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1. Introduction

• It is a difficult task to construct constant quality price indexes

for residential (and commercial) properties. Properties with

structures on them consist of two main components: the land

component and the structure component.

• The problem is that each property has a unique location (which

affects the price of the land component) and given the fact that

the same property is not sold in every period, it is difficult to

apply the usual matched model methodology when constructing

constant quality price indexes.

• Repeat sales methodology: Bailey, Muth and Nourse (1963) .

• Hedonic regression model approach.
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The main question

• The main question that this paper addresses is the following one:

– Can satisfactory residential property price indexes be constructed using

hedonic regression techniques where location effects are modeled using

local neighbourhood dummy variables or is it necessary to use spatial

coordinates to model location effects.

– Hill and Scholz (2018) addressed this question and found that it was not

necessary to use spatial coordinates to obtain satisfactory property price

indexes for Sydney. However, their hedonic regression model did not

estimate separate land and structure price indexes for residential properties.

• The present paper addresses the Hill and Scholz question in the

context of providing satisfactory residential land price indexes.

– The spatial coordinate model used in the present paper is a modification of

Colwell’s (1998) spatial interpolation method. The modification can be

viewed as a general nonparametric method for estimating a function of two

variables.

3



page.

Spatial Coordinates versus Neighbourhood Dummy Variables

page.

2. Bilinear Interpolation on the Unit Square

• Suppose that f(x,y) is a continuous function of two variables,

x and y, where 0  x  1 and 0  y  1. Suppose that f takes

on the values ij at the corners of the unit square; i.e., we have:

(1) 00  f(0,0); 10  f(1,0); 01  f(0,1); 11  f(1,1). 

10  f(1,0) 11  f(1,1) 

00  f(0,0) 01  f(0,1) 

– Assuming that we know (or can estimate) the heights of the function at

the corners of the unit square, we look for an approximating

continuous function that satisfies counterparts to equations (1) at the

corners of the unit square and is a linear function along the four line

segments that make up the boundary of the unit square.

4



page.

Spatial Coordinates versus Neighbourhood Dummy Variables

page.

Colwell’s Model (1989) 

• Colwell (1998; 89) showed that the following quadratic

function of x and y, g(x,y), satisfies these requirements:

(2) g(x,y)  00(1−x)(1−y) + 10x(1−y) + 01(1−x)y + 11xy.

• Colwell (1998; 89) also showed that g(x,y) is a weighted

average of 00, 10, 01 and 11 for (x,y) belonging to the unit

square. In order to gain more insight into the properties of

g(x,y), rewrite g(x,y) as follows:

(3) g(x,y) = 00 + (10 − 00)x + (01 − 00)y + [(00 + 11)            

− (01 + 10)]xy.
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Colwell’s Model (1989) 

(3) g(x,y) = 00 + (10 − 00)x + (01 − 00)y + [(00 + 11) − (01 + 10)]xy.

• Thus if 00 + 11 = 01 + 10, then g(x,y) is a linear function

over the unit square.

• However, if 00 + 11  01 + 10, then g(x,y) is a saddle

function; i.e., the determinant of the matrix of second order

partial derivatives of g(x,y), 2g(x,y), is equal to − [(00 + 11)

− (01 + 10)]
2 < 0 and hence 2g(x,y) has one positive and one

negative eigenvalue.

01  f(0,1) 11  f(1,1) 

00  f(0,0) 10  f(1,0) 
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3. Bilinear Spline Interpolation over a Grid 

• In order to explain how Colwell’s method works over a grid

of squares, we will explain his method for the case of a 3 by 3

grid of squares. The method will be applied to the variables X

and Y that are defined over a rectangular region in X,Y space.

We assume that X and Y satisfy the following restrictions:

(4) Xmin  X  Xmax ; Ymin  Y  Ymax

• where Xmin < Xmax and Ymin < Ymax.

• We translate and scale X and Y so that the range of the

transformed X and Y, x and y, lie in the interval joining 0 and

3; i.e., define x and y as follows:

(5) x  3(X − Xmin)/(Xmax − Xmin) ;

y  3(Y − Ymin)/(Ymax − Ymin).

7
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• Define the following 3 dummy variable (or indicator)

functions of x:

(6) D1(x)  1 if 0  x < 1; D1(x)  0 if x  1;

D2(x)  1 if 1  x < 2; D2(x)  0 if x < 1 or x  2;

D3(x)  1 if 2  x  3; D3(x)  0 if x < 2.

• Note that if 0  x  3, then D1(x) + D2(x) + D3(x) = 1 so that

the 3 dummy variable functions sum to 1 if x lies in the

interval between 0 and 3.

• The above definitions can be used to define the 3 dummy

variable functions of y, D1(y), D2(y) and D3(y), where y

replaces x in definitions (6).

• Finally, a set of 33 = 9 bilateral dummy variable functions,

Dij(x,y), is defined as follows:

(7) Dij(x,y)  Di(x)Dj(y) ; i = 1,2,3; j = 1,2,3.

8
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• The domain of definition for the Dij(x,y) is the square S3 in

two dimensional space with each side of length 3; i.e.,

S3  { (x,y) : 0  x  3; 0  y  3}.

• Note that for any (x,y) belonging to S3, we have i=1
3 j=1

3

Dij(x,y) = 1. Thus the bilateral dummy variable functions

Dij(x,y) will allocate any (x,y)S3 to one of the nine unit

square cells that make up S3.

• Denote the cell of area 1 that corresponds to x and y such that

Dij(x,y) = 1 as Cij for i,j = 1,2,3. Thus the 3 cells in the grid of

9 cells that correspond to y values that satisfy 0  y < 1 are

C11, C21 and C31. The 3 cells that correspond to y values such

that 1  y < 2 are C12, C22 and C32 and the 3 cells that

correspond to y values such that 2  y  3 are C13, C23 and

C33.

9
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• Let f(x,y) be the function defined over S3 that we wish to

approximate. Define the heights ij of the function f(x,y) at the

16 vertices of the grid of unit area cells as follows:

(8) ij  f(i,j) ; i = 0,1,2,3; j = 0,1,2,3.

• Define the Colwell (1998; 91-92) bilinear spline

interpolating approximation g3(x,y) to f(x,y) for any

(x,y)S3 as follows:

(9) g3(x,y)  D11(x,y)[00(1−x)(1−y)+10(x−0)(1−y)+ 01(1−x)(y−0)+ 11xy]

+ D21(x,y)[10(2−x)(1−y)+20(x−1)(1−y)+ 11(2−x)(y−0)+ 21xy]

+ D31(x,y)[20(3−x)(1−y)+30(x−2)(1−y)+ 21(3−x)(y−0)+ 31xy]

+ D12(x,y)[01(1−x)(2−y)+11(x−0)(2−y)+ 02(1−x)(y−1)+ 12xy]

+ D22(x,y)[11(2−x)(2−y)+21(x−1)(2−y)+ 12(2−x)(y−1)+ 22xy]

+ D32(x,y)[21(3−x)(2−y)+31(x−2)(2−y)+ 22(3−x)(y−1)+ 32xy]

+ D13(x,y)[02(1−x)(3−y)+12(x−0)(3−y)+ 03(1−x)(y−2)+ 13xy]

+ D23(x,y)[12(2−x)(3−y)+22(x−1)(3−y)+ 13(2−x)(y−2)+ 23xy]

+ D33(x,y)[22(3−x)(3−y)+32(x−2)(3−y)+ 23(3−x)(y−2)+ 33xy].
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• It can be verified that g3(x,y) is a continuous function of x and

y over S3 and g3(x,y) is equal to the underlying function f(x,y)

when (x,y) is a vertex point of the grid; i.e., we have the

following equalities for the 16 vertex points in S3:

(10) g3(i,j) = ij  f(i,j); i = 0,1,2,3; j = 0,1,2,3.

11
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• For each square of unit area in the grid, it can be seen that

g3(x,y) behaves like the bilinear interpolating function g(x,y)

that was defined by (2) in the previous section. Thus if (x,y)

belongs to the cell Cij where i and j are equal to 1, 2 or 3, then

g3(x,y) is bounded from below by the minimum of the 4

vertex point values i−1,j−1, i,j−1, i−1,j, i,j and bounded from

above by the maximum of the 4 vertex point values i−1,j−1,

i,j−1, i−1,j, i,j.

• Following Poirier (1976; 11-12) and Colwell (1998), we can

move from the interpolation model defined by (9) to an

econometric estimation model.
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• Thus suppose that we can observe x and y for N observations,

say (xn,yn) for n = 1,...,N. Suppose also that we can observe

f(xn,yn) for n = 1,...,N. Finally, suppose that we can

approximate the function f(x,y) by g3(x,y) over S3.

• Let   [00, 10,...,33] be the vector of the 16 ij which appear

in (9) and rewrite g3(x,y) as g3(x,y,). Now view  as a vector

of parameters which appear in the following linear regression

model:

(11) zn = g3(xn,yn,) + n ;      n = 1,...,N.
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• If we are willing to assume that the approximation errors n

are independently distributed with 0 means and constant

variances, the unknown parameters ij in (11) (which are the

heights of the “true” function f(x,y) at the vertices in the grid)

can be estimated by a least squares regression.

• It can be seen that this method for fitting a two dimensional

surface over a bounded set is essentially a nonparametric

method.

• If the number of observations N is sufficiently large and the

observations are more or less uniformly distributed over the

grid, then we can make the grid finer and finer and obtain ever

closer approximations to the true underlying function if it is

continuous.

14
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4. Colwell’s Nonparametric Method versus Penalized 

Least Squares (the method used by Hill and Scholz).

• Using the notation surrounding (11) above, a simplified

version of this approach works as follows: find a function

g(x,y) which is a solution to the following penalized least

squares minimization problem:

(13) min g n=1
N [zn − g(xn,yn)]2 + J(g)

• where it is assumed that g(x,y) is twice continuously

differentiable and J(g) is some function of the second order

partial derivatives of g evaluated at the N observed (xn,yn).

• It is difficult to explain how the penalized least squares 

approach works in the two dimensional case. There are many 

problems with this method. In the paper, we go into some of 

the difficulties. 

15
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5. The Tokyo Residential Property Sales Data

• There were a total of 5580 observations with structures on the 

property in our sample of sales of residential property sales in 

the Tokyo area over the 44 quarters covering 2000-2010. 

(Diewert and Shimizu (2015)).

• In addition, we had 8493 observations on residential 

properties with no structure on the land plot.

• Thus there was a total of 14,073 properties in our sample. 

16
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• The variables used in our regression analysis to follow and 

their units of measurement are as follows:

– V = The value of the sale of the house in 10,000,000 Yen;

– S = Structure area (floor space area) in units of 100 m squared;

– L = Lot area in units of 100 meters squared;

– A = Approximate age of the structure in years;

– NB = Number of bedrooms;

– W = Width of the lot in 1/10 meters;

– TW = Walking time in minutes to the nearest subway station;

– TT = Subway running time in minutes to the Tokyo station from 

the nearest station during the day (not early morning or night);

– X = Longitude of the property;     [Or we can use Ward or

– Y = Latitude of the property;       Postal Code Dummy Variables]

– PS =  Construction cost for a new structure in 100,000 Yen per 

meter squared.

17
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Table 1: Descriptive Statistics for the Variables.

18

Name No. of Obs. Mean Std. Dev Minimum Maximum

V 14073 6.2491 2.9016 1.8 20

S 14073 0.43464 0.5828 0 2.4789

L 14073 1.0388 0.3986 0.5 2.4977

A 14073 5.8231 9.117 0 49.723

NB 14073 1.5669 2.0412 0 8

W 14073 46.828 12.541 25 90

TW 14073 9.3829 4.3155 1 29

TT 14073 31.244 7.3882 8 48

X 14073 139.67 0.0634 139.56 139.92

Y 14073 35.678 0.0559 35.543 35.816

PS 14073 1.7733 0.0294 1.73 1.85
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6. The Basic Builder’s Model using Spatial 

Coordinates to Model Land Prices

• The builder’s model for valuing a residential property 

postulates that the value of a residential property is the sum of 

two components: the value of the land which the structure sits 

on plus the value of the residential structure.

• This leads to the following hedonic regression model for 

period t where the t and t are the parameters to be estimated 

in the regression:

(19) Vtn = tLtn + tStn + tn ; t = 1,...,44; n = 1,...,N(t).

19
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• The hedonic regression model defined by (19) applies to new

structures. But it is likely that a model that is similar to (19)

applies to older structures as well. Older structures will be

worth less than newer structures due to the depreciation of the

structure. Assuming that we have information on the age of

the structure n at time t, say Atn = A(t,n) and assuming a

geometric depreciation model, a more realistic hedonic

regression model than that defined by (19) above is the

following basic builder’s model:

(20) Vtn = t Ltn + t(1 − )A(t,n)Stn + tn ;

t = 1,...,44; n = 1,...,N(t)

where the parameter  reflects the net depreciation rate as the

structure ages one additional period.

20
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• Thus equations (20) above could be combined into one big

regression and a single depreciation rate  could be estimated

along with 44 land prices t and 44 new structure prices t so

that 89 parameters would have to be estimated. However,

experience has shown that it is usually not possible to estimate

sensible land and structure prices in a hedonic regression like

that defined by (20) due to the multicollinearity between lot

size and structure size.

• Thus in order to deal with the multicollinearity problem, we

draw on exogenous information on new house building

costs from the Japanese Ministry of Land, Infrastructure,

Transport and Tourism (MLIT).

• (21) Vtn = tLtn + PSt(1 − )A(t,n)Stn + tn ;                                        

t = 1,...,44; n = 1,...,N(t).

21
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• Thus we have 14,073 degrees of freedom to estimate 44 land

price parameters t and one annual geometric depreciation rate

parameter , a total of 45 parameters.

• We estimated the nonlinear regression model defined by (21) for

our Tokyo data set using the econometric programming package

Shazam; see White (2004). The R2 for the resulting preliminary

nonlinear regression Model 0 was only 0.5545, which is not very

satisfactory. However, there are no location variables in Model

0.

• Thus let xtn and ytn equal the normalized longitude and latitude

of property n sold in period t. We will initially approximate the

true land price surface f(x,y) by the 4 by 4 Colwell spatial grid

function g4(x,y) defined above in section 3.
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Model 1.

(22) Vtn = t g4(xtn,ytn,)Ltn + PSt(1 − )A(t,n)Stn + tn ;

t = 1,...,44; n = 1,...,N(t).

• Note that the  vector of parameters in g4(xtn,ytn,) consists of

the 25 spatial grid parameters ij where i, j = 0,1,2,3,4.

• Thus equations (22) contain 44 unknown period t land price

parameters t, 25 unknown ij spatial grid parameters and 1

depreciation rate parameter  for a total of 70 unknown

parameters.
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• Our problem now is how exactly should these two value terms be

decomposed into constant quality price and quantity components?

• Our view is that a suitable constant quality land price index for all

houses sold in period t should be t and for property n sold in period

t, the corresponding constant quality quantity should be

g4(xtn,ytn,)Ltn. Turning to the decomposition of the structure value

of property n sold in period t, PSt(1 − )A(t,n)Stn, into price and

quantity components, we take PSt as the price and (1 − )A(t,n)Stn as

the corresponding quantity for property n sold in quarter t.

• An alternative way of viewing our land model is that land in each

location indexed by the spatial coordinates xn,yn can be regarded as a

distinct commodity with its own price and quantity. But since our

model forces all land prices in the same location to move

proportionally over time, virtually all index number formulae

will generate an overall land price series that is proportional to

the t.
24
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• Note that the above value decompositions of individual

property prices sets the price of a square meter of land in

quarter t equal to t
*, the estimated parameter value for t and

sets the price of a square meter of structure equal to PSt, the

official per meter structure cost for quarter t.

• These prices are assumed to be the same across all properties

sold in period t and thus we can set the aggregate land and

structure price for all residential properties sold in period t

equal to PLt and PSt where PLt  t
* for t = 1,...,44. The

corresponding aggregate constant quality quantities of land

and structures sold in period t are defined as follows:

(23) QLt  n=1
N(t) g4(xtn,ytn,*)Ltn ;

QSt  n=1
N(t) (1 − *)A(t,n)Stn ; t = 1,...,44.

• The prices t
* and PSt and quantities QLt and QSt are used to

form chained Fisher overall property price indexes.

25
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Chart 1 Mean Property Price Index and Model 1 Overall and 

Land Price Indexes and the Official Structure Price Index
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Model 2.

• For Model 2, which used g5(xtn,ytn,) in (22) in place of

g4(xtn,ytn,), the following cells in the 5 by 5 grid of cells had

no sales over our sample period: C11, C41, C51 and C42. This

means that 3 height parameters could not be estimated so we

imposed the following restrictions on the parameters of Model

2: 00 = 40 = 50 = 0. We also set 1 = 1 so that the remaining

land price parameters t could be identified. Thus Model 2

had 36 − 3 = 33 ij parameters, 43 land price parameters t

and 1 depreciation rate parameter  for a total of 77

parameters.

• As the grid of squares becomes finer, some of the squares are

over Tokyo Bay and so there are no sales for those squares. If

these squares are not adjacent to a square which has sales,

then the ij parameters at the corners cannot be identified.

27



page.

Spatial Coordinates versus Neighbourhood Dummy Variables

page.

Model 3. 

• For Model 3, which used g6(xtn,ytn,) in (22) in place of 

g4(xtn,ytn,), the following 5 cells in the 6 by 6 grid of cells 

had no sales over our sample period: C11, C51, C61, C52 and 

C62. 

• Thus we set the following 5 height parameters equal to 0 in 

order to identify the remaining height parameters: 00 = 50 = 

60 = 51 = 61 =  0. 

• We also set 1 = 1 so that the remaining land price parameters 

t could be identified. 

• Thus Model 3 had 49 − 5 = 44 ij parameters, 43 land price 

parameters t and 1 depreciation rate parameter  for a total 

of 88 parameters. 
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Model 4.

• Model 4 used g7(xtn,ytn,) in (22) in place of g4(xtn,ytn,). The

following 9 cells in the 7 by 7 grid of cells had no sales over

our sample period: C11, C21, C51, C61, C71, C52, C62, C72 and

C17.

• Thus we set the following 9 height parameters equal to 0 in

order to identify the remaining height parameters: 00 = 10 =

50 = 60 = 70 = 51 = 61 = 71 = 07 = 0. We also set 1 = 1 so

that the remaining land price parameters t could be

identified.

• Thus Model 4 had 64 − 9 = 55 ij parameters, 43 land price

parameters t and 1 depreciation rate parameter  for a total

of 99 parameters.
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Model 5.

• Finally, Model 5 used g8(xtn,ytn,) in (22) in place of

g4(xtn,ytn,). The following 14 cells in the 8 by 8 grid of cells

had no sales over our sample period: C11, C12, C21, C18, C61,

C62, C63, C71, C72, C73, C81, C82, C83 and C88.

• All 4 corner cells were empty along with many other

boundary cells. Thus we set the following 14 height

parameters equal to 0 in order to identify the remaining height

parameters: 00 = 10 = 01 = 60 = 61 = 62 = 70 = 71 = 72 =

80 = 81 = 82 = 88 = 0. We also set 1 = 1 so that the

remaining land price parameters t could be identified.

• Thus Model 5 had 91 − 14 = 77 ij parameters, 43 land price

parameters t and 1 depreciation rate parameter  for a total

of 111 parameters. We stopped adding cells at this point.

• Note: Model 5 did not fit as well as Model 4!
30
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The Ward Dummy Model.

• An alternative to using spatial coordinates to measure the

influence of location on property prices is to use postal codes or

neighbourhoods as indicators of location.

• There are 23 Wards in Tokyo and each property in our sample

belongs to one of these Wards. In order to take into account

possible neighbourhood effects on the price of land, we

introduced ward dummy variables, DW,tn,j, into the hedonic

regression (20).

• These 23 dummy variables are defined as follows: for t = 1,...,44;

n = 1,...,N(t); j = 1,...,23:

(24) DW,tn,j  1 if observation n in period t is in Ward j of Tokyo;

 0 if observation n in period t is not in Ward j of Tokyo.

31



page.

Spatial Coordinates versus Neighbourhood Dummy Variables

page.

Model 6.

• The new Model 6 is defined by the following nonlinear 

regression model:

(25) Vtn = t(j=1
23 jDW,tn,j)Ltn + PSt(1 − )A(t,n)Stn + tn ;

t = 1,...,44; n = 1,...,N(t).                                                                                                

• Comparing the models defined by equations (20) and (25), it 

can be seen that we have added an additional 23 ward relative 

land value parameters, 1,...,23, to the model defined by 

(20). 

• However, looking at (25), it can be seen that the 44 land price 

time parameters (the t) and the 23 ward parameters (the j) 

cannot all be identified. Thus we set 1 equal to 1. 

• We compare the land price series from the Ward Model 6 

with the spatial Models 1-5 and find practically no difference.
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Chart 2 Land Prices for Models 1-6
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Comparison in 6 Models.

• The 6 models make use of information on land plot size,

structure floor space, the age of the structure (if the property

has a structure) and its location, either in terms of spatial

coordinates or terms of its neighbourhood.

• These are the most important residential property price

determining characteristics in our view. In the following

section, we make use of additional information on housing

characteristics and see if this extra information materially

changes our estimated land price indexes.

• We will use the spatial coordinate Model 4 as our starting

point in the models which follow, since it was the best fitting

model studied in this section. This model used the Colwell

nonparametric model for modeling the land price surface with

the 77 = 49 cell grid.
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7. Spatial Coordinate Models that Use Additional 

Information

• It is likely that property sales that have an older structure on the

property will have a different land valuation than a nearby

property of the same size that consists of cleared land, since

demolition costs are not trivial.

• Our Model 7 takes this possibility into account.

• Define the land only dummy variable DL,tn as follows for t =

1,...,44 and n = 1,...,N(t):

(26) DL,tn  1 if observation n in period t is a land only sale;

 0 otherwise.
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Model 7.

• Define DS,tn  1 − DL,tn for t = 1,...,44; n = 1,...,N(t). Thus if

property n sold in period t has a structure on it, DS,tn will equal

1. Model 7 estimates the following nonlinear regression:

(27) Vtn = t (DS,tn + DL,tn)g7(xtn,ytn,)Ltn + PSt(1 − )A(t,n)Stn

+ tn ; t = 1,...,44; n = 1,...,N(t).

• Thus the parameter  gives the added premium to the

property’s land price (per meter squared) if the property

has no structure on it. The estimated  was * = 1.110 (t =153)

• We imposed the same restrictions on the ij that were imposed in

Model 4.

• The R2 for Model 7 was 0.8175 (the Model 4 R2 was 0.8156).

• The final log likelihood for Model 7 was 128.75 points higher

than the final log likelihood for Model 4 for adding one .
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The size of the land plot:

• We group the observations into 4 groups, depending on the size of 

the land plot. The cutoff sizes of land plot are L0, L1, L2 and L3.

• For each observation n in period t, we define the four land dummy 

variables, DL,tn,k, for k = 1,2,3,4 as follows:

(28) DL,tn,k  1 if observation tn has land area that belongs to group k;

 0 if observation tn has land area that does not belong to group k.

• These dummy variables are used in the definition of the following 

piecewise linear function of Ltn, fL(Ltn), defined as follows:

(29) fL(Ltn,)  DL,tn,1 [0L0 + 1(Ltn − L0)] + DL,tn,2[0L1

+ 1(L1 − L0) + 2(Ltn−L1)] + DL,tn,3[0L0+ 1(L1 − L0) 

+ 2(L2−L1) + 3(Ltn−L2)] + DL,tn,4[0L0+ 1(L1 − L0)

+ 2(L2−L1) + 3(L3−L2) + 4(Ltn−L3)]  

• where   [0,1,2,3,4] and the k are 5 unknown parameters 

and L0  0.5, L1  1, L2  1.5 and L3  2. 38
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Model 8: Splines for the Land Plot Area

• Thus we are allowing the per meter squared price of land to 

vary as the size of the land plot increases. We expect the 

marginal price of land to decrease as lot size becomes very 

large. Model 8 is the following nonlinear regression:

(30) Vtn = t (DS,tn + DL,tn)g7(xtn,ytn,)fL(Ltn,) 

+ PSt(1 − )A(t,n)Stn + tn ; t = 1,...,44; n = 1,...,N(t).

• where the function fL is defined above by (29) and tn is an 

error term. There are 43 unknown land price parameters t, 

(we set 1= 1), 1 land only premium parameter , 55 land 

price height parameters ij, 4 marginal price of land 

parameters k (we set 1 = 1) and 1 depreciation rate  to 

estimate or 104 unknown parameters in all.

• The R2 for Model 8 was 0.8222, increase in LL was 328.27.
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Model 9: Splines for the Structure Size.

• In our next model, we allow the per square meter price of a square

meter of structure to vary as the floor space of the structure

increases. The rational for this model is that bigger houses are likely

to be of higher quality.

• For each observation n in period t, we define the 3 structure dummy

variables, DS,tn,m, for m = 1,2,3 as follows:

(31) DS,tn,m  1 if observation tn has structure area that belongs to group m;

 0 if observation tn has structure area that does not belong to group m.

• These dummy variables are used in the definition of the following

piecewise linear function of Stn, fS(Stn), defined as follows:

(32) fS(Stn,)  DS,tn,1 [0S0 + 1(Stn − S0)] + DS,tn,2[0S1+ 1(S1 − S0)

+ 2(Stn−S1)] + DS,tn,3[0S0+ 1(S1 − S0) + 2(S2−S1) + 3(Stn−S2)].
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Model 9. Piecewise Linear Splines for Structure Size

• The exogenous break points are S0  0.5, S1  1 and S2  1.5.

• Model 9 is the following nonlinear regression:

(33) Vtn = t (DS,tn + DL,tn)g7(xtn,ytn,)fL(Ltn,)

+ PSt(1 − )A(t,n) fS(Stn,) + tn; t = 1,...,44; n = 1,...,N(t);

• where   [0,1,2,3] and we set 1 = 1.

• The function fL is defined above by (29), the function fS is defined by (32)

and tn is an error term. There are 43 unknown land price parameters t, 1

land only premium parameter , 55 land price height parameters ij, 4

marginal price of land parameters k, 3 marginal price of structure

parameters m and 1 depreciation rate  to estimate or 107 unknown

parameters to estimate.

• The R2 for Model 9 was 0.8256, increase in LL was 136.32.
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Adding the Subway Time Variables: TW and TT.

• Our next model, we make use of the two subway variables:

TW, the walking time in minutes to the nearest subway

station, and TT, the subway running time in minutes to the

Tokyo central station.

• The sample minimum time for TW was 1 minute and the

minimum time for TT was 8 minutes.

• Our next model allows the price of land to decrease as these

two subway time variables increase.

• These variables have proven to be highly significant in other

studies of Tokyo property prices.
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Model 10: Adding the Subway Time Variables

• Thus Model 10 is the following nonlinear regression:

(34) Vtn = t [DS,tn + DL,tn]g7(xtn,ytn,)fL(Ltn,)

x[1+(TWtn−1)][1+(TTtn−8)] + PSt(1 − )A(t,n) fS(Stn,) + tn ;

t = 1,...,44; n = 1,...,N(t)

• where the function fL is defined above by (29), the function fS

is defined by (32),  is the percentage change in the price of

land due to a one minute increase in walking time,  is the

percentage change in the price of land due to a one minute

increase in subway running time to Tokyo central station and

tn is an error term.

• There are 109 unknown parameters in Model 10.

• The R2 for Model 10 was 0.8383, increase in LL was 531.13.
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Adding the Number of Bedrooms

• In our next model, we introduce the number of bedrooms NBtn

as a property characteristic that can affect structure value if the

property n in quarter t has a structure on it.

• For the properties in our sample, the number of bedrooms ranged

from 2 to 8. Since there were relatively few observations with 6,

7 or 8 bedrooms, we grouped these last 3 categories into a single

category.

• Define the bedroom dummy variables DNB,tn,i for observation tn

as follows for i = 2,3,4,5; t = 1,...,44 and n = 1,...,N(t):

(35) DNB,tn,i  1 if observation tn has a structure on it with i bedrooms;

 0 elsewhere.

44



page.

Spatial Coordinates versus Neighbourhood Dummy Variables

page.

Model 11: Adding the Number of Bedrooms

• Model 11 is the following nonlinear regression:

(36) Vtn = t [DS,tn + DL,tn]g7(xtn,ytn,)fL(Ltn,)

x[1+(TWtn−1)][1+(TTtn−8)]

+ PSt(1 − )A(t,n) fS(Stn,)[i=2
6 iDNB,tn,i] + tn ;

t = 1,...,44; n = 1,...,N(t)

• where the all of the functions and parameters which appear in

(36) were defined in the previous model except that we have

now added 5 bedroom variables, 2, 3, 4, 5 and 6.

• We make the same normalizations as we made in Model 10

and in addition, we set 2 = 1.

• Model 11 has a total 113 unknown parameters.

• The R2 for Model 11 was 0.8400, increase in LL was 75.03.
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Adding the Width of the Land Plot.

• The final additional variable that we introduced into our

property nonlinear regression model was the width of the

land plot, Wtn for property sale n in period t.

• Recall that Wtn is measured in 10ths of a meter and the range

of this property width variable was 25 to 90.

• Other residential property hedonic regression models for

Tokyo have shown that this variable is a very significant one:

the greater is the lot width, the more valuable is the land plot.

• We assume that the width variable affects the land value

component of property value and does not affect the structure

value.

• We modeled the width variable as a single continuous

variable rather than using splines or step functions on Wtn.
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Model 12: Adding the Property Width Variable

• Model 12 is the following nonlinear regression:

(37) Vtn = t [DS,tn+DL,tn]g7(xtn,ytn,) 

xfL(Ltn,)[1+(TWtn−1)]  [1+(TTtn−8)] [1+(Wtn−25)] 

+ PSt(1 − )A(t,n) fS(Stn,)[i=2
6 iDNB,tn,i]  + tn ; 

t = 1,...,44; n = 1,...,N(t)

• where the all of the functions and parameters which appear in

(37) were defined in the previous model except .

• Thus we have added 1 additional unknown parameter to

Model 11 so Model 12 has a total 114 unknown parameters.

• * was 0.00402 (t = 27.4) so an extra meter of lot width adds

about 4% to the per meter squared price of the land plot.

• The R2 for Model 11 was 0.8488, increase in LL was 401.54.
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The Problem of Negative Predicted Land Prices 

• Although the fact that Model 12 generated 4 negative

estimated ij
* did not lead to any negative predicted prices for

land for the properties in our sample, these negative estimates

could lead to negative land prices for properties not in our

sample.

• Hence, it may be useful to perform a final regression where

we restrict the ij to be nonnegative. This can be done by

replacing 01, 67, 77 and 52 in the function g7(xtn,ytn,) by

the squares of these parameters and then rerunning the

model defined by (37).

• Model 13 is the resulting model.

• The reduction in LL for Model 13 over Model 12 was 1.19.

• The R2 for Model 13 was 0.8488, the same as for Model 12.
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Model 14: The Ward Dummy Variable Model Revisited

• Our final model in this section is a Ward dummy variable

model that adds more explanatory property characteristics

to the Ward Dummy Model 6 defined by equations (25).

• Model 14 is defined by the following nonlinear regression

model:

(38) Vtn = t [DS,tn +DL,tn][j=1
23jDW,tn,j]

xfL(Ltn,)[1+(TWtn−1)][1+(TTtn−8)][1+(Wtn−25)]

+ PSt(1 − )A(t,n) fS(Stn,)[i=2
6 iDNB,tn,i]  + tn ;     

• Thus Model 14 is basically the same as Model 12 and 13

except that the Ward dummy variable terms, j=1
23 jDW,tn,j,

replace the Colwell locational grid function, g7(xtn,ytn,).

• The R2 for Model 14 was 0.8300, increase in LL over Model

6 was 478.6 .

• We compare land prices for Models 7-14 in the next slide.
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Chart 3 Land Price Indexes for Models 7-12 and 14
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8. Overall Residential Property Price Indexes

• There is one additional overall property price index that we

calculate in this section and that is an index that is based on a

“traditional” hedonic property price regression that uses

the logarithm of the selling price as the dependent variable

and has time dummy variables.

• Define the kth time dummy variable DT,tn,k for property n

sold in period t as follows:

(39) DT,tn,k  1 if t = k; DT,tn,k  0 if t  k.

• Our best time dummy variable hedonic regression model is

the following Model 15:

(40) lnVtn = k=2
44 kDT,tn,k + j=1

23 jDW,tn,j + lnLtn + Stn

+ Atn + TWtn + TTtn + Wtn + i=3
6 iDNB,tn,i + tn ;

t = 1,...,44; n = 1,...,N(t).
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Model 15: The Traditional Time Dummy Model

• lnVtn and lnLtn denote the natural logarithms of property

value Vtn and property lot size Ltn respectively, the DT,tn,k are

time dummy variables, the DW,tn,j are Ward dummy

variables, Stn is the floor space area of the property.

• We ran an initial linear regression using Ltn as an independent

variable in place of lnLtn.

• However, this regression had a log likelihood which was

204.99 points lower than our final linear regression defined by

(40). The R2 for this preliminary regression was 0.8274.

• Note that we could not use lnStn as an independent variable

because many observations had no structure on them and

hence Stn is equal to 0 for these properties and thus we could

not take the logarithm of 0.
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Model 15: The Traditional Time Dummy Model

• The log likelihood of this model cannot be compared with other 

models because the dependent variable is now the logarithm of 

the property price instead of the property price.

• There are 75 unknown parameters in the model defined by 

equations (40).

• The R2 for Model 15 was 0.8323. (Not bad!).

• We set 1
* = 0. The sequence of overall property price indexes 

P15t generated by this model are the exponentials of the estimated 

t
*; i.e., define  exp[t

*] for t = 1,...,44.

• The next slide compares the mean property price index PMean t, 

P9t (based on Model 9, a minimal Colwell model), P13t (our best 

Colwell spatial coordinates model), P14t (our best Ward dummy 

variable model) and P15t (our best log price time dummy hedonic 

model). 
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Chart 4 Land Price Indexes for Models 7-12 and 14
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• The mean index, PMean t, has a large downward bias as

compared to the other 4 indexes which is due to its neglect of

age effects. However, the movements in this index are similar

to the movements in the other indexes.

• The property price index P15t generated by a traditional log

price time dummy hedonic regression model has a downward

bias (due to its imperfect specification of age effects) but it

is not large.

• The Model 9 property price index, a Colwell spatial

coordinates model that used only the 4 fundamental

characteristics of a residential property (land plot area,

structure floor space area, the age of the structure and some

locational variable) generated an overall property price index

P9t that is quite close to our best Colwell spatial model,

Model 14, which generated the overall property price index

P14t.
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• Thus it is probably not necessary for national statistical

agencies to collect a great deal of information on housing

characteristics in order to produce a decent overall property

price index (as well as decent land and structure subindexes).

• The Model 14 property price index, P14t, that used local

neighbourhood information about properties instead of

spatial coordinate information turned out to be fairly close to

our best Colwell spatial index, P13t. Thus following the advice

of Hill and Scholz (2018), it is probably not necessary to

utilize spatial coordinate information in order to construct

a satisfactory overall residential property price index.

• Diewert (2010) also observed a similar result.

• In addition to these four fundamental variables, we need an

exogenous building cost measure in order to implement our

basic models.
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9. Conclusion

• Satisfactory residential land price indexes and overall residential

property price indexes can be constructed using local neighbourhood

dummy variables as explanatory variables in residential property

regression models. It is not necessary to use spatial coordinates to

model location effects on property prices.

• However, the use of spatial coordinates to model location effects

does lead to better fitting regression models.

• The most important housing characteristics information that is

needed in order to construct satisfactory residential land and overall

property price indexes is information on lot size, floor space area of

the property structure (if there is a structure on the property), the age

of the structure and some information on the location of the

property. In order to obtain a satisfactory land price index, our

method requires the use of exogenous information on residential

construction costs.
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• However, additional information on the characteristics of the

property will improve the fit of our hedonic regressions but

the effects of the additional information on the resulting

land and structure price indexes was minimal for our

application to Tokyo residential property price indexes.

• Having land only sales of residential properties should help

improve the accuracy of the land price index that is generated

by a property regression model. However, for our Japanese

data, we found that the value of the land component of a

land only property earned a 10-15% premium over the

land value of a neighbouring property of the same size but

with a structure on the property. We attribute this premium to

the costs of demolishing an older structure.
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• Our models that used spatial coordinates to account for

locational effects on the value of land used Colwell’s

nonparametric method for fitting a surface. This

nonparametric method is much easier to implement than the

penalized least squares approach used by Hill and Scholz

(2018) to model locational effects on property prices. In

section 4 of the paper, we pointed out some of the theoretical

advantages of Colwell’s method.

• The potential bias in using property price indexes that are

based on taking mean or median averages of property prices

in a period can be very large. Typically, these methods will

have a downward bias due to their neglect of structure

depreciation.

59



page.

Spatial Coordinates versus Neighbourhood Dummy Variables

page.

• A traditional log price time dummy hedonic regression model

that has structure age as an explanatory variable will typically

reduce the bias that is inherent in an index based on taking

averages of property prices. For our Tokyo data, we found that

the traditional hedonic regression model led to an index which

had a small downward bias; see Chart 4 in the previous section.

• Our emphasis in this paper has been to develop reliable

methods for the construction of the land component of

residential property price indexes. This task is important for

national statistical agencies because the Balance Sheet

Accounts in the System of National Accounts requires

estimates for the price and volume of land used in production

and consumption. In particular, this information is required in

order to obtain more accurate estimates of national (and

sectoral) Total Factor Productivity growth but for the vast

majority of countries, this information is simply not available.
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