Carnegie Mellon University

Externalities of Policy-Induced Scrappage: The Case of Automotive Regulations

Connor R. Forsythe, Akshaya Jha, Jeremy J. Michalek, Kate S. Whitefoot

Co-authors

Connor Forsythe

Akshaya Jha

Jeremy Michalek

Kate Whitefoot

Policies Affect Fleet Scrappage & Travel

 Gruenspecht Effect: policies that delay scrappage of used vehicles can cause significant externalities due to additional vehicle travel

Potentially Large Effects on Policy Costs & Benefits

400

200

- Delayed scrappage and additional travel significantly affect policy costs & benefits
- Applies to many policies:
 - Fuel economy standards (Bento, Roth, Zuo 2018, Jacobsen & van Bentham 2015, Jacobsen 2013)
 - Fuel taxes • (Jacobsen & van Bentham 2015)
 - Safety & emissions inspections (Hahn 1995)
 - Vehicle subsidies

Carnegie Mellon University

Import/Export restrictions (Mannering and Winston 1987)

2016

190

2018

326

Benefits Costs

Marginal Miles Travelled ≠ Average

Fleet-Wide Vehicle Registrations

Exogenous shock to scrappage

- Want: shock to scrappage
- Affects fleet travel only through the change in fleet size

Vehicle Value_{*it*} – Repair Costs_{*it*} < Scrap Value_{*it*} for vehicle *i*, time *t*

- Exploit data on removal of vehicle safety inspections as exogenous shock
 - Reduces repair costs
 - Expected to delay scrappage
 - Does not otherwise affect travel demand

Staggered Safety Inspection Removal

- 31 states & DC implemented safety inspection programs
- 15 states & DC removed these programs before 2017
- Vehicles required to pass safety inspection (with all required repairs) every 1-2 years
- Expiration of inspection sticker leads to fines, suspension of registration

Carnegie Mellon University

State map image source: census.gov

Registration & Travel Data

Vehicle Registration & Travel Data

- Federal Highway Administration (FHWA) Highway Statistics
 - Vehicle registration data at state and year level, 1967-2017
 - Vehicle miles traveled at state and year level, 1967-2017
 - Licensed Drivers, Road Mileage, 1967-2017

State Economic & Highway Data

- Energy Information Administration
 - Average Motor Gasoline Price, 1970-2017
- Bureau of Economic Analysis
 - Population (Metro, Non-metro), Income, 1969-2017
 - GDP, 1967-2017

Inspection Related Costs

Data from Pennsylvania inspection program

- Some vehicles have large repair costs: \$1,000 +
- Average vehicle price (Jacobsen & van Bentham, 2015):
 - < \$5,000 after age 10
 - ~ \$2,000 age 15-19

Two-Stage IV Regression

Vehicle registrations for state "i" in year "t" $\log(r_{iy}) = \psi_i + \gamma_y + \xi_i y + \eta d_{iy} + \alpha' \mathbf{x}_{iy} + \varepsilon_{iy}$ First stage: Treatment dummy: removal of inspections Travel (VMT) $\log(v_{iy}) = \phi_i + \zeta_y + \omega_i y + \beta \log(r_{iy}) + \delta' \mathbf{x}_{iy} + \epsilon_{iy}$ Second stage: Fleet-size elasticity of travel

Compare Elasticity to Common Assumptions

Null Hypothesis

- H_0 is <u>not</u> $\beta = 0$, but marginal = average VMT within group
 - Corresponds to $\beta = 1$ within vehicle group (Gruenspecht 1982; Jacobsen and van Bentham 2015; NHTSA 2018)
 - We calculate implied aggregated fleet-wide elasticities
 - Depends on fleet composition of vehicles

NHTSA (2018) analysis

• For Model-Years 2018-2025, $\beta \approx 1$

$$\succ$$
 Test H₀: $\beta = 1$

Control for data discontinuities

Note: Different Y-Axes Purple lines denote removal of safety inspection Red lines denote major discontinuities

Threats to Identification

• Endogeneity of Treatment?

- Repeals focused on lack of evidence that inspections improved traffic safety, and budgetary constraints (NHTSA 1989, GAO 2015)
- Endogeneity of Instrument?
 - Negligible changes to household budget: \$1-\$1.50 more fuel
- Parallel trends?
 - Expect state registrations affected by population, income, propensity for vehicle travel over other modes
 - Control for population, economic variables (GDP, income, employment), Metro and Non-metro population, and gas prices
 - Pre-trend testing with an event study

Event Study of Safety Inspection Removal

Indicator for "t" years relative to safety inspection removal

$$\log(r_{iy}) = \psi_i + \gamma_y + \xi_i y + \sum_{t=-6}^{6} \eta_t s_{iyt} + \alpha' \mathbf{x}_{iy} + \varepsilon_{iy}$$

Safety Inspection Impact on Registrations

	(1)	(2)
	Spec. 1	Spec. 2
	b/se	b/se
No Safety Inspections	0.039**	0.030^{*}
	(0.016)	(0.016)
Observations	2438	2438
Kleibergen-Paap rk Wald F-Stat	5.970	3.377

* p <0.1, ** p <0.05, *** p <0.01

Note: Robust standard errors clustered by state. All models include state and year fixed effects as well as state linear-time trends.

Fleet-Size Impact on Travel

	(1)	(2)
	Spec. 1	Spec. 2
Log Registrations (β)	-0.49	-0.55
AR Confidence Set (95%)	[-8.76, .62]	$[-\infty,\infty]$
AR Confidence Set (90%)	[-3.27, .38]	[-308.38, .85]
$\mathbf{H_0} : \beta = 1$		
$\mathrm{AR} extsf{-}\chi^2$	5.17^{**}	2.93^{*}
P-Value	0.02	0.09

* p <0.1, ** p <0.05, *** p <0.01

Note: Robust standard errors clustered by state. All models include state and year fixed effects as well as state linear-time trends.

Implications and Uncertainty

- Consequences of not rejecting $H_0: \beta = 1$ if not true
 - Overestimate travel-related externalities of fuel economy standards by 12% or more (Jacobsen & van Bentham 2015)
 - \$100's of billions of fatality, congestion, & emissions welfare impacts
 - Significant influence on cost-benefit & appropriate level of regulations

Conclusion

- Empirically measure the marginal change in VMT from increased fleet size due to delayed scrappage
- Estimate removal of safety inspections causes 3-4% increase in vehicle registrations, but with uncertainty
- Small sample of state-level treatment prevents us from estimating elasticity of travel with precision
- Reject that fleet-size elasticity of travel, $\beta = 1$ at 90% confidence level
- \succ Reveals need for additional measurement of β