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Abstract

We develop a model that describes the evolution of rental rates in a monocentric

city. The model explores how differences in urban characteristics and the agglomeration

externalities associated with their industrial mix affect both the level and volatility of

rents. The volatilities of both commercial and residential rental rates are amplified when

agglomeration externalities are stronger. The volatility of commercial rents is dampened

when constraints on development and the transportation infrastructure inhibit growth,

but these same constraints on growth can dampen the volatility of residential rents when

agglomeration externalities are strong. An implication of the model is that productivity

shocks can have a larger immediate effect on rents in large cities but a larger long-term

effect in smaller cities, suggesting that prices may initially respond more in small cities

even when their rents respond less.

1 Introduction

According to a research report by Savills, a UK real estate consultant, at the end of 2017, the

value of the world’s real estate reached US $280 trillion, which is about 3 times the world’s

GDP. Real estate is clearly the most important capital asset in the world economy, but as

illustrated by the recent financial crisis, our understanding of the determinants of real estate

valuation, and in particular, the volatility of real estate prices, is still incomplete.
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This paper explores the determinants of the volatility of rents and property values in a setting

where cities vary along a number of important dimensions. Following Lucas and Rossi-Hansberg

(2002), we explicitly consider agglomeration externalities that make firms more productive in

cities with greater populations. Offsetting these agglomeration benefits are congestion costs that

make it costlier for workers to commute to their jobs in cities with greater populations. These

commuting costs, which effectively constrain the availability of residential land, are determined

by city characteristics such as the citys size, its transportation technology, and the proportion

of its land that cannot be developed. As we show, these city characteristics constrain a city’s

growth, which in term determines the magnitude and timing of the response of its population,

wages and rents to exogenous productivity shocks.

Our model builds on the literature that explores the internal structure of cities, exemplified

by Lucas and Rossi-Hansberg (2002), Ahlfeldt et al. (2015) and Chatterjee and Eyigungor

(2017). This literature is part of the broader literature of spatial quantitative economics that

provides insights into the spatial distribution of economic activities, as reviewed by Redding

and Rossi-Hansberg (2017).1 For simplicity and tractability, we focus on the special case of

monocentric city structure, which allows us to derive analytical expressions for the elasticity of

land rent with respect to productivity changes. As shown in Lucas and Rossi-Hansberg (2002)

and Chatterjee and Eyigungor (2017), the monocentric city structure arises endogenously when

the transportation cost gradient, i.e. the rate at which transportation cost increases with

distance, is small relative to the strength of agglomeration externalities and the rate at which

the externality decays with distance between firms.

Following the Rosen (1979) and Roback (1982) system of city framework, we assume that

individuals are mobile, and thus enjoy the same reservation utility in each city. However,

because there exists cross-city differences in productivity and urban characteristics, cities will

have different populations and their workers will earn different wages and pay different rents.

Because we are mainly interested in the effects of various forms of land supply constraints on

land rent volatility, we go beyond the assumptions of inelastic land supply and no-congestion

in transportation, allowing the city to expand in response to productivity increases.

The population of cities in our model is determined by three different channels. The first

is the productivity channel; cities that host more productive industries will be larger. The

second is the transit channel; cities with transit technology that exhibits less congestion will be

larger. And the third is land constraints; cities with more undevelopable land will have lower

populations.

Commercial and residential rents, as well as their sensitivity to exogenous shocks to produc-

tivity, are also determined by these three channels. Both commercial and residential rents are

1This literature, in turn, builds on the seminal monocentric city models of Alonso (1964), Mills (1967), and

Muth (1969).
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higher in cities where productivity is higher, however, only commercial rents are always higher

in cities with fewer residential land constraints and less costly transit. The relationship between

land constraints and transit costs and residential rents are somewhat more complicated because

residential rents are affected by two offsetting channels. The first is a scarcity channel; ceteris

paribus, reducing access to residential land increases rents. The second is the agglomeration

channel. When less land is available for development, the city’s population will be lower, which

reduces total factor productivity because the reduced agglomeration effect. Wages are thus

lower, which in turn reduces rents. As we show, when the agglomeration parameter in the

model is sufficiently large, the agglomeration channel dominates the scarcity channel. When

this is the case, both undevelopable land and increased transit costs reduce rather than increase

residential rents.

The volatility of rent in our model is amplified because of the feedback between productivity

growth and population growth. Specifically, a positive exogenous shock to a city’s productivity

increases wages, which in turn attracts new migrants to the city. Because of the agglomeration

externalities, the increased population makes the workers even more productive, attracting

more migrants, further increasing productivity, and so on, until the city reaches a new steady

state. In the absence of frictions, this process will be instantaneous, and cities will reach a new

steady-state immediately. As we discuss below, if the agglomeration externalities take time to

materialize, it will take time for the city to reach a new steady-state.

As we show, because of this feedback process, the volatility of both population growth and

rents are amplified more when agglomeration externalities are higher. In contrast, the presence

of undevelopable land and transit costs always dampen the volatility of both population growth

and commercial rents. However, because of the offsetting effect of agglomeration, development

constraints and transit costs do not necessarily increase the volatility of residential rents. In-

deed, a key insight of our model is that when the agglomeration channel is stronger than the

scarcity channel, supply constraints and transit congestion can actually dampen the effect of

productivity shocks on residential rents.

When the agglomeration effect takes time to evolve there can be important distinctions be-

tween the initial response and the steady state response to productivity shocks. As we show, the

difference between the immediate and steady-state response depends on the exogenous charac-

teristics of cities. We are particularly interested in contrasting the effect of productivity shocks

on small (relatively unconstrained) and large (more constrained) cities that host industries that

exhibit high agglomeration externalities. As we show, an equivalent productivity shock initially

affects rents and wages more in larger cities, because of constraints on expansion, but in the

long run, rents in smaller cities increase more, because of the future agglomeration benefits

that arise as the city grows. Given that property prices anticipate future rent increases, they

initially respond more to productivity shocks in smaller cities even though wages and rents
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initially respond very little.

Our analysis contributes to a growing literature that examines the relationship between city

structures and the sensitivity of property prices to exogenous shocks. The closest to our paper is

Chatterjee and Eyigungor (2017), which considers the effect of physically constraining the size

of a city.2 We extend the Chatterjee and Eyigungor (2017) analysis by considering a number of

urban attributes that effectively constrain how cities grow in response to productivity increases.

Specifically, we identify a simple measure of the effective land supply constraint, which combines

the effect of transportation technology and both the physical size and the population of the city.

This notion that the effective land supply constraint depends on transportation technology is

related to Miles and Sefton (2020), which shows that changes in urban house prices over time

and across locations are affected by changes in commuting speeds. The focus in this paper is on

how long-term trends in house price growth depend on transportation technology improvements

and productivity increases, assuming no agglomeration effect in production. In contrast, our

study focuses on how fluctuations in land rents depend on the interaction of agglomeration

effects and exogenous city characteristics, which include land supply constraints as well as

transportation technology. We also consider how these exogenous characteristics affect the

population and physical size of a city, and discuss how these relationships imply important

differences in the land rent dynamics in large and small cities.

Our paper also addresses issues raised by Davidoff (2013), Gao et al. (2020) and Nathanson

and Zwick (2018), which introduce combinations of behavioral biases and market frictions to

explain why relatively unconstrained cities, like Las Vegas, experienced large price run ups in

the early 2000s.3 We contribute to this debate by showing that large price run ups can be

generated with rational and unconstrained agents. Indeed, we show that productivity shocks

are likely to be amplified the most in relatively unconstrained cities that host, or hope to host,

industries that exhibit strong agglomeration externalities. In such cities, we may observe large

increases in prices, even though rents and wages may initially respond only modestly.

Our study is also related to the recent literature that explores how housing supply constraints

have contributed to the increase in the cross-city dispersion in housing prices. In particular,

Nieuwerburgh and Weill (2010) develop a dynamic general equilibrium model that illustrates

how housing supply constraints can amplify relatively small differences in productivity and

create relatively large differences in house prices, and Gyourko and Sinai (2013) provide a model

2Chatterjee and Eyigungor (2017) endogenously allows a city to be either monocentric or decentralized. Our

analysis is particularly close to the analysis in their setting that results in monocentric cities.
3Glaeser and Nathanson (2017) also consider behavioral biases in a dynamic model of the housing market.

They assume that home buyers naively use past house prices to estimate housing demand and show that this can

create persistent house price changes. The dynamic version of our model generates serially correlated land rents,

because we assume that agglomeration externalities take time to materialize. However, because we assume that

individuals are rational, actual land prices follow a random walk.
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that describes how supply constraints can further increase dispersion in housing prices if cities

attract a heterogeneous mix of residents with different tastes for amenities, i.e., certain cities will

have amenities that cater to a wealthier clientele who are willing to pay higher housing prices.

Hseih and Moretti (2017) also consider supply constraints and develop a model that illustrates

how inelastic housing supply, perhaps caused by restrictive zoning, dampens economic growth

by implicitly limiting migration from less productive to more productive cities.

These more recent models extend the Rosen (1979) and Roback (1982) framework, which

takes the supply elasticities and productivity shocks as given, but ignore within-city spatial

characteristics and agglomeration externalities that can amplify and dampen exogenous pro-

ductivity shocks. By including these elements in a monocentric city model, we provide the

micro-foundations of the cross-city differences in land supply constraints and productivity dif-

ferences considered in these recent papers. The implications of these micro-foundations are not

completely obvious. For example, Hseih and Moretti (2017) suggest that a policy of developing

public transportation to relax housing supply constraints in high productivity cities can reduce

spatial misallocations of labor. Our model explicitly addresses the role of transportation and

shows that although better transportation increases migration to high productivity cities, it

does not necessarily dampen the effect of exogenous productivity shocks on housing prices.4

The rest of the paper is organized as follows. Section 2 introduces the benchmark model

and shows, that in general, the model exhibits multiple equilibria. Section 3 focuses on what

we think is the most plausible equilibrium and examines the elasticities of wages, population

and land rents with respect to changes in exogenous shocks to productivity. This section also

shows how the elasticities depend on the city size in the short run and the long run. Section 4

discusses how the presence of undevelopable land affects city configuration and real estate

volatility. Section 5 considers these same elasticities in alternative settings that allow us to

explore the implications of CBD land flexibility and capital mobility. Section 6 concludes and

provides a discussion of potential future studies.

2 The Benchmark Model

In this section we develop our benchmark model. As we describe below, relative to existing

monocentric urban models, the main contribution of the benchmark model lies in the linkage be-

tween city characteristics and what is effectively the elasticity of the supply of land. Specifically,

we consider the fraction of residential land that cannot be developed and the transportation

technology. In the extended model, we further consider the flexibility of city boundaries. Both

4This observation is also related to the transportation literature (e.g. Duranton and Turner (2012)) which

observes that increases in transportation capacity does not always reduce congestion. In our model, the gain

from better transportation comes from the agglomeration benefits associated with the rising city population.
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capital and labour are assumed to be perfectly mobile in the benchmark model and the size of

the CBD is exogenous. However, in extended models we consider endogenous CBD size and

immobile capital.

2.1 City Geometry and Transportation

The circular city consists of a commercial CBD of size S, implying a CBD radius of
√
S/
√
π,

surrounded by discrete rings of residential land indexed by i, with the ring nearest to the CBD

being i = 0. The land area in each ring is normalized to unity and includes both developable

and undevelopable land. Specifically, Λ percent of the land in each ring cannot be developed,

because of either geographical constraints, such as lakes or oceans, or regulatory constraints,

such as green areas that are used for parks or drainage. We will assume that these areas are

evenly distributed throughout the city and have no inherent amenity values.

The distance from a ring to the CBD is measured by the distance between its inner circle to

the nearest boundary of the CBD. Thus, for the ith ring, the distance is the difference between

the radius of its inner circle and the radius of the CBD. Since the inner circle of the ith ring

encompasses a land area of S + i, its radius is
√
S + i/

√
π, hence its distance is

j =

√
S + i−

√
S√

π
(1)

The distance j is simply a non-linear transformation of the location index i, so without loss

of generality, we use the distance j to denote location, with j = 0 representing the inner-most

ring with a zero distance. The outer-most ring, denoted by j = J , is endogenously determined

by equating its rent with the exogenous agricultural rent.

We use w to denote the wage for all workers, and wage net of transportation costs for

workers living at location j is w × e−f(j,N) where N is the city population. The function

f(j,N) assumes that transportation costs increase with distance, since transportation takes

time, and also increases with population, since larger cities are more congested.5 Specifically,

the transportation cost function f(j,N) is assumed to have the following form:

f(j,N) = β0 + β1j + β2jN (2)

where β1 > 0 is the distance gradient of transportation, and β2 > 0 captures the congestion

effect. The congestion effect increases with distance since

∂f(j,N)

∂N
= β2j. (3)

5The exact transportation cost as a fraction of wage is 1−e−f(j,N). We refer to f(j,N) as the transportation

cost function, noting that 1− e−f(j,N) ≈ f(j,N) when f(j,N) is small.
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2.2 Firms and Workers

The city is populated by a continuum of firms and a continuum of workers. Both are price

takers and they produce tradable goods which serve as the numeraire in the model. Following

the standard practice in the urban literature, we assume the land and capital are owned by

absentee owners who collect rent from either land or capital but do not live in the city.

Workers Workers are perfectly mobile both within and across cities, which implies that they

realize a reservation level of utility wherever they live, denoted u. Each worker is endowed with

one unit of labour and allocates the wage to land rent, transportation cost, and the consumption

good. Workers have the option to live adjacent to the CBD and have zero commuting costs, or

alternatively, they can live farther-out and spend resources to commute to the CBD.

Workers at location j take their wage and the land rent as given and choose their consump-

tion of land, h, and the tradable good, c to solve the following optimization problem:

maxc,h = c1−θhθ

s.t. c+ pr(j)h = w × e−f(j,N) (4)

where pr(j) is the rental rate of residential land in location j.6

It is straightforward to show that the optimal allocation between land and the tradable

good satisfies:

pr(j) =
∂u(c, h)/∂h

∂u(c, h)/∂c
=

θ

1− θ
c

h
(5)

where the right side is the marginal rate of substitution between land and the tradable good.

From equation (5), we get c = 1−θ
θ
pr(j)h. Substituting this into the budget constraint yields

the optimal tradable good and land demand functions

c(j) = (1− θ)w × e−f(j,N), (6)

h(j) = θ
we−f(j,N)

pr(j)
. (7)

Since workers are identical, the rents, in equilibrium, make workers indifferent about where

they live. Because rents decrease with distance to the CBD, workers that live near the CBD

consume less land but more of the tradable good.

6The above maximization problem implicitly assumes that there are no cross-city differences in amenities.

We can easily account for differences in amenities by multiplying the worker’s utility levels by an amount that

differs across locations, i.e. modifying the objective to mc1−θhθ where m denotes amenity. This will change

a city’s reservation utility and thereby changes the city population. But all the propositions that follow are

unchanged.
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Firms Firms are also perfectly mobile, and for the baseline model there is no cost associated

with adjusting capital. There exists a unit measure of identical firms located in the CBD which

has a fixed size of S in the baseline model. Firms use the CBD land long with capital and

labour to produce the tradable good using a constant returns to scale Cobb-Douglas production

technology:

F (`, k, n) = A`σkξn1−σ−ξ (8)

where `, k and n are land, capital and labour input respectively, the relative importance of

which is determined by the parameters σ, ξ, and 1 − σ − ξ, respectively, and A is the total

factor productivity (TFP) of this city. To simplify our notations, we assume that A = 1 in all

other cities.

The firms take A, land rent pc, the price of capital r, and wage w as given, and solve the

following optimization problem:

max
`,k,n

F (`, k, n)− wn− rk − pc, `

subject to equation (8). From the first-order conditions, we obtain the usual allocation rules as

follows:

n

`
=

(
1− σ − ξ

σ

)(pc
w

)
, (9)

n

k
=

(
1− σ − ξ

ξ

)( r
w

)
, (10)

`

k
=

(
σ

ξ

)(
r

pc

)
. (11)

In other words, production inputs are determined by their relative prices and their marginal

contributions to the production.

Agglomeration The agglomeration effect in our model is modelled as production external-

ities in the form of TFP being an increasing function of city population. Specifically, the city

level TFP is given by

A = ÃNλ, (12)

where Ã is the exogenous productivity of a city, and λ is the agglomeration parameter that

determines how the city TFP increases with the total number of workers in the city.

2.3 Bid-rent Functions

We separately describe bid-rent functions for the residential and commercial land markets.

The residential bid-rent function, as in Fujita (1989), describes the rent of residential land as
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a function of the wage and the distance from the CBD. Following Lucas and Rossi-Hansberg

(2002), the commercial bid-rent function describes the rent of commercial land as a function of

the wage and the price of capital.

Commercial Bid-rent Function Because firms are competitive and enter and exit the city

freely, owners of commercial land capture all the economic benefits from production. Thus,

commercial land rent equals the maximum revenue from one unit of land after paying for

labour and capital. Production per unit of land is f(`) = Akξn1−σ−ξ, which implies that the

commercial rent is the solution of the following maximization problem:

pc = max
n,k

Akξn1−σ−ξ − wn− rk.

The first-order conditions with respect to labour and capital are:

wn = (1− σ − ξ)Akξn1−σ−ξ, (13)

rk = ξAkξn1−σ−ξ. (14)

From the above three equations we obtain the commercial bid-rent function shown below.7

pc =

[
Aσσξξ(1− σ − ξ)1−σ−ξ

rξw1−σ−ξ

] 1
σ

. (15)

We use A = ÃNλ to substitute out A in the above equation to obtain

pc =

[
Ãσσξξ(1− σ − ξ)1−σ−ξ

rξw1−σ−ξ

] 1
σ

N
λ
σ . (16)

Residential Bid-rent Functions By substituting equation (6)-(7) into the Cobb-Douglas

utility function, we can express the worker’s reservation utility as a function of rent, the wage

rate and transportation costs:

u =
(1− θ)1−θθθ

pr(j)θ
we−f(j,N) (17)

which can be rearranged into the following, which is also shown in equation (18)

pr(j) =

[
(1− θ)1−θθθ

u

]1/θ

×
[
we−f(j,N)

]1/θ
= B0 ×

[
we−f(j,N)

]1/θ
, (18)

7Substituting the first-order conditions back to the objective function, we obtain pc = σAkξn1−σ−ξ, hence

pc = σ
1−σ−ξwn using equation (13). Also we get n = (1− σ − ξ)(1−ξ)/σ (ξ/r)

ξ/σ
A1/σw−(1−ξ)/σ using equation-

s (13)-(14), which substitutes out n in pc = σ
1−σ−ξwn to reach equation (15).
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where we have defined B0 =
[

(1−θ)1−θθθ
u

]1/θ

for simplicity of notation. It is noteworthy that

pr(j) increases with w, while the commercial land rent pc decreases with w. Ceteris paribus,

higher wages allow workers to pay more for rent, but reduce the rent that firms can pay and

still earn zero profits.

From equation (18) we have the following lemma.

Lemma 1 The elasticity of residential land rent with respect to wage decreases with θ, the land

share in workers’ preference. Specifically,

∂log[pr(j)]

∂log(w)
=

1

θ
.

The above lemma implies that a 1% increase in the wage rate leads to a 1/θ percent increase

in rent.8 Thus, when θ is smaller, residential land rent is more sensitive to wage. Our intuition

is that on the margin, given a higher wager, workers increase non-land consumption more than

land consumption when θ is smaller, and as a result, land owners can charge higher rents

while ensuring renters the reservation utility. As we will show, this intuition is also key to

understanding how residential land rent responds to productivity shocks.

The city boundary is determined by J , the distance from the city’s border and the CBD.

Equating the residential bid-rent function at location J and the exogenous agricultural rent p,

the equilibrium boundary satisfies:

p = pr(j=J) = B0

[
we−f(J,N)

]1/θ
. (19)

Parameters and Variables To help readers keep track of the notation, we list parameters

and the exogenous variables of the model in Table 1.

2.4 Aggregate Labour Supply and Demand

The model has seven endogenous variables, {pr, pc, w,N,K, J,A}, and as we show in Appendix

A.1 the general equilibrium is determined by seven equations. Furthermore, as shown in Ap-

pendix A.2, the system of seven equations can be reduced to two equations that describe the

relation between wages and population:

log(N) =
1

λ− σ
log

(
rξ

Ãξξ(1− σ − ξ)1−ξSσ

)
+

1− ξ
λ− σ

log(w) (20)

8This is in the partial equilibrium sense. In a general equilibrium, both wage and population respond

endogenously to productivity shocks.
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Table 1: Parameters and Exogenous Variables

λ agglomeration parameter

ξ capital share in production

σ land share in production

θ land share in preference

β0 fixed transportation cost

β1 distance gradient of transportation cost

β2 congestion parameter of transportation cost

u reservation utility

p agricultural land rent

r interest rate

S CBD size

Ã exogenous productivity

Λ fraction of undevelopable residential land

log(N) = log

(
(1− Λ)B0

θ

)
+

1− θ
θ

log(w) + log

(∫ J

0

e−
1−θ
θ
f(j,N)dj

)
.9 (21)

We refer to the above two equations as the aggregate labour demand function and the ag-

gregate labour supply function respectively, similar to the “population supply function” and

“population demand function” used in Fujita (1989). Equation (20) describes the total labour

demand by firms in a city as a function of the wage rate.10 The equation represents a linear

relationship between log(w) and log(N), with a slope of 1−ξ
λ−σ . When the agglomeration param-

eter λ is larger than the land share in production (σ), labour demand is more elastic. This is

intuitive; with a large λ, a small increase in the wage leads to more productivity gains through

the agglomeration effect, which enables firms to hire more workers. Equation (21) shows the

number of workers that choose to live in the city, as a function of the wage rate, thus it de-

scribes the effective labour supply. The upper bound of the integral in the last term is the city

boundary J , which is itself a function of the wage and population.

As we show in Appendix A.3, the slope of the labour supply curve has the following expres-

sion:
dlog(N)

dlog(w)
=

1

F
, (22)

where F captures the effect of adding an additional worker on equilibrium wages. It has the

9If we modify the worker’s objective function from c1−θhθ to mc1−θhθ where m stands for amenity, then

equation (21) becomes log(N) = log
(

(1−Λ)m1/θB0

θ

)
+ 1−θ

θ log(w) + log
(∫ J

0
e−

1−θ
θ f(j,N)dj

)
. From this equation,

we can see that cross-city differences in amenity has the same effct on labour supply function as cross-city

differences in the proportion of developable land.
10When making hiring decisions, firms take as given the land rent which itself is a function of wage.
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following expression:

F =
θ

1− θ

(
1− e−

1−θ
θ

(β1+β2N)J
)(β1 + 2β2N

β1 + β2N

)
. (23)

≈ (β1 + 2β2N)J

=
∂f(J,N)

∂J
× J +

∂f(J,N)

∂N
×N (24)

To understand the above expression, note that for a worker that lives on the city boundary,

the change in the wage rate must compensate for the increase in the cost of traveling to the

CBD, which has two components: (i) the increase in distance from the boundary to the CBD,

which is captured by the first term in equation (24) and (ii) the increase in the cost of congestion,

which is captured by the second term. An analysis of equation (23) reveals that the change

in the wage rate also depends on θ, which determines the importance of land in the worker’s

preference, since workers substitute out some land consumption when land rent increases with

wage.

We will refer to F as the effective supply constraint. Since the boundary of the city in our

baseline model can expand indefinitely, it is the cost of transporting workers to the CBD that

effectively constrains the physical size of the city. F is a function of population and the city

boundary, and it captures two aspects of the cost of transporting workers from the boundary

to the CBD: the effect of congestion that increases with population, and the effect arising from

the distance between the CBD and the boundary. As we will discuss, because F increases with

city population, the growth of large cities are more constrained than small cities, which has

important implications on how city size affects the sensitivity of rents to productivity shocks.

Appendix A.3 proves the following lemma.

Lemma 2 The aggregate labour supply curve is concave. Equivalently, the effective land supply

constraint F increases with city population, i.e.,

dF

dN
> 0.

As we will discuss below, F plays a key role in determining the elasticity of population,

wages and rents with respect to changes in total factor productivity (TFP). Various factors

that contribute to the effective land supply constraint, such as the proportion of undevelopable

land and the CBD size, do not show up explicitly in these elasticities, however, they affect the

elasticities through their effect on F .

2.5 General Equilibrium

The supply and demand of labour, as expressed in Equations (20) and (21), determine the

population and the wage in equilibrium. As we show in the appendix, these variables in
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turn determine the city level TFP, the capital stock, the city boundary, and residential and

commercial land rents. Formally, we define equilibrium in this economy as follows:

Equilibrium Definition Given the parameters and exogenous variables listed in Table 1, an

equilibrium is represented by the prices w, pc and pr(j), the quantities N , K and J , and the

city level TFP A, such that:

(i) the wage and population satisfies equations (20)-(21);

(ii) K is determined by equating the marginal product of capital to the interest rate r;

(iii) J is determined by equating pr(J) to the agricultural land rent p;

(iv) the city level TFP satisfies equation (12);

(v) commercial land rent satisfies the bid-rent function (16);

(vi) residential land rent satisfies the bid-rent function (18).

Is the Equilibrium Unique? When the congestion effect is absent (i.e. β2 = 0) and the

city boundary is fixed, F as in equation (23) is a constant, thus the slope of aggregate labour

supply curve 1/F is also a constant and equation (21) represents a linear relationship between

the wage and population. In this case our model is a special case of Lucas and Rossi-Hansberg

(2002). It has a unique equilibrium as both the aggregate labour demand function and the

aggregate labour supply function are linear equations with different slopes.

However, the equilibrium is not necessarily unique in our more general setting that allows

the physical size of the city to be endogenous and assumes that greater population causes more

congestion. The number of equilibria depends on the slope of the aggregate labour demand

curve, which is 1−ξ
λ−σ , relative to the slope of the aggregate labour supply curve, 1

F
. Ultimately the

equilibrium depends on the agglomeration strength, the land and capital share in production,

and the effective supply constraint.

Figure 1 illustrates three possibilities. The first panel illustrates a case where the agglom-

eration effect is relatively weak with λ ≤ σ; in this case there is a unique equilibrium. As

illustrated in the second panel, when the agglomeration effect is stronger, there can be two

equilibria. In the small city equilibrium, firms are less productive and thus pay lower wages,

but workers are able to achieve their reservation utility levels because rents and congestion are

lower in smaller cities. In the large city equilibrium, cities are more congested and rents are

higher, but firms are able to pay a higher wage due to the higher TFP; which comes from the

agglomeration externality. With multiple equilibria, workers in small and large cities achieve

the same reservation utility and firms all make zero profits, but landlords receive more rents in

large cities. Finally, the third panel illustrates the case where the agglomeration externalities

are very high. In this case, we still get a small city equilibrium. However, a sufficiently large

city will generate a level of utility for workers that is greater than the reservation utility, and
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the level of utility will grow without bounds as the size of the city increases.11

Figure 1: Equilibrium
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(b) σ < λ < σ + (1− ξ) 2θ
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(c) λ ≥ σ + (1− ξ) 2θ
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Note: The number of equilibrium (equilibria) is determined by the slopes of aggregate labour supply curve and aggregate

labour demand curve.

These three possibilities are summarized in the following proposition. A formal proof is

given in Appendix A.4.

Proposition 1 Given the parameters and the exogenous variables listed in Table 1, the model

(i) has a unique equilibrium if λ ≤ σ ;

(ii) has two equilibria if σ < λ < σ + (1− ξ) 2θ
1−θ ;

(iii) has two possibilities if λ > σ + (1 − ξ) 2θ
1−θ : (1) an equilibrium with a small population,

and (2) a situation where there is no steady-state, and the city grows without a bound.

Regularity Conditions In our analysis below, we impose the following two regularity con-

ditions that rule out some perverse outcomes, with a formal proof provided in Appendix A.5:

F >
λ− σ
1− ξ

; (25)

F > β2JN. (26)

The first condition rules out the situation where the city grows without a bound, illustrated

in panel (c). This is essentially the “no-black-hole condition” in Fujita et al. (1999). Intuitively,

for a city not to grow without a bound, its agglomeration effect needs to be balanced out by

the cost of commuting between the CBD and the city boundary.

The second regulatory condition rules out the possibility that a rise in productivity leads to

a smaller geographical size of the city. As we will show in the next section, without the second

11Technically this happens when the slope of aggregate labour demand curve ( 1−ξ
λ−σ ) is flatter than the slope

of aggregate labour supply curve as N goes to infinity so that the two curves do not cross twice. As shown in

Appendix A.4, the slope of aggregate labour supply curve is 1−θ
2θ when N goes to infinity.
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regulatory condition, land rent near the city edge may fall in response to a positive productivity

shock.

3 Comparative Statics

This subsection examines how land rent, the wage rate and population are affected by exogenous

productivity changes. Specifically, we will analyze what we refer to as elasticities, which is the

rate of change of an endogenous variable in response to an exogenous productivity shock.

Our comparative statics initially examine changes in the steady state value of these endogenous

variables. We later consider a case where the city does not move to the steady state immediately,

and contrast the short-term elasticities with the long-run steady state elasticities.

We will pay particular attention to how these elasticities are affected by the production

technology, the transportation technology and the amount of undevelopable land. The variables

ζw = dw/w

dÃ/Ã
, ζN = dN/N

dÃ/Ã
, ζpc = dpc/pc

dÃ/Ã
and ζpr(j) = dpr(j)/pr(j)

dÃ/Ã
denote the productivity elasticities of

the wage rate, population, the commercial land rent, and the residential land rent in location j

respectively. These elasticities are analogous to the volatilities of these variables in a dynamic

model.

3.1 The Elasticity of the Wage, Population and the City Boundary

We start by examining the elasticity of the wage rate and the population. As discussed in

Glaeser et al. (2006) and others, a positive shock to productivity is likely to result in a large

increase in population and a small increase in wages in a city that can easily expand, but a

small increase in population and a large increase in wages in a city whose growth is constrained.

In our benchmark model, the size of the city is not explicitly constrained, but workers bear

higher transportation costs when the population increases, which effectively constrains the size

of the city.

To explore the tradeoff between population growth and wage growth in our model, we

differentiate the aggregate labour supply function (equation 21) with respect to the productivity

shock, log(Ã), to obtain the following relationship between the elasticity of the wage rate and

the elasticity of the population.12

ζw
ζN

= F (27)

where F , defined in equation (23), captures various land supply constraints. The above equation

indicates that a productivity shock affects wages relatively more than population when land

supply is effectively more constrained.

12Equation (27) can be easily derived from equation (22).
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By differentiating equation (20), the aggregate labour demand equation, with respect to Ã,

we obtain

ζN = − 1

λ− σ
+

1− ξ
λ− σ

ζw. (28)

The above equation, together with equation (27), leads to the following expression for the

elasticity of population:

ζN =
1

−λ+ σ + (1− ξ)F
(29)

Since we have ruled out the small city equilibrium using inequality (25), the denominator

in the above equation is positive, which implies that ζN > 0, i.e., a positive productivity shock

always increases city population, but the amount of the increase is dampened by the effective

land supply constraint F .

3.2 Elasticity of Commercial Land Rent

We differentiate the commercial land rent equation, i.e., equation (16), with respect to Ã to

obtain

ζpc =
1

σ
+
λ

σ
ζN −

1− σ − ξ
σ

ζw, (30)

which shows that the commercial land rent elasticity decreases with ζw but increases with ζN .

Commercial land rent elasticity is dampened if the wage rate elasticity is higher, because a high

wage decreases the economic benefits available to commercial land owners under the zero-profit

condition of firms. Commercial land rent elasticity is amplified if the population elasticity is

higher, because a larger population is associated with more agglomeration benefits.

Using equations (27)-(28) to substitute out ζw and ζN in equation (30), we obtain the

following expression for the elasticity of commercial land rent:

ζpc =
1 + F

−λ+ σ + (1− ξ)F
(31)

where the denominator is positive, again due to the regularity condition represented by inequal-

ity (25).

It should be noted that this elasticity is not explicitly a function of the population or the

share of undevelopable land. These variables are important, but are subsumed by the effective

supply constraint F . The derivative of ζpc with respect to F is −λ−(1−σ−ξ)
[−λ+σ+(1−ξ)F ]2

, which is always

negative, indicating that the effective land supply constraint always dampens the commercial

land rent elasticity.

One can also consider the effect of a fixed boundary, which is an explicit land supply

constraint. In Appendix B.2 we consider the implications of such a constraint by comparing
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two cities with the same initial population, but one has a fixed boundary and the other has a

flexible boundary. We find that the elasticity of commercial land rent is lower in cities with a

fixed boundary.

The following proposition summarizes our results about the elasticity of commercial land

rent:

Proposition 2 In the benchmark model, the elasticity of commercial land rent is

(i) always positive

(ii) decreasing in F

(iii) is lower if the city boundary is fixed.

To understand the effect of F on commercial land rent elasticity, recall that F captures

the cost of commuting between the CBD and the city boundary. When a city experiences

an exogenous shock to productivity, firms hire more workers, which expands the boundary of

the city and generates more congestion, thus increases the commuting costs of workers at the

boundary and rents in the interior. To maintain the workers’ reservation utility level, wages

must also increase. When F is higher, the effect of a productivity shock on both wages and

rental rates are higher because an increase in population results in a greater increase in the

cost of commuting from the boundary. This in turn implies that the effect of the productivity

shock on firm revenues, and thus commercial rents, is dampened. The increased commuting

costs also reduce the number of new workers that are hired, so the agglomeration effect is also

dampened. If the city boundary is fixed, the residential rents and wages increase more, which

also reduces the elasticity of commercial land rents.

Equation (31) also reveals how the commercial land rent elasticity depends on production-

related parameters. Given the same F , commercial land rent elasticity increases with λ, the

agglomeration parameter. This reflects the fact that agglomeration externalities amplify pro-

ductivity shocks. Commercial land rent elasticity increases with ξ, the share of capital in the

production function, but decreases with σ, the share of land. This follows from the fact that

capital is adjusted in response to a productivity shock but commercial land is fixed. What this

means is that the inelastic supply of commercial land will be less constraining when capital is

more important in the production function, e.g., when it is not too expensive to build taller

buildings. As we will show in Section 5, when capital supply is fixed, ζpc decreases with both

ξ and σ.

3.3 Elasticity of Residential Land Rent

We now turn to the elasticity of residential land rent. From the residential bid-rent function

(equation 18), we derive the following equation:

ζpr(j) =
1

θ
ζw −

β2jN

θ
ζN , (32)
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which shows that residential land rent elasticity increases with ζw but decreases with ζN . In

other words, a positive productivity shock leads to an increase in the wage rate, which has the

effect of increasing rent. However, this effect is partially offset by the fact that an increase in

productivity also increases population, and thus transportation congestion, which dampens the

increase in residential land rent.

Using equations (27) and (29) to substitute for ζw and ζN in (32), we derive the following

expression for the elasticity of residential land rent in the close-in location with j = 0:

ζpr(j=0) =
1

θ
× F

−λ+ σ + (1− ξ)F
, (33)

which shows that the effective land supply constraint F plays a key role. As we discussed

earlier, more explicit forms of land supply constraints, such as the presence of undevelopable

land, affect land rent elasticity indirectly through F .

More generally, equation (32) implies that residential land rent elasticity for all the locations

can be expressed as:

ζpr(j) =
1

θ
× F − β2jN

−λ+ σ + (1− ξ)F
. (34)

This equation, compared with equation (33), includes the additional term β2jN which

captures the congestion effect.13 Due to our assumption that farther-out locations are more

affected by congestion, the elasticity decreases with j, the distance to CBD. Indeed, land rent

elasticity is the same in each location if the congestion has the same effect on commuting costs

in each location.14

Although F captures various forms of land supply constraints, its effect on residential land

rent elasticity is not necessarily positive, it depends on the magnitude of the agglomeration

externalities. Specifically, taking the partial derivative of ζpr(j) with respect to F , we find that

land rent elasticity decreases with F if and only if λ− σ > (1− ξ)β2jN .

Fixing the city boundary has a similar effect. It decreases residential land rent elasticity

if and only if λ − σ > (1 − ξ)β2jN . In other words, fixing the boundary can decrease the

land rent elasticity when the agglomeration parameter is sufficiently large. This is proved in

Appendix B.2.

From equation (34) we can also see that residential land rent elasticity depends on the

characteristics of production in a city in a similar way as commercial land rent elasticity. It

increases with λ and ξ, but decreases with σ.

13The regulatory condition (26) ensures that F − β2jN > 0.
14Specifically, with the alternative transportation cost function of f(j,N) = β0 + β1j + β2N , residential land

rent elasticity is ζp?r = 1
θ ×

F?−β2N
−λ+σ+(1−ξ)F? which does not depend on location. Appendix B.3 provides the proof

as well as the expression of F ?.
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In addition, residential land rent elasticity decreases with θ, the land share in workers’ utility

function, because when θ is smaller the rental rate can increase more with an increase in wages,

following Lemma 1 which shows the role of θ in determining the changes of residential land rent

with respect to the changes in wage.

We summarize our analysis of residential land rent elasticities in the following proposition:

Proposition 3 In the benchmark model, residential land rent elasticity is

(i) always positive.

(ii) decreasing in θ, the share of land consumption in the worker’s utility function.

(iii) decreasing in distance to the CBD.

(iv) decreasing in F if and only if λ− σ > (1− ξ)β2jN .

(v) lowered by keeping the city boundary fixed if and only if λ− σ > (1− ξ)β2jN .

The last two points of the above proposition describe one of our central results: constraints

that limit a city’s population increases residential land rent elasticities only if the agglomeration

parameter is small relative to other parameters. To understand this result, note that λ − σ

captures the net agglomeration externality with σ measuring the dampening effect of CBD

land on productivity. In contrast, the term (1 − ξ)β2jN captures the net negative congestion

externality that arises from having a higher population. The parameter β2 determines the

strength of the congestion effect, and β2jN describes the location-specific congestion. This

negative externality is mitigated if the capital share in production is large, as captured by the

term 1− ξ, since a larger ξ implies fewer workers per unit of output must be transported to the

CBD.

3.4 Rent Elasticity of Commercial Land Relative to Residential Land

Existing empirical evidence suggests that the rent of commercial land tends to be more volatile

than residential land.15 To describe the conditions under which our model can generate such a

result we combine equation (34) with equation (31) to obtain the following proposition:

Proposition 4 Commercial land rent is more volatile than residential land rent next to the

CBD, i.e. ζpc > ζpr(j=0), if and only if

F <
θ

1− θ
(35)

To understand condition (44) it is useful to consider the right and left hand sides of the

inequality separately. The left hand side effectively captures the supply elasticity of residential

land. When F is small, residential land can more easily expand in response to productivity

15See Leung and Kwong (2000).
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shocks, which means that residential rents increase less. However, if residential land rents

increase less, wages also increase less, which in turn makes commercial land in the CBD more

valuable. Hence, when F is small, CBD commercial rents are more volatile than residential

rents. The right hand side of the inequality is increasing in θ, and we have shown that a larger

θ dampens residential land rent elasticity, Hence, with sufficiently high θ, residential land rent

is less volatile than commercial land rent.

It is noteworthy that the importance of land in production, σ, does not appear in con-

dition 44, which is in contrast to the role played by θ, the parameter that determines the

importance of land in the utility of workers. As it turns out, σ has the same dampening ef-

fect on both residential and commercial land rent elasticities as shown in equation (32) and

equation (31).

3.5 Discussion

As we mentioned in the introduction, we are not the first to ask how land supply constraints

affect the responsiveness of land prices to shocks that increase the demand for both commercial

and residential land. For example, Glaeser et al. (2006) and Saiz (2010) talk in terms of the

elasticity of housing supply, and provide models where an increase in the elasticity of housing

supply decreases the effect of a demand shock on prices. Our model contributes to this literature

by providing micro foundations that allow us to link urban characteristics to the supply elasticity

of residential land.

To study the effect of supply constraints on residential rent elasticities we identify a variable,

F , that captures the effective land supply constraint. A higher F steepens the residential

land supply curve. We then show in Proposition 3 that the effective supply constraint does

not always increase the sensitivity of residential rents to exogenous productivity shocks. To

understand this result, it should be noted that there are two offsetting channels that determine

how supply constraints affect residential rents. The first is what we will call the scarcity channel

— when it is costly to increase supply, rents increase more. The second is what we will call the

agglomeration channel. When agglomeration externalities are strong, the supply constraints

reduce the feedback effect that amplifies the exogenous productivity shock.

As we discussed earlier, λ − σ determines the strength of agglomeration externalities, and

thus the importance of the agglomeration channel. When λ − σ is quite small, the scarcity

channel dominates and the resulting elasticity is consistent with the findings in Glaeser et al.

(2006) and Saiz (2010). Intuitively, a positive productivity shock increases demand for work-

ers, and residential land rent needs to increase to accommodate these additional workers and

maintain land market equilibrium. For supply constrained cities, residential land rent needs to

increase more due to the low price elasticity of supply. This argument reflects the traditional

discussion of how the elasticity of housing supply affects the sensitivity of the cost of housing
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to demand shocks.

However, when the agglomeration channel is more important, i.e., when λ− σ is large, the

effect that supply constraints has on the amplification of exogenous productivity shock more

than offsets the scarcity effect. Recall that an exogenous increase in productivity is amplified

because the resulting increase in population makes the workers more productive. The magnitude

of this amplification depends on the growth in population. Hence constraints that dampen the

increase in population also dampen the growth in productivity and wages. As a result, if the

agglomeration effect is sufficiently large, an exogenous productivity shock increases land rents

less when supply is more constrained.

Figure 2: Land Supply Constraints and Land Rent Elasticity
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Note: The responsiveness of land rent to a positive productivity shock depends on both

the supply elasticity of land (i.e. the steepness of land supply curve) and the extent to

which land demand curve shifts in response to a productivity shock. The old demand curve

represents the land demand before the productivity shock and point O represents the original

equilibrium. Given a positive productivity shock, point B is the new equilibrium for supply

constrained cities; and for cities with less supply constraints, point A1 and A2 represent the

new equilibrium for the case of weak and strong agglomeration effect, respectively.

We illustrate these two effects in Figure 2, which describes the supply and demand curves for

land, and is similar to Figure 1 in Glaeser et al. (2006). Here constrained cities are represented

by the steeper land supply curve, and unconstrained cites are represented by the flatter supply

curve. Starting from the original equilibrium (point O), traditional theory posits that a positive

productivity shock shifts the demand curve to the right, crossing the supply curve at point A

for unconstrained cities and point B for constrained cities, thus land rent should rise more in

constrained cities. However, this analysis ignores the agglomeration channel: given the same

exogenous productivity shock, the amount the demand curve shifts also depends on the extent

to which residential land can expand. For supply constrained cities that are costlier to expand,

the agglomeration effect is dampened, and thus the demand curve shifts less. In Figure 2, for

constrained cities, the new equilibrium is determined by the crossing of the two thick lines at
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point B. For unconstrained cities, the demand curve shifts further to the right, crossing the

supply curve at point A1 when λ− σ is small, and at point A2 when λ− σ is large. Therefore,

compared with constrained cities, land rent in unconstrained cities may rise less (A1 < B) or

more (A2 > B), depending on the strength of the agglomeration effect.

3.6 Dynamics of Land Rent

Up to this point, we have considered a setting where a shock to productivity causes residential

land rents to instantaneously move to a new steady state. In this subsection, we consider a

setting where the agglomeration effect takes one period to materialize, which implies that it

takes time for rents to fully respond to productivity shocks. When this is the case, there will

be a distinction between short-run and long-run elasticities.

To understand this, it is useful to divide the evolution of a productivity shock into three

phases. In phase one, the shock to productivity affects population, wages and rents, but the

agglomeration benefits from the additional population has not yet materialized. In phase two,

the agglomeration benefits from the additional population provides an additional boost to

productivity, which further increases wages and attracts additional population. The feedback

between population growth and productivity growth effectively feeds on itself, leading to a

persistent increase in city population, physical size, wage and rents. In phase three, the process

converges and the city is in a new steady state equilibrium.

To understand the distinction between the short-run and long-run responses to an exogenous

productivity shock, we compare land rent elasticities in phase one (the short-run) and phase

three (the long-run), using ζ0
pr and ζ0

pc to denote phase-one rent elasticities of residential land

and commercial land, respectively. Recall that phase-three rent elasticities are ζpr and ζpc ,

which were previously shown in equation (31) and equation (34). As we show in Appendix B.1,

the phase-one rent elasticities, ζ0
pr and ζ0

pc are expressed as,

ζ0
pc =

1 + F

σ + (1− ξ)F
(36)

ζ0
pr(j) =

1

θ
× F − β2jN

σ + (1− ξ)F
. (37)

It is noteworthy that if we set λ in phase-three elasticities to zero, we get phase-one elastic-

ities as shown in the above two equations. This is no coincidence – in phase one, the increased

population does not feed back into productivity, and the phase-one agglomeration depends on

the past population only. As a result, λ in the elasticities, which captures the feedback effect,

is dropped out of the elasticity equations.

Given the phase-one and phase-three elasticities equations, the normalized distances between

22



elasticities in phase one and phase three are

ζpc − ζ0
pc

ζpc
=

λ

σ + (1− ξ)F
(38)

ζpr − ζ0
pr

ζpr
=

λ

σ + (1− ξ)F
(39)

Because the right sides of equations (38)-(39) are always positive, land rent elasticities are

always larger in the long run than in the short run, and the difference depends on parame-

ters governing the effective land supply constraint, the agglomeration externality and land use

intensity. These properties are summarized in the following proposition.

Proposition 5 Given a productivity increase, land rent elasticity is larger in the long run than

in the short run for both residential land and commercial land, and the long-run versus short-run

difference is greater if a city features:

(i) a larger agglomeration parameter λ,

(ii) a smaller effective land supply constraint F ,

(iii) a smaller land use intensity parameter σ.

To provide additional intuition that might be useful for future empirical tests we explore how

the differences between short and long-run elasticities relate to city size. To do this, we examine

the partial derivatives of land rent elasticities with respect to our two measures of city size:

population N and the physical size, as summarized by the effective land supply constraint F .

For simplicity, we only consider residential land near the CBD with j = 0. Using equation (37),

we derive the following derivatives for phase-one elasticities:

dζ0
pr

dF
=

1

θ
× σ

[σ + (1− ξ)F ]2
and (40)

dζ0
pr

dN
=

1

θ
× dF

dN
× σ

[σ + (1− ξ)F ]2
, (41)

where dF
dN

in the right side of equation (41) is positive as shown in lemma 2. It follows from

equations (40)-(41) that
dζ0pr
dF

> 0 and
dζ0pr
dN

> 0, which implies that in the short-run, residential

land rents respond more to productivity increases in larger or more effectively constrained cities.

To understand relationship between land rent elasticity and city size in the long run, we

take the partial derivative of the phase-three elasticity, ζpr , with respect to population and the

effective land supply constraint using equation (33):

dζpr
dF

=
1

θ
× −λ+ σ

[−λ+ σ + (1− ξ)F ]2
and (42)

dζpr
dN

=
1

θ
× dF

dN
× −λ+ σ

[−λ+ σ + (1− ξ)F ]2
. (43)

23



As shown in the above expressions, the signs of these derivatives depend on the relative

magnitude of the agglomeration externality, i.e., whether or not λ > σ. Smaller or less effectively

constrained cities respond more to a productivity increase if and only if λ > σ. That is, in the

long run, dζpr
dF

< 0 and dζpr
dN

< 0 if λ > σ. If λ < σ, we still have dζpr
dF

> 0 and dζpr
dN

> 0 as in the

short run.

The above results are summarized in the following proposition:

Proposition 6 Consider cities with different population sizes or effective land supply con-

straints. Given a productivity increase,

(i) in the short run before the agglomeration takes effect, land rent increases more in cities

that have larger populations or more effective supply constraints;

(ii) in the long run when the economy reach the new steady state equilibrium,

(a) land rent increases less in larger or more constrained cities if λ > σ,

(b) land rent increases more in larger or more constrained cities if λ < σ.

It should be noted that our analysis of long-run elasticities is exactly the same as what we

discussed in the previous subsection. Specifically, in the long-run, less constrained cities may

experience greater rental rate elasticity if agglomeration externalities are large. An important

implication of proposition 6 is that this is not the case in the short run. Given a positive

productivity shock, rental rates initially increase less in smaller or less constrained cities. We

believe that this distinction between the long-run and short-run effects may explain the rapid

increase in prices, relative to rents, in relatively unconstrained cities, like Las Vegas, prior to

the financial crisis. Real estate prices in these cities may have initially increased more than

rents because investors anticipated the long-run increases that can be experienced by relatively

unconstrained cities with strong agglomeration externalities.

4 Undevelopable Land

Up to this point we have established that Λ, the proportion of land that cannot be developed,

indirectly affects land rent elasticities through the effective land supply constraint F . Because

the literature emphasizes land supply constraints that arise from this channel, i.e., Saiz (2010)

and others, this section examines the various effects of Λ in more detail. As we will show,

all else equal, cities will have lower populations if Λ is higher. This follows directly from the

fact that for any population, it is costlier to transport workers from the city boundary to the

CBD when Λ is higher. This in turn implies that a higher TFP is needed to sustain a given

population. Hence, if we consider the elasticities of cities with identical exogenous parameters

other than Λ, we are necessarily comparing cities with different populations.
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It may also be of interest to compare the elasticities of cities with similar populations, but

with different Λs. For example, empiricists may want to measure the effect of Λs on elasticities

in regressions that control for population. However, such an analysis would implicitly assume

that there are other sources of cross-city variation that allows cities with different Λs to have

similar populations. For example, as we discuss below, the TFP of the high Λ city may be

sufficiently higher than the TFP of the low Λ city so that their steady state populations are

the same.16

4.1 Undevelopable Land and City Configuration

In Appendix B.4.1, we prove that the following Proposition.

Proposition 7 Given the exogenous variables and parameters in Table 1, the proportion of

undevelopable land Λ has the following effect on the equilibrium population N , city boundary J ,

wage w, commercial land rent pc, and residential land rent pr(j):

(i) N decreases with Λ;

(ii) w decreases with Λ if and only if λ > σ;

(iii) J increases with Λ if and only if λ− σ > (1− ξ)β2JN ;

(iv) pc decreases with Λ;

(v) pr(j) decreases with Λ if and only if λ− σ > (1− ξ)β2jN .

The result that undevelopable land decreases the city population is straightforward, and

the fact that commercial rents decline with undevelopable land follows directly from the drop

in population. As we discuss below, the other results are somewhat subtler and depend on the

strength of the agglomeration effect.

The effect of undevelopable land on the wage rate depends on the strength of the agglomer-

ation effect relative to the land share parameter in the production function, i.e. whether λ > σ.

The intuition is that the wage rate equals the marginal product of labour, which increases with

population, as reflected by λ and decreases with the ratio of CBD land to labour, which is

captured by σ. When λ > σ, the agglomeration effect dominates, which implies that the wage

rate decreases with the share of undevelopable land.

The effect of undevelopable land on both the city boundary and residential rent also depends

on λ and σ. On one hand, a larger share of undevelopable land means less residential land is

available in close-in locations, causing the city boundary to expand and causing rents to increase.

16As indicated in footnote to equation (21), it is also possible to change Λ and hold population constant by

simultaneously changing the level of amenities. In some ways this is a more appealing approach. For example, a

lake in the middle of a city, which reduces the amount of developable land, also makes the city more appealing

and attracts more residents. Our analysis that allows the proportion of developable land to change while holding

population constant implicitly assumes that these two effects exactly offset.
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However, since more undevelopable land reduces population, it lowers the marginal product of

labour and the wage rate as long as λ−σ is positive. This effect reduces the costs that workers

are willing to pay for rent or to bear to travel to the CBD, which causes the boundary to shrink.

When λ−σ is sufficiently large, the latter channel dominates, so undevelopable land causes the

city to have a smaller residential area as well as lower rents. These effects are also influenced

by congestion as captured by the parameter β2. When the congestion effect is stronger, the

boundary is grows less with Λ and rents decrease less.

4.2 Holding the Exogenous Productivity Ã Constant

In this subsection we will examine the effect of changing the proportion of undevelopable land

in a setting where Ã is fixed, which means the population changes with Λ. When this is the case

Λ does not appear in the population and land rent elasticities, as indicated in equations (29),

(31) and (34), but the undevelopable land affect these elasticities indirectly through F .

In Appendix B.4.2, we prove the following lemma regarding how Λ affects F .

Lemma 3 F decreases with Λ if and only if λ > σ.

The lemma indicates that because of its effect on population, increases in undevelopable land

can either increase or decrease the effective land supply constraint depending on the agglom-

eration effect. When the agglomeration effect is strong, the dampening effect of undevelopable

land is also strong, so a larger Λ causes both N and J to be smaller, and hence F to be smaller

as well.

Since commercial land rent elasticity ζpc always decreases with F , it follows from Lemma 3

that a larger Λ is associated with a larger ζpc if and only if λ > σ. In addition, residential land

rent elasticity ζpr(j) is larger when F is smaller if and only if λ− σ > (1− ξ)β2jN as stated in

Proposition 3. We summarize these results in the following proposition.

Proposition 8 If we hold all the other exogenous parameters fixed, the following describes

how commercial land rent elasticity ζpc and residential land rent elasticity ζpr depend on the

proportion of developable land Λ:

(i) both ζpc and ζpr(j=0) are increasing in Λ if and only if λ− σ > 0.

(ii) for j > 0, ζpr(j) is increasing in Λ if λ− σ > (1− ξ)β2jN .

See Appendix B.4.3 for a proof.

The above result is driven by the size effect: everything else equal, cities with more unde-

velopable land have a smaller population, and are thus more responsive to productivity shocks.

Note that in the second point we only give a sufficient condition for ζpr(j) to decrease with

population. The necessary condition is given in Appendix B.4.3. The intuition is that a larger

population leads to more congestion, thus it has a similar effect on ζpr(j) as F . However,
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since population increases productivity, there are some combinations of population and the

agglomeration externality where ζpr(j) increases with population.

4.3 Holding Population Constant

In this subsection we consider the effect of undeveloped land in a case that holds population

constant. As we mentioned previously, if we hold productivity fixed, then cities with more

undevelopable land will have fewer people, so if we hold the population of the city fixed, we

must assume that the workers are more productive in the city with more undevelopable land.17

Under this assumption, the city with more undevelopable land will have a larger J , the distance

between the boundary and CBD, and hence a larger F , the effective land supply constraint.

The following Proposition follows directly from Proposition 2 and Proposition 3:

Proposition 9 Suppose the effect of a larger (smaller) Λ on city population is exactly offset

by the higher (lower) productivity Ã, then the following describes how commercial land rent

elasticity ζpc and residential land rent elasticity ζpr depend on the proportion of developable

land Λ:

(i) ζpc is decreasing in Λ.

(ii) ζpr(j=0) is decreasing in Λ if and only if λ− σ > 0.

(iii) for j > 0, ζpr(j) is decreasing in Λ if and only if λ− σ > (1− ξ)β2jN .

The above result indicates that a city with a given population but more undevelopable

land will exhibit lower commercial land rent volatility. The effect of undevelopable land on

residential land rent elasticity depends on λ and σ. For locations close to the CBD, the elasticity

is decreasing in the amount of undevelopable land when λ > σ. For locations farther from the

CBD, the proposition indicates that land rent elasticity is more likely to increase with Λ due

to the congestion effect captured by the term β2jN . This result is again due to the dampening

effect that land supply constraints have on agglomeration; an effect that is stronger when λ is

larger.

4.4 Summarizing The Effect of Λ on Land Rent Elasticities

Table 2 summarizes the effect of the fraction of undevelopable land (Λ) on land rent elasticities.

As is evident in the table, the result presented in Glaeser et al. (2006) and Saiz (2010) are special

cases in our model, corresponding to the positive signs in the table.

For example, the left panel of Table 2 indicates that Λ increases residential land rent elas-

ticity under two scenarios. First, among cities with the same exogenous productivity, land rent

17Saiz (2010) also mentions that cities with lots of undevelopable land and large populations must have either

more productive workers or superior amenities.
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Table 2: The Effect of Λ on Land Rent Elasticities
residential land (ζpr(j=0)) commercial land (ζpc)

fixed Ã fixed N fixed Ã fixed N

λ > σ + − + −
λ < σ − + − −

is more volatile if the agglomeration parameter λ is small, which is due to the size effect – a

smaller λ implies a smaller city which is more responsive to productivity shocks. Second, among

cities with the same population size, land rent is more volatile if the agglomeration parameter

λ is small, which is because the undevelopable land is less dampening to agglomeration when

λ itself is small.

5 Extensions

This section discusses various extensions of the benchmark model. In these extensions we

consider the effect of having a flexible CBD boundary and also consider a case where the

amount of capital in the city is fixed.

5.1 Flexible CBD

Up to this point we have assumed that the physical size of the CBD is fixed. In this section we

consider the case where the CBD expands or contracts depending on the relative demand for

commercial and residential space. Specifically, we assume that the CBD will expand or contract

up to the point where the rent on commercial land and residential land at the boundary are

equal.

To understand how productivity shocks affect the CBD boundary one should first note that

a positive productivity shock increases the demand for both commercial land and residential

land, as reflected by their positive rent elasticities. We combine equation (34) with equation (31)

in the baseline model to obtain the following condition for commercial land rent to be more

responsive to a productivity shock than residential land rent next to the CBD. Namely, ζpc >

ζpr(j=0) if and only if

F <
θ

1− θ
, (44)

which leads to the following Lemma. The proof is given in Appendix C.1.3.

Lemma 4 The CBD expands in response to a positive productivity shock if and only if condi-

tion (44) holds.
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Recall that θ is the households’ preference for land, and F is the effective supply constraint of

residential land. To understand condition (44) it is useful to consider the right and left hand

sides of the inequality separately. The left hand side effectively captures the supply elasticity

of residential land. When F is small, residential land can more easily expand in response to

productivity shocks, which means that residential rents increase less. However, if residential

land rents increase less, wages also increase less, which in turn makes commercial land in the

CBD more valuable. Hence, when F is small, CBD commercial rents are more volatile than

residential rents. The right hand side of the inequality is increasing in θ, and we have shown that

a larger θ dampens residential land rent elasticity, Hence, with sufficiently high θ, residential

land rent is less volatile than commercial land rent.18

We are interested in how the flexible supply of commercial land affects land rent elasticities.

The following proposition describes the comparison between the flexible CBD model and the

benchmark model:

Proposition 10 Relative to the benchmark model, for a given population, the following is true

when the size of the CBD is flexible,

(i) residential land rent elasticity is higher if and only if F < θ
1−θ ,

(ii) if F < θ
1−θ , then commercial land rent elasticity is higher if and only if λ > (1−σ− ξ)F .

The proof is given in Appendix C.1.

The first part of the proposition states residential land rent elasticity is higher if the CBD is

flexible when a positive shock increases the size of the CBD. When this is the case, the marginal

product of labour, and hence the wage rate and residential rents, is more sensitive to an exoge-

nous productivity shock because more land becomes available for production. The second part

of the proposition shows that the linkage between agglomeration externalities and elasticities

continues to hold. The flexible CBD model relaxes commercial land supply constraint, which

strengthens the agglomeration effect. When the agglomeration is important, i.e., when λ is

large, the relaxation of the land supply constraint leads to a larger elasticity of commercial

land rent.

5.2 Immobility of Capital

In our benchmark model we assume that capital is perfectly mobile, which means that the

owners of capital capture none of the benefits of a positive productivity shock. In this section

we consider the polar opposite case, where the amount of capital in the city is fixed, which

18 It is noteworthy that the importance of land in production, σ, does not appear in condition 44, which is in

contrast to the role played by θ, the parameter that determines the importance of land in the utility of workers.

As it turns out, σ has the same dampening effect on both residential and commercial land rent elasticities as

shown in equation (32) and equation (31).
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implies that capital costs fluctuate. As we show in Appendix C.2, the main comparison between

this extension and the benchmark model is the following:

Proposition 11 The following is true when the city-level capital stock is fixed:

(i) land rent elasticity (both commercial and residential) is lower relative to the benchmark

model,

(ii) land rent elasticity decreases with ξ, the share of capital in production.

The lower elasticities in the model with fixed capital arise for two reasons. The first is that

when capital is fixed, the city grows less in response to a productivity shock, which reduces

the agglomeration externalities. The second is that capital owners capture some of the benefits

associated with higher rates of productivity when the amount of capital is fixed.

Based on equations (84)-(85) in Appendix C.2, it is straightforward to show that in this

extended model, commercial land rent elasticity always decreases with F , the effective land

supply constraint, as in the benchmark model. For residential land near the CBD, the elasticity

decreases with F if and only if the agglomeration parameter is large relative to the threshold, i.e.,

λ > σ + ξ. Thus our intuition from the benchmark model still holds. However, compared with

the benchmark model, the model with immobile capital requires a stronger agglomeration effect

for F to dampen residential land rent elasticity, as the threshold condition in the benchmark

model is λ > σ, which is easier to satisfy than the condition λ > σ + ξ.

6 Conclusion

Although the 2007-2009 global financial crisis had a number of causes, an important contributor

was the perception that real estate is a relatively low risk investment. This misperception

created an overly levered property sector as well as overly exposed financial institutions, some

of which failed.

The model developed in this paper provides a framework for thinking about how the design

of a city and the firms that inhabit it affect rents, land values, and fluctuations in these val-

ues. The key elements in our model include the magnitude of agglomeration externalities and

various urban attributes that can effectively constrain the extent to which a city receiving an

exogenous productivity shock will grow. Stronger agglomeration externalities always amplify

exogenous productivity shocks. Populations grow more and rents increase more in response

to productivity shocks when agglomeration externalities are stronger. By definition, growth

constraints suppress the effect of productivity shocks on population growth, and in some cases

that depend on the magnitude of the agglomeration externality, the constraints amplify the

effect of productivity shocks on rents, and in some cases they suppress the effect.

30



When agglomeration externalities take time to materialize, rents may take time to fully

respond to a shock to productivity. To illustrate the distinction between short and long run

responses, it is useful to contrast the responses of a smaller city, like Las Vegas, that is likely to

have less stringent growth constraints, to that of a larger city, like San Francisco, that is likely

to be much more constrained. Our analysis suggests that because of the growth constraints,

land rents in cities like San Francisco are likely to initially increase more than they will in a

less constrained city, like Las Vegas, that will experience a much greater increase in population.

However, if we believe the population growth in Las Vegas generates agglomeration benefits that

materialize over time, a single productivity shock can generate persistent increases in land rents

that will result in a long-run steady state increase in rent that exceeds the long run increase in

the larger city. Because land prices are forward-looking, the initial land price response in the

smaller city may be substantially greater than the land price response in the more constrained

larger cities even though the initial rent response is weaker.

It should be noted that we have limited our analysis to changes in rents that are generated

solely from city specific shocks to productivity. Our analysis thus implicitly assumes that

other city attributes, like zoning and the transportation technology, affects volatility only by

amplifying or suppress the effect of these productivity shocks. However, it is likely, that in

reality, these city attributes are also uncertain, and thus contribute to uncertainty about future

rents and land values.

Examples would include self-driving cars that are likely to reduce transit congestion, and

improved telecommunication technology, which allow workers to work at least part of the time

from home. These changes are likely to have an effect on the internal structure of cities, and

as our model suggests, they can also influence the volatility of rents and property values.
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Appendices

A Equilibrium in the Benchmark Model

An equilibrium in our benchmark model is described by seven equations that determine the

seven endogenous variables: {pr, pc, w,N,K, J,A}. In this appendix we derive the seven e-

quations and show that they can be reduced to two equations: the aggregate labour supply

equation and aggregate labour demand equation. We also prove Proposition 1 in section A.4

of this appendix.
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A.1 A System of Seven Equations

In the system of seven equations, the first one is equation (12) which describes how the city

level TFP depends on the city population. The second and third equations are the bid-rent

functions as given by Equations (16)-(18). Equations (45)-(48) below represent the remaining

four equations.

A.1.1 City Level Quantities

The relative inputs of labour, land, and capital in production at the city level are:

N

S
=

1− σ − ξ
σ

× pc
w
, (45)

N

K
=

1− σ − ξ
ξ

× r

w
. (46)

These equations show the number of workers per unit of commercial land and per unit of capital

in a city. They can be easily derived from equations (9)-(11) which describe the optimal relative

inputs at the firm level.

Total number of workers that can be housed in a city is the integral of the number of workers

in each location in the city which is (1−Λ)/h(j). Here 1−Λ is the share of developable land and

h(j) is land demand per worker. Therefore, total number of workers in a city as the function

of wage and land rent is:

N =

∫ J

j=0

1− Λ

h(j)
dj =

∫ J

j=0

(1− Λ)pr(j)

θwe−f(j,N)
dj (47)

where we have used equation (7) to substitute out h(j).19 It should be noted that although

workers are assumed to be perfectly mobile, the supply of labour in a city is constrained by

residential land – given any wage and rent, there are limited amount of residential land available

and only a limited number of workers can be housed on the land.

The last equation in the system of seven equations determines the city boundary. Equat-

ing the residential bid-rent function at location J with the exogenous agricultural rent p, the

equilibrium boundary satisfies:

p = pr(j=J) = B0

[
we−f(J,N)

]1/θ
,

which is equivalent to f(J,N) = log(w) + θlog
(
B0

p

)
. Using the explicit form of the transporta-

tion cost function (equation 2), we obtain

J =
log(w) + θlog

(
B0

p

)
− β0

β1 + β2N
, (48)

19On the right hand side of this equation, the number of workers at each location is determined in part by

congestion, as expressed by the transportation cost function f(j,N). Since N is on both sides of the equation,

it must be solved as the fixed point that satisfies both sides of the equation.
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which indicates a positive relationship between the city boundary and wage, and a negative

relationship between the city boundary and population due to the congestion effect.

A.2 Aggregate Labour Supply/Demand Functions

Aggregate Labour Supply Aggregate labour supply in a city is defined as the total number

of workers that can be housed in a city as a function of wage. Substituting out the land rent

in equation (47) with the residential bid-rent function, we obtain the following:

N =
(1− Λ)B0

θ
w

1−θ
θ

∫ J

0

e−
1−θ
θ
f(j,N)dj. (49)

Taking logarithm of the above equation leads to the aggregate labour supply equation which

is equation (21).

Aggregate Labour Demand We obtain the following expression which describes the total

labour input relative to land by substituting out land rent in equations (45) with the commercial

bid-rent function:

N

S
=

[
Ãξξ(1− σ − ξ)1−ξ

rξ

] 1
σ
N

λ
σ

w
1−ξ
σ

. (50)

Rearranging terms, we re-write equation (50) as

N =

[
rξw1−ξ

Ãξξ(1− σ − ξ)1−ξSσ

] 1
λ−σ

. (51)

Taking logarithm of the above equation leads to equation (20), the aggregate labour demand

function.

Solving Other Variables We solve the equilibrium wage (w) and population (N) from the

aggregate labour demand and supply functions. Using the market clearing {w,N}, we can

solve for A, the city level TFP, from the agglomeration function A = ÃNλ. The remaining

endogenous variables, namely pr, pc, K, and J , are solved from equation (16), equation (18),

equation (46), and equation (48) respectively.

A.3 Slope of Aggregate Labour Supply Curve

Here we show that the slope of the aggregate labour supply function is 1
F

, with the definition

of F given in equation (23). In addition, we show that the aggregate labour supply curve is

upward sloping and concave.
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A.3.1 Expression of the Slope

Given the transportation cost function f(j,N) = β0 + β1j + β2jN , the transportation gradient

is ∂f(j,N)
∂j

= β1 + β2N , thus the term
∫ J

0
e−

1−θ
θ
f(j,N)dj in equation (21) can be re-written as∫ J

0

e−
1−θ
θ
f(j,N)dj =

∫ J

0

1

−1−θ
θ

∂f(j,N)
∂j

de−
1−θ
θ
f(j,N)

= − θ

(β1 + β2N)(1− θ)

∫ J

0

de−
1−θ
θ
f(j,N)

= − θ

(β1 + β2N)(1− θ)

(
e−

1−θ
θ
f(J,N) − e−

1−θ
θ
f(0,N)

)
=

θ

(β1 + β2N)(1− θ)

(
e−

1−θ
θ
β0 − e−

1−θ
θ
f(J,N)

)
. (52)

where we have used the condition that f(0, N) = β0.

We have shown that f(J,N) = log(w) − θ
(
log

p

B0

)
based on equation (48). Substituting

this boundary condition into equation (52), we obtain:∫ J

0

e−
1−θ
θ
f(j,N)dj =

θ

(β1 + β2N)(1− θ)

(
e−

1−θ
θ
β0 − e−

1−θ
θ

[
log(w)−θ

(
log

p

B0

)])
.

With the above equation, the aggregate labour supply function (equation 21) can be rewrit-

ten into:

log(N) = log

[
(1− Λ)B0

1− θ

]
+

1− θ
θ

log(w)− log(β1 + β2N) + log

(
θ

1− θ

)
+log

[
e−

1−θ
θ
β0 − e−

1−θ
θ

[
log(w)−θlog

(
p

B0

)]]
. (53)

From equation (53), the derivative of log(N) with respect to log(w) is:

dlog(N)

dlog(w)
= − β2N

β1 + β2N
× dlog(N)

dlog(w)
+

1− θ
θ

1 +
e
− 1−θ

θ

[
log(w)−θlog

(
p

B0

)]

e−
1−θ
θ
β0 − e−

1−θ
θ

[
log(w)−θlog

(
p

B0

)]
 .

After rearranging terms, we have

dlog(N)

dlog(w)
=

(
β1 + β2N

β1 + 2β2N

)(
1− θ
θ

)(
e−

1−θ
θ
β0

e−
1−θ
θ
β0 − e−

1−θ
θ

[
log(w)−θlog

(
p

B0

)]
)

=

(
β1 + β2N

β1 + 2β2N

)(
1− θ
θ

)(
e−

1−θ
θ
f(0,N)

e−
1−θ
θ
f(0,N) − e− 1−θ

θ
f(J,N)

)
(54)

=
1

F
.

where the last equality comes from equation (23) by using f(0, N) = β0 and f(J,N) = β0 +

β1J + β2JN .
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A.3.2 Shape of the Slope

First, we show that the aggregate labour supply curve is upward sloping. The term e−
1−θ
θ
f(0,N)−

e−
1−θ
θ
f(J,N) in equation (54) is positive. because transportation cost increases in distance, i.e.,

f(0, N) < f(J,N). Thus, 1
F

= dlog(N)
dlog(w)

> 0, i.e., the aggregate labour supply curve is upward

sloping.

Second, we show the aggregate labour supply curve is concave, i.e. d
[
dlog(N)
dlog(w)

]
/d[log(w)] < 0,

which is equivalent to showing d
[
dlog(w)
dlog(N)

]
/dN = dF/dN > 0 because dw/dN > 0. Using

equation (54), we have

F =
θ

1− θ

(
1 +

β2N

β1 + β2N

)(
1− e−

1−θ
θ

[f(J,N)−f(0,N)]
)

(55)

Since each term in equation (55) is positive, to prove dF/dN > 0, it suffices to prove that each

term has a positive derivative. It is straightforward to show:

d
(

1 + β2N
β1+β2N

)
dN

=
β1β2

(β1 + β1N)2
> 0

d
(

1− e− 1−θ
θ

[f(J,N)−f(0,N)]
)

dN
= β2J

(
1− θ
θ

)
e−

1−θ
θ

[f(J,N)−f(0,N)] > 0

Therefore,

dF/dN > 0, (56)

which leads to the conclusion that d
[
dlog(N)
dlog(w)

]
/d[log(w)] < 0. This also proves lemma 2.

A.4 Proof of Proposition 1

To prove Proposition 1, we need to show that the number of crossings of the aggregate labour

demand and supply curves depends on their slopes which in turn depend on the strength of

agglomeration, the importance of land and capital in production, and the cost of transportation.

We have shown in equation (54) that the aggregate labour supply curve is upward sloping

and concave. In addition:

1. when log(N) and log(w) are small, distance from the CBD to the boundary J is near

zero, thus the slope given by equation (54) converges to infinity as the term e−
1−θ
θ
f(J,N)

converges to e−
1−θ
θ
f(0,N), and the term β1+β2N

β1+2β2N
converges to one.

2. when log(N) and log(w) approach infinity, the slope given by equation (54) converges to
1−θ
2θ

because the term e−
1−θ
θ
f(J,N) converges to zero and the term β1+β2N

β1+2β2N
converges to 1

2

as N converges to infinity.
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The slope of aggregate labour demand curve, as given by equation (20), is 1−ξ
λ−σ . When

λ < σ, 1−ξ
λ−σ < 0 and the curve is downward sloping. In this case the curve has a single crossing

with the aggregate labour supply curve, and the equilibrium is unique.

If λ > σ, then the aggregate labour demand curve is upward sloping. It crosses the aggregate

labour supply curve at least once because: (i) the latter (i.e. the aggregate labour supply curve)

has a near-infinity slope when wage and population are small; and (ii) the latter goes to negative

infinity more quickly than the aggregate labour demand curve when wage tends toward zero.

If λ is larger than σ but not too large so that the slope 1−ξ
λ−σ is larger than 2θ

1−θ which is the

slope of aggregate labour supply curve when wage and population tend toward infinity, then

the aggregate labour demand and supply curves will cross twice, leading to two equilibria.

Thus the necessary and sufficient condition for the existence of two equilibria is that the

aggregate labour demand curve is steeper than the aggregate labour supply curve when wage

and population converge to infinity, i.e. 1−ξ
λ−σ >

2θ
1−θ , which is equivalent to σ < λ < σ+(1−ξ) 2θ

1−θ .

Finally, if

λ ≥ σ + (1− ξ) 2θ

1− θ
,

then the aggregate labour demand curve is flatter than the aggregate labour supply curve, and

the city keeps expanding with population and wage converging to infinity.

A.5 Regularity Conditions

In this subsection we prove that the model has stable equilibria given the two regularity condi-

tions: (i) the no-black-hole condition as stated in (25), and (ii) condition (26) which ensures a

positive elasticity of the city boundary with respect to productivity.

A.5.1 No-black-hole Condition

Since the equilibrium is unique with a finite population when λ ≤ σ, we just need to consider the

case of λ > σ to understand the no-black-hole condition. When λ > σ, F > λ−σ
1−ξ is equivalent

to 1
F
< 1−ξ

λ−σ , which means the aggregate labour supply curve is flatter than the aggregate

labour demand curve at the point they intersect, and only the large city equilibrium in panel

(b) of Figure 1 satisfies this condition. Since F < 2θ
1−θ , condition (25) implies λ−σ

1−ξ <
2θ

1−θ , or

equivalently,

λ− σ < (1− ξ) 2θ

1− θ
, (57)

which prevents the city from growing without a bound as discussed in Proposition 1.
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A.5.2 Positive Elasticity of City Boundary w.r.t. Productivity

Here we prove that regulatory condition (26) is a necessary and sufficient condition for a city

NOT to contract in response to a positive productivity shock.

Since J =
log(w)+θlog(B0/p)−β0

β1+β2N
(equation 48), we see that a positive productivity shock affects

the city boundary through two channels: (i) transportation costs increase as more population

leads to more congestion; and (ii) a higher wage allows workers to spend more on transportation,

while keeping their utility at the reservation utility level.

Using equation (48) and taking the derivative of J with respect to log(Ã), we obtain

dJ

dlog(Ã)
=

dlog(w)

dlog(Ã)
(β1 + β2N)− β2

dN
dlog(Ã)

[log(w) + θlog
(
B0/p

)
− β0]

(β1 + β2N)2

=

dlog(w)

dlog(Ã)
(β1 + β2N)− β2

dN
dlog(Ã)

(β1 + β2N)J

(β1 + β2N)2

=

dlog(w)

dlog(Ã)
− β2

dlog(N)

dlog(Ã)
JN

β1 + β2N

=
ζw − ζNβ2JN

β1 + β2N
.

Therefore, the elasticity of city boundary with respect to Ã is

ζJ =
dlog(J)

dlog(Ã)
=
ζw − β2JNζN
(β1 + β2N)J

=
F − β2JN

(β1 + β2N)J
ζN , (58)

where we have used equation (27) to substitute out ζw. Thus, a positive productivity shock

expands the size of the city if and only if F > β2JN which is regulatory condition (26).

B Elasticities

This appendix provides some technical details about how land rent elasticities depends on the

timing of production externality and city characteristics.

B.1 Elasticities Before Feedback

Here we prove equations (36)-(37) which are land rent elasticities in phase one before the

feedback from increased population is materialized.

We revisit the aggregate labor supply/demand equation. The aggregate labor demand

equation captures the number of workers that can be housed in a city, which is not affected by

the phase-one assumption that the feedback from increased population is NOT materialized.

Therefore we only need to revise the aggregate labor demand equation. Let N0 denote city
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population before the productivity shock occurs. Substituting out land rent in equations (45)

with the commercial bid-rent function, we obtain

N =

[
rξw1−ξ

ÃNλ
0 ξ

ξ(1− σ − ξ)1−ξSσ

]− 1
σ

, (59)

which is comparable to equation (51), except that the city level TFP here is ÃN0 rather than

ÃN . We take logarithm of the above equation, then differentiate it with respect to log(Ã) to

obtain the following:

ζN =
1

σ
− 1− ξ

σ
ζw, (60)

which is identical to equation (28) if λ is set to zero.

Recall that the aggregated labor supply equation is not affected by our phase-one assump-

tion, so equations (27) still holds true, which, along with equation (60), is used to substitute

out ζw and ζN in equation (30) and equation (32), leading to equations (36)-(37).

B.2 Fixed City Boundary

This subsection considers cities where the boundaries are fixed rather than endogenously deter-

mined, and proves the third point of Proposition 2 and the fourth point of Proposition 3 which

states how land rent elasticities are affected by the fixed boundaries.

We differentiate equation (21), the aggregate labour supply function, with respect to Ã,

keeping in mind that J is now treated as a constant.20 The following is obtained:

ζw
ζN

=
θ

1− θ
β1 + 2β2N

β1 + β2N
− β2JN

e
1−θ
θ

(β1J+β2JN) − 1
= F̄ . (61)

As in the benchmark model, the inverse of ζw
ζN

describes the slope of the aggregate labour

supply curve. i.e.,
dlog(N)

dlog(w)
=

1

F̄
.

Note the new effective land supply constraint, F̄ , is also increasing inN . It is straightforward

to show:

lim
N→0

F̄ =
θ

1− θ
,

lim
N→∞

F̄ =
2θ

1− θ
.

Therefore the shape of the aggregate labour supply curve is similar to the one shown in Figure 1.

Consequently, all the results in Proposition 1 hold true.

20Before differentiating, we use equation (52) to substitute out the term
∫ J

0
e−

1−θ
θ f(j,N)dj.
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Since fixing the city boundaries does not affect the aggregate labour demand function,

equation (28) from the benchmark model is still valid. We combine it with equation (61) to

substitute out ζw and ζN in (32), and derive the following expression for elasticity of land rent

in a city with fixed boundaries:

ζ̄pr =
1

θ
× F̄ − β2jN

−λ+ σ + (1− ξ)F̄
. (62)

As we will show below, F̄ > F . In addition, given the same exogenous productivity and other

parameters, population is always smaller in cities with fixed boundaries, thus it is guaranteed

that ζ̄pr > 0 because F̄ > F > β2jN .

Using equation (16), the elasticity of commercial land rent is

ζ̄pc =
1 + F̄

−λ+ σ + (1− ξ)F̄
. (63)

Obviously these elasticities of commercial and residential land rents are identical to those in

the benchmark model, except that F is replaced by F̄ . Therefore the results in Propositions 2-3

also hold true.

We now show that F̄ > F given the same population. Using regulatory condition (26), we

have:

β2JN < F =
θ

1− θ

(
1− e−

1−θ
θ

(β1+β2N)J
)(β1 + 2β2N

β1 + β2N

)
.

thus,

F̄ =
θ

1− θ
β1 + 2β2N

β1 + β2N
− β2JN

e
1−θ
θ

(β1J+β2JN) − 1

>
θ

1− θ
β1 + 2β2N

β1 + β2N
−

θ
1−θ

(
1− e− 1−θ

θ
(β1+β2N)J

)(
β1+2β2N
β1+β2N

)
e

1−θ
θ

(β1J+β2JN) − 1

=
θ

1− θ
β1 + 2β2N

β1 + β2N

(
1− 1− e− 1−θ

θ
(β1+β2N)J

e
1−θ
θ

(β1+β2N)J − 1

)

=
θ

1− θ
β1 + 2β2N

β1 + β2N

(
1− e−

1−θ
θ

(β1+β2N)J(e
1−θ
θ

(β1+β2N)J − 1)

e
1−θ
θ

(β1+β2N)J − 1

)
=

θ

1− θ
β1 + 2β2N

β1 + β2N

(
1− e−

1−θ
θ

(β1+β2N)J
)

= F.

The result in Proposition 3 follows directly from F̄ > F . Given the same population, the

effective land supply constraint is more stringent when city boundary is fixed, which dampens

residential land rent elasticity if and only if agglomeration effect is strong, i.e., when λ − σ >
(1− ξ)β2jN .
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In addition, by comparing equation (63) with equation (31), provided that F̄ > F , it is

straightforward to show that the commercial land rent elasticity is lower when the boundary is

fixed, as stated in Proposition 2.

B.3 Residential Land Rent Elasticity When Congestion Effect Is

Not Location-Specific

Here we prove that the residential land rent elasticity is

ζp?r =
1

θ
× F ? − β2N

−λ+ σ + (1− ξ)F ?
, (64)

when the the transportation cost function is f = β0 + β1j + β2N , which is a special case of the

more general function given in equation (34) where congestion is location-specific.

With the new transportation cost function, ∂f(j,N)
∂j

= β1, and equation (52) becomes:∫ J

0

e−
1−θ
θ
f(j,N)dj =

θ

(1− θ)β1

[
e−

1−θ
θ

(β0+β2N) − e−
1−θ
θ
f(J,N)

]
.

Substituting this into equation (21), the aggregate supply equation becomes:

log(N) = log

[
(1− Λ)B0

(1− θ)β1

]
+

1− θ
θ

log(w)

+log

[
e−

1−θ
θ

(β0+β2N) − e−
1−θ
θ

[
log(w)−θlog

(
p

B0

)]]
.

Note that β0 + β2N = f(0, N) and log(w)− θlog
(

p

B0

)
= f(J,N). Differentiating both sides of

the above equation with respect to log(w), we obtain the following:

dlog(N)

dlog(w)
=

1− θ
θ

+
− (1−θ)β2N

θ
e−

1−θ
θ
f(0,N) dlog(N)

dlog(w)
+ 1−θ

θ
e−

1−θ
θ
f(J,N)

e−
1−θ
θ
f(0,N) − e− 1−θ

θ
f(J,N)

,

which leads to the following slope of the aggregate labour supply curve:

dlog(N)

dlog(w)
=

1−θ
θ

1− e− 1−θ
θ
β1J + 1−θ

θ
β2N

:=
1

F ?
. (65)

Here F ? is analogous to F for the case of location-specific congestion in the benchmark model.

The explicit expression of F ? is

F ? =
θ

1− θ

(
1− e−

1−θ
θ
β1J
)

+ β2N ≈ β1J + β2N.

Equation (65) leads to the following:

ζw
ζN

=
dlog(w)/dlog(Ã)

dlog(N)/dlog(Ã)
=
dlog(w)

dlog(N)
= F ?, (66)
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which is analogous to equation (27) for the case of location-specific congestion.

Note that equation (28) still holds true because the aggregate labour demand is not affected

by the new transportation cost function, thus we substitute equation (66) into equation (28)

to obtain:

ζN =
1

−λ+ σ + (1− ξ)F ?
. (67)

Differentiating the residential bid-rent function with respect to log(Ã), we obtain

ζp?r =
1

θ
(ζw − β2NζN), (68)

where we have used df(j,N)

dlog(Ã)
= β2NζN based on the transportation cost function specification of

f(j,N) = β0 + β1j + β2N . Substituting equations (66)-(67) into equation (68), we obtain ζp?r
as in equation (64).

B.4 Undevelopable Land

This subsection shows the effects of Λ, the fraction undevelopable land. We start with showing

how Λ affects city configuration, including the population size and geographical size. Next we

show how land rent elasticity depends on Λ as discussed in Section ??, as well as on population

and CBD size.

B.4.1 Undevelopable Land and City Configuration

Here we show the effects of Λ on the city configuration as summarized in Proposition 7.

Wage and Population More undevelopable land is reflected in the downward shift of the

aggregate labour supply curve, leading to a smaller equilibrium population. As one can see

from panel (b) of figure 1, when λ > σ, the shift causes wage to fall if we exclude the small city

equilibrium; while the shift causes wage to rise when λ < σ, which can be seen from panel (a)

of the figure. This proves point 1 of Proposition 7.

Commercial Land Rent To see how Λ affects commercial land rent pc, we rewrite the

commercial bid-rent function as follows:

log(pc) =
1

σ
log

(
Ãσσξξ(1− σ − ξ)1−σ−ξ

rξ

)
+
λ

σ
log(N)− 1− σ − ξ

σ
log(w).

The derivative of log(pc) with respect to Λ is:

dlog(pc)

dΛ
=
λ

σ
× dlog(N)

dlog(Λ)
− 1− σ − ξ

σ
× dlog(w)

dlog(Λ)
. (69)
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Based on the aggregate labour demand function, the following relationship exists between dlog(N)
dlog(Λ)

and dlog(w)
dlog(Λ)

:

dlog(N)

dlog(Λ)
=

1− ξ
λ− σ

× dlog(w)

dlog(Λ)
. (70)

Substituting this relationship into equation (69), we obtain

dlog(pc)

dΛ
=

λ

σ
× dlog(N)

dlog(Λ)
− 1− σ − ξ

σ
× λ− σ

1− ξ
× dlog(N)

dlog(Λ)

=
λ+ 1− σ − ξ

1− ξ
× dlog(N)

dlog(Λ)
< 0,

where the inequality holds because dlog(N)
dlog(Λ)

< 0 which is true because population falls with Λ.

Thus cities with larger shares of undevelopable land always have lower commercial land rents.

Residential Land Rent Based on the residential bid-rent function, the logarithm of resi-

dential rent is:

log(pr(j)) = log(B0) +
1

θ
[log(w)− f(j,N)].

The derivative with respect to Λ is:

dlog(pr(j))

dΛ
=

1

θ

[
dlog(w)

dΛ
− β2jN

dlog(N)

dΛ

]
=

1

θ

[
λ− σ
1− ξ

× dlog(N)

dΛ
− β2jN

dlog(N)

dΛ

]
=

λ− σ − (1− ξ)β2jN

θ(1− ξ)
× dlog(N)

dΛ
.

where we have used equation (70) to substitute out dlog(w)
dΛ

in the second equality. Since popu-

lation falls with Λ so dlog(N)
dΛ

< 0. From the above equation, we conclude that

dlog(pr(j))

dΛ
< 0 iff λ− σ > (1− ξ)β2jN.

City Boundatry We use the expression of J =
log(w)+θlog(B0/p)−β0

β1+β2N
(equation 48). The bound-

ary J changes with population and wage which in turn change when Λ changes. The derivative
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of J with respect to Λ is:

dJ

dΛ
=

(β1 + β2N)× dlog(w)
dΛ
− β2[log(w) + θlog

(
B0/p

)
− β0]N × dlog(N)

dΛ

(β1 + β2N)2

=
(β1 + β2N)× dlog(w)

dΛ
− (β1 + β2N)β2JN × dlog(N)

dΛ

(β1 + β2N)2

=
dlog(w)
dΛ
− β2JN × dlog(N)

dΛ

β1 + β2N

=

(
λ−σ
1−ξ − β2JN

)
× dlog(N)

dΛ

β1 + β2N
,

where we have used equation (70) in the last equality. Therefore, dJ
dΛ
< 0 if and only if

λ > σ + (1− ξ)β2JN > 0.

B.4.2 How Does F Depend on CBD Size and Undevelopalbe Land?

This subsection proves Lemma 3 which states that F decreases with the share of undevelopable

land Λ if and only if λ > σ. We also prove that F increases with the CBD size S, i.e., dF
dS
> 0

if and only if λ > σ. In other words, we show the following:

dF

dS
> 0 iff λ > σ; (71)

dF

dΛ
< 0 iff λ > σ, (72)

We revisit equations (20)-(21), the aggregate labour supply and labour demand functions.

A smaller Λ shifts the aggregate labour supply curve up. When λ−σ ≤ 0, this leads to a larger

population but a smaller wage. As shown in Figure 3, the equilibrium moves from point A to

point B. As indicated by equation (21), log(N) and log(1 − Λ) have a linear relationship, so

the two curves are parallel to each other, implying that the slope is steeper at point B than at

point A. Recall that the slope is 1/F , so F is smaller at point B than at point A. Therefore,

the smaller Λ leads to smaller F if λ − σ ≤ 0, i.e., dF
dΛ

> 0. On the other hand, if λ − σ > 0,

more developable land increases F by increasing both wage and population, hence dF
dΛ
< 0. This

proves Lemma 3.

Based on equation (20), a larger CBD leads to a downward shift of the aggregate labour

demand curve because commercial land is relatively cheaper. If λ− σ ≤ 0, the situation corre-

sponds to panel (a) of Figure 1, and this shift decreases the equilibrium wage and population,

which lowers F , i.e. dF
dS

< 0. However if λ − σ > 0, the situation correspond to panel (b)

of Figure 1, and the shift of aggregate labour demand curve increases equilibrium wage and

population, thus dF
dS
> 0. In sum, dF

dS
> 0 if and only if λ > σ
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Figure 3: Effects of More Developable Land
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Note: More developable land (i.e. smaller Λ) shifts the aggregate labour supply curve up,

and the equilibrium moves from point A to B, resulting in a steeper tangent of aggregate

labour supply curve at the point of equilibrium.

B.4.3 Effects of Undevelopable Land, Population, and CBD size on Land Rent

Elasticity

This appendix shows that land rent elasticity depends on the share of undevelopable land Λ,

as stated in Proposition 8. We also show that land rent elasticity depends on the existing city

population N and the size of CBD S in the following way:

Proposition 12 Given the exogenous variables and parameters in Table 1, the following is

true regarding how land rent elasticity depends on population N and CBD size S:

(i) In location j = 0, ζpr is decreasing in N and S if and only if λ− σ > 0.

(ii) In locations j > 0, ζpr is decreasing in N and S if λ− σ > (1− ξ)β2jN .

(iii) ζpc is decreasing in the population N

(iv) ζpc is decreasing in the CBD size S if and only if λ− σ > 0.

Residential Land Rent We start from the effects of population on land rent elasticity. From

equation (34), the derivative of residential land rent elasticity to city population is:

dζpr
dN

=

(
dF
dN
− β2j

)
[−λ+ σ + (1− ξ)F ]− dF

dN
(1− ξ)(F − β2jN)

θ[−λ+ σ + (1− ξ)F ]2

=
(−λ+ σ)

[
dF
dN
− β2j

]
+ (1− ξ)β2j

[
dF
dN
N − F

]
θ[−λ+ σ + (1− ξ)F ]2

=
[−λ+ σ + (1− ξ)β2jN ] dF

dN
+ [λ− σ − (1− ξ)F ]β2j

θ[−λ+ σ + (1− ξ)F ]2
, (73)

where the second term in the numerator is negative due to the regulatory condition (25).

When λ − σ > (1 − ξ)β2jN , the first term in the numerator is also negative. Therefore

λ− σ > (1− ξ)β2jN is a sufficient condition for dζpr
dN

to be negative.
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For location j = 0, equation (73) implies:

dζpr
dN

=
[−λ+ σ] dF

dN

θ[−λ+ σ + (1− ξ)F ]2
,

which is negative if and only if λ− σ > 0.

The necessary and sufficient condition for dζpr
dN

< 0 is λ−σ > −χ where χ =
F− dF

dlog(N)
dF

dlog(N)
−β2jN

(1−

ξ)β2jN . Note the term dF
dlog(N)

in χ is equivalent to dlog(w)
d2log(N)

, i.e. the second derivative of the

inverse aggregate labour supply function, because F = dlog(w)
dlog(N)

.

To derive the condition λ− σ > −χ, we use equation (73) to obtain

dζpr
dN

=
(−λ+ σ)

[
dF

dlog(N)
− β2jN

]
+ (1− ξ)β2jN

[
dF

dlog(N)
− F

]
θN [−λ+ σ + (1− ξ)F ]2

, (74)

thus dζpr
dN

< 0 is equivalent to

(−λ+ σ)

[
dF

dlog(N)
− β2jN

]
< (1− ξ)β2jN

[
F − dF

dlog(N)

]
.

Since
[

dF
dlog(N)

− β2jN
]
, this is equivalent to

λ− σ > −

[
F − dF

dlog(N)

dF
dlog(N)

− β2jN

]
(1− ξ)β2jN := −χ.

That is, dζpr
dN

< 0 if and only if λ− σ > −χ.

Next, we derive the expression for dζpr
dS

and dζpr
d(1−Λ)

. Similar to equation (73), for the effects

of CBD size S and the share of developable land 1− Λ, we derive the following:

dζpr
dS

=
[−λ+ σ + (1− ξ)β2jN ]dF

dS
+ [λ− σ − (1− ξ)F ]β2j

dN
dS

θ[−λ+ σ + (1− ξ)F ]2
;

dζpr
d(1− Λ)

=
[−λ+ σ + (1− ξ)β2jN ] dF

d(1−Λ)
+ [λ− σ − (1− ξ)F ]β2j

dN
d(1−Λ)

θ[−λ+ σ + (1− ξ)F ]2
.

Using (71)-(72), it is straightforward to see that, for the case of j = 0, dζpr
dS

< 0 and
dζpr
d(1−Λ)

< 0 if and only if λ− σ > 0. Further, if λ− σ > (1− ξ)β2jN , then the first term in each

of the numerators is negative, which implies dζpr
dS

< 0 and dζpr
d(1−Λ)

< 0 since λ−σ− (1− ξ)F < 0

by the regulatory condition (25).

If λ−σ < (1− ξ)β2jN , it is possible for ζpr to increase with S. This occurs when dF
dS

is very

large and β2j
dN
dS

is very small. Similar analysis applies to dζpr
d(1−Λ)

.
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Commercial Land Rent Elasticity From equation (31) it is straightforward to derive the

following:

dζpc
dN

= − λ+ (1− σ − ξ)
[−λ+ σ + (1− ξ)F ]2

× dF

dN

dζpc
dS

= − λ+ (1− σ − ξ)
[−λ+ σ + (1− ξ)F ]2

× dF

dS

dζpc
d(1− Λ)

= − λ+ (1− σ − ξ)
[−λ+ σ + (1− ξ)F ]2

× dF

d(1− Λ)

From the definition of F , it is clear that dF
dN

> 0, therefore dζpc
dN

< 0. Using (71)-(72), it is

straightforward to see that dζpc
dS

< 0 and dζpc
d(1−Λ)

< 0 if and only if λ− σ > 0.

C More Details on Extended Models

This Appendix provides details about the extended model and proves Propositions 10 and 11.

C.1 Expandable CBD

C.1.1 Aggregate Labour Demand and Multiple Equilibria

When the CBD is expandable, land use competition ensures that commercial land rent equals

residential rent on the border of the CBD, i.e. pr(j=0) = pc. Using the commercial and residential

bid rent functions (equation 16 and equation 18), we have

B0(e−β0w)1/θ =

[
ÃNλσσξξ(1− σ − ξ)1−σ−ξ

rξw1−σ−ξ

] 1
σ

.

This is equivalent to

log(N) =
1

λ
log

(
rξ(B0e

−β0/θ)σ

Ãσσξξ(1− σ − ξ)1−σ−ξ

)
+

1

λ

(σ
θ

+ 1− σ − ξ
)
log(w), (75)

which is the aggregate labour demand function when the CBD is expandable.

Clearly this new aggregate labour demand function is upward sloping unless λ = 0. There-

fore with λ > 0, this extended model always has two equilibria. In contrast, two equilibria arise

in the benchmark model only when the agglomeration effect is strong enough, i.e. λ > σ.

The extended model here has the same aggregate labour supply function as equation(21),

since the function is derived from the equilibrium of the residential land market, and it is not

affected by the expandable CBD. The slope of aggregate labour supply curve is still 1
F

with F

defined in equation (23).
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As in the benchmark model, we rule out the situation where city grows without a bound by

assuming that the slope of aggregate labour demand curve is steeper than the slope of aggregate

labour supply curve – 1
λ

(
σ
θ

+ 1− σ − ξ
)
> 1

F
, which is equivalent to:

λ <
(σ
θ

+ 1− σ − ξ
)
F . (76)

This is the “no-black-hole condition” when the CBD is flexible.

C.1.2 Elasticities

We use ζ̃N , ζ̃w, ζ̃pr , ζ̃pc to denote elasticities in the model with expandable CBD. Differentiating

equation (75) with respect to log(Ã), we obtain obtain:

ζ̃N =
1

λ

(σ
θ

+ 1− σ − ξ
)
ζ̃w −

1

λ
. (77)

This, combined with equation (27), yields the following population elasticity:

ζ̃N =
1(

σ
θ

+ 1− σ − ξ
)
F − λ

, (78)

which is positive given the “no-black-hole condition” given by (76).

The elasticity of residential land rent as in equation (32) is still valid in the extended

model because is derived from residential bid-rent function. We substitute out ζN and ζw using

equations (27) and (78) to obtain:

ζ̃pr(j) =
1

θ
× F − β2jN(

σ
θ

+ 1− σ − ξ
)
F − λ

. (79)

This elasticity has the same properties as the residential land rent elasticity in the benchmark

model, except that ζ̃pr(j) decreasing in F if and only if λ >
(
σ
θ

+ 1− σ − ξ
)
β2jN .

Compared with ζpr(j) in the benchmark model as given by equation (34), it is straightforward

to see that the elasticity in equation (79) is larger if and only if F < θ
1−θ , i.e.,

ζ̃pr > ζpr iff F <
θ

1− θ
.

This is point 2(a) of Proposition 10.

Since commercial land rent always equals the residential land rent in location j = 0, we

have ζ̃pr(j=0) = ζ̃pc , i.e.,

ζ̃pc =
1

θ
× F(

σ
θ

+ 1− σ − ξ
)
F − λ

.
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Now we study whether commercial rent elasticity is larger or smaller when CBD is expand-

able by comparing ζ̃pc with ζpc in equation (31). Given the same population, the necessary and

sufficient condition for ζ̃pc < ζpc is

1

θ
× F(

σ
θ

+ 1− σ − ξ
)
F − λ

<
1 + F

−λ+ σ + (1− ξ)F
⇔ −λF + (1− ξ)F 2 < −θλ+ θ(1− ξ − σ − λ)F + σ(1− θ)F 2 + θ(1− ξ)F 2

⇔ [(1− ξ)(1− θ)− σ(1− θ)]F 2 < −θλ+ [(1− θ)λ+ θ(1− ξ − σ)F

⇔ θ

1− θ
λ+ (1− σ − ξ)F 2 <

[
λ+

θ

1− θ
(1− σ − ξ)

]
F

⇔ θ

1− θ
λ+ (1− σ − ξ)F 2 < λF +

θ

1− θ
(1− σ − ξ)F

⇔ [(1− σ − ξ)F − λ]F < [(1− σ − ξ)F − λ]
θ

1− θ
.

Thus if we impose the condition that F < θ
1−θ , then

ζ̃pc < ζpc iff λ < (1− σ − ξ)F.

This proves point 2(b) of Proposition 10.

C.1.3 Proof of Lemma 4

Here we prove that the CBD size increases in response to a positive productivity shock if and

only if F < θ
1−θ . Based on equation (45), total residential land demand is S = σwN

(1−σ−ξ)pc where

pc can be substituted by the commercial bid-rent function (equation 16). Thus we have:

S =
σwN

(1− σ − ξ)pc

=
σwN

(1− σ − ξ)

[
Ãσσξξ(1− σ − ξ)1−σ−ξ

rξw1−σ−ξ

]− 1
σ

N−
λ
σ

=

[
rξ

(1− σ − ξ)1−ξξξÃ

] 1
σ

w
1−ξ
σ N

σ−λ
σ . (80)

Let ζS denote the elasticity of CBD size with respect to the exogenous productivity Ã. We

take logarithm of equation (80) and differentiate it with respect to log(Ã) to obtain:

ζS =
σ − λ
σ

ζ̃N +
1− ξ
σ

ζ̃w −
1

σ

= ζ̃N

(
σ − λ
σ

+
1− ξ
σ

ζ̃w

ζ̃N

)
− 1

σ

=

(
σ−λ
σ

+ 1−ξ
σ
F
)(

σ
θ

+ 1− σ − ξ
)
F − λ

− 1

σ
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where we have used F = ζ̃w
ζ̃N

and used equation 78) to substitute out ζ̃N . After some algebra,

the above equation becomes

ζS =
σ(

σ
θ

+ 1− σ − ξ
)
F − λ

×
(

1− 1− θ
θ

F

)
. (81)

The first term in equation 81 is positive due to the “no-black-hole condition”. Thus ζS > 0,

i.e., the CBD expands in response to a positive productivity shock, if and only if 1− 1−θ
θ
F > 0

which is equivalent to F < θ
1−θ , the condition given in Lemma 4.

C.2 Immobile Capital

In this subsection, we consider the alternative assumption of immobile capital. This is partly

motivated by the observations in Glaeser and Gyourko (2005) that the depreciation of urban

buildings is slow which causes the slow decline of cities that experience negative productivity

shocks.

Endogenous Capital Price We assume the city has a fixed K̄ stock of capital, and the price

of capital r is endogenously determined by the capital market clearing condition. From the

firm’s problem we have shown that n
k

=
(

1−σ−ξ
ξ

) (
r
w

)
(equation 10) for each firm. Aggregating

over all the firms we have:

r =
ξ

1− σ − ξ
N

K̄
w. (82)

Given a higher productivity, both wage and total number of workers rise, thus equation (82)

predicts that r should rise.21

Elasticities We use ζ∗ to denote elasticities in the model with fixed capital stock. Substitut-

ing out r in the aggregate labour demand function, we rewrite equation (20) as:

log(N) =
1

λ− σ − ξ
log

(
1

Ã(1− σ − ξ)K̄ξSσ

)
+

1

λ− σ − ξ
log(w).

Differentiating both sides the above with respect to log(Ã) leads to ζ∗N = 1−ζ∗w
σ+ξ−λ where ζ∗w can be

substituted out using ζ∗w
ζ∗N

= F (equation 27 ).22 This leads to the following population elasticity:

ζ∗N =
1

−λ+ σ + ξ + F
. (83)

21Capital owners share part of the economic benefits (costs) from the rising (falling) productivity in this case.
22Equation (27) is still valid in the case of immobile capital because it is derived from the aggregate labour

supply function from the benchmark model which is not affected by capital immobility assumption.
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Using equation (83), we substitutes out ζw and ζN in equation (32) to reach:

ζ∗pr(j) =
1

θ
× F − β2jN

−λ+ σ + ξ + F
, (84)

where F is defined in equation (23). It is straightforward to show ζ∗pr(j) > 0 given the same

regularity conditions in the benchmark model.

For commercial land rent, we substitute out r in commercial bid-rent function (equation 16)

to obtain:

pc =

[
Ãσσ(1− σ − ξ)1−σK̄ξ

w1−σ

] 1
σ

N
λ−ξ
σ .

Thus the elasticity of commercial land rent is

ζ∗pc =
1

σ
+
λ− ξ
σ

ζ∗N −
1− σ
σ

ζ∗w

=
1 + F

−λ+ σ + ξ + F
. (85)

Point (i) of Proposition 11 Note that ζ∗pc and ζpc have the same numerators, so do ζ∗pr
and ζpr . Thus we just need to compare the denominators. Obviously −λ + σ + ξ + F >

−λ+ σ + (1− ξ)F holds true, where −λ+ σ + (1− ξ)F > 0 is the denominator of ζpr and ζpc
in the bench mark model. In other words, in the case of immobile capital, the denominator of

land rent elasticities is larger, which implies

ζ∗pr < ζpr ;

ζ∗pc < ζpc .

Point (ii) of Proposition 11 Equations (84)-(85) indicate that, when capital is immobile,

land rent elasticities decrease with ξ, the share of capital in production, exactly the opposite

of the results in the benchmark model.
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