Do Car Buyers Undervalue Future Fuel Savings? Post-Purchase Evidence

Arik Levinson

Georgetown University and NBER arik.levinson@georgetown.edu

Lutz Sager
Georgetown University
lutz.sager@georgetown.edu

> NBER Conference on Energy Use in Transportation June 2020

2017 - 2025 CAFE Standards

- Add \$1,800 to the cost of a new car in 2025
- Save $\mathbf{\$ 5 , 7 0 0}$ to $\mathbf{\$ 7 , 4 0 0}$ in fuel

Research to date

Cost of incremental fuel economy
 Cumulative discounted lifetime savings

>	$\begin{array}{l}\text { Cost of incremental } \\ \text { fuel economy }\end{array}$	$\begin{array}{l}\text { Cumulative discounted } \\ \text { lifetime savings }\end{array}$

Research to date

$$
p_{\mu}=F p_{g}\left(1 / \mu_{n}-1 / \mu_{e}\right) \bar{m} \gamma
$$

Full valuation

- Busse, Knittel, Zettelmeyer (2013)

US new and used car prices + gas price variation $\quad \Rightarrow \widehat{\gamma} \approx 1$

- Sallee, West, Fan (2016)

US used car auctions + remaining miles variation $\quad \Rightarrow \widehat{\gamma} \approx 1$

Undervaluation

- Allcott \& Wozny (2014)

US new vehicle registration + gas price variation $\quad \Rightarrow \widehat{\gamma}=0.76$

- Grigolon, Reynaert, Verboven (2018)

UK new vehicle market + within-model variation $\quad \Rightarrow \widehat{\gamma}=0.91$

- Gillingham, Houde, and van Benthem (2019)

Honda and Kia restate mpg on vehicle label
$\Rightarrow \widehat{\gamma}=0.16-0.39$

Our paper: Car choice \& post-purchase fuel expenses

Previous individual-level evidence

- Allcott \& Knittel (2019): Experiment $\quad->$ Weak response to $\Delta \mu$
- Banzhaf \& Kasim (2019): Ownership $\quad->\operatorname{cov}(\mu, m)$ is small

Our approach

Cost of incremental fuel economy

Cumulative discounted lifetime savings

Data

1. U.S. National Household Travel Survey (NHTS) 2009 \& 2017

- Car ownership and travel behavior
- Household characteristics

2. Vehicle prices and characteristics (Wards Automotive)
3. Fuel economy (EPA) \& Gasoline prices (EIA)
4. Expected driving and purchase prices (MaritzCX)
5. Used car listing prices (TrueCar.com)

Sample
○ 183,196 owners (2005-2017 model years)

Two approaches

1. Comparing similar hybrid and gas powered vehicles

- Sample: 24,592 with one of 108 hybrid / gas model pairs

2. Use all cars, control statistically for other car characteristics

- Sample: 183,196 owners (2005-2017 model years)

Honda Civic 2008

\$21,584
29.6 mpg

Honda Civic 2008 Hybrid

\$23,732
49.9 mpg

Honda Civic 2008

\$21,584
29.6 mpg

Albert

Age: 50s
Income: \$40-45k

Annual Miles: 25,000
Gas Price: $\$ 2.30$
Foregone annual savings \$790

Honda Civic 2008 Hybrid

\$23,732
49.9 mpg

Honda Civic 2008

\$21,584
29.6 mpg

Albert

Age: 50s
Income: \$40-45k

Annual Miles: 25,000
Gas Price: \$2.30
Foregone annual savings \$790

Honda Civic 2008 Hybrid

\$23,732
49.9 mpg

Betty

50s
\$45-50k

Annual miles: 4,600
Gas price: $\$ 2.61$
Realized annual savings \$165

Purely Personal, Ex Post, Financial Mistakes

(PPEPFMs)

All hybrid-gas car pairs

Defining "mistakes"

Calculate the threshold (*) using

- MSRP
- 14 year vehicle life
- 3\% and 7\% discount rates

Car buying mistakes by income (difference from mean)

Other Demographics

A regression approach

"Low" Cut-Off(discount rate 3\%
50\% MSRP)

A regression approach

"Low" Cut-Off(discount rate 3\%
50\% MSRP)

Dependent variable $=1$ if hybrid	(1)	(2)
Cumulative fuel savings (\$1000)	0.00428*	0.00355*
	(0.00050)	(0.00076)
Fuel savings×(Income>\$100,000)		0.00124
		(0.000975)
Upfront investment cost (\$1000)	-0.0215*	-0.0215*
	(0.00104)	(0.00104)
Income: \$100k-\$150k	0.0490*	0.0449*
	(0.00696)	(0.00768)
over \$150k	0.0867*	0.0825*
	(0.00747)	(0.00816)
Education: Graduate	0.0343*	0.0344*
	(0.00544)	(0.00545)
Age: $\quad 40-60$ years	0.0174*	0.0173*
	(0.00435)	(0.00435)
over 60 years	0.0301*	0.0298*
	(0.0237)	(0.00426)
Male, rural, car specs, make FE, year-by-type FE		
Implied $\hat{\gamma}$	0.20	
($\hat{\gamma}$ for income < \$100,000)		0.16
($\hat{\gamma}$ for income > \$100,000)		0.22
Observations	17,586	17,586
R-squared	0.365	0.365

A regression approach

"Low" Cut-Off(discount rate 3\%
50\% MSRP)

Dependent variable $=1$ if hybrid		(1)	(2)
Cumulative fuel savings (\$1000)		0.00428*	0.00355*
		(0.00050)	(0.00076)
Fuel savings×(Income>\$100,000)			0.00124
			(0.000975)
Upfront investment cost (\$1000)		-0.0215*	-0.0215*
		(0.00104)	(0.00104)
Income:	\$100k - \$150k	0.0490*	0.0449*
		(0.00696)	(0.00768)
	over \$150k	0.0867*	0.0825*
		(0.00747)	(0.00816)
Education:	Graduate	0.0343*	0.0344*
		(0.00544)	(0.00545)
Age:	40-60 years	0.0174*	0.0173*
		(0.00435)	(0.00435)
	over 60 years	0.0301*	0.0298*
		(0.0237)	(0.00426)
Male, rural, car specs, make FE, year-by-type FE			
Implied $\hat{\gamma}$		0.20	
($\hat{\gamma}$ for income < \$ 100,000)			0.16
($\hat{\gamma}$ for income > \$100,000)			0.22
Observations		17,586	17,586
R-squared		0.365	0.365

More in the paper

1. Comparing similar hybrid and gas powered vehicles
2. Use all cars, control statistically for other car characteristics

Robustness

- Alternative cutoff for mistakes ("mistake-equalizing")
- Realized vs. expected miles
- MSRP vs. purchase price vs. used car price

All hybrid-gas car pairs: Actual Miles (NHTS)

All hybrid-gas car pairs: Expected Miles (MaritzCX)

Conclusions:

- Vehicle fuel efficiency hardly correlated with individuals' annual driving costs (demographics more important)
- Curious that people would respond to \bar{m}, but not to $=m_{i}$
- Nearly as many overinvest as underinvest \Rightarrow Regulations might be Kaldor-Hicks, not Pareto

