of the terms in Equation 2 with dummies for rate:

Yith = βs,r
s=S

∑
s=−S

∑
r∈rates

EVit · 1[t = s, rate = r]+γs,r
s=S

∑
s=−S

∑
r∈rates

Solarit · 1[t = s, rate = r]+ αi + δt + εith

(4)

We interpret these estimates with caution, as they combine selection into these rates with

heterogeneous treatment effects. That said, these estimates are potentially informative about

policy-relevant quantities, so we include them here.

EV-model-specific estimates Different vehicles have different battery capacities, and are

likely to be charged at different times. We explore this through an additional heterogeneous

effects approach:
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Yith =βs,v
s=S

∑
s=−S

∑
v∈vehicle type

EVit · 1[t = s, manu f acturer = v]

+ γs,v
s=S

∑
s=−S

∑
v∈manu f acturer

Solarit · 1[manu f acturer = v, hour = s] + αi + δt + εith (5)

Finally, we estimate heterogeneous effects by both rate and hour. To do this, we take our

fully interacted samples (Equations3 and 4) and interact them with one another, such that we

estimate hour-specific effects for each rate class:

Yith = βs,r,h
s=S

∑
s=−S

∑
r∈rates

23

∑
k=0

EVit · 1[t = s, rate = r, hour = k]

+γs,r,k
s=S

∑
s=−S

∑
r∈rates

23

∑
k=0

Solarit · 1[t = s, rate = r, hour = k] + αi + δt + εith (6)

5 Results

In this section, we present empirical results corresponding to the approaches described in Sec-

tion 4. We first estimate the average household-level effects of EV adoption on energy con-

sumption, both using a difference-in-differences approach and an event study. We then isolate

the load effects by hour of day, and examine heterogeneity in charging patterns on a number

of observable dimensions. Finally, by better understanding how load is actually distributed

across time, we can take a fresh look at the implications of EV load profiles on marginal dam-

ages.

All of the results that follow reflect the overall effect at the household level, and include

both changes from EV charging as well as any indirect changes in (non-EV) load patterns that

are caused by the introduction of an EV. This interpretation is desirable in some contexts and

less so in others. For example, those wishing to forecast the effect of EV-related load on the grid

will be interested in the overall effect that includes both direct and indirect components. On the

other hand, some may aspire to measure the amount of electricity used for EV charging, which

is relevant for (among other things) assigning credits under the Low Carbon Fuel Standards.

To use our estimates for the latter purpose requires an assumption that there are no indirect

effects of EV adoption on non-EV load, which is an assumption that we are not yet able to test.

There are (at least) two ways that we will attempt to isolate EV load from other contem-
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poraneous factors. First, in what we present here we include controls for solar installation,

for which we observe the timing at the household level. While we don’t focus on the solar

coefficients in this paper, we present them and they may be of independent interest to some

readers. Controlling for behind-the-meter solar production is important insofar as there is

complementarity between solar and EVs, which is at least one popular narrative (which we

will test). Second, our vehicle dataset includes a sample of comparison vehicles that are gaso-

line powered. In future drafts we will include estimates of the effect of buying non-EV cars on

overall household load. While we are optimistic that those two approaches will together help

to support the claim that these results primarily reflect direct EV load, we cannot yet rule out

the possibility that our results reflect some indirect effects as well.

Table 3 displays the average treatment effect of EV adoption on post-adoption electric load

under various specifications. Moving from left to right across the columns reflects increasingly

rich controls. The relatively large coefficient in the first column, which has no fixed-effect con-

trols, reflects the fact that EV-adopting households consume more electricity than the average

household in our sample. Examining within-household changes via the addition of house-

hold fixed effects brings the coefficient into the range of 0.10 to 0.15 kWh per hour across all

remaining specifications.

The coefficients can be converted into daily or weekly kWh by multiplying by 24 or 168,

respectively. Thus, the coefficient range of of 0.10 and 0.15 translates to between 17 and 25

kWh of net EV charging load per week. To put this into perspective, a 2016 Nissan Leaf (a fully

battery-electric vehicle) has a battery capacity of between 24 and 30 kWh and can support a

travel range of 84 to 107 miles (source: Edmunds).

Table 3: Difference-in-differences estimates of EV registration
effect on electricity consumption

kWh/hr kWh/hr kWh/hr kWh/hr kWh/hr kWh/hr
EV Post 0.25*** 0.12*** 0.12*** 0.10*** 0.15*** 0.15***

(0.02) (0.02) (0.02) (0.02) (0.01) (0.03)
Solar Post -0.32*** -0.48*** -0.43*** -0.53*** -0.36*** -0.41***

(0.03) (0.04) (0.03) (0.03) (0.03) (0.03)
Constant 0.80*** 0.81*** 0.80*** 0.81*** 0.80*** 0.80***

(0.02) (0.01) (0.01) (0.00) (0.00) (0.00)
HH FEs No Yes No No No No

HHxYear FEs No No Yes No Yes Yes
HHxMofY FEs No No Yes Yes No Yes

Week-of-Sample FEs No No No Yes Yes Yes
Observations 70,051,899 70,051,861 70,044,099 70,044,209 70,051,762 70,044,099

Within R2 0.00 0.04 0.23 0.19 0.08 0.23

Notes: Standard errors clustered by Census block group are shown in parentheses. Significance
at the 10%, 5%, and 1% levels are denoted by *,**,***, respectively.
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One might wish to rule out the possibility that our difference-in-differences estimates are

picking up pre-existing trends in electricity usage that may differ between EV adopters and

other households in the sample. To examine this possibility we estimate an event study, the

results of which are presented in Figure 6. The event study specification aligns most closely

with the controls in the right-most column of Table 3, and the difference between the pre- and

post-adoption usage is roughly the same – in the range of 0.12 to 0.15.

Figure 6: Event study of EV registration on electricity consumption

Notes: Each dot reflects the estimated coefficient on an event-time dummy variable, where the
EV registration date corresponds to event time -1. The specification includes fixed effects for
household-by-month-of-year, household-by-year and week-of-sample. Standard errors clus-
tered at the Census block group level.

Reassuringly, results from this preferred specification are qualitatively and quantitatively

similar to those retrieved with limited controls that were shown in Section 4 above. Three

features of the event study are worth noting. First, the pre-adoption usage in EV households

appears flat, providing evidence that the difference-in-differences estimates are not misinter-

preting pre-existing trends. Second, there is measurement error in the registration date vari-

able. The event study uses event-time -1 as the registration week, and yet it is clear that the

treatment effect of EV adoption begins to arise 2-4 weeks before then. Finally, there appears

to be attenuation of the EV load effect in the post adoption period. There are two potential

explanations. Either EV owners are changing the amount or source of their EV charging load,

17



which could manifest either as reduced usage of the EVs over time or the substitution of charg-

ing away from the home towards commercial or workplace charging; or there could be some

EV-induced change in non-EV household electricity use in these households.

5.1 Placebos on ICE registration events

For the next draft we will run the difference-in-differences and event study specifications on

adoption of gasoline-powered cars. This will evidence about the extent to which purchasing

any car leads to changes in the overall household electricity load profile.

5.2 Timing of EV load & implication for emissions

Figure A1 presents our estimates of how home EV charging is distributed across hours of the

day, and how that maps onto the marginal emissions externalities during those hours. EV

charging is concentrated during nighttime hours, reaching its maximum at 1am. Throughout

the night, EV charging drops each hour before virtually disappearing between 10am and 6pm.

Some households appear to plug in their EVs after returning home from work in the early

evening, which is ill-timed with respect to scarcity on the California grid. According to Cal-

ifornia’s Independent System Operator, in 2019 the system reached peak load at 5:50pm (on

August 15). Any amount of load during or near peak hours will have a disproportionately

large effect on the grid.

The concentration of EV load in nighttime hours is advantageous from that perspective.

The nighttime charging pattern is primarily determined by pre-programming of the EVs them-

selves, which are set to begin charging around midnight. Interestingly, and perhaps not sur-

prisingly based on when people are at work, the timing of home EV load is more-or-less non-

overlapping with solar production.

The emissions externalities on California’s grid also vary by time-of-day. The highest dam-

ages occur from electricity produced in the late evening and early hours of the morning. Dam-

ages in these hours reflect the possibility that coal and/or gas are the marginal sources of gen-

eration.11 It is quite clear from Figure A1 that the timing of residential EV charging in our

sample is highly correlated with the intensity of emissions externalities.

11While there is no coal generation in California, the same is not true of the western grid to which California is
connected.

18



Figure 7: Timing of EV load vs emissions factors

Notes: EV average treatment effects from difference-in-differences specification with
household-by-month-of-year, household-by-year and week-of-sample fixed effects, and stan-
dard errors clustered at the Census block group level. Emissions externalities estimates sourced
from Borenstein and Bushnell (2018).

5.3 Heterogeneity

There are many reasons why one may wish to understanding the heterogeneity of charging

intensity and temporal patterns. Following the over-arching motivation of this paper, for ex-

ample, one may wish to forecast the effect of EV load on the electric grid. However, current EV

owners represent a small fraction of total passenger car ownership. To the extent that certain

types of EV owners exhibit different charging patterns than others, or that charging patterns

differ across electricity rate classes and vehicle models, these may be helpful for forecasting and

planning. In this section we present estimates of EV charging by hour-of-day across various

dimensions of heterogeneity.

Figure 8 shows how charging patterns differ across electricity rate types. The solid line

represents estimated EV load for customers on the EV tariff. This tariff is time-varying by

hour-of-day, but is not subject to the increasing block tiers that are built into the non-EV tariff.

It is apparent that the level of charging under the EV rate is significantly higher than that of

charging under the flat rate, but that the proportion of this charging in a given hour of the day

is roughly the same.
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Figure 8: EV charging patterns by electricity tariff type:
EV vs non-EV rates

Notes: EV average treatment effects from difference-in-differences specification with
household-by-month-of-year, household-by-year and week-of-sample fixed effects, and stan-
dard errors clustered at the Census block group level.

Figure 9 breaks out load effects by popular EV types. Perhaps not surprisingly, Tesla charg-

ing represents significantly more electricity load than the Nissan Leaf, Chevrolet Volt, or all

other EVs. Teslas consume roughly two times the average baseline effect estimated in our

difference-in-differences, which translates to an average of roughly 50 kWh per week in home

charging.

Overall, these load estimates are roughly half the size of those used by the state for forecast-

ing and policy-making. A 2018 California Energy Commission report (??) shows residential EV

demand to be between 0.25 and 0.41 kWh per hour. This is 1.6 to 2.7 times our average treat-

ment effect estimates. Moreover, the aggregate level of charging assumed by CEC also appears

to be high. Separate CEC forecasts assume that EVs consume roughly 80 kWh per week in

electricity from all charging sources, or 0.48 kWh per hour.12 While some of this will be served

by non-residential charging, this number still appears high relative to our findings. There are

several potential explanations. It is possible that EVs in our sample are not being driven as

12Interestingly, total EV electricity consumption is assumed to vary based only on the number of EVs on the road,
and not as a function of vehicle fuel economy or intensity of vehicle use. This is likely due to a paucity of empirical
estimates of the price elasticity of demand for eVMT (vehicle-miles traveled in an EV).
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Figure 9: EV charging patterns by popular EV model

Notes: EV average treatment effects from difference-in-differences specification with
household-by-month-of-year, household-by-year and week-of-sample fixed effects, and stan-
dard errors clustered at the Census block group level.

much as the average car assumed in the CEC forecast. It may also be the case that a higher

proportion of charging for the cars in our sample is being met by workplace or commercial

chargers. While evidence that we hope to be able to cite soon implies that the latter is unlikely,

at this point we cannot rule out or measure the extent of either of these factors.

6 Conclusion

In this paper, we combine extremely rich data on household electricity consumption – over 1.7

billion observations of hourly electricity use in PGE’s service territory – with spatially resolved

data on electric vehicle ownership – address level DMV registration information for every EV

in California – from 2014 to 2017 to estimate the effects of household EV adoption on electricity

load.

We document several key findings. First, on average, EV adoption increases household load

by 0.15 kWh per hour, an increase of approximately 20 percent over the mean consumption in

a non-EV-owning household. However, these treatment effects are substantially smaller than

the expected future change in load used by state agencies: our treatment effects are roughly
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half the size of the forecasted increase in load in California Energy Commission projections.

Second, these increases in load are not uniform throughout the day. In particular, EV charg-

ing occurs largely during the late night and early morning hours, with the bulk of charging

taking place between 10 PM and 4 AM. This is important for two reasons: the shape of load

has an important role to play in determining future investment into the grid (e.g. an all-solar

grid will be ineffective at supplying a midnight peak); and the marginal emissions on the grid

vary across times of day. Though the emissions-time gradient in California is less steep than

other places in the United States, EV charging is still occurring during what are by far the

dirtiest hours of the day.

Third, we find substantial heterogeneity in EV charging by electricity rate and model of car.

All customers exhibit similar hourly patterns, but the level of our estimated treatment effects

differ substantially across groups. Customers on the most popular EV tariff, EV-A, have much

larger treatment effects than other households not on an EV tariff. This is likely a combination

of both selection and treatment effects; in ongoing work, we aim to use variation in the timing

of tariff changes to isolate these. In addition, we see heterogeneity in levels of charging by

vehicle: as expected, Tesla owners use substantially more electricity than all other vehicles.

This paper is, to our knowledge, the first to empirically evaluate the relationship between

electric vehicle adoption and electricity use in situ. These early results suggest that EVs are

likely to have a large impact on the future of California electricity consumption, though this

impact may be smaller than previously thought. Our average estimates also mask substantial

heterogeneity. In ongoing work, we are studying the role of policy in shaping the effects of EV

adoption on electricity consumption.
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A Appendix

Figure A1: EV contribution to total load

Notes: EV average treatment effects from difference-in-differences specification with
household-by-month-of-year, household-by-year and week-of-sample fixed effects, and stan-
dard errors clustered at the Census block group level.
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