Energy Prices and Electric Vehicle Adoption

James Bushnell, Erich Muehlegger & David Rapson

UC Davis Economics

June 11, 2020

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

June 11, 2020 1 / 20

1 = 1 - 1 - C

- Does EV demand respond to electricity prices similarly to gasoline prices?
- It what extent do consumers undervalue operating costs of EVs?
- What does that imply for optimal tax and subsidy policy?

Simple discrete choice between a BEV and ICE

$$U_{i}^{BEV} = \alpha_{i}^{BEV} + \sum_{t=0}^{T^{BEV}} \delta^{t} \gamma_{e} E[P_{it}^{e}] \left(\frac{kwh}{mile}\right) VMT_{i} + \epsilon_{i}^{BEV}$$
(1)
$$U_{i}^{ICE} = \alpha_{i}^{ICE} + \sum_{t=0}^{T^{ICE}} \delta^{t} \gamma_{g} E[P_{it}^{g}] \left(\frac{gal}{mile}\right) VMT_{i} + \epsilon_{i}^{ICE}$$
(2)

- Assumptions:
 - Similar ownership horizons: $T^{BEV} = T^{ICE}$
 - Discount rate (δ) identical

•
$$E[P_{it}^e] = P_{i0}^e, E[P_{it}^g] = P_{i0}^g$$

Simple discrete choice between a BEV and ICE

$$U_{i}^{BEV} = \alpha_{i}^{BEV} + \sum_{t=0}^{T^{BEV}} \delta^{t} \gamma_{e} E[P_{it}^{e}] \left(\frac{kwh}{mile}\right) VMT_{i} + \epsilon_{i}^{BEV}$$
(1)
$$U_{i}^{ICE} = \alpha_{i}^{ICE} + \sum_{t=0}^{T^{ICE}} \delta^{t} \gamma_{g} E[P_{it}^{g}] \left(\frac{gal}{mile}\right) VMT_{i} + \epsilon_{i}^{ICE}$$
(2)

- Assumptions:
 - Similar ownership horizons: $T^{BEV} = T^{ICE}$
 - Discount rate (δ) identical

•
$$E[P_{it}^e] = P_{i0}^e, E[P_{it}^g] = P_{i0}^g$$

Simple discrete choice between a BEV and ICE

$$U_{i}^{BEV} = \alpha_{i}^{BEV} + \sum_{t=0}^{T^{BEV}} \frac{\delta^{t} \gamma_{e} E[P_{it}^{e}] \left(\frac{kwh}{mile}\right) VMT_{i} + \epsilon_{i}^{BEV}$$
(1)
$$U_{i}^{ICE} = \alpha_{i}^{ICE} + \sum_{t=0}^{T^{ICE}} \frac{\delta^{t} \gamma_{g} E[P_{it}^{g}] \left(\frac{gal}{mile}\right) VMT_{i} + \epsilon_{i}^{ICE}$$
(2)

- Assumptions:
 - Similar ownership horizons: $T^{BEV} = T^{ICE}$
 - Discount rate (δ) identical

•
$$E[P_{it}^e] = P_{i0}^e, E[P_{it}^g] = P_{i0}^g$$

Simple discrete choice between a BEV and ICE

$$U_{i}^{BEV} = \alpha_{i}^{BEV} + \sum_{t=0}^{T^{BEV}} \delta^{t} \gamma_{e} E[P_{it}^{e}] \left(\frac{kwh}{mile}\right) VMT_{i} + \epsilon_{i}^{BEV}$$
(1)
$$U_{i}^{ICE} = \alpha_{i}^{ICE} + \sum_{t=0}^{T^{ICE}} \delta^{t} \gamma_{g} E[P_{it}^{g}] \left(\frac{gal}{mile}\right) VMT_{i} + \epsilon_{i}^{ICE}$$
(2)

- Assumptions:
 - Similar ownership horizons: $T^{BEV} = T^{ICE}$
 - Discount rate (δ) identical
 - $E[P_{it}^e] = P_{i0}^e, E[P_{it}^g] = P_{i0}^g$
 - Hold VMT_i constant (i.e., no rebound)

Simple discrete choice between a BEV and ICE

$$U_{i}^{BEV} = \alpha_{i}^{BEV} + \sum_{t=0}^{T^{BEV}} \delta^{t} \gamma_{e} E[P_{it}^{e}] \left(\frac{kwh}{mile}\right) VMT_{i} + \epsilon_{i}^{BEV}$$
(1)
$$U_{i}^{ICE} = \alpha_{i}^{ICE} + \sum_{t=0}^{T^{ICE}} \delta^{t} \gamma_{g} E[P_{it}^{g}] \left(\frac{gal}{mile}\right) VMT_{i} + \epsilon_{i}^{ICE}$$
(2)

- Assumptions:
 - Similar ownership horizons: $T^{BEV} = T^{ICE}$
 - Discount rate (δ) identical

•
$$E[P_{it}^e] = P_{i0}^e, E[P_{it}^g] = P_{i0}^g$$

Simple discrete choice between a BEV and ICE

$$U_{i}^{BEV} = \alpha_{i}^{BEV} + \sum_{t=0}^{T^{BEV}} \delta^{t} \gamma_{e} E[P_{it}^{e}] \left(\frac{kwh}{mile}\right) VMT_{i} + \epsilon_{i}^{BEV}$$
(1)
$$U_{i}^{ICE} = \alpha_{i}^{ICE} + \sum_{t=0}^{T^{ICE}} \delta^{t} \gamma_{g} E[P_{it}^{g}] \left(\frac{gal}{mile}\right) VMT_{i} + \epsilon_{i}^{ICE}$$
(2)

- Assumptions:
 - Similar ownership horizons: $T^{BEV} = T^{ICE}$
 - Discount rate (δ) identical

•
$$E[P_{it}^e] = P_{i0}^e, E[P_{it}^g] = P_{i0}^g$$

- Hold VMT_i constant (i.e., no rebound)
- $\gamma = \gamma_e / \gamma_g$ is the main object of empirical interest
 - Valuation of electricity expenditures relative to gasoline

• Under the assumptions above in a logit framework:

$$\hat{\beta}^{e} = \frac{dPr(BEV)}{dP_{0}^{e}} = \gamma_{e} \frac{kwh}{mile} VMT_{i} \sum_{t=0}^{T} \delta^{t} * A$$
$$\hat{\beta}^{g} = \frac{dPr(BEV)}{dP_{0}^{g}} = -\gamma_{g} \frac{gal}{mile} VMT_{i} \sum_{t=0}^{T} \delta^{t} * A$$

where A = Pr(BEV) * (1 - Pr(BEV)).

• We can derive an estimate of *γ* as:

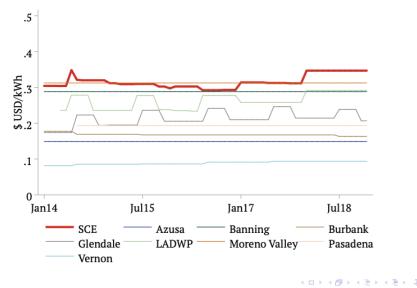
$$\hat{\gamma} = \frac{-\hat{\beta}^e * \frac{miles}{kwh}}{\hat{\beta}^g * \frac{miles}{gal}}$$
(3)

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

We study EV sales in CA from 2014 - 2017

- EV purchase data:
 - EV purchases at transaction-level data with prices, VINs, CBG of owner
 - Aggregate to CBG-level
- Electricity rate panel data:
 - Investor-owned utility (IOU) and municipal utility websites in California
 - RA blood, sweat and tears
- Daily, station-level gasoline prices (from OPIS) aggregated to month-zip level, zips matched to CBGs.
- Other covariates include:
 - 2013 fleet characteristics by CBG, CBG demographics
 - Panel of public charging station density

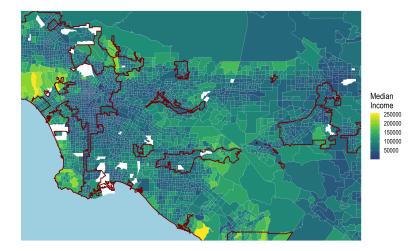

What is the relevant price faced by consumers?

Base case assumption: EV owners are not on lowest electric price tier

- Most IOU rate schedules in CA feature increasing block prices
 - 70-80% of EV owners in PGE territory are on a price tier above \$0.27/kwh (see BBRW later this morning)
- Alternative rates (e.g., EV TOU rates) are available but not widely used.
 - ▶ 50k are on EV rates (TOU) in 2017, 75% of these are in PGE
- Away-from-home charging
 - Household report vast majority of charging at home (Dunkley & Tal 2016, Tal 2017)
 - LCFS credit data
 - Free charging stations may reduce effective price, but price at many public stations are higher than residential rates

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Variation in residential rates: LA


Bushnell, Muehlegger & Rapson (UC Davis)

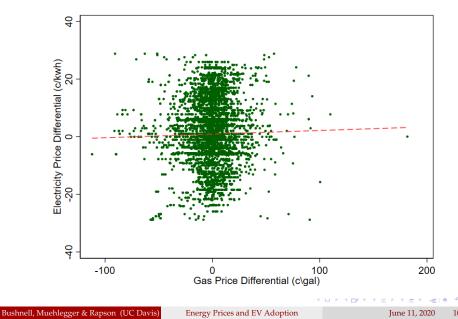
Energy Prices and EV Adoption

June 11, 2020 7 / 20

ъ

Empirical design: utility boundaries

Bushnell, Muehlegger & Rapson (UC Davis)


Energy Prices and EV Adoption

נו≡ יי) יג יי June 11, 2020 8 / 20

- Match each CBG (c) to closest CBG in neighboring service territory (c')
 - Pair-matching methodology
- Aggregate transaction data annually
- We examine differences between > 2000 CBG pairs, i = (c, c')
 - ► 4 years (*t*)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Electricity and gasoline differentials, by CBG pair-yr

10 / 20

Empirical specification

$$\Delta Q_{it}^{BEV} = \beta^e \Delta P_{it}^e + \beta^g \Delta P_{it}^g + \Theta \Delta X_{it} + \nu_{1b} D_c + \nu_{2b} D_{c'} + \epsilon_{it}$$

where:

- ΔQ_{it}^{BEV} denotes BEV sales per 10,000 people
- *P^e* denotes marginal price of electricity (cents/kwh)
- *Pg* denotes zip-level gasoline prices (\$/gal)
- D_c and $D_{c'}$ are the distances to the service territory boundary
- Errors two-way clustered by origin CBG and destination CBG

For γ calculations (baseline):

Use Toyota Camry (~ 30 mpg) and Tesla Model 3 (~ 4 mpkwh).

Border discontinuity results

	(1)	(2)	(3)	(4)
∆ Marg. Price (cents/kwh)	-0.025	-0.12***	-0.15***	-0.080
0	(0.063)	(0.045)	(0.051)	(0.10)
∆ Gas Price (cpg)	0.15***	0.10**	0.071*	0.072*
	(0.055)	(0.047)	(0.040)	(0.041)
△ Population (000s)		-0.81***	-0.76***	-0.76***
1		(0.25)	(0.25)	(0.25)
△ Pop Density (000s ppl/sqm)		-0.29***	-0.17***	-0.18***
		(0.046)	(0.040)	(0.042)
∆ Income (\$000)		0.16***	0.074***	0.074***
		(0.018)	(0.017)	(0.017)
△ Mean Fuel Econ (mpg, 2013)			1.99***	2.00***
			(0.72)	(0.72)
∆ Hybrid Fleet Share (2013)			-11.5	-10.7
			(27.3)	(26.9)
∆ Luxury Fleet Share (2013)			123.2***	123.8***
-			(18.1)	(18.3)
∆ MUD HH share (2013)			-2.28*	-2.25*
			(1.19)	(1.20)
Include PG&E	Y	Y	Y	Ν
Implied γ	.022	.155	.284	.148
	(.055)	(.101)	(.185)	(.182)
Observations	8595	8163	8135	8135
R-Squared	0.088	0.24	0.30	0.30
-				

▶ Panel Results ▶ Per-mile specification

 Residualized Bin-Scatter Plot ▶ Falsifications

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

< E > < E > E = のQ@ June 11, 2020 12 / 20

Interpretation of magnitudes

How do electricity prices affect EV purchase decisions?

- Mean annual BEV sales per 10,000 population = 11.3
- Electricity prices:
 - An increase of 10 cents/kWh translates to a \sim 13% reduction.
 - A one standard deviation increase (~ 6 cents/kwh) → 8% reduction.
- Gasoline prices:
 - ► An increase of 10 cents/gal translates to a ~ 6% increase.
 - ▶ A one standard deviation increase $\sim 50 \text{ cents/gal} \rightarrow 30\%$ increase.
 - ★ CA prices fell roughly \$1.10/gal from Nov.19 Apr.20

Alternative Samples

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Interpretation of magnitudes

How do electricity prices affect EV purchase decisions?

- Mean annual BEV sales per 10,000 population = 11.3
- Electricity prices:
 - An increase of 10 cents/kWh translates to a \sim 13% reduction.
 - A one standard deviation increase (\sim 6 cents/kwh) \rightarrow 8% reduction.
- Gasoline prices:
 - ► An increase of 10 cents/gal translates to a ~ 6% increase.
 - ▶ A one standard deviation increase $\sim 50 \text{ cents/gal} \rightarrow 30\%$ increase.
 - ★ CA prices fell roughly \$1.10/gal from Nov.19 Apr.20

Alternative Samples

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Interpretation of magnitudes

How do electricity prices affect EV purchase decisions?

- Mean annual BEV sales per 10,000 population = 11.3
- Electricity prices:
 - An increase of 10 cents/kWh translates to a \sim 13% reduction.
 - A one standard deviation increase (~ 6 cents/kwh) → 8% reduction.
- Gasoline prices:
 - An increase of 10 cents/gal translates to a \sim 6% increase.
 - A one standard deviation increase $\sim 50 \text{ cents/gal} \rightarrow 30\%$ increase.
 - ★ CA prices fell roughly \$1.10/gal from Nov.19 Apr.20

Alternative Samples

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Could γ be plausibly driven by assumptions?

• Choice of alternative vehicle:

- Using a Toyota Prius ($\sim 52 \text{ mpg}$) $\rightarrow \hat{\gamma} = 0.16$
- Using a Toyota Corolla (~ 35 mpg) $\rightarrow \hat{\gamma} = 0.24$
 - * Consistent with Xing, Leard & Li (2019), Muehlegger & Rapson (2020)

• 8.5 mpg vehicles
$$\rightarrow \hat{\gamma} = 0.99$$

- ★ Lower mpg than a Ford F150 4WD
- Other possibilities:
 - Four-fold reduction in eVMT?
 - Expectations of dramatic reduction in electricity prices?

<ロ> <同> <同> <目> <同> <日> <同> <同> <日</p>

Optimal subsidies

We adapt Allcott, Mullainathan and Taubinsky (2013)

• First-best subsidy: social planner observes *VMT_i* and sets

$$S^*(V\bar{M}T_i) = V\bar{M}T_i[\phi_g - \tau_g - (\phi_e - \tau_e)] + [1 - \gamma]V\bar{M}T_i(c_g + \tau_g - (c_e + \tau_e))]$$

- First term addresses unpriced externalities.
 - $\phi \tau = \text{externality} \text{tax}$
- Second term captures foregone savings a consumer ignores when choosing a vehicle.
 - $c + \tau =$ consumer price per mile, weighted by $[1 \gamma]$

Optimal subsidies

We adapt Allcott, Mullainathan and Taubinsky (2013)

• First-best subsidy: social planner observes *VMT_i* and sets

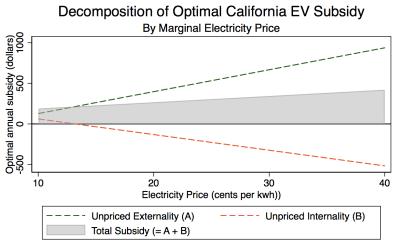
$$S^{*}(V\bar{M}T_{i}) = V\bar{M}T_{i}[\phi_{g} - \tau_{g} - (\phi_{e} - \tau_{e})] + [1 - \gamma]V\bar{M}T_{i}(c_{g} + \tau_{g} - (c_{e} + \tau_{e}))]$$

- First term addresses unpriced externalities.
 - $\phi \tau = \text{externality} \text{tax}$
- Second term captures foregone savings a consumer ignores when choosing a vehicle.
 - $c + \tau =$ consumer price per mile, weighted by $[1 \gamma]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Optimal subsidies

We adapt Allcott, Mullainathan and Taubinsky (2013)


• First-best subsidy: social planner observes *VMT_i* and sets

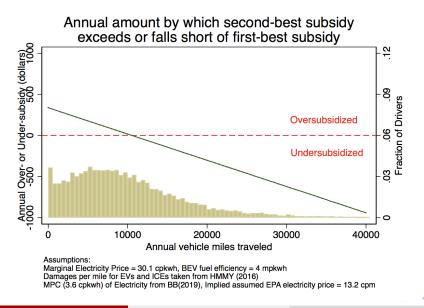
$$S^*(V\bar{M}T_i) = V\bar{M}T_i[\phi_g - \tau_g - (\phi_e - \tau_e)] + [1 - \gamma]V\bar{M}T_i(c_g + \tau_g - (c_e + \tau_e))]$$

- First term addresses unpriced externalities.
 - $\phi \tau = \text{externality} \text{tax}$
- Second term captures foregone savings a consumer ignores when choosing a vehicle.
 - $c + \tau =$ consumer price per mile, weighted by $[1 \gamma]$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Optimal first-best subsidies

Assumptions:


VMT = 10793, Gamma = .286, BEV fuel efficiency = 4 mpkwh ICE fuel efficiency = 30mpg, Damages per mile for EVs and ICEs taken from HMMY (2016) MPC (3.6 cpkwh) of Electricity from BB(2019), Implied assumed EPA electricity price = 13.2 cpm

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

June 11, 2020 16 / 20

Optimal second-best subsidies

Energy Prices and EV Adoption

June 11, 2020 17 / 20

Conclusion

- We compare the response to electricity and gasoline prices, and find buyers undervalue electricity *relative* to gasoline prices.
- RD implies a four-fold difference in the response to gasoline relative to electricity prices.
 - Panel FE models imply a slightly larger difference (not reported today)
- Undervaluation implies a potentially significant role for subsidies (or alternative approaches) to address consumer mis-optimization.
 - Subsidy calculations suggest "internalities" and "externalities" of similar magnitude
 - Second-best subsidy excessively promotes to low-VMT households and under-promotes high-VMT households, all else equal.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

- Direct evidence of marginal electricity price for EV buyers in SCE and SDGE
 - Data in hand (see BBRW)
- Secure more direct evidence of home vs away charging
 - LCFS, commercial charging data
- Test robustness of gasoline price result
 - Relying on time-series variation in panel specifications
 - Spatial station-level averages in gasoline prices within concentric distance rings

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Thank You

David Rapson dsrapson@ucdavis.edu

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

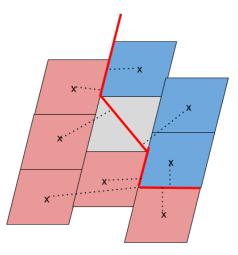
June 11, 2020 20 / 20

1 = 9QQ

-

< D > < 🗗

Appendix


Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

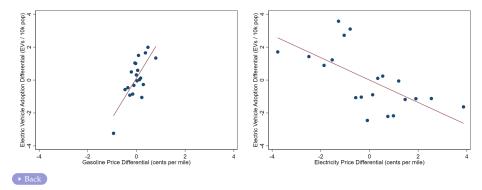
June 11, 2020 21 / 20

うせん 正正 スポッスポッス しゃ

Empirical design: utility boundaries & CBGs

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption


June 11, 2020 22 / 20

-

1= 990

EV adoption, gas and electricity prices per mile

• Binned scatter plots: Residualized EV sales, Gas price and Electricity prices.

Energy Prices and EV Adoption

June 11, 2020 23 / 2

Border discontinuity results

	(1)	(2)	(3)	(4)
∆ Marg. Price (cents/mile)	-0.10	-0.48***	-0.60***	-0.32
0	(0.25)	(0.18)	(0.21)	(0.40)
∆ Gas Price (cents/mile)	4.62***	3.07**	2.12*	2.17*
	(1.66)	(1.42)	(1.19)	(1.22)
△ Population (000s)		-0.81***	-0.76***	-0.76***
-		(0.25)	(0.25)	(0.25)
△ Pop Density (000s ppl/sqm)		-0.29***	-0.17***	-0.18***
		(0.046)	(0.040)	(0.042)
∆ Income (\$000)		0.16***	0.074***	0.074***
		(0.018)	(0.017)	(0.017)
△ Mean Fuel Econ (mpg, 2013)			1.99***	2.00***
			(0.72)	(0.72)
∆ Hybrid Fleet Share (2013)			-11.5	-10.7
			(27.3)	(26.9)
∆ Luxury Fleet Share (2013)			123.2***	123.8***
-			(18.1)	(18.3)
∆ MUD HH share (2013)			-2.28*	-2.25*
			(1.19)	(1.20)
p-value, $H0: \beta^g = \beta^e$.005	.012	.024	.071
Implied γ	.022	.155	.284	.148
1 .	(.055)	(.101)	(.185)	(.182)

Bushnell, Muehlegger & Rapson (UC Davis)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Panel results

	Monthly Sal	les Per Cap	Annual Sales Per Ca	
	(1)	(2)	(3)	(4)
Marg. Price (cents/kwh)	0.0036***	-0.0035**	0.032***	-0.063***
-	(0.00084)	(0.0014)	(0.010)	(0.021)
Gas Price (cpg)	-0.00062***	0.0027***	-0.016***	0.11***
10	(0.000079)	(0.00062)	(0.0012)	(0.011)
Time FE		Х		Х
CBG FE		Х		Х
Implied γ		.172		.074
1 .		(.078)		(.026)
Observations	962999	960587	81032	80766
R-Squared	0.00013	0.14	0.0012	0.59

▶ Back

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

June 11, 2020 25 / 20

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Alternative Samples

	(1)	(2)	(3)	(4)	(5)
	Full Sample	$CBG \ dist < 5 km$	Excl. PGE CBGs	Pairwise Best Matches	No Duplicate Pairs
∆ Marg. Price (cents/kwh)	-0.15***	-0.21***	-0.19***	-0.034	-0.16***
	(0.051)	(0.076)	(0.071)	(0.15)	(0.053)
∆ Gas Price (cpg)	0.071*	0.075	0.11**	0.064	0.078*
	(0.040)	(0.057)	(0.046)	(0.12)	(0.040)
△ Population (000s)	-0.76***	-1.92***	-1.10***	-0.96	-0.74***
	(0.25)	(0.43)	(0.35)	(0.79)	(0.25)
△ Pop Density (000s ppl/sqm)	-0.17***	-0.12***	-0.17***	-0.15	-0.17***
	(0.040)	(0.037)	(0.040)	(0.096)	(0.043)
∆ Income (\$000)	0.074***	0.088***	0.069***	0.13**	0.068***
	(0.017)	(0.022)	(0.023)	(0.060)	(0.017)
△ Mean Fuel Econ (mpg, 2013)	1.99***	2.19***	1.78**	2.30	2.17***
	(0.72)	(0.82)	(0.78)	(1.88)	(0.70)
∆ Hybrid Fleet Share (2013)	-11.5	-20.1	-29.0	-50.7	-12.2
-	(27.3)	(33.8)	(32.2)	(92.3)	(25.5)
∆ Luxury Fleet Share (2013)	123.2***	143.1***	119.6***	164.5**	123.7***
-	(18.1)	(22.7)	(20.1)	(65.5)	(17.2)
△ MUD HH share (2013)	-2.28*	-1.43	-1.87	3.99	-2.91**
	(1.19)	(1.37)	(1.41)	(4.01)	(1.20)
Implied γ	.284	.37	.237	.071	.271
-	(.185)	(.317)	(.128)	(.349)	(.165)
Observations	8135	5111	5663	578	7551
R-Squared	0.30	0.30	0.28	0.38	0.31

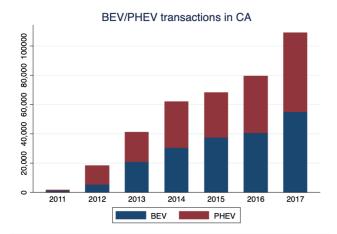
< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Falsification tests

No significant effects at municipal, not-IOU boundaries

	(1)	(2)	(3)
	Income	Population	Pop. Density
CBG	0.627	0.991	0.879
	(0.772)	(0.898)	(0.915)
Municipality	0.398	-2.006	1.103
	(0.977)	(1.846)	(1.052)
Observations	5,030	5,202	5,202

Notes:


- Each observation is a CBG pair along municipal borders within IOUs that are not also IOU borders
- Controls: CBG differences in income, population, population density, gas price, fuel economy, and fleet shares of hybrids, luxury vehicles and MUD household counts.
- Observations are ordered within a pair wrt column header variable, by CBG and Municipality respectively.

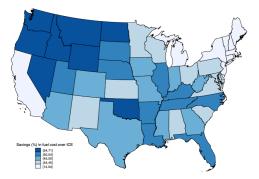
▶ Back

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

EV Sales in California

Figure: Annual EV Sales

Bushnell, Muehlegger & Rapson (UC Davis)


Energy Prices and EV Adoption

June 11, 2020 28 / 20

12

Operational costs vary substantially across states

Figure: Percent savings of Leaf vs. Versa

• Locations vary with respect to the operational savings of an EV.

- Lowest EV savings in MA = \$106 per 12k miles (14%)
- Highest EV savings in WA = \$625 per 12k miles (71%)
- California = \$326 per 12k miles (34%)

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

June 11, 2020 29 / 20

Other characteristics of the CBG

Table: Summary statistics

	mean	sd	min	max	sd_b	sd_w
Population	362.256	114.5832	58	1223	113.9965	0
Population/sq mile	491.9567	651.9797	.2111294	6924.443	646.9094	0
Base tier rate	.1719072	.0167451	.09524	.22267	.0154613	.0072556
Highest tier rate	.3486361	.0501632	.1147535	.42364	.0464579	.0207648
Highest tier usage amount	1391.851	1061.716	20	4788	617.7833	859.3586
N	314795					
n	13590					

Bushnell, Muehlegger & Rapson (UC Davis)

Energy Prices and EV Adoption

June 11, 2020 30 / 20

1 = 1 = 1 A (A

イロン 不良 とくほう 不良 と