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Abstract 

We explore how firms grow by adding products. In contrast to most earlier work on the topic, 

our conceptual and empirical framework allows for separate treatment of product innovation 

(vertical differentiation) and diversification (horizontal differentiation). The market context is 

Japan’s cotton spinning industry at the turn of the last century. We find that introducing 

innovative products outside of the previously feasible is a key to firm growth. It provides 

opportunities to capture high-end vertically differentiated product markets when successful while 

also facilitating the firm’s growth through horizontal expansion in product space. However, this 

process involves a high degree of uncertainty, so firms tend to introduce innovative products on 

experimental basis. In long-term outcomes, the right tail of the firm size distribution becomes 

dominated by firms that were able to expand in both directions: moving first into technologically 

challenging vertically differentiated products, and then later applying their newly acquired high-

end technical competence to horizontal expansion of their product portfolios. 
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1. Introduction 

We now know an important mechanism for firms’ growth is expansion of the scope of 

product varieties they offer. The recent research literature has used multiple frameworks to 

analyze this process theoretically and empirically. One set emphasizes supply-side innovation, 

where development of new, innovative products delivers a whole (sub)market to successful 

innovators (e.g., Klette and Kortum, 2004; Klepper and Thompson, 2006), or productivity 

determines firms’ range of products (Bernard, Redding, and Schott, 2010). Another set focuses 

on demand-based heterogeneity where firms expand the number of varieties in differentiated 

product markets (e.g., Bernard, Redding, and Schott, 2010; Khandelwal, 2010; Hottman, 

Redding, and Weinstein, 2016). In both cases, firm heterogeneity is captured by endowed 

primitives (productivity, demand appeal, or both) that influence firms’ size, scope, and growth 

rates. Furthermore, this work has typically abstracted from the specific identities of and 

interrelations among a given firm’s product offerings. Instead, product variety scope is typically 

summarized by the number of symmetrically related products the firm makes. 

However, product additions are unlikely to all be the same in reality. Adding a highly 

innovative product may affect growth differently than adding one similar to those the firm has 

already been producing. First, demand and cost effects may be different, as customers’ 

willingness to substitute and firms’ economies of scope are likely to depend on the degree of 

product similarity. Furthermore, and perhaps more importantly in the long run, bolder innovation 

may result in firms acquiring technical and/or marketing knowledge applicable to subsequent 

development of other product varieties. Thus it is not just the number of product varieties a firm 

makes that summarizes its heterogeneity but also the nature and interrelation of its differentiated 

products, such as the vertical distance between new and existing varieties.1 

The process of product variety expansion and firm growth through this channel is not 

well understood. In this paper, we employ rich historical firm-level data from the Japanese cotton 

spinning industry at the turn of the last century to take a step toward opening the “black box” of 

what and how firms do to expand their product varieties and grow. The data, explained in more 

 
1 “If a firm previously producing air brakes of various kinds…enters the production of electronic equipment, it is 
certainly diversifying its productive activities…although it may reduce the varieties of air brakes produced. … 
Clearly…for a study of the growth of firms the type of diversification and the reasons for it are of more relevance 
than the ‘amount’ of diversification.” (Penrose, 1959, p. 96) 
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detail below and in the appendix, are uniquely suited to examine growth through product variety 

expansion and its effects on long-term firm outcomes. One key feature of the data is that we can 

distinguish between introductions of products that lie outside the firm’s current technological 

frontier from those inside the frontier, and we can directly observe the entrepreneurial actions 

aimed at such introductions. 

We show how innovation along the dimension of vertical differentiation involves facing a 

“supply-side constraint” and a high degree of uncertainty, because it involves installing a new 

type of capital (machines) and using previously unfamiliar inputs and production processes. 

Vertically innovating firms coped with these hurdles through entrepreneurial experimentation 

(Kerr et al., 2014; Cusolito and Maloney, 2018, Ch. 4) and by recruiting top-notch engineering 

human capital. We further show how such vertical innovation (resulting from experimentation in 

which we can obtain plausibly exogenous variation) led to later horizontal product diversification 

within the firm’s technology frontier. 

This first-vertical-then-horizontal sequencing shapes firms’ paths of product variety 

expansion and growth. We characterize the specific mechanisms through which firms applied the 

knowledge they gained through vertical innovation in order to spur their horizontal expansions 

and overall growth. Given the relationship and sequencing between vertical and horizontal 

product expansion, it is perhaps not surprising that we also find that firms that did not vertically 

innovate did not do much horizontal product diversification either. Those firms’ much more 

modest growth was limited to intensive-margin expansion in sales of their existing products. 

Some aspects of our findings align with past studies, but others provide novel insights 

into the relationship between product variety expansion and firm growth. First, as predicted by 

the oft-used Klette and Kortum (2004) model, more new product introductions are associated 

with higher average firm growth. Beyond this, however, our results highlight the importance of 

accounting for the identity of a newly developed product and its impact on subsequent product 

variety expansion. Vertically differentiated innovations are special. They have spillovers into 

horizontal expansions that do not operate in the reverse. We also show that vertical innovation 

tends to happen not incrementally, where firms move from more to less familiar products (for 

example as envisaged by Stokey, 1988), but rather through leapfrogging that is followed by 

“bridging” the firm’s existing and newly innovated products (in the style of Callander, 2011). 
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Second, similar to the analyses in which product/firm appeal plays a critical role in 

determining a range of product varieties (Bernard, Redding, and Schott, 2010; Hottman, 

Redding, and Weinstein, 2016), we find that high-growth firms have more product flexibility and 

improve the quality of their products to better respond to demand changes. While those studies 

typically treat product/firm appeal as a primitive, our analysis suggests that appeal arises 

endogenously through experimenting with innovative products. Understanding the relationship 

between product variety expansion and firm growth requires incorporating the dynamic aspects 

of product variety expansion. 

Third, our findings render support for the notion of complementarity between flexibility 

of the production system and the number of product varieties (Roberts, 2004). Firms that did not 

experiment with technologically challenging innovative products were confined to a narrow 

product variety range and infrequent product changeovers. Experimenting firms, on the other 

hand, changed their product portfolios frequently and expanded their overall scope. Our findings 

indicate product upgrading experimentation generated such complementarity. 

Finally, in our data, only a limited number of firms attempt to push out the technology 

frontier and extend the set of the industry’s feasible offerings. These firms exhibit “awareness” 

in the sense of Karni and Vierø (2013) that sets them apart. In the appendix, we use our data to 

describe the selection process through which firms that push out the technology frontier through 

product innovation discover and harness new growth opportunities. 

We organize our analysis as follows. In the next section we briefly describe our data and 

historical context (with more details provided in the appendix). Section 3 documents basic trends 

in industry and firm growth through product varieties expansion. These include the tight 

relationship between growth in average industry firm size and product variety; that much of this 

variety growth come from existing firms rather than entry, and that—crucially—product variety 

growth in all directions was tied to firms’ experimental attempts to climb the quality ladder, but 

not their efforts at horizontal product expansions. Sections 4 and 5 examine in more detail the 

connections among product upgrade experimentation (that is, trying to climb the quality ladder), 

its antecedents, and firm growth. Section 6 probes the specific mechanisms through which 

product upgrade experimentation led to growth, finding that its effects on firms’ production 

flexibility and market-perceived quality as being particularly important. In Section 7 we conduct 

several robustness checks and tests of alternative hypotheses. Section 8 concludes. 
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2. Data 

2.1 Data and historical context 

Our main data come from monthly bulletins (Geppo, 1893-1914) published by Japan’s 

Cotton Spinners Association (hereafter, “Boren” for short, using its Japanese acronym). These 

report, for every Japanese cotton spinning firm, the quantities of each product the firm made that 

month. (See Photo 1 in appendix A.1 for a photocopy of an original of one such report.) The data 

start in May 1893 and extend through December 1914. The industry exhibited phenomenal 

growth during this period (see, e.g., Braguinsky et al., 2015; Figure A1 in appendix A.2 depicts 

the dynamics of industry-wide output and the number of firms in our sample) and caught up with 

the worldwide technological frontier by expanding into high-end products. 

We match this product variety data with a firm-level database that contains monthly 

measures of inputs (spindles in operation, factory operatives, raw cotton) in physical units, firm-

specific output prices (for select counts), wage rates, and the existence and size of industry-wide 

output cuts imposed by the association in periods of slow demand. We aggregate monthly-

frequency data to semi-annual level to correspond to the frequency of observations on important 

supply constraint-related characteristics, such as each firm’s machine capacity (number of 

installed spindles), employment of educated engineers, and board composition available at semi-

annual frequency from shareholders reports and other sources. More details are provided in 

appendix A.1. 

Spun cotton yarn is differentiated by thickness, measured by “count,” which gives the 

length of a type of thread in yards that would weigh one pound. Thus higher counts correspond 

to finer yarn. Higher count yarn is more comfortable to the touch and as such is of higher quality. 

Yarn is also differentiated by the direction in which it is twisted during the spinning process (S-

twist vs. Z-twist). Some yarns are produced by twisting two single-yarn threads together using 

separate equipment called doubling frames. These yarns were translated into Japanese at the time 

as “doubled yarn.”2 Both single and doubled yarn can be processed further through a process 

called gassing, which involves passing yarn quickly through gas burners to burn away fluff and 

 
2 In the English term it is “twisted yarn” (see, e.g., Woodhouse, 1921). We will use the Japanese “doubled yarn” 
terminology, in part because it is important for our purposes to distinguish also single yarns by the direction of twist 
as above. There is no distinction between Z- and S-twist in case of doubling because the second twist is always 
applied in the direction opposite to the first twist. 
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make the product glossy. The result is called “gassed yarn.” The demand for various types of 

cotton yarn comes from weavers, and the degree of substitution across yarn varieties in 

producing a particular garment or textile is generally quite low. Our product-by-firm data reports 

count, twist (if single yarn), and doubling or gassing (if done). 

We use the degree of technical difficulty in producing a product as our conceptual and 

empirical measure of vertical product differentiation. This implies finer (thinner) and more 

processed threads are of higher quality. They generally require more versatile and/or specialized 

capital stock (machines designed for thinner counts, doubling and gassing frames, etc.), higher-

quality raw cotton as input, as well as superior technology and production organization. This 

classification is consistent with overall technological trajectories in the Japanese cotton spinning 

industry. As Tables A3-A4 in appendix A.2 show, at the beginning of our sample (10 years after 

the inception of the industry) lower-count yarns—counts 20 and below—were almost entirely 

domestically produced. Users of higher-count yarns still largely relied on imports from Britain 

because of Japanese cotton spinning firms’ lack of technical proficiency. When expanding their 

product varieties, Japanese firms thus faced a problem whether to add a lower-count cotton yarn 

that was easy to produce but faced limited demand, or a higher-count cotton yarn that was 

difficult to produce but potentially faced a much less crowded market. 

The thickest count recorded in the data during our sample is 2.5 (S-twist), and the finest 

is 100 (gassed). The latter doesn’t first appear until made by a single firm in January 1903. 

Product scope evolved as the industry did. At the beginning of the sample, industry firms made 

only about 30 products. This grew to over 100 by the end.3 The total number of different 

products that show up at least once in the data from 1893-1914 is 201. To create a set that can be 

consistently applied throughout the sample period, we aggregated these into 35 different product 

varieties––10 varieties (different counts or count ranges) each of S-twist and Z-twist single 

yarns, 10 varieties of doubled yarn, and five varieties of gassed yarn. Our references to a 

“product variety” below regard one of these 35 varieties unless otherwise stated. 

For the purposes of this study, we often dichotomize varieties into the low end and high 

end of the product space, with counts 20 and below (and not doubled or gassed) low-end 

 
3 In the process, some previously disaggregated data on very thick counts start being reported in a more aggregated 
way (e.g., counts 10 and below are lumped together after a certain point in time), while the data on finer counts 
remain reported in a more disaggregated fashion. 
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varieties. Counts above 20 are high-end products. Among our 35 total varieties, 16 are high-end 

according to this classification and 19 low-end. We chose this threshold because counts above 

the mid-20s were generally impossible to produce without specialized machines and inputs 

designed for those varieties.4 Thus, while demand constraints may not have been that important 

for high-end products (competition was mostly from imports, and Japanese textile makers would 

have been willing to substitute to domestic sources at similar FOB prices), supply-side (machine 

and technology) constraints were very real. The demand limitations faced by low-end products, 

on the other hand, are highlighted by the differential treatment they received during mandatory 

output cuts periods. In periods of slow demand, Boren (the industry association) imposed 

mandatory output cuts on its member firms. However, output of counts above 20 were largely 

exempt from those cuts (see appendix A.3 for details). This differential treatment also allows us 

to utilize mandatory output cuts as an instrumental variable in our firm growth analysis, as we 

explain below. 

To investigate firms’ product expansion patterns, we distinguish between new-to-firm 

vertical product differentiations aimed at pushing out the firm’s technology frontier (we also 

refer to these as “product upgrades” below) and horizontal differentiation aimed at diversifying 

the product portfolio inside the existing technological frontier (“product diversifications”). While 

closely related to the distinction between high-end and low-end product varieties above, the 

definition of an “upgrade” is stricter than just making a high-end product. A new product 

addition is an upgrade if it a) involves a high-end product and b) the firm must not have 

previously made at scale a product of an even higher count. A new product addition is called a 

“diversification” if, regardless of the new product’s count, the firm had previously made a 

product of a higher count. 

 

2.2 Experimental production and product upgrading 

 
4 As is nearly inevitable with classifications, there is some “gray zone.” In this particular case, some classifications 
adopted in Japan at the time classified single mechanically spun yarn into coarse yarn (counts below 20 as well as 
20-22 count yarn), medium yarn (counts 23-44), and fine yarn (counts 45 and above). Our definition considers both 
medium and fine yarns as high-end, and we also include counts 21 and 22 as such. Reclassifying these two counts as 
low-end products makes no difference to our results. This is perhaps not surprising given the relatively small amount 
of production of counts 21 and 22. While for example 20-count output alone represented roughly 30 percent of the 
industry’s total output during our sample, counts 21 and 22 together accounted on average for only about 1.1 percent 
of industry output. 
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The notion of experimental product introduction plays an important role in our analysis 

below. We explain how we define it here. It is the addition to the firm’s portfolio in semi-annual 

period t a variety that is both novel and produced at a modest quantity. More precisely, for a 

product variety j to be defined as (the beginning of) an experiment at t, it has to satisfy all of the 

following conditions: (i) the firm did not produce variety j in t-1, (ii) variety j accounts for less 

than three percent of the firm’s total output in t, and (iii) variety j had never accounted for more 

than three percent of the firm’s total output in any period before t.5 Thus, a product variety 

remains in the “experimental stage” from introduction (if at a scale below the three-percent 

threshold) until it reaches this threshold for the first time (if at all). Once a firm produces a 

variety at a scale above the threshold, it is no longer considered experimental even if output later 

falls below the threshold again. This definition allows for potentially multiple experiments in the 

same product line. If a firm temporarily discontinues an experimental product before it reaches 

the threshold and re-introduces it below the threshold after at least one period of non-production, 

this is a second experiment in that product line. (A further cycle would be a third experiment, 

and so on.) We define an experiment as “successful” if the product rises above the three percent 

threshold after production for a continuous set of periods; otherwise, the experiment has “failed.” 

Panel A of Table 1 shows that among the 685 firm-product varieties introduced during 

our sample, 439 (64 percent) were initially “experimental,” and of those, 271 never reached the 

threshold scale.6 Hence, about 60 percent of product lines introduced on experimental basis 

completely “failed,” that is, never scaled above the threshold despite possibly multiple 

experiments. Of these experimental varieties, 76 (11 percent) involved upgrade products. (Recall 

that an experiment is an upgrade if it the firm produces a high-end product with a count higher 

than any count the firm had produced above the three percent threshold before.) Half of these 

never reached the threshold. In Panel B we look at all experimental product launches, counting 

multiple experiments in the same product line as separate episodes. The fraction of experiments 

that failed is 73 percent for all products, and 64 percent for upgrade experiments. We can thus 

see that experimental product development often fails. 

--- Table 1 around here --- 

 
5 We tried other reasonable thresholds, such as four percent or two percent, and the results were qualitatively similar. 
See Figure A2 and its discussion in appendix A.4 for the distribution of initial scales of newly introduced products. 
6 Note that if a firm operated only two or three product lines, those lines are less likely be counted as “experimental” 
by construction. Hence, the above probably represents a lower bound on the actual number of experiments. 
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The small scale that defines an experimental product and the high failure rates indicate 

that product experimentation per se cannot have a large direct effect on firm growth. However, 

experimentation might offer firms valuable technical or marketing knowledge, especially if the 

experiment involves upgrade products that require mastering new technologies. In our analyses 

below we use the cumulative number of upgrade experiments conducted by firm i through time t 

as a proxy for technical knowledge accumulated through experimentation. Similarly, we also 

compute a firm’s cumulative number of (horizontal) product diversification experiments to use 

as an additional regressor in some specifications. 

 

2.3 Machine orders and high-end versus low-end machines 

Japan did not produce its own cotton spinning machines during our sample. It imported 

all machinery from Britain, mostly from Platt Brothers of Oldham (Saxonhouse, 1974). The Platt 

collection in Preston, Lancashire, U.K. contains British textile machine manufacturers’ order 

books (including but not limited to Platt Brothers) reflecting orders from cotton spinning firms 

worldwide. We collected data on all Japanese orders placed from the inception of the industry in 

the early 1880s through 1914.7 

All machines were custom made. Each order contains the placement date, shipping dates 

(usually multiple, as machines were commonly shipped in several installments), type of frames 

ordered (ring, mule, or doubling), number of frames and spindles per frame, the range of counts 

the frames were designed to spin, and other technical characteristics (description of cotton input, 

hank roving to be fed into the machines, rotation speed of the spindles, etc.). 

We matched these orders with Japanese archival sources (Enkakukiji, 1901; Sankosho, 

1903-1914; and individual company reports) that provide semiannual firm-level data on the total 

installed capacity: number of spindles, separately by ring, mule, and doubling frames. The details 

of the matching process are described in appendix A.1.6. While we could not match all changes 

in firms’ capacity as recorded by Japanese sources with corresponding orders from British textile 

machine manufacturers, we were able to do so for 105 of the 118 firms in our sample. For these 

firms, we constructed an alternative measure of firm capacity by summing up the number of 

 
7 These orders had been previously examined and processed by Gary Saxonhouse and archived at the ICSPR after he 
passed away (Wright, 2011). However, with no originals, it turned out to be impossible to match ICSPR archived 
data to the Japanese data at the firm level, as most firm names were either missing or incorrectly assigned. We will 
make our newly collected data, including digital photos of the original orders, publicly available. 
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spindles in all orders placed by a given firm, while also taking into account transfers through 

acquisitions, second-hand purchases and sales, decommissioning, and destruction in earthquakes 

and fires. In the end, we accomplished an average match rate of 99 percent between this 

“reconstructed” number of spindles and the number actually recorded in the corresponding firms’ 

balance sheets. Most of the remaining 13 firms for which we do not have orders data were short-

lived and/or very small. They constitute just two percent of total industry capacity at any given 

point in time. The bottom line is that we have machine capacity breakdowns for almost all of our 

sample. We can therefore link machines’ technical characteristics to the product varieties 

produced by firms that owned those machines. 

As mentioned, high-end products and low-end products required different machinery. We 

employ the matched orders data to distinguish between machines designed predominantly for 

high-end products and those for low-end products. More precisely, we define machines as high-

end if their specifications indicated the ability to spin counts of 23 or higher. We classify any 

other machines as low-end.8 We also classify most doubling frames (for which our main source 

of data is Japanese firms’ balance sheets) as high-end machines, with the exception of a few 

cases where firms had no high-end frames and thus applied doubling to low-end products. 

Among the 105 firms for which we have a breakdown of machine capacity, 42 had at least one 

high-end machine at some point in our sample. However, the capacity distribution was highly 

skewed, with a median number of spindles of 16,128 and a mean of 36,763. 

 

2.4 Mandatory output cuts as a source of exogenous variation 

As mentioned, the industry association Boren periodically imposed output cuts for low-

end yarns, applied uniformly to all firms, during periods of slow demand. The timing of these 

 
8 See Photos 2 and 3 and the corresponding description in appendix A.1 for two specific examples. There is 
ambiguity about some machines ordered early (before the start of our product-variety data), when Japanese firms 
could not yet produce counts above 20. For example, an order placed by Osaka Spinning Company in October 1888 
lists the counts to be spun from 10-20 using Japanese cotton, but “also up to No. 32 if the Japanese decide to mix 
imported cotton with Japanese cotton.” (Osaka Spinning was working to develop Indian imported cotton at the time, 
but actual imports had not started yet.) We classify these machines as high-end due to their versatility, even though 
they were different from subsequent high-end machines specifically designed for high-end products and for use with 
even higher-quality U.S. and Egyptian cotton. That said, re-classifying those early high-end machines as low-end 
instead does not affect our main findings. 
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cuts was not under the control of any given firm.9 Because high-end products were exempt from 

these mandated cuts, they gave firms extra incentive to experiment with high-end products. 

In appendix A.3 we present the details of output cuts imposed at different points in time, 

compiled from Shoji (1930). There were two major types of curtailments. In one case, Boren 

would impose a certain number of days in a month as “mandated holidays.” Machines producing 

low-end (count 20 and below) yarn were not allowed to operate on those days. The other type of 

curtailments required a certain fraction of spindling frames used to spin low-end yarn to be idled. 

Compliance was enforced by inspections and by Boren officials securing idled frames by putting 

physical seals on spinning rails (Shoji, 1930, p. 156).10 The fraction of such sealed equipment 

ranged from 20 percent to 40 percent (Table A6 in the appendix). 

To differentiate these mandatory output curtailments by their severity, we constructed a 

variable which takes a value of zero during months with no curtailments and equals the fraction 

of idled low-end machine spindles (or its equivalent calculated from the number of mandated 

holidays) during months with mandatory output cuts. The average of this value over a given 

semi-annual observation period, shown in the third column in appendix Table A6, represents our 

measure of the degree of relative output cuts imposed on low-end products.11 In subsequent 

analyses, we interact this measure with the installation of high-end machines ordered from 

England to obtain an exogenous variation in incentives to conduct upgrade experiments. 

 
3. Product Variety Expansion Patterns and Firm Growth 

3.1 Product variety expansion 

3.1.1 Decomposition analysis 

Figure 1 plots the dynamics of average firm size as well as the average number of high-

end and low-end product varieties per firm.12 Average varieties per firm is mostly flat from the 

 
9 Association voting rules required consensus from all member firms for output cuts to be imposed (Shoji, 1930), so 
it was impossible for any firm (or a coalition thereof) to exploit the policy for unilateral advantage. 
10 Although Shoji (1930) does report some instances of temporary non-compliance by a handful of firms, generally 
speaking, the enforcement appears to have been quite effective. 
11 As can be seen from Table A6, there were some mandated cuts among high counts in 1910-12. Because we are 
interested in the relative stringency of low-end versus high-end output cuts, when constructing our measure during 
that period we subtracted the fraction of high-end cuts from the fraction of low-end output cuts. 
12 We employ conversion coefficients similar to those developed in Braguinsky et al. (2015) to aggregate threads of 
various counts into a single, “20-count equivalent” measure of total firm output in physical units. All the results 
below are robust to using machine inputs (number of spindles in operation) or labor inputs (number of worker-
hours) as alternative measures of firm size. 
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start of our data until about 1899, but then starts increasing, first in high-end product space and 

later in low-end products. There is a particularly sharp increase in both product types around 

1907. From 1907 onward, there is a high correlation between the total number of product 

varieties per firm and average output per firm. A salient feature of industry-level product variety 

expansion in Figure 1 is that low-end products are not replaced by high-end products. Rather, a 

sharp increase in the number of high-end product varieties accompanies an increase in the 

number of low-end product varieties. We examine this pattern closely below. 

--- Figure 1 around here --- 

We now employ more formal decomposition analysis to quantify sources of change in the 

number of product varieties per firm we observe in Figure 1. We first decompose the market-

share-weighted average number of products at time t as 

 𝑦"! ≡ ∑ 𝑠"!𝑦"!
#!
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where C, EN, and EX indicate continuing firms, entrants, and exiting firms, respectively.  

We call the first term on the right hand side the “composition effect.” It captures the 

change in the average number of products due to the difference in the composition of firms 

between t and t+1. This measures the difference, over their lifetimes, in the average number of 

products of new entrants versus exiting firms. The second term is the “expansion effect” of 

continuing firms. It captures within-firm changes in product variety counts between t and t+1, 

holding fixed firms’ base period market shares. The third term is the “allocation effect,” 

measuring the contribution of changes in the market shares of continuing firms between t and 

t+1. Finally, the fourth and fifth terms measure the contribution of entrants and exiting firms, 

respectively, coming from deviations in the first observation (for entrants) and the last 
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observation (for exiting firms) from their own long-term average number of products. A positive 

(negative) number in the fourth term means that entrants’ average number of products varieties is 

greater (less) when they enter than in later periods of their operation. A positive (negative) 

number in the fifth term means that exiting firms’ average number of products is greater (less) 

right before they exit than in their earlier periods of operation. We label the sum of the last four 

terms in the decomposition the “overall within effect.” 

Table 2 presents the results. The main takeaways are as follows. First, the decomposition 

shows there was an increase of 9.0 in the average number of all products per firm between 1893 

and 1914. Of this, the within effect accounts for a greater share (5.6 products) than the 

composition effect (3.3 products). However, when we divide the sample before and after the 

spike in product varieties in 1907, there are stark differences. From 1893-1906, the overall 

increase of 2.5 products per firm is more modest, and the composition effect (1.6) contributes 

more than the within effect (0.9). Decomposition of the within effect also shows that it is entirely 

driven by allocation—changes in market shares. We see a complete reversal from 1907-1914. 

While the absolute magnitude of the composition effect remains roughly the same (1.7), the 

within effect (4.7) becomes a dominant contributor to the total growth in average products per 

firm of 6.4. Almost all of this within effect now comes from the expansion of continuing firms, 

while the allocation effect is much smaller. 

Thus, during the first subperiod (1893-1906), which is the period of large-scale entry, 

followed by a shakeout and initial industry consolidation, the growth in number of product 

varieties was driven by new entry and by increasing market shares of continuing firms that 

produced more product varieties. In the second subperiod (1907-1914), while new entry still 

contributed to product variety growth at about the same magnitude as before, the number of 

product varieties produced by continuing firms swelled. This growth came to dominate the 

overall expansion of the number of product varieties produced by the industry. Separate 

decompositions of high- and low-end products present essentially the same picture in both cases, 

though with some nuanced differences between them. 

--- Table 2 around here --- 

Thus, decomposition analysis shows that the big boost received by industry growth after 

1907 from the expansion of the number of product varieties seen in Figure 1 resulted almost 
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entirely from an increase in the number of both high-end and low-end products produced within 

continuing firms. 

The findings from the decomposition analysis raise questions. Were the firms whose 

expansion drove the growth in high-end and low-end product varieties the same or different 

firms? If they were the same, did they first expand their low-end product varieties and then move 

on to high-end products, as implied by the learning-by-doing theory of Stokey (1988), for 

example? Or, did they invert that order? 

 

3.1.2 Same or different firms? 

Table A7 in appendix A.5 shows that as high-end machine capacity increases from 

virtually zero at the start of our sample, it spreads across firms of different sizes but remains 

heavily concentrated among the largest firms. Perhaps not surprisingly, this leads to the same 

pattern in the number of high-end product varieties. More interestingly, however, the number of 

low-end product varieties, which do not require high-end machines for their production, also 

becomes heavily concentrated in the same set of firms. Thus the same firms accounted for the 

expansion of both high- and low-end product varieties. Moreover, those were also the firms that 

invested in high-end machines and grew to become the top firms in the industry (see also 

appendix Table A7). This leads to questions about the relationships between product upgrading 

and diversification and their ties to firm growth. This is what we explore next. 

 

3.2 Upgrade experiments and product varieties expansion  

We saw above that almost two-thirds of firms’ new products were initially launched on a 

small scale (experimental production), and 60-70 percent of those experiments were not scaled 

up. Most experiments could therefore not directly contribute to the proliferation of new product 

varieties. It turns out, nevertheless, that upgrade (although not diversification) experiments did 

contribute to product varieties expansion. We establish this fact here, and we examine the 

mechanisms behind it in the next section. More specifically, we show how accumulated past 

upgrade experiments are tied to expansion in product varieties of all types, even those not 

directly targeted by such experiments. 

The estimation equation is: 

𝑦"! = 𝛼 + 𝛽%𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"!-% + 𝛽.𝑐𝑢𝑚𝑙_𝑑𝑖𝑣𝑒𝑟𝑠_𝑒𝑥𝑝"!-% + 𝛽/𝑋"!-% + 
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																							𝛾" + 𝛿! + 𝜁0 + 𝜀"!,       (1) 

where 𝑦"! it is the change from t-1 to t in the total number of products produced by firm i, and 

separately in the number of high-end and low-end products; 𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"!-% and 

𝑐𝑢𝑚𝑙_𝑑𝑖𝑣𝑒𝑟𝑠_𝑒𝑥𝑝"!-%, represent the cumulative numbers of upgrade and diversification 

experiments conducted by firm i by time t-1, respectively; 𝑋"!-% is a vector of controls, and 𝜀"! is 

the error term. We include firm fixed effects 𝛾" and semi-annual period fixed effects 𝛿!. In 

addition, we include a set of dummies 𝜁0 to nonparametrically control the number of periods 𝜏 

the firm has been in the sample (the first equal to one for every firm’s earliest period in the 

sample, the second equal to one for firms’ second periods, and so on). We include these to ensure 

that our key variables of interest, the cumulative numbers of upgrade and diversification 

experiments, capture accumulated past experience with experiments and not simply how long the 

firm has happened to be in the data. We exclude each firm’s first and last periods because they 

often cover less than a full six months.13 

The results, shown in Table 3, make clear that a firm’s past upgrade product experiments, 

but not diversification experiments, are tied to growth in its number of products of all types 

(total, as well as high- and low-end specifically). Columns (1)-(3) include the number of 

products (all, high-end and low-end, respectively) produced by firm i at time t-1 as a control in 

𝑋"!-%.14 An additional past upgrade experiment is associated with adding product varieties of all 

types in the following period. To give some sense of the magnitude of this relationship, 

conditional on past upgrade experiments being positive, the 25th-percentile of cumulative past 

upgrade experiments is one, while the 75th-percentile is five experiments. Hence, the interquartile 

differential is tied to about 1.7 (0.43x4) more new product varieties added during any given 

semi-annual period. 

It is worth emphasizing that past upgrade experiments are associated with not just future 

growth of high-end products, but low-end products as well. Indeed, the magnitudes of the 

 
13 We do the same in all subsequent regressions below, unless explicitly stated otherwise. 
14 The total number of available product varieties (and hence the potential number of products any firm can produce) 
is bounded from above in our data, so we need to control for the level of product diversification already attained. To 
check if the estimation results are sensitive to the potential “subtraction bias” (inclusion of the lagged number of 
products, which also enters the dependent variable with the minus sign, as an explanatory variable), we conducted an 
ordered logit estimation with the dependent variable being a dummy taking values of minus 1, zero, and plus one if 
the firm respectively reduced, did not change, or increased the number of product varieties from t-1 to t, The results 
were very similar; details are available upon request. 
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experiment-associated high- and low-end product growth are similar. Because upgrade 

experiments never involve low-end products by construction, the results in column (3) suggest 

there may be substantial spillovers from firms experimenting with product upgrading to their 

abilities to increase the number of seemingly unrelated low-end products.  

--- Table 3 around here --- 

Columns (4)-(6) of Table 3 include additional controls: an indicator for the firm installing 

new machines (whether high-end or low-end) during the observation period, and another 

indicator equaling one if the firm employed a university-educated engineer or had a board 

member who was a prominent cotton yarn or garments merchant (as a proxy for “connectedness” 

to markets; see Braguinsky et al., 2015). The point estimates on past upgrade experiments fall 

slightly but retain economic and statistical significance. 

Among the covariates, high-end machine installation has a positive, economically large 

and statistically significant association with both high-end and low-end product varieties 

expansion. Other things equal, expanding high-end machine capacity relates to an average 

increase of new product introductions of 0.66 products per period, about 40 percent (0.27/0.66) 

of which are new high-end products and the remainder new low-end products. The tie between 

growth in low-end products and high-end machine expansion (which in principle could be used 

for low-end production but rarely were because of their expense) is more suggestive evidence 

that pushing the technology frontier helps firms grow within the frontier as well. 

Low-end machine expansions, on the other hand, do not exhibit patterns characteristic of 

spillovers. They are statistically unrelated to the expansion of high-end product varieties. And 

while they do accompany growth in low-end products, the magnitude of this relationship is about 

half of the relation with high-end machine expansion. 

It is also worth noting that the relationships between high-end machine expansion and 

product growth hold even conditioning on past upgrade experiments. As we will see below, 

however, adoption and expansion of high-end machines (but not of low-end machines) are 

nevertheless significantly related to additional experimentation. 

 
4. Exploration of Mechanisms 

The relationship between pushing the technology boundary and subsequent product 

variety expansion and firm growth raises questions about the mechanics behind it. As mentioned, 
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most upgrading experiments fail to scale up and to stay in a firm’s portfolio, so the direct effect 

of upgrade experiments on the expansion of product varieties is limited. Further, upgrade 

experiments have no direct effect whatsoever on the expansion of low-end product varieties yet 

are strongly connected to them quantitatively. We address these questions in this section. 

 

4.1 High-end machines, market ties, engineering human capital, and product experiments 

High-end machines were a prerequisite for venturing into the high-end product space, and 

we saw above that having such machines was indeed associated with more product upgrade 

experiments. But delivering high-end products was difficult and entailed much uncertainty. At 

the beginning of our sample, Japanese mills were catching up to the world technology frontier. 

Introducing high-end machines was a costly investment decision. Moreover, successfully 

introducing high-end products often required more than just procuring high-end machines. It 

called for a combination of engineering talent, market knowledge, and product 

experimentation.15 

In Table 4 we present summary statistics showing the relationships between having high-

end machines and a number of firm-level outcomes: employment of university-educated 

engineers; the presence of cotton yarn and garments merchants (hereafter, “merchants” for short) 

on firms’ boards of executives, as a proxy for market knowledge or “market ties”; and product 

experimentation. 

--- Table 4 around here --- 

Firms that installed high-end machines had merchants as their board members in 71 

percent of the cases compared to 57 percent for other firms (a difference that is statistically 

significant). These firms also employed 1.6 university-educated engineers on average, ten times 

the level of firms that did not. A similar order-of-magnitude difference exists for the number of 

second-tier educated engineers—graduates from technical colleges, corresponding to today’s 

 
15 For example, Nihon Spinning, the first firm to produce gassed yarn in Japan, ordered its first machines from Platt 
Brothers in April 1894. Henry Ainley, a British engineer who met with three of Nihon Spinning’s founders at the 
time, expressed surprise that the Japanese were even contemplating producing gassed yarn at that stage (Geppo, 
1893, No. 5, p. 89). Indeed, it took two full years for the firm to actually start production. In-between, Japanese 
engineers, together with two British advisers who came from England to help, had to resolve a host of technological 
issues. These ranged from finding ways to procure heat-resistant brick in Japan to dealing with drafts that caused 
burners to flutter and damage the thread, all the while fighting suffocating heat inside gassing chambers (Kinugawa, 
1964, Vol. 7, p. 13). See also the example of Amagasaki Spinning company detailed in the appendix. 
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Institutes of Technology. Thus, adoption of high-end machines was closely related to superior 

market ties and engineering human capital. 

The numbers in Table 4 also show that firms with high-end machines conducted 

experimental product introductions at a much higher frequency, introducing an average of 1.2 

products per year (0.6 per semiannual observation), as opposed to 0.5 products per year for those 

without. In contrast, as can be seen from the bottom three rows of the table, there was no 

difference in the frequency with which firms introduced new products above the three percent 

threshold. Thus, high-end machines facilitated experimentation with new products before scaling 

up in ways low-end machines could not, or at the very least, did not. 

Notably, while high-end machines were unsurprisingly associated with a greater 

frequency of product upgrade experiments, they were also tied to a doubled propensity to 

conduct horizontal product diversification experiments. (The opposite is true regarding the 

propensity to introduce new products on a non-experimental basis, per the bottom rows.) 

Because high-end machines were not directly relevant to low-end products, this is once again 

consistent with adoption of high-end machines having spillover effects on all types of new 

product experimentation. Conditional on conducting experiments, firms with high-end machines 

had a lower fraction of successful experiments (new experimental product introductions that 

were subsequently scaled). Those with high-end machines scaled 22 percent of their 

experimental products compared to 35 percent (of a much smaller number) of experimental 

products of firms without high-end machines. This difference is economically and statistically 

significant and may reflect both higher uncertainty faced by high-end machine users and the fact 

that they derived useful knowledge from experimentation regardless of the outcome. 

Given the size of the investment high-end machinery required and the potential 

heterogeneity in firms’ benefits and costs from doing so, it is likely that the differences observed 

in Table 4 between firms with and without high-end machines are not purely causal. We take 

installations as given immediately below but later employ an instrument based on industry-wide 

mandatory output cuts of low-end products as a source of exogenous variation in firms’ 

incentives to use their machines to conduct upgrade experiments.16 

 
16 We examine further in appendix A.6 how firms select into procuring high-end machines. A key finding is that 
among firms that did not yet have high-end machines, those that would later purchase them—“future adopters”—
tended to already conduct more experiments and have more merchant board members than firms that never installed 
high-end machines. Future adopters were somewhat larger in terms of output, but they were neither more diversified 
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4.2 Predictors of vertical upgrade experiments 

We now examine more closely the complementary factors to upgrade experimentation. In 

Panel A of Table 5 we present the results of regressions where the dependent variable is the 

number of upgrade experiments started by a firm in a given semi-annual period. The explanatory 

variables of interest are whether the firm had installed high-end machines, whether it expanded 

its high-end (low-end) machine capacity, the presence of merchants on firms’ boards of 

executives, and whether the firm employed a degreed engineer. We also control for firm age and 

semi-annual time dummies. Because the dependent variable is a count variable consisting of 

zeroes and small integers, we employ Poisson regression estimates. (We obtained similar results 

using negative binomial regression, as well as OLS.) 

In the estimation results in column (1), the coefficient on the indicator for having high-

end machines indicates that high-end machines were associated with starting about 1.1 additional 

upgrade experiments per semi-annual period. This echoes the pattern in Table 4 above. In column 

(2) we look at high- and low-end machine capacity expansions. Adding high-end machines, but 

not low-end machines, was associated with an additional 1.5 new upgrade experiments per 

period. Thus, both the presence and expansion of high-end machines were associated with firms 

experimenting more with vertically upgraded products. Repeating the same exercise on the 

subsample of firms that already had high-end machines in column (5) yields a coefficient that 

implies about 1.1 new upgrade experiments upon high-end machines expansions, a number that 

is still statistically significant despite the much smaller number of observations. 

In column (3) we look at engineering human capital and market ties. Firms that employed 

a university-educated engineer started a marginally significant 0.7 more upgrade experiments per 

period. Having a merchant on the board of executives was associated with an additional 1.5 

upgrade experiments per semi-annual period. Thus our proxy for having market ties is similarly 

related to incremental experimentation as high-end machine capacity expansions, and is twice 

that of having a university-educated engineer. These results are not directly comparable to the 

firm-fixed-effects estimations in Table 3 above because this regression uses across-firm 

 
nor more likely to expand low-end machine capacity before adopting high-end machines. Thus again we see that 
diversification and expansion of low-end machines happened after firms successfully expanded into high-end 
product space. 
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variation. However, it is worth noting the contrast between the strong correlation between having 

market ties and upgrade experimentation here and the lack of a significant relationship between 

market ties and product varieties expansion seen above.17 Merchants on executive boards 

accompanied experimentation but played little explanatory role in subsequent product varieties 

expansion and, as we will see below, overall firm growth. This suggests market ties were 

important in helping firms cope with initial market uncertainty when experimentally introducing 

unfamiliar products, but subsequent expansion was less dependent on such ties and instead relied 

more on the experience and technological knowledge embodied in engineers.18  

--- Table 5 around here ---  

The relationships in columns (1)-(3) and (5) may reflect the influence of third factors that 

jointly determine both the explanatory variables and experimentation. To gain exogenous 

variation in experimentation for our causal analysis below, we construct an instrument that uses 

the interaction between contemporaneous installment of new high-end machines and the 

industry’s imposition of mandatory output cuts for low-end products, as described in Section 2.4. 

Here, we use indicator variables for each condition for illustrative purposes; in our firm growth 

specifications below, we use more continuous measures of each. 

The logic of this interaction as a valid instrument for product upgrade experimentation is 

as follows. The relevance condition requires that the coincidence of a firm’s high-end machinery 

installation and mandated output cuts in a given period be correlated with the number of upgrade 

experiments conducted by the firm that period. The connection between having and installing 

high-end machines and conducting experiments is intuitively obvious. As for mandated output 

cuts, because they exempted high-end products, firms had a lower opportunity cost of shifting 

labor and capital inputs from (now restricted) low-end products to high-end opportunities. 

The exclusion condition requires that the interaction be uncorrelated with any factors that 

drive experimentation other than through the relevance mechanism above. The mandated output 

cuts were imposed at the industry level and were sourced in the wake of unexpected demand 

 
17 Regression specifications in Table 3 include firm fixed effects because we are interested in examining within-firm 
impact of knowledge accumulation, as proxied by cumulative past upgrade experiments. Nevertheless, if we drop firm 
fixed effects from these specifications, the coefficient on the indicator for having a merchant as a board member is 
still about half the magnitude of the coefficient on the indicator for having a university-educated engineer, in sharp 
contrast to the estimation results in Table 5. 
18 As discussed below and in appendix A.11, the presence of merchants on executive boards was also closely related 
to experiments that led to the selection of firms into purchasing high-end machines in the first place. 
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shocks like the Boxer rebellion of 1900 or the stock market crash of 1907. It is unlikely therefore 

that the cuts would correspond to any firm- or even industry-wide shifts in the desire to 

experiment with new products. Regarding high-end machinery installations, one might be 

concerned that they were driven in part by a firm’s expected return to high-end product 

experimentation. However, by using machinery that started operating only in period t to 

construct the instrument, we are taking advantage of the considerable lags between ordering, 

delivery, and installation of machinery in the industry. The minimum order-to-installation lag is 

one year and could often be longer, for random reasons; see Saxonhouse (1974). Therefore it is 

implausible that firms would—somehow anticipating a fall in demand and a resulting mandated 

output cut at least one year in the future—place a machine order with the intention of it arriving 

and becoming operational coincident with the output cut. We believe it was nearly impossible to 

time the arrival of the new high-end machines to coincide with the imposition of output cuts, 

even if firms were to consider doing so.19 

We include this interaction term in columns (4) and (6) of Table 5. As can be seen, it is 

positively and significantly related to firms starting more upgrade experiments, verifying the 

relevance condition as an instrument. The effect is especially large among firms that already 

have high-end machines. There, high-end machine capacity expansions that coincided with 

mandatory output cuts led to those firms starting 1.7 new experiments in such periods. 

 

4.3 Factors in diversifying experiments and selection into high-end machine adoption 

Panel B of Table 5 shows the results of running the same specifications as in Panel A, 

except with the dependent variable being the number of diversification experiments started in a 

given period. 

With the notable exception of the interaction of new high-end machine installation and 

mandatory output cuts (which of course applied to low-end products), the factors that explain 

diversification experiments are similar to those for product upgrade experiments in Panel A. 

Firms with high-end machines start on average about one more diversification experiment in 

each period than do firms with no high-end machines. And once again high-end, but not low-end, 

machine capacity expansions are associated with more experimentation. This conforms to the 

 
19 High-end machine expansion also happened through acquisitions. There too it took at least a year, often more, to 
consummate an acquisition. 
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results in Table 3, which showed low-end product expansion was related to the same factors as 

high-end product expansion. 

Engineers play a more prominent role than merchants in explaining diversification 

experiments. This is consistent with market ties playing a bigger role in the initial push to expand 

the technology frontier, while engineering and technical knowledge matters more for following 

through with production at scale. As we will see in the next section, the interaction between 

accumulated past upgrade experimentation with the expansion of low-end product varieties is a 

key determinant of firm output scale growth. 

 
5. Product upgrading, product diversification and firm growth 

We have established that the relationship between pushing the technology boundary and 

subsequent product variety expansion is mediated by experiments in moving to products up the 

quality ladder, followed by application of the knowledge gained toward diversifying low-end 

product offerings. In this section, we examine if these factors also translated into higher total 

output growth. Specifically, we measure how the interaction of a firm’s cumulative upgrade 

experiments and the fraction of low-end products in the firm’s portfolio affects output growth. 

This interaction summarizes the experiment-learn-apply process. 

The basic estimating equation is: 

𝑙𝑛(𝑦"!(%) − 𝑙𝑛(𝑦"!) = 𝛼 + 𝛽%𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"! + 𝛽.𝑙𝑜𝑤_𝑓𝑟𝑎𝑐"! +

𝛽/𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"! × 𝑙𝑜𝑤_𝑓𝑟𝑎𝑐"! + 𝛽1𝑋"! + 𝛾" + ∆! + 𝜀"!,             (2) 

where 𝑦"! is firm i’s output at time t, 𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"! is the cumulative number of upgrade 

experiments conducted by the firm up to time t, 𝑙𝑜𝑤_𝑓𝑟𝑎𝑐"! is the fraction of low-end products in 

the firm’s total number of products, and 𝑋"! is a set of control variables, including indicators for 

firm i employing a university-educated engineer or having a merchant on its board of executives, 

the growth rates of both high-end and low-end machine capacity (spindles) between t and t+1, 

and logged output at time t. This panel regression with firm fixed effects 𝛾" captures firm-

specific knowledge accumulation through upgrade experiments and the transfer of that 

knowledge into expansion of the firm’s low-end product portfolio. The parameters of interest are 

𝛽% and, especially, that on the interaction term, 𝛽/. A positive 𝛽/ is consistent with a 

complementarity between product upgrading experimentation and product diversification. 
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 Table 6 reports the results. In column (1) we simply examine whether the cumulative 

number of upgrade experiments raises firms’ growth rates. The coefficient on the cumulative 

number of upgrade experiments is positive but not statistically significant at conventional levels. 

Employing a degreed engineer is associated with a 9.6 percent increase in the firm growth rate, 

other things equal. This corresponds to about half of the gap in growth rates between the 25th and 

the 75th quartiles in the sample. In contrast, having a merchant on the firm’s board of executives 

is unrelated to firm growth. 

In the specification in column (2) we add the interaction of the cumulative number of 

upgrade experiments and the fraction of low-end products. While the coefficient on cumulative 

upgrade experiments is economically and statistically indistinguishable from zero, the coefficient 

on the interaction is positive and significant. Given that the mean number of cumulative upgrade 

experiments in the sample is 1.14 and the mean fraction of low-end products is 0.84, the 

coefficient of 0.04 implies an additional upgrade experiment at the mean low-end product 

fraction is associated with a 3.4-percentage-point higher output growth rate. Similarly, increasing 

the fraction of low-end products by one standard deviation (0.27) is associated with a 1.2 

percentage point higher growth rate at the mean number of cumulative upgrade experiments. 

These results indicate the link between upgrade experiments and growth indeed appears to act 

through a mechanism tying experimentation with vertically differentiated products to the extent 

of the horizontal differentiation of the firm’s product offerings. 

--- Table 6 around here --- 

While looking within firm as above controls for several possible confounds, it is still 

possible that a firm may time its product upgrading experiments with other unobservable factors 

related to firm growth. To obtain a better sense of the causal connection between upgrade 

experimentation and firm growth, as discussed above we use the interaction of high-end machine 

arrival and installation with mandatory output cuts to gain a source of exogenous variation in 

upgrade experimentation. Here, we employ continuous measures of each. For machine 

installation, we use the growth rate of high-end machine capacity due to new installations during 

period t. For output cuts, we use the size of the required production drop in low-end products. 

The resulting instrument is the product of these two values, and it varies both intertemporally and 

in the cross section. 
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Because the endogenous variable is cumulative high-end experiments but the logic of our 

exogenous variables works contemporaneously (it predicts current-period experiments), we 

estimate our IV specification in two stages. First, similar to Table 3 above, we use a Poisson 

regression to obtain a predicted number of upgrade experiments conducted by a firm in a 

particular period. The model uses the aforementioned instrument as well as other exogenous 

variables like firm age. Next, we sum these period-specific predicted values to construct the 

firm’s predicted cumulative upgrade experiments. This constructed value is the key explanatory 

variable in our causal inference regressions. 

We present the first stage regression results in column (1) of Table 7. The dependent 

variable is the number of upgrade experiments the firm starts in period t, while the explanatory 

variables include the instrument, which is itself an interaction, and the two main effects. The 

coefficient on the interaction is positive and significant. Firms that expanded high-end machines 

during times of output cuts were in fact pushed toward conducting (more) upgrade experiments. 

--- Table 7 around here --- 

As a placebo test to help verify the validity of the instrument, we conducted a similar 

regression using the growth rate in low-end machine capacity instead. The results are in column 

(2). As expected, there is no significant relationship between upgrade experiments and the 

interaction in this case. 

We use the constructed number of upgrade experiments to estimate the effect of such 

experiments on firms’ output growth. The results are in columns (3) and (4) of Table 7. The 

coefficient on the predicted cumulative number of upgrade experiments in column (3) is positive 

but small and statistically insignificant, similar to column (1) in Table 6. However, when we 

include in column (4) the interaction of constructed cumulative upgrade experiments and the 

fraction of low-end products, the interaction’s coefficient is twice as large as the corresponding 

coefficient in Table 6 and more precisely estimated. 

That there appear to be growth effects of product upgrade experimentation raises the 

question of why firms in our sample did not engage it in all the time (or at least, more often). A 

couple points are worth noting. First, there could be substantial firm heterogeneity in expected 

growth effects. In our empirical results above, we condition on the firm having installed high-end 

machinery. As seen in Table 4, these firms might be systematically different from those that did 

not. One of these differences could be the expected return to upgrade experimentation. To 
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examine this further, we also conducted panel firm-fixed effect estimation similar to that in 

Table 6 but separately for firms that already had high-machinery installed. Remarkably, the 

coefficients measuring growth effects of specifically upgrade experiments conducted by firms 

that already had high-end machines were very similar in magnitude and statistical significance to 

those from the second-stage regression in Table 7 despite very different estimation 

methodologies (details are available upon request). 

Second, experimentation likely also has costs, even among firms with high-end machines. 

A particular cost relevant in the context of the instrumental variable is the opportunity cost of the 

labor and capital inputs the firm uses to conduct experiments. Part of this opportunity cost is the 

value of the low-end product output (and any associated future growth tied to this) that those 

inputs would create in absence of experimentation. Effectively, the instrument uses instances 

where the firm faces an exogeneously sourced temporary reduction in those opportunity costs. 

This pushes the net benefit of upgrade experimentation into positive territory, inducing 

experimentation and the gross growth benefits it creates. We are measuring the average growth 

benefit across firms whose upgrade experimentation benefit-cost calculus is close enough to the 

margin for the instrument to spur them into action.  

 
6. Transmission channels 

How exactly does technical knowledge acquired through experimentation with upgrade 

products lead to the expansion of low-end product varieties and firm output growth? We consider 

two possible channels: increased flexibility of the firm’s production system, including in low-end 

products, and increased demand-side appeal of low-end products. 

 

6.1 Production system flexibility as a transmission channel 

Recall that besides being differentiated by counts, product varieties in our data are also 

distinguished by the direction of twist (S-twist and Z-twist single yarn) and whether yarn is 

further doubled and/or gassed. These different types, even within the same count category, serve 

different needs of fabric weavers. During our sample, S-twist yarn was often associated with 

weft while Z-twist was often associated with warp.20 S-twist and Z-twist yarn also differ in 

 
20 In the process of weaving textiles from yarn, the longitudinal warp yarns remain stationary on a frame or loom, 
while the transverse weft is drawn through and inserted over and under the warp. 
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strength and softness (Z-twist is stronger, but S-twist is softer to the touch). Doubled and gassed 

yarn serve still other weaving purposes. As demand conditions change, firms that can flexibly 

switch across different twist directions within a given count or across adjacent counts are better 

able to respond to such changing conditions, and thus have better growth opportunities. We 

examine if the knowledge capital accumulated through upgrading experiments contributed to 

firms developing more flexible production systems. 

To construct an empirical measure of production system flexibility, we use monthly data 

to construct two measures of the frequency of a firm’s product portfolio rebalancing. The first 

counts how often the firm changes the “lead direction” of its yarn of the same count. For 

example, suppose that both firm A and firm B produce 16-count yarn. Suppose further that firm 

A produces 80 percent of its 16-count output in S-twist and 20 percent in Z-twist in both t and t-

1. Firm B, on the other hand, produces 80 percent of its 16-count output in S-twist and 20 

percent in Z-twist in t-1, but then changes to 80 percent in Z-twist and 20 percent in S-twist in t. 

We say that firm B rebalanced its portfolio of 16-count yarn between t-1 and t, while firm A did 

not. More generally, for each count category, we define the “lead direction” to be the way in 

which the majority of yarn in the count category was processed (S-twist, Z-twist, doubled or 

gassed). We use monthly data to count the number of times the firm changed this lead direction 

in any given semi-annual period. Adjusting the lead direction is time-consuming (see appendix 

A.7), so we infer that firms that did such adjustments more frequently had a more flexible 

production system. 

A second measure of portfolio rebalancing counts the number of times a firm changed its 

“lead” count category within each direction (S-twist, Z-twist, doubled and gassed yarn). Suppose 

firms A and B produce two count categories of S-twist yarn, 16 and 20 counts. Firm A produces 

80 percent of its output of S-twist yarn as 16-count and 20 percent as 20-count in both t and t-1. 

Firm B, on the other hand, produces 80 percent of its output of S-twist yarn as 16-count and 20 

percent as 20-count in t-1, but then switches in t to 80 percent as 20-count and 20 percent as 16-

count. Once again, we say that firm B rebalanced its portfolio of S-twist yarn between t-1 and t, 

and firm A did not. This operation is also time-consuming, so our second measure of a firm’s 

production system flexibility is the number of times it changed the “lead count” category in a 

given semi-annual period. 
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To address the role played by knowledge capital accumulated through product upgrade 

experiments as cleanly as possible, we limit our product flexibility measure to low-end products 

(up to 20 count). We examine how the two measures of product portfolio rebalancing at the low-

end of the product variety spectrum were associated with the cumulative number of product 

upgrade experiments, which by construction involve only high-end products, and product 

diversification experiments, which can involve low-end products. (All the findings presented 

below are robust to using product portfolio rebalancing measures over all product varieties.) 

Table 8A reports estimation results from within-firm panel regressions. The estimation 

equation is 

𝑦"! = 𝛼 + 𝛽%𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"!-% + 𝛽.𝑐𝑢𝑚𝑙_𝑑𝑖𝑣𝑒𝑟𝑠_𝑒𝑥𝑝"!-% + 𝛽/𝑋"! + 𝛾" + ∆!, 

where 𝑦"! are the two measures of firm-specific production system flexibility described above. 

The explanatory variables of interest are again the cumulative numbers of upgrade and 

diversification experiments conducted by firm i by time t-1. We include as control variables 𝑋"! 

indicators for high-end and low-end machine expansions in t-1 as well as for the presence of a 

university-educated engineer and a merchant on the board of firm i at time t. The regressions also 

include semi-annual time dummies and firm fixed effects. The firm fixed effects mean we are 

measuring the within-firm relationship between conducting more upgrade/diversification 

experiments and its production system flexibility in the low-end product space. 

The results strongly support the conjecture that knowledge accumulated through product 

upgrade experiments contributed to greater production system flexibility in low-end product 

varieties. After firms conducted vertical upgrading experiments, they rebalanced their portfolios 

of low-end product varieties more frequently, both across twist directions within a given count 

category and across count categories within a twist direction. The relationship was stronger for 

within-count lead direction changes than for within-direction lead count changes (e.g., switching 

from 20-count S-twist to 20-count Z-twist rather than switching from 16-count S-twist to 20-

count S-twist). 

The coefficient on the cumulative number of upgrade experiments in the within-count 

portfolio rebalancing regression (the first column in Table 8A) is 0.24, while the mean number of 

within-count portfolio rebalancing events is 0.5. Hence an additional upgrade experiment was 

associated with an increase in portfolio rebalancing within counts by 50 percent of its mean. The 

coefficient on the cumulative number of upgrade experiments in the across-count portfolio 
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rebalancing estimations (the second column in Table 8A) is 0.16, implying that an additional 

upgrade experiment is associated with an increase in portfolio rebalancing across counts by 

about 13 percent of its mean (equal to 1.2). 

Remarkably, experience conducting diversification experiments had no such effects, even 

though diversification experiments involve low-end products. Once again, vertical product 

expansions appear to have spillovers into production capabilities that horizontal expansions do 

not. These spillovers do not appear to be due the direct operation of the (indeed more flexible) 

high-end machines themselves. There is no obvious advantage of high-end machines for within-

count direction rebalancing, and we control for high-end machine expansion in the regressions. 

Accumulated technical knowledge from product upgrade experiments, not the presence of high-

end machines per se, appears responsible for more flexible within-count portfolio rebalancing.21 

--- Table 8A around here --- 

Table 8B confirms that these transmission channels of upgrade experiments contributed 

to firm growth. A rise in portfolio rebalancing from t to t+1, both within- and across-count, was 

economically and statistically significantly associated with accelerations in firm growth. One 

extra within- (across-) count portfolio rebalancing is associated with 1.0 (1.2) percentage point 

higher growth rates. Because the distribution of rebalancing events across firms and time is 

highly skewed, a better sense of the magnitudes might be obtained by calculating the effect of a 

firm moving from doing no portfolio rebalancing to the mean rebalancing level conditional on 

rebalancing being positive. This conditional mean of within- (across-) count portfolio 

rebalancing events is 2.33 (2.35). Moving from no within-count (across-count) portfolio 

rebalancing to its conditional mean is thus associated with a 2.33 (2.82) percentage point faster 

growth rate of total output. If we include both upgrade experiments and portfolio rebalancing in 

the same growth regressions (not shown), the coefficients on cumulative past upgrade 

 
21 This link can be put in a broad historical context. At the start of our sample, the lion’s share of all yarn produced 
by Japanese firms was S-twist. This changed dramatically over time. Figure A4 in appendix A.7 plots the dynamics 
of the fraction of non-S twist varieties in the total number of product varieties. The fraction of non-S-twist varieties 
was less than 30 percent of the total in both high-end and low-end product varieties early on, but producers of high-
end product varieties quickly switched to almost exclusively Z-twist, doubled, and gassed yarn. The fraction of non-
S-twist among low-end product varieties, on the other hand, was at about 40 percent at the turn of the 20th century 
and gradually increased to about 60 percent toward the end of the sample, with firms producing high-end products 
leading the way. The mean fraction of non-S-twist varieties in the total number of low-end varieties over the sample 
was 0.48 for firms that produced at least one high-end product, but only 0.28 for firms that did not produce high-end 
products. This difference is statistically significant. Experience with high-end products enabled the broadening of 
the product varieties range, creating more flexible production systems at the low end (cf. Roberts, 2004, pp. 37-38). 
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experiments in Table 6 and those on the number of portfolio rebalancing events in Table 8B 

remain the same. The two relationships therefore operate independently of each other.22 

--- Table 8B around here --- 

 

6.2 Quality of low-end products as a transmission channel 

In this section we examine how a firm’s experience in upgrading experimentation affects 

the demand for its low-end products. To measure this demand appeal, we utilize the Khandelwal 

(2010) method of estimating quality for horizontally differentiated products, which essentially 

boils down to looking at relative market shares after adjusting for price differences. While we do 

not have firm-level price data for most product varieties, we do for a key 20-count yarn for about 

40 percent of observations.23 

As described above, count and finish completely summarized the physical aspect of the 

product. However, some horizontal differentiation existed due to reasons of geography or 

idiosyncratic buyer-supplier relationships. Most firms did in fact have their own registered 

brands, including for 20-count yarn (e.g., Kanegafuchi Spinning’s “Rangyo (Indigo Fish)” brand, 

Settsu Spinning’s “Kujyaku (Peacock)” brand, etc.). That said, given the physical equivalence of 

the products, within-count substitution across brands was very high and there was very modest 

equilibrium price variation.24 This makes it hard to precisely estimate the effect of price on 

demand, but we tried anyway. 

 
22 Because upgrade experiments and the associated more flexible production system allow firms to better respond to 
changing demand, these should also be associated with higher capacity utilization rates. We know firms’ installed 
spindle capacities as well as the number of spindles they had in operation each period, so we computed capacity 
utilization and confirmed that it positively covaries with our product system flexibility measures. Each additional 
lead change (both within- and across-count) is associated with about 2.4 percent increase in capacity utilization 
rates. Details are available upon request. 
23 20-count yarn was the industry’s modal output, accounting for 27.6 percent of production over the sample, but its 
importance goes beyond this. When the industry was still in its infancy, Japanese firms could not produce counts 
higher than 16 because they were limited to poor quality domestic and Chinese cotton. Indian cotton imports arrived 
at the end of the 1880s, and in 1890 the Osaka Spinning Company exported the first experimental batch of 20-count 
yarn to China. This marked the transition to a globally competitive industry (Kinugawa, 1961, Vol. 4, Ch. 1). Even 
as new high-end products were developed, 20-count yarn remained the most important low-end product. It was one 
of only two yarn counts listed on the Osaka Three Articles Exchange (alongside 16 count), and it totally dominated 
trade volume (95 million yen gross trade volume in 1914 as opposed to a mere 1320 yen for the 16 count). 
24 Table A11 in appendix A.8 shows the coefficient of variation of 20-count prices was just 2.8 percent across the 
entire sample, and the interquartile dispersion coefficient was a meager 1.6 percent. Even the 90-10 percentile 
dispersion coefficient was only a bit over 3 percent. All of these were an order of magnitude smaller than, for 
instance, the corresponding statistics of wages of female production workers in the industry. 
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Because 20-count yarn is also just at the borderline between low-end and high-end 

products, we can instrument for its price using a plausible cost shifter that would be difficult to 

obtain for other product types in our data. Specifically, we use our portfolio rebalancing measure 

introduced in the previous section, here focusing on counts around 20, and interact it with the 

degree of industry-wide mandatory low-end product output cuts. As noted above, rebalancing the 

portfolio entailed adjustment costs, and firms that had lower costs could adjust more frequently. 

Firms with more flexible production systems could therefore respond more easily to mandated 

cuts by shifting their production to high-end products. This implies, especially in the face of 

having to meet short-run fixed costs, that more flexible firms would feel less pressure to reduce 

the 20-count price during periods of slow demand.25 This gives us a supply-side source of price 

variation that is plausibly uncorrelated with quality (demand appeal). Thus our instrument for the 

price of 20-count yarn interacts our across-count portfolio rebalancing measure for counts from 

17 to 48 (that is, excluding very low and very high counts) with the time-varying degree of 

mandatory output cuts. 

We present the first-stage estimates in the first column of Table 9A. Lower portfolio 

adjustment costs, reflected in more frequent portfolio rebalancing by a firm, have a small, 

negative correlation with the firm’s 20-count price during normal times. However, rebalancing is 

strongly positively associated with the firm’s 20-count price during periods of mandatory output 

cuts. This holds controlling for both firm and time fixed effects. Going from no portfolio 

rebalancing to its mean conditional on being positive and mandated output cuts being in place 

(0.38) is associated with 1.2 percent higher 20-count price. That is small in absolute size but, 

given the price variation described above, is two-thirds of the interquartile dispersion during 

periods of output cuts. 

Recall that in the previous section we also constructed a second measure of portfolio 

rebalancing, across different directions (S-twist, Z-twist) within the same count. While this 

measure was associated with lower adjustment costs and firm growth (see Tables 8A and 8B 

above), there is no reason why lower adjustment costs within the same count should be relevant 

for keeping up the price of the 20 count during mandatory output cuts. Based on this logic, we 

conducted a “placebo test” by looking at the relationship between the 20-count price and the 

 
25 The average price of 20-count yarn was significantly lower (between 2-9 percent) during mandatory output cut 
periods than in adjacent periods without cuts. 
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interaction of within-count portfolio rebalancing and mandatory output cuts. The estimation 

results are in the second column of Table 9A. The logic holds; the relationship is statistically and 

economically indistinguishable from zero. 

The second stage regression of the firm’s (logged) share of industry-wide 20-count output 

on the instrumented logged price is shown in Table 9B. The estimated own-price elasticity is 

negative and large in magnitude, about -5.4. This is line with high substitutability across 

horizontally differentiated brands. That said, it is worth noting that the standard errors on these 

elasticity estimates are high, most likely because of low price variation in the sample discussed 

above. For the sake of comparison, in appendix A.8, Table A12 we present the results of an OLS 

estimation of firms’ market shares of 20 count on own price. This “naïve” regression produces an 

own-price elasticity of -3.1, so the IV estimation, while imprecise, moves the estimated elasticity 

in the theoretically predicted direction. 

We use the demand estimates to construct the Khandelwal (2010)-style quality (demand 

appeal) measure for each firm’s 20-count product in each period. This involves adding the 

estimated coefficients for the corresponding firm and time fixed effect to the demand residual.26 

We then use this demand appeal metric as a dependent variable and examine whether past 

experimentation is related to it. As before, we capture the temporal complementarity between 

product upgrading and horizontal diversification by interacting the cumulative number of 

upgrade experiments and the fraction of low-end products in the total number of product 

varieties produced by a firm. The estimation equation is:  

𝑦"! = 𝛼 + 𝛽%𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"! + 𝛽.𝑙𝑜𝑤_𝑓𝑟𝑎𝑐"! + 

																								𝛽/𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"! × 𝑙𝑜𝑤_𝑓𝑟𝑎𝑐"! + 𝛽1𝑋"! + ∆! + 𝜀"!,               (3) 

where 𝑦"! is the quality (demand appeal) measure of firm i’s 20 count at time t constructed as 

above; 𝑐𝑢𝑚𝑙_𝑢𝑝𝑔𝑟𝑎𝑑𝑒_𝑒𝑥𝑝"! is the cumulative number of upgrade experiments conducted by 

the firm up to time t; 𝑙𝑜𝑤_𝑓𝑟𝑎𝑐"! is the fraction of low-end products in the total number of 

products the firm makes; and 𝑋"! is a set of control variables including indicators for the firm 

employing a university-educated engineer or having a merchant as a board member, the growth 

rates of high-end and low-end machine capacity between t and t+1, and firm age. As in the 

growth regression (2), the parameters of interest are 𝛽% and 𝛽/. If experimentation with vertical 

 
26 In our setting, Khandelwal’s “outside good” is an amalgam of cotton yarns of all other counts. 



 31 

product upgrading (the complementarity between experimentation with vertical product 

upgrading and product diversification) positively affects the demand appeal of 20-count yarn, we 

expect 𝛽% (𝛽/) to be positive. 

--- Tables 9A-9C around here --- 

Table 9C presents the results. A firm’s upgrade experiments and their interaction with 

subsequent low-end product diversification are positively related to the firm-specific demand 

appeal in 20-count yarn. The estimated magnitude is largest when we instrument for upgrade 

experimentation, similarly to Table 7 above. Interestingly, the coefficient on the indicator for a 

firm employing a university-educated engineer is also positive and statistically significant in all 

specifications. Engineering talent apparently is independently associated with demand appeal. 

Historical materials provided us with an opportunity to check the external validity of our 

estimation by comparing our quality measure to quality rankings of 20-count yarns published by 

the Osaka Three Articles Exchange in 1907. As can be seen from Figure A5 in appendix A.8, the 

two quality indices are by and large consistent with each other, with a correlation of 0.69. 

 

7. Robustness 

7.1 Survival rates 

Our results indicate that firms that installed high-end machines and conducted product 

upgrade experiments grew faster. While this might seem to reflect a superior outcome for firms, 

it is possible that upgrade experimentation actually increased the variance of outcomes rather 

than raising their mean. If so, we would observe faster growth conditional on survival, but this 

would be balanced against a lower chance of surviving for experimenting firms. While such a 

variance increase might still be preferable for firms (limited liability companies are essentially a 

call option, after all), this is a qualitatively different mechanism than one where upgrade 

experimentation simply raises expected growth. To explore this possibility, we investigate 

survival patterns in our data. 

In Table 10, we present summary statistics on the status of firms at the end of our sample 

in 1914. A total of 33 firms survived to the end of the sample. Of these, 19 (58 percent) had 

high-end machines. This compares to 42 of 105 firms for which we have machine data (40 

percent) having high-end machines over the entire sample. Firms with high-end machines 
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therefore had a substantially higher probability of survival. This is inconsistent with product 

upgrade experimentation primarily increasing the variance of firms’ growth rates. 

Moreover, among the 72 firms that left the sample, we can distinguish exits by 

acquisition (53 firms) and liquidation (19 firms). Firms that exit by acquisition are more likely to 

have high-end machines than firms that shut down, as seen in the table. High-end machines not 

only were associated with a greater chance of acquisition, but they also improved shareholders’ 

returns conditional on being acquired. We have data on acquisition prices for 46 acquisition 

cases. In 18 of these cases, the acquired firm had high-end machines. We computed the “salvage 

fraction” of shareholders paid-in capital by dividing the acquisition price by the shareholders 

paid-in capital. The mean salvage fraction was 1.04 for acquired firms with high-end machines 

but only 0.70 for those that did not (a statistically significant difference at the 5 percent level). 

--- Table 10 around here --- 

 

7.2 Mergers and acquisitions 

Firms can expand the range of their product varieties and scale up production through 

mergers and acquisitions (M&A). Here we examine the possibility that M&A generate some of 

the patterns of complementarity between product upgrading and diversification we document 

above. 

Using the industry M&A data from our earlier work (Braguinsky et al., 2015), we find 

that new product introductions do increase at the time of acquisition events (the probability of a 

product addition increases by about 25 percent), but acquisitions themselves are rare events 

compared to product introduction events. As a result, just 3.6 percent of new product 

introductions in our sample coincide with an acquisition event. Thus, while there is some uptick 

in new product introductions at the time of acquisitions, acquisitions played a minor role in 

product variety expansion during our sample. Also, if we include an acquisition event dummy in 

growth regressions like those in Table 6 above, the coefficient is not statistically significant at 

conventional significance levels. In growth regressions similar to Table 7, acquisitions are 

positively related to firm growth (as to be expected), but the effect of temporal complementarity 

between product upgrading and diversification on firm growth remains qualitatively unchanged 

even after controlling for merger and acquisition events. 
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7.3 Market competition 

Increased competition in high-end product markets over time might induce firms to 

renew their attention to low-end product markets. This presents a potential alternative 

explanation for the “first experiment with upgrades, then turn to diversification” temporal 

relationship seen several ways above. We examine several market competition measures from 

our data to look for suggestive evidence regarding this hypothesis. 

Figure A6 in appendix A.9 depicts the evolution of the market shares of firms operating 

in low- and high-end product markets, the industry-level ratio of high-end to low-end output, and 

the average real price of 20-count yarns (as a proxy for the average price of low-end products). 

While the fraction of firms producing in low-end product markets is stable throughout our 

sample period after some initial volatility, the fraction of firms in high-end product markets 

increases sharply between 1899 and 1904 and fluctuates thereafter. Our decomposition analysis 

in Table 2, on the other hand, showed that most of the product variety expansion into low-end 

product markets took place after 1907, so the timing of product variety expansion into low-end 

product markets and the timing of rapid entry (and increased competition) in high-end product 

markets do not match. Also, after falling sharply in the 1890s, the average real price of 20 count 

yarns fluctuates around 60-70 yen after that, without any discernible upward or downward trend. 

Thus it is difficult to infer that low-end product markets became more attractive after 1907, when 

firms started expanding low-end product varieties and scaling their production. 

We also conducted firm-level regression analysis with new product introductions as the 

dependent variable, and the number of firms in low-end and high-end product markets as well as 

the average real price of 20-count yarns as explanatory variables. None of these variables were 

related to new product introductions at conventional significance levels. Overall, we do not see 

much supportive evidence for the hypothesis that heightened competition in high-end product 

markets pushed firms toward low-end product markets. 

 

7.4 The role of exports 

We explored whether the motive to operate in export markets might have driven both 

upgrade experimentation and firm growth. 

As has been observed in many other settings in the literature, firms that export in our 

sample are larger on average than non-exporting firms. However, cotton spinning firms that 
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export more (as a share of their output) produce fewer product varieties, especially high-end 

varieties. Hence it does not appear that exporting was a driving factor in our results above. 

The nature of industry exports during our sample explains this. Japanese cotton spinners 

successfully drove out imports and started exporting low-end products to East Asian markets 

during the 1890s. During those years, and to a large degree after that as well, exports were 

concentrated in a few low-end products (especially S-twist 16 count and Z-twist 20 count yarn). 

Major exporting firms tended to be focused on scaling their output in and around these product 

varieties. More often than not, they chose to forgo opportunities in high-end markets. 

 
8. Conclusions and Discussion 

Using detailed historical panel data from the Japanese cotton spinning industry, we find 

firm growth is associated with increased number of product varieties, but the identity (type) of 

product varieties matters. High-growth firms followed a particular pattern of product variety 

expansion. They first went outside of their existing technological frontiers and experimentally 

introduced innovative products, sometimes successfully but often not. Either way, they 

subsequently increased the number of product varieties they produced inside their frontier. In 

other words, they first engaged in attempted vertical product differentiation and, later, horizontal 

differentiation. 

The consistency of this pattern reflected spillovers that product upgrade experiments had 

onto the horizontal diversification of firms’ product sets. Experimentation required firms to 

overcome technological constraints and cope with uncertainty by investing in new types of 

machines and hiring educated engineers. These newly developed inputs and their associated 

technical knowledge were broadly applicable—useful not just for upgrading but also for 

producing new varieties within the firms’ existing technological capabilities. This process was 

the major driver of industry firms’ growth. In contrast, conducting only horizontal product 

diversification (experiments) without upgrade experiments did not generally lead to sustained 

growth in either the number of product varieties produced nor output. 

We identified at least two specific channels through which accumulated technical 

knowledge contributed to higher firm growth throughout the product space: increased flexibility 

of the production system and improved quality of low-end products. Both of these were strongly 

tied to product upgrade experimentation. 
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Standard models do not consider the relationship between product variety expansion and 

firm growth uncovered in our study. Models of endogenous growth through product variety 

expansion (e.g., Romer, 1990) predict that high-growth firms are those that keep introducing new 

product lines, all of which are of the same type. Quality ladder models (e.g., Grossman and 

Helpman, 1991; Klette and Kortum, 2004) predict that high-growth firms are those that keep 

generating innovative products which are upgrades over existing versions, but vertical 

differentiation happens only within, not across product lines, and innovation is often untargeted. 

In these models, technically more difficult innovative products are positively associated with 

consumer preferences, i.e., quality. In both these versions of endogenous growth theory, any past 

product introduction contributes to the accumulation of knowledge capital and serves as a 

determinant of future product expansion and firm growth. In our setting, in contrast, introducing 

technologically more challenging products relates much more strongly to growth than simple 

horizontal product proliferation. This highlights the importance of incorporating into analytical 

frameworks heterogeneity in the particular ways and directions product variety expansion occurs. 
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Figures and Tables  
 

Figure 1. Dynamics of output and number of product varieties per firm 
 

 
Source: Our calculations using the data described in the main text and in the appendix. The number of products per 
firm is weighted by firm’s share in total industry output at any given time.

0

5000

10000

15000

20000

25000

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

18
93
2
18
94
2
18
95
2
18
96
2
18
97
2
18
98
2
18
99
2
19
00
2
19
01
2
19
02
2
19
03
2
19
04
2
19
05
2
19
06
2
19
07
2
19
08
2
19
09
2
19
10
2
19
11
2
19
12
2
19
13
2
19
14
2

Number	of	products	varieties	per	firm Number	of	high-end	products	per	firm

Output	per	firm	(right	scale)



 38 

Table 1. Breakdown of product lines and products by experimental and nonexperimental 
 

Panel A. Product lines    
 All (1) Fraction in total Never scaled (2) Ratio: (2)/(1) 
New product lines  685 1.000 271 0.396 
Of which: never experimental 246 0.359   
                 initially experimental 439 0.641 271 0.617 
Of which: Upgrade lines 76 0.111 39 0.513 
     
Panel B. Experimental products   

 All “Successful” 
(scaled) 

“Failed” 
(not scaled) Fraction “failed” 

All experimental products 819 223 596 0.728 
Of which: upgrade experiments 116 42 74 0.638 
               diversification 
experiments 

703 181 522 0.743 
Fraction upgrades 0.142 0.188 0.124  

Source: Our calculations using the data described in the main text and in the appendix. “New” product lines are 
those that were not in the firm’s set of product varieties produced at entry or at the time of the first observation. 

 

Table 2. Decomposition Analysis  
 Total change Composition  Within (Deviation from own average) 

Period   Total Continuing 
firms Entrants Exiting 

firms 
1893.2-1914.2 9.0 3.3 5.6 6.7 -0.2 -0.8 
1893.2-1906.2 2.5 1.6 0.9 1.0 -0.3 0.1 
1907.1-1914.2 6.4 1.7 4.7 5.6 0.0 -0.9 

Source: Our calculations using the data described in the main text and in the appendix. 
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Table 3. Product variety expansion as a function of past upgrade experiments 
 

Panel data estimation with firm fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
 
  

VARIABLES 

DV: # of all 
products at t, 
minus # of all 
products at t-

1 

DV: # of 
high-end 

products at t, 
minus # of 
high-end 

products at t-
1 

DV: # of low-
end products 
at t, minus # 
of low-end 
products at t-
1 

DV: # of all 
products at t, 
minus # of all 
products at t-

1 

DV: # of 
high-end 

products at t, 
minus # of 
high-end 

products at t-
1 

DV: # of low-
end products 
at t, minus # 
of low-end 
products at t-
1  (1) (2) (3) (4) (5) (6) 

Cumulative number of upgrade 
experiments at t-1 

0.433*** 0.258*** 0.202*** 0.384*** 0.239*** 0.174** 
(0.093) (0.059) (0.074) (0.090) (0.058) (0.073) 

Cumulative number of 
diversification experiments at t 
-1 

0.018 0.001 0.014 0.022 0.003 0.017 
(0.039) (0.009) (0.034) (0.036) (0.008) (0.032) 

Dummy equal to 1 if high-end 
machine expansion during 
period t 

      0.659*** 0.269** 0.389** 
      (0.214) (0.128) (0.149) 

Dummy equal to 1 if low-end 
machine expansion during 
period t 

      0.216 0.002 0.213* 
      (0.137) (0.046) (0.113) 

Dummy =1 if university-
educated engineer employed at 
t 

      0.370* 0.272* 0.121 
      (0.190) (0.138) (0.142) 

Dummy =1 if merchant a 
member of board at t 

      0.193 0.041 0.148 
      (0.151) (0.064) (0.114) 

Number of all products at t -1 -0.405***     -0.408***   
(0.041)     (0.040)   

Number of high-end products at 
t-1 

  -0.455***    -0.462***  
  (0.045)    (0.042)  

Number of low-end products at 
t-1 

    -0.385***   -0.385*** 
    (0.049)   (0.049) 

Constant 2.740*** 0.686*** 2.007*** 2.375*** 0.558** 1.767*** 
(0.609) (0.226) (0.470) (0.626) (0.239) (0.486) 

Semiannual time and 
observation dummies 

Included Included Included Included Included Included 
Firm FE Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 1,618 1,618 
Within R-squared 0.221 0.241 0.225 0.235 0.252 0.234 
Number of firms 99 99 99 99 99 99 
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Table 4. Firms with and without High-End Machines: Market Ties, Educated Engineers, and 
Experimental v. Non-Experimental Product Introductions 

 

 High-End 
Machines 

No High-End 
Machines 

Fraction of firms with a merchant as a board member 0.71 0.57 
Number of university-educated engineers employed 1.61 0.14 
Number of technical college-educated engineers employed 4.76 0.72 
New experimental product introductions: All 0.60 0.25 

Of which, fraction that are successful 0.21 0.35 
New experimental product introductions: Upgrade 0.10 0.03 

Of which, fraction that are successful 0.36 0.35 
New experimental product introductions: Diversification 0.50 0.22 

Of which, fraction that are successful 0.18 0.35 
New non-experimental product introductions: All 0.11 0.11 
New non-experimental product introductions: Upgrade 0.06 0.01 
New non-experimental product introductions: Diversification 0.05 0.09 

Notes: The differences in means of new experimental product introduction are highly statistically significant 
between firms with and without high-end machines using double-sided t-test. The differences in means of fractions 
of successful experiments are not statistically significant for upgrading whereas they are statistically highly 
significant for diversification. The differences in the fraction of firms with a merchant as a board member and in the 
means of the number of university- and technical college-educated engineers are highly statistically significant 
between firms with and without high-end machines. 
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Table 5. Factors affecting the number of experiments a firm started during period t 
 
Panel A. DV: Product upgrade experiments 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All firms Firms with high-end 
machines 

Dummy equal to one if had high-end 
machines in period t 

1.066***      
(0.378)      

Dummy equal to 1 if high-end 
machine expansion during period t 

 1.493***  0.823** 1.098*** 0.464 
 (0.305)  (0.366) (0.314) (0.352) 

Interaction term between high-end 
machines expansion and mandated 
output cuts dummies during period t 

   1.012*  1.703*** 
   (0.580)  (0.609) 

Dummy equal to 1 if low-end 
machine expansion during period t 

 -0.266  -0.386 -0.474 -0.458 
 (0.359)  (0.405) (0.459) (0.456) 

Dummy =1 if university-educated 
engineer employed at t 

  0.715* 0.568  0.509 
  ((0.408) (0.426)  (0.497) 

Dummy =1 if merchant a member of 
board at t 

  1.521*** 1.455***  1.623*** 
  (0.432) (0.414)  (0.567) 

Firm age 
0.007 0.018 -0.009 -0.011 0.007 -0.033 

(0.026) (0.022) (0.030) (0.031) (0.028) (0.033) 

Constant 
-2.396*** -2.268*** -3.501*** -3.448*** -1.695*** -3.132*** 

(0.485) (0.422) (0.580) (0.562) (0.518) (0.851) 
Semi-annual time dummies Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 701 701 

 
Panel B. DV: Product diversification experiments 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All firms Firms with high-end 
machines 

Dummy equal to one if had high-end 
machines in period t 

0.941***      
(0.209)      

Dummy equal to 1 if high-end 
machine expansion during period t 

 1.101***  0.835*** 0.774*** 0.624** 
 (0.215)  (0.315) (0.213) (0.303) 

Interaction term between high-end 
machines expansion and mandated 
output cuts dummies during period t 

   0.055  0.257 
   (0.437)  (0.431) 

Dummy equal to 1 if low-end 
machine expansion during period t 

 0.221  0.130 0.079 0.019 
 (0.227)  (0.231) (0.280) (0.277) 

Dummy =1 if university-educated 
engineer employed at t-1 

  0.846*** 0.747***  0.681*** 
  (0.182) (0.177)  (0.210) 

Dummy =1 if merchant a member of 
board at t-1 

  0.456** 0.388**  0.438 
  (0.180) (0.162)  (0.267) 

Firm age 
-0.024 -0.017 -0.040** -0.040** -0.024 -0.047** 
(0.017) (0.017) (0.018) (0.017) (0.020) (0.019) 

Constant 
-1.150*** -1.006*** -1.440*** -1.497*** -0.256 -1.014** 

(0.319) (0.319) (0.330) (0.305) (0.383) (0.490) 
Semi-annual time dummies Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 701 701 

Poisson regression with the number of upgrade experiments started in period t as the dependent variable. Robust standard errors 
clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: mandated output cuts measure does not vary 
within periods and is therefore absorbed by the semi-annual time dummies. 
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Table 6. Firm Growth and Complementarity between Product Innovation and Diversification: 
Panel Estimation 

 
 DV: Ln(output) at t+1, minus Ln(output) at t 

  (1) (2) 

Cumulative number of upgrade experiments at t 0.021 
(0.013) 

-0.001 
(0.011) 

Cumulative number of upgrade experiments x 
fraction of low-end products at t 

 0.040** 
(0.019) 

Fraction of low-end products in total number of 
products at t 

-0.018 
(0.066) 

-0.104 
(0.080) 

Dummy = 1 if university-educated engineer at t 0.096** 
(0.042) 

0.101** 
(0.042) 

Dummy = 1 if merchant board member at t 0.017 
(0.025) 

0.017 
(0.026) 

Logged installed high-end spindles in t+1, minus 
logged installed high-end spindles in t 

0.013* 
(0.007) 

0.013* 
(0.007) 

Logged installed low-end spindles in t+1, minus 
logged installed low-end spindles in t 

0.008 
(0.014) 

0.008 
(0.014) 

Ln(output) at t -0.308*** 
(0.048) 

-0.312*** 
(0.048) 

Constant 2.497*** 
(0.356) 

2.605*** 
(0.367) 

Semiannual time dummies Included Included 
Firm FE Included Included 
Observations 1,608 1,608 
R-squared 0.325 0.326 
Number of firms 99 99 

Fixed-effect panel estimations.  Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Note: because high-end and low-end capacity can take values of zero, we have applied the inverse hyperbolic sine 
transformation, 𝑧 = 𝑙𝑜𝑔&𝑦 + )1 + 𝑦%+, where y is the actual number of spindles to obtain “Logged installed high-
end spindles” and “Logged installed low-end spindles” in the table above. We apply the same transformation in 
Table 7 and Table 8B below.  
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Table 7. Firm Growth and Complementarity between Product Innovation and Diversification: IV 
Estimation 

 
 DV: number of upgrade 

experiments started at t 
DV: Ln(output) at t+1, minus 

Ln(output) at t 
VARIABLES First stage “Placebo test” Second stage 
 (1) (2) (3) (4) 
     Cumulative number of upgrade experiments   0.012 

(0.010) 
-0.014 
(0.013) 

Fraction of low-end products in total number 
of products 

-2.365*** 
(0.463) 

-2.355*** 
(0.461) 

-0.028 
(0.035) 

-0.079** 
(0.039) 

Cumulative number of upgrade experiments 
x fraction of low-end products 

   0.080*** 
(0.023) 

Fraction of output cuts enforced at t x 
Logged installed high-end spindles in t+1, 
minus Logged installed high-end spindles in t 

2.542*** 
(0.645) 

   

Fraction of output cuts enforced at t x 
Logged installed low-end spindles in t+1, 
minus Logged installed low-end spindles in t 

 -0.089 
(0.568) 

  

Logged installed high-end spindles in t+1, 
minus Logged installed high-end spindles in t 

-0.132 
(0.095) 

0.039 
(0.091) 

0.019*** 
(0.007) 

0.019** 
(0.007) 

Logged installed low-end spindles in t+1, 
minus Logged installed low-end spindles in t 

0.134* 
(0.069) 

0.116 
(0.081) 

0.018 
(0.017) 

0.016 
(0.017) 

Dummy = 1 if university-educated engineer 
at t 

-0.681 
(0.524) 

-0.627 
(0.513) 

0.064*** 
(0.021) 

0.071*** 
(0.022) 

Dummy = 1 if merchant board member at t 0.970** 
(0.383) 

1.020*** 
(0.384) 

0.025 
(0.017) 

0.022 
(0.017) 

Logged total firm output at t 0.577*** 
(0.180) 

0.519*** 
(0.185) 

-0.030*** 
(0.008) 

-0.046*** 
(0.009) 

Firm age 0.051 
(0.032) 

0.053 
(0.033) 

-0.006*** 
(0.002) 

-0.009*** 
(0.002) 

Constant -4.899*** 
(1.530) 

-4.555*** 
(1.543) 

0.507*** 
(0.081) 

0.682*** 
(0.096) 

Semiannual time dummies Included Included Included Included 
Observations 1,608 1,608 1,608 1,608 
Log pseudolikelihood (Adj. R-squared) -273.1 -277.3 0.170 0.177 
Estimation Poisson Poisson IV IV 
First stage: Poisson regression with robust standard errors clustered at the firm level. Second stage: OLS with robust 
standard errors. *** p<0.01, ** p<0.05, * p<0.1. Cumulative number of upgrade experiments is an instrumented 
variable in the IV estimations. Note: mandated output cuts measure does not vary within periods and is therefore 
absorbed by the semi-annual time dummies.  
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Table 8A. Product Upgrade Experiments and Production System Flexibility 
 

DV: Portfolio rebalancing 
VARIABLES Within-count Across-count 

Cumulative number of upgrade experiments at t-1 0.244*** 0.156* 
(0.082) (0.086) 

Cumulative number of diversification experiments at t-1 0.021 0.011 
(0.016) (0.024) 

Dummy = 1 if university-educated engineer at t 0.186 -0.093 
(0.152) (0.292) 

Dummy = 1 if merchant board member at t 0.086 0.156 
(0.098) (0.171) 

Dummy equal to 1 if high-end machine expansion during 
period t 

0.142 0.208* 
(0.155) (0.122) 

Dummy equal to 1 if low-end machine expansion during 
period t 

0.192 -0.004 
(0.139) (0.101) 

Total output (thousands of tons, adjusted to 20-count) 
during period t 

-0.034 -0.138*** 
(0.035) (0.038) 

Constant 0.448* 1.130*** 
(0.253) (0.313) 

Observations 1,605 1,605 
Semiannual time dummies and firm dummies Included Included 
Number of firms 99 99 
R-squared 0.085 0.067 

 
Table 8B. Portfolio Rebalancing and Growth 

VARIABLES DV: Ln(output) at t+1 minus Ln(output) at t 
Change in the number of within-count portfolio  0.010**  
rebalancing from t to t+1 (0.004)  
Change in the number of across-count portfolio   0.012*** 
rebalancing from t to t+1  (0.004) 
Dummy = 1 if university-educated engineer at t 0.103** 0.103** 

(0.041) (0.041) 
Dummy = 1 if merchant board member at t 0.011 0.008 

(0.026) (0.025) 
Logged installed high-end spindles in t, minus 
Logged installed high-end spindles in t-1 

0.014* 0.014* 
(0.007) (0.007) 

Logged installed low-end spindles in t, minus 
Logged installed low-end spindles in t-1 

-0.002 -0.002 
(0.015) (0.015) 

Logged total output at t -0.298*** -0.296*** 
(0.048) (0.047) 

Constant 2.411*** 2.402*** 
(0.340) (0.335) 

Observations 1,608 1,608 
Semiannual time dummies and firm dummies Included Included 
Number of firms 99 99 
R-squared 0.324 0.326 
Fixed-effect panel estimations. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 9A. 20-Count Demand Estimation, First Stage 
 

 DV: Logged 20-count price 

Estimation Instrumental 
regression  Placebo test 

Number of across-count portfolio rebalancing (between 17-48 
counts) 

-0.002**  
(0.001)  

Number of across-count portfolio rebalancing (between 17-48 
counts), interacted with mandatory output cuts 

0.032***  
(0.007)  

Number of within-count portfolio rebalancing (between 17-48 
counts)  -0.001 

(0.001) 
Number of within-count portfolio rebalancing (between 17-48 
counts), interacted with mandatory output cuts measure  0.005 

(0.006) 
Constant 4.897*** 4.895*** 

(0.027) (0.028) 
Semiannual time dummies and firm dummies Included Included 
Observations 743 743 
R-squared 0.984 0.983 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: mandated output cuts measure does 
not vary within periods and is therefore absorbed by the semi-annual time dummies. 
 
 

Table 9B. 20-Count Demand Estimation, Second Stage 
 

 DV: Logged market share of 20 count 
Instrumented logged 20-count price -5.407 

(6.136) 
Constant 16.932 

(30.047) 
Semiannual time dummies and firm dummies Included 
Observations 743 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Instruments: number of across-count 
portfolio rebalancing and number of across-count portfolio rebalancing interacted with mandatory output cuts 
measure as explained in the main text. 
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Table 9C. Product Upgrade Experiments and Quality of 20 Count Products 
 

  DV: Khandelwal (2010)-style measure of 20-count quality 
VARIABLES (1) (2) (3) (4) 

Estimation OLS IV 

Cumulative number of upgrade experiments at t 0.067*** -0.037   
(0.026) (0.081)   

Cumulative number of upgrade experiments x 
fraction of low-end products at t 

 0.158   
 (0.114)   

Cumulative number of upgrade experiments at t 
(instrumented) 

  0.503*** -0.102 
  (0.062) (0.217) 

Cumulative number of upgrade experiments x 
fraction of low-end products at t (instrumented) 

   0.926*** 
   (0.320) 

Fraction of low-end products in total number of 
products at t 

0.883*** 0.801*** 1.531*** 1.027*** 
(0.289) (0.294) (0.289) (0.364) 

Dummy = 1 if university-educated engineer at t 0.990*** 1.002*** 0.764*** 0.763*** 
(0.118) (0.118) (0.116) (0.117) 

Dummy = 1 if merchant board member at t 0.189* 0.168 0.027 -0.056 
(0.112) (0.112) (0.107) (0.110) 

Logged installed high-end spindles in t+1, minus 
Logged installed high-end spindles in t 

0.055 0.051 0.050 0.046 
(0.036) (0.037) (0.039) (0.038) 

Logged installed low-end spindles in t+1, minus 
Logged installed low-end spindles in t 

0.296 0.288 0.206 0.203 
(0.312) (0.310) (0.314) (0.309) 

Firm age -0.018* -0.018* -0.052*** -0.060*** 
(0.010) (0.010) (0.011) (0.012) 

Constant 3.069** 3.175** 2.631* 3.200** 
(1.413) (1.415) (1.400) (1.420) 

Semiannual time dummies Included Included Included Included 
Observations 721 721 721 721 
R-squared 0.492 0.493 0.522 0.527 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. “Khandelwal-style” quality measure is 
calculated at the firm-observation level, as the sum of firm and time fixed effects and the residuals from the 
regression of logged market share of 20 count on instrumented logged 20-count price, as detailed in the main text. 
 

 

Table 10. Firm Survival 
  

Numbers of: Surviving firms Exiting firms; of which: Total    
By acquisition Shut down 

 

Had high-end 
machines 

Yes 19 22 1 42 
No 14 31 18 63 

Total 
 

33 53 19 105 
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Appendix to “Product Innovation, Product Diversification, and Firm Growth: Evidence 
from Japan’s Early Industrialization 

(will be posted online once the paper is published) 
 

Serguey Braguinsky, Atsushi Ohyama, Tetsuji Okazaki, Chad Syverson28 
January 2020 

 
A.1 Data construction  

A.1.1. Product varieties data 
Our data source for firm-level output by product varieties comes from bulletins (“Geppo”) 

published by the All-Japan Cotton Spinners’ Association (“Boren,” using its name’s abbreviation in 
Japanese). These bulletins were issued monthly, starting from 1889 (even earlier data are available from 
government statistics, starting from 1883), and they, in particular, contained firm-level input and output 
data for all members of the Association which was basically the universe of all firms operating in the 
industry at any time. The first time the breakdown of output by product varieties was added to the 
bulletins was May 1893. Since then, the data have been published continuously in dedicated tables in each 
issue. We have coded all such tables until December 1914 which is the end of our sample. Photo 1 
presents a table showing output by product varieties by each firm for December 1906. 
 

Photo 1. Output by product varieties table, December 1906. 
 

 
Source: Geppo, No. 173, Jan. 25, 1907. 
 
A.1.2. Engineers data 

The information about university-educated engineers was obtained from restricted-use alumni 
lists, Gakushikai Kaiinroku compiled by Gakushikai (The University Graduates’ Society), the association 
of the alumni of Imperial Universities, containing information about addresses and workplaces of the 
graduates. Until 1897 Tokyo Imperial University was the only one. In 1897 Kyoto Imperial University 
was founded and its first cohort graduated in 1901. Two more Imperial Universities were founded in 1907 

 
28 Braguinsky: University of Maryland, Robert H. Smith School of Business, Osaka University Institute of 
Economic and Social Research, and NBER, e-mail: sbraguinsky@rhsmith.umd.edu; Ohyama: Institute of Innovation 
Research, Hitotsubashi University, e-mail: ohyama@iir.hit-u.ac.jp; Okazaki: Tokyo University, Faculty of 
Economics, e-mail: okazaki@e.u-tokyo.ac.jp; Syverson: University of Chicago Booth School of Business and 
NBER, e-mail: chad.syverson@chicagobooth.edu.  
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and 1911 but there were no graduates of the last one available to the industry at the end of our sample 
(1914) as yet.  

The above information was verified and supplemented, especially for earlier years, from chapters 
dedicated to the history of each firm in Kinugawa (1964) and from published company histories (Kanebo, 
1988; Unitika, 1989; Toyobo, 1986; Fujibo, 1998, Shikibo, 1968, Kurabo, 1953). Engineers educated in 
British universities, in particular, were identified from these industry history sources and added to the list 
of graduates of Japanese Imperial Universities. 

For technical college graduates, we used annual Ichiran (Catalogs) (Tokyo Koto Kogyo Gakko 
Ichiran, Kyoto Koto Kogei Gakko Ichiran, Osaka Koto Kogyo Gakko Ichiran, Nagoya Koto Kogyo Gakko 
Ichiran, Kumamoto Koto Kogyo Gakko Ichiran, and Sendai Koto Kogyo Gakko Ichiran), which contain 
the lists of alumni with their current workplaces, and picked up all graduates of mechanical engineering 
and dyeing departments who worked in one of the firms in our sample in any given year.  The first 
technical college was established in Tokyo in 1881, the second one in Osaka, in 1896. By the end of our 
sample there was the total of six technical colleges that already had alumni working in the industry; all 
those alumni data were coded and added to the database of educated engineers employed by cotton 
spinning firms. 
 
A.1.3. Board members and merchants data 

About 90 percent of firms in our sample (and all significant firms) were public (joint stock) 
companies, obligated to issue shareholders’ reports every half a year (see Braguinsky et al., 2015, and 
Agarwal et al., 2020, for details). We have photocopied and processed 1,443 reports on 106 firms 
(Kokajo, 1883-1914), all such reports that we could find surviving until the present day.29 Each report, in 
particular, contains a list of all shareholders and board members (“torishimariyaku”) of the company 
issuing it. For privately held firms as well as in cases where some shareholders reports of incorporated 
firms were missing in the archival data, we supplemented this with information from the All-Japan 
Registry of Firms Executives (“Yakuinroku”), the first issue of which was published in 1893. We coded 
and reconciled the information on the members of the boards across these two sources, and also cross-
checked the data by using information in company histories (Kinugawa, 1964; Kanebo, 1988; Unitika, 
1989; Toyobo, 1986; Fujibo, 1998, Shikibo, 1968, Kurabo, 1953), and in Geppo. 

The data published in “Yakuinroku” (above) were used to extract the names and addresses of board 
members of the four incorporated cotton yarn-related trade companies (Naigai Wata, Nihon Menka, Nitto 
Menshi and Mitsui Bussan), while the data contained in the 1943 brief history of Osaka Three Article 
Exchange (“Sampin Shoshi”) were used to extract the names of board members and traders registered at 
this most important exchange dealing with cotton and cotton yarn in each year. The data in four available 
editions of Nihon Zenkoku Shoko Jinmeiroku, a nationwide registry of traders and manufacturers (for 1892, 
1898, 1907, and 1914), were utilized to extract the names and addresses of individual merchants likely to 
play the most prominent role in cotton spinners’ output markets; that is, traders in cotton yarn and cotton 
yarn-woven garments who paid business taxes exceeding a certain threshold (10-15 yen, depending on the 
year). We considered all these individuals to be potential providers of market knowledge (“market ties”) 
for cotton spinning firms; hence, we matched their names and addresses to the names and addresses of 
cotton spinning firms’ executives. Through this process (which involved both a computer algorithm and a 
manual re-check), we identified 55 executives of incorporated cotton yarn-related trade companies and 
board members and registered traders at the Osaka Three Articles Exchange, as well as 172 significant 
individual traders who were also board members in cotton spinning firms and created panel data reflecting 
their presence as an executive board member in firm i at time t. The variable “merchant as a board member” 
used in the main text takes value of one if at least one such merchant was identified to be a member of the 
executive board of firm i at time t and zero otherwise. 

 
29 We are grateful to Osaka University library and Prof. Takeshi Abe, its academic director at the time; to Yoshiyuki 
Murakami, head of the company history division of Toyo Boseki at the time (now retired); and to Kobe University 
Kanematsu Collection for their cooperation in allowing us to photocopy company reports used in this research. 
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A.1.4. Machine capacity data 
The data on machine capacity (the number of spindles installed by firm i at time t) were compiled 

and validated by cross-checking from three sources. The first source is the already mentioned semiannual 
shareholders’ reports (Kokajo, 1883-1914), which often contained inventory of all property owned by the 
firm, including details about machines (number of spindles, their basic type––ring, mule or doubling––
and the name of the manufacturer, such as Platt Brothers of Oldham, etc.). In some cases, however, those 
detailed inventories were not included, or the reports themselves may be missing. “Enkakukiji” (1901) 
contains the details of all installation and decommissioning of machines by cotton spinning firms from the 
inception of the industry and until 1901, while “Sankosho” (1903-1914), a semiannual bulletin published 
by Boren parallel to Geppo, contains the details about machines (number of spindles and their basic type, 
although not the name of the manufacturer) starting from 1903. Combining and manually cross-checking 
the data from these three sources, we were able to construct the full panel with the number of spindles 
installed by each firm at each point in time during our sample. 

 
A.1.5. Machine orders from British manufacturers 

We collected and processed archival data on machine orders by Japanese cotton spinning firms 
placed with British textile machine manufacturers and preserved in Lancashire archives from the earliest 
such orders and until 1914. As mentioned in the main text, the same data collected by the late Gary 
Saxonhouse are archived on the ICPSR website (Wright, 2011). We had to collect and re-process these 
data once again because there were no original photos and firm names were missing from the ICPSR files, 
making it impossible to perform firm-level matching to Japanese sources of capacity data described 
above.30  The total number of orders we collected and processed was 430. In Photos 2 and 3 below we 
present two representative orders placed with Platt Brothers of Oldham around the same time (Spring-
Summer 1896) by two different Japanese firms. As can be seen, machines were custom-made, and each 
order contains the number of frames ordered, the number of spindles per frame (so that the total number 
of new spindles being ordered can be calculated), as well as detailed technical characteristics, additional 
hand-written notes taken by British engineers presumably during consultations with the client Japanese 
firms, the dates the order was taken and when machines were booked (shipped), in multiple installments.  

The technical characteristics of machines specified in the orders allow us to differentiate between 
types of products they were designed to produce, types of inputs required, and other technological 
nuances. For example, the order in Photo 2 lists “Numbers to be Spun Av” as 42s. This is a “high-end” 
product in our classification and, hence, the machines that came with this order are high-end machines. 
We also know from the product varieties data (as well as from industry and firm history) that at the time, 
Amagasaki was beginning to scale its output of 42 count doubled yarn first introduced on experimental 
basis only a few years earlier. We can also see from the same photo that cotton input is described as Good 
American and that hank roving is listed as 6 ½ double. Thus, we can indeed see that high-end machines 
designed for vertically upgraded products required dedicated inputs and technologies (compare to Photo 3 
discussed immediately below). In the particular case of this order, we also have a description of how it 
actually happened in the company history (Unitika, 1989, p. 13). Amagasaki’s chief engineer, Kyozo 
Kikuchi (one of a few educated engineers employed by Japanese cotton spinning firms at the time), 
personally went to England to discuss the details of the order with the British engineers, traveling before 
that to the U.S. to examine the technology for producing 42 count doubled yarn, including comparing 
between Good and Middling cotton––and reaching the conclusion about using Good cotton. 

Photo 3 presents another typical order, by Fukushima Spinning, for 4,992 spindles (13 frames 
with 384 spindles in each frame). In this order, “Numbers to be Spun Av” are 10’s-20’s, with average 
14’s. In line with this, cotton input is listed as Indian, Japanese, and Chinese while hank roving is 2 5/8 
single. We therefore classify the machines in this order as “low-end machines” since they were not 

 
30 Our newly collected and processed data, including photos of the originals, will shortly become publicly available 
from NBER Industry, Productivity, and Digitalization Data Library (http://www.nber.org/data). 
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designed or intended to be used for high-end, vertically upgraded products. (Fukushima Spinning actually 
never produced high-end products during our sample.) 

 
Photo 2. High-end machines order placed by Amagasaki Spinning in July 1896 

 
Source: The Platt Collection, Lancashire Archives, Lancashire City Council, Preston, U.K. 

  
Photo 3. Low-end machines order placed by Fukushima Spinning in May 1896 

 
Source: The Platt Collection, Lancashire Archives, Lancashire City Council, Preston, U.K. 
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A.1.6. Hand-matching machine capacity panel data with technical characteristics of machines 
There were three major sources of changes to machine capacity owned by Japanese firms over the 

sample that are identifiable in the data. The first such source was the installation of new machines ordered 
from Britain. To illustrate how we matched orders to capacity changes in the Japanese firms that placed 
them, we work off Amagasaki Spinning 1897 capacity change. 

Amagasaki Spinning’s spindle capacity was reported by Enkakukiji (1901) to be 27,036 spindles 
in the first half of 1897 (verified from Unitika, 1989; matched also with previous orders). The company 
shareholders report No. 15 (for the first half of 1898) indicates that the capacity had increased by 18,176 
spindles to the total of 45,212 spindles by the end of the second half of 1897. Where did these new 
machines come from? The order presented in Photo 2 provides us with the bulk of the answer: in 1896 the 
firm placed an order with Platt Brothers of Oldham, for 14,544 “high-end” spindles (36 frames, 404 
spindles in each frame). Another order (not shown), for 2,828 spindles, also for high-end machines 
(numbers to be spun 30s-42s, average 36s) was placed with Platt Brothers even earlier, in December 1894 
and booked the next year, but was apparently installed together with the 14,544 spindles above, as part of 
the same expansion (verified also through company history). Out of the remaining 804 new spindles, 404 
are accounted for by an order (not shown) placed in 1896 with another British manufacturer, Dobson & 
Barrow, also to spin 42 count yarn.31 This leaves 400 spindles (2.2 percent) of the total capacity increase 
in late 1897 “unaccounted for,” in the sense that we do not have a record of the corresponding order. 
From the firm inventory of property (not shown) we know that Amagasaki Spinning also added a 400-
spindle frame manufactured by Brooks & Doxey at about the same time. Even though the actual order 
record is missing, due to its small size and timing, we can safely assume that this was another sample trial 
order, which in all probability should be similar to orders from Platt Brothers and Dobson & Barrow 
above. Hence, in this case, we have definitively matched 97.8 percent of the increase in installed capacity 
as reflected in property inventories to the corresponding orders, and we feel very confident that the 
remaining 2.2 percent of new capacity were of a similar design. 

Applying the above procedure, we were able to hand-match all 430 orders whose records we 
found in Lancashire archives to corresponding changes in firms’ machine capacity using the timing,32  
number of spindles, and the information about which of possibly multiple mills operated by the firm the 
order was slotted for (e.g., in Photo 2 machines are slotted for Amagasaki Mill No. 3––and company 
reports tell us that No. 3 was the mill constructed at the time to expand the output of the 42 doubled count 
yarn––the designated number of counts to be spun noted in the order is consistent with that). 

The second source of changes to machine capacity owned by Japanese firms over the sample was 
acquisitions. Fifty eight firm-by-firm acquisitions were consummated during the period of our sample in 
the industry, involving 69 different mills (plants) (see Braguinsky et al., 2015; the number of acquisitions 
in there is listed as 73, involving 95 plants but 15 acquisitions involving 26 plants happened in 1915-20 
which is outside of our current sample). As a result of these acquisitions, two-thirds of total industry 
capacity changed hands over the period, hence, it was imperative to trace machines from their original 
owners to subsequent (at times multiple) owners. Fortunately, all the acquisitions are well documented in 
company histories and company reports; the latter also reflect new machines acquired as a result of firm-
by-firm acquisitions in the property inventories. Hence, we were able to create a script that reassigned 
machines (and technical characteristics thereof) through (possibly multiple consecutive) acquisitions to 

 
31 A hand-written annotation (apparently by a Dobson & Barrow employee) reads that “This is a sample trial order so 
let everything be finished with the utmost care, as further large order depends on the same being satisfactory.” 
Amagasaki Spinning never placed another order with Dobson & Barrow, preferring to continue working with Platt 
Brothers. The note, however, gives a glimpse of the competition among British textile machinery makers. 
32 As can be seen from the Amagasaki example above, one-two or even more years would normally elapse between 
the placing of the order and the time the machines would be fully installed and reflected in firms’ property inventories. 
(Newly arrived machines were commonly included in property inventories after they were installed and ready to be 
operated; prior to that, new arrivals would be reflected in balance sheets in the “expansion account” but not in property 
inventories, which are the primary source of our panel data on firm capacity.) 
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new owners, making sure that we updated the breakdown of machine capacity of acquiring firms each 
time they expanded their capacity through acquisitions.33 

The third source of capacity changes were the removal of aging machines and their destruction in 
accidents such as fires or earthquakes. Fortunately, fires and other destruction were rare events, and those 
that did happen are documented in company histories, including the details of which machines were lost. 
As for machine removal, those were also uncommon (Japanese firms used their machines while 
conducting necessary repairs along the way for many decades). Inasmuch as the machines were 
decommissioned, such events concentrated in larger firms and in later years of our sample, where 
inventories of properties in company reports are especially detailed, so we had no problem identifying the 
machines that were being removed and updating the capacity breakdown of the remaining machines 
accordingly. 

While we were thus able to match all orders available in Lancashire archives to firm capacity 
changes, and then follow those machines through acquisitions and possible destruction and removal as 
above, the converse is not always true. That is, not all firm capacity changes identified in our panel data 
using Japanese archival sources could be matched to orders placed with the British manufacturers. There 
are, broadly speaking, two reasons for that. One reason is that originals of the orders may be missing from 
Lancashire archives (such as the small order Amagasaki Spinning placed with Brooks & Doxey 
mentioned above). Rather than drop all such observations, we imputed machine characteristics (high-end 
or low-end) to new machine arrivals reflected in firms’ property inventories whenever we had 
unambiguous evidence allowing us to do that (once again, the case of 400 spindles of Brooks & Doxey 
machines added to Amagasaki Spinning capacity around 1897 mentioned above serves as an example). 
Such “imputed orders” comprise about 10 percent of the total orders we matched to firms’ property 
inventories, both in terms of the number of cases and the total number of spindles (Table A1). 

 
Table A1. Machine orders: actual and imputed 

  Number of orders Number of spindles ordered 
From Lancashire archives’ originals 430 2,439,414 
Imputed   50     301,106 
Fraction imputed  0.10       0.11 

 
The second reason is second-hand market transactions where firms bought machines 

decommissioned by other firms. We do have several documented instances like that in company histories, 
and those are accounted for in our capacity breakdown. However, we do not have systematic records of 
purchases in the second-hand market, and in cases where we were also missing company reports, we had 
to drop observations where we could not know the origins of the machines, from the analysis that required 
machine characteristics. This affected 11 percent of all firms but only seven percent of all observations. 
Moreover, firms with unknown machine origins were generally small, so their fraction in the total number 
of capacity-weighted observations in our data is just about two percent (Table A2). Thus, dropping them 
from the analysis affects it only marginally. 

 
Table A2. Total spindle-observations matched to underlying orders 

 # of firms # of observations Capacity (# of spindles): Total Of which: matched Fraction matched 
Matched sample 105 1,911 61,719,337 60,824,202 0.99 
Unmatched sample 13 154 1,020,912 0 0.00 
Fraction matched 0.89 0.93 0.98 1.00 0.97 

 
33 In addition to firm-by-firm acquisitions, there was one plant-by-firm acquisition, in which a firm bought just one 
of the plants from another firm. We know exactly which machines were involved in this acquisition too.   
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As Table A2 shows, for firms for which we do have the data on how their machine capacity 
evolved through orders, acquisitions and removal/destruction (the “matched sample”), the correspondence 
between machine capacity changes recorded in Japanese archival sources (based on property inventories) 
and our calculated changes combining the data sources above is nearly perfect. Specifically, we were able 
to match 60.8 million spindle-observations out of 61.7 million total in the matched sample of 105 firms, 
the match rate of more than 99 percent. This brings the fraction of total industry capacity (including also 
firms for which matching turned out to be impossible) that we could match to the characteristics of the 
machines comprising it to 97 percent (Table A2). 

 
A.2 Historical trends 

Figure A1. Dynamics of the number of firms and industry output 
 

 
 

Table A3. Imports, production, and exports, 1880-1900 (units: kori=0.18 ton) 
Year Imports from: Total Dom. production Export Dom. supply 

 England India  	 	 	
1880 84,367 10,908 95,324  	 95,324 
1881 73,515 17,932 92,421  	 92,421 
1882 61,708 21,794 84,324  	 84,324 
1883 55,687 26,448 82,135 2,326  84,461 
1884 48,790 21,797 70,622 5,687  76,309 
1885 40,437 30,887 71,324 3,370  74,694 
1886 45,251 36,850 82,101 16,217  98,318 
1887 54,103 56,884 111,096 25,273  136,369 
1888 77,583 80,546 158,281 33,142  191,423 
1889 62,194 80,488 142,929 69,959  212,888 
1890 59,703 46,566 106,588 108,374 31 214,931 
1891 42,624 15,560 58,123 160,207 108 218,222 
1892 53,494 27,527 81,534 213,489 109 294,914 
1893 48,426 16,216 65,174 222,223 1,053 286,344 
1894 45,353 7,778 53,555 304,584 11,796 346,343 
1895 44,157 4,472 49,876 383,565 11,776 421,665 
1896 63,859 2,854 67,373 428,864 41,916 454,321 
1897 52,380 355 54,555 544,461 140,116 458,900 
1898 52,697 353 54,563 670,067 229,445 495,185 
1899 27,101 252 28,339 785,612 341,202 472,749 
1900 30,035 101 30,941 647,484 208,732 469,693 

Source: Takamura (1971), Vol. 1, pp. 146, 183; Association data (dom. production in 1883-85).  
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Table A4. Imports and domestic production by variety 1891-93 (units: kori=0.18 ton) 
Imports from: Variety (count) 1891 1892 1893 

India 10’s-18’s 2,449 4,507 1,164 
20’s 17,570 17,657 12,376 

Subtotal 20,019 22,164 13,540 
England 16’s-24’s 13,079 13,130 9,385 

28’s-32’s 13,727 14,967 8,737 
38’s-42’s 1,431 2,345 1,759 

32’s doubled 2,506 10,827 12,045 
42’s doubled 5,882 

60’s-120’s gassed 5,377 7,809 8,532 
Subtotal 42,003 48,444 40,458 

Total 
 

62,022 70,608 53,998 
(Total import, stat.) 58,123 81,534 65,174 

Domestic production <14’s 
 

43,677 43,052 
14’s-15’s 

 
38,064 39,579 

16’s 
 

36,347 44,125 
17’s-19’s 

 
8,918 10,617 

20’s 
 

49,919 68,604 
21’s-24’s 

 
1,390 3,894 

25’s-27’s 
 

104 31 
28’s-32’s 

 
4,329 8,121 

33’s-37’s 
 

113 131 
38’s-42’s 

 
51 0.2 

Other 
 

8,377 6,730 
Total 160,207 189,206 225,091 

Source: Takamura (1971), Vol. 1, p. 184. Per source, import data come from port statistics in Kobe and 
Tokyo, therefore, does not correspond exactly to customs statistics data in Table 1 but captures most of it. 
 

Table A5. Imports and domestic production by variety, 1898 (units: kori=0.18 ton) 
Variety Estimated import Dom. production Export Domestic supply  

min max 
 	

min max 
<16’s 

 	
160,355 3,246 157,109 157,109 

16’s-24’s 4,248 4,248 453,936 198,246 259,938 259,938 
16’s 

 	
224,982 120,039 104,943 104,943 

20’s 
 	

208,479 77,905 130,574 130,574 
28’s-32’s 3,186 3,186 22,032 45 25,173 25,173 
38’s-42’s 531 531 2,115 

 
2,646 2,646 

60’s gassed 6,372 7,434 19 
 

6,391 7,453 
80’s gassed 9,558 10,620 3,044 

 
12,602 13,664 

100’s gassed 2,655 2,655 
 	

2,655 2,655 
120’s gassed 1,593 1,593 

 	
1,593 1,593 

doubled <32’s 
 	

517 
 

517 517 
32’s doubled 7,965 9,558 1,779 

 
9,744 11,337 

42’s doubled 14,337 15,930 7,022 
 

21,359 22,952 
Total 50,445 55,755 650,819 201,537 499,727 505,037 

Source: Takamura (1971), Vol. 1, p. 322. 
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A.3 Industry Association-mandated output cuts 
Table A6 presents the details of Boren-mandated output cuts and (in the right column) our 

measure of their relative impact on low-end products. For output cuts imposed as mandated holidays, we 
converted those into percentage terms by dividing the number of holidays by 30 (e.g., 4/30=0.133). The 
numbers in the column “Implied fraction of lower counts mandated cuts” is the difference between the 
numbers in previous two columns. 
 

Table A6. Mandatory output cuts during our sample period 
    Output of 20 count and lower Output of 21 count and higher Implied relative 

fraction of lower 
counts mandated cuts year month Policy detail 

1899 1 4 mandated holidays 4 mandated holidays 0 

1899 2-12 None None 0 

1900 1-4 None None 0 

1900 5-7 4 mandated holidays None 0.133 

1900 8-12 40% of spindles to be idled or suspension of 
night shift None 0.400 

1901 1-3 40% of spindles to be idled or suspension of 
night shift None 0.400 

1901 4-12 None None 0 

1902 1-6 None None 0 

1902 7-12 4 mandated holidays 4 mandated holidays 0 

1903 1-12 None None 0 

1904 1-12 None None 0 

1905 1-12 None None 0 

1906 1-12 None None 0 

1907 1-12 None None 0 

1908 1-4 5 mandated holidays None 0.167 

1908 5-12 27.5% of spindles to be idled or suspension of 
night shift None 0.275 

1909 1-12 27.5% of spindles to be idled or suspension of 
night shift None 0.275 

1910 1-4 20% of spindles to be idled or suspension of 
night shift None 0.200 

1910 5-9 None None 0 

1910 10-12 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours 
per workday mandated holidays 

20% of spindles to be idled or 5 days and 2 
hours per workday mandated holidays 0.075 

1911 1-9 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours 
per workday mandated holidays 

20% of spindles to be idled or 5 days and 2 
hours per workday mandated holidays 0.075 

1911 10-12 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours 
per workday mandated holidays 

10% of spindles to be idled or 5 days 
mandated holidays 0.175 

1912 1-3 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours 
per workday mandated holidays 

10% of spindles to be idled or 5 days 
mandated holidays 0.175 

1912 6-9 4 mandated holidays 4 mandated holidays 0 

1912 10-12 None None 0 

1913 1-12 None None 0 

1914 1-7 None None 0 

Source: compiled from Shoji, Otokichi, 1930. Boseki Sogyo Tanshuku Shi (History of Operational Curtailments in 
Cotton Spinning, in Japanese). Nihon Mengyo Kurabu, Osaka, Japan. 
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Since in the main text we use semi-annual data in our IV growth regression estimations, we 
converted the numbers from Table A6 into semi-annual data by multiplying the implied relative fraction 
of lower counts mandated output cuts by the number of months during which the restrictions were applied 
in any given semi-annual period, divided by 6. For example, 4 mandated holidays in the first half of 1900 
were imposed for two months (May and June), hence our measure of mandatory output cuts impact on 
lower counts for the first half of 1900 is 0.133*2/6 = 0.089. For the second half of the same year it is 
0.133*1/6 (July output cuts) + 0.4*5/6 (output cuts in the rest of the year) = 0.356, and so on. 

 
A.4 Initial scale of new product introduction and definitions of product experimentation  
Figure A2 presents the distribution of within-firm shares of newly introduced products. The mean 

and median within-firm shares are 5.27 percent and 1.39 percent, respectively. The majority of new 
products in our data are thus introduced as a small share of firm’s total output, and new product 
introduction below three percent threshold are quite common. However, this initial small scale of new 
product introduction is much more pronounced among firms with high-end machines than for firms 
without such machines (the mean and median within-firm shares of newly introduced products for the 
first time for firms with high-end machines are 3.49 percent and 0.9 percent respectively, as opposed to 
5.74 percent and 1.58 percent, respectively, for firms with no high-end machines).  

 
Figure A2. Distribution of within-firm share of newly introduced products 

 
mean s.d. 10th 25th 50th 75th 90th N 
5.27 10.43 0.08 0.33 1.39 4.91 15.21 793 

 
 While in the main text we have used the three-percent cutoff of the within-firm share of newly 
introduced products as our empirical definition of an experimental product, we conducted sensitivity 
analysis and confirmed that the findings are robust to using reasonable alternative thresholds (such as two 
percent or four percent). It is also possible to define experiments in alternative ways. For example, we 
may consider a newly introduced product to be experimental if it was discontinued (at least for a certain 
period of time) after being introduced. Since firms may not know which product varieties are going to be 
continued and which are going to be discontinued at the time of their introduction, defining experimental 
product varieties in this way gives rise to a “selection on outcome” concern. We did try such alternative 
definitions anyway, and confirmed that our basic results still continue to hold. Details are available upon 
request. 

0
.1

.2
.3

.4
.5

Fr
ac
tio
n

0 20 40 60 80 100
product_share_pct



 57 

A.5 Concentration of output, high-end machines, and product varieties 
Table A7. Concentration of output, high-end machines, high-end and low-end products 
  High-end machine capacity 

Output quintile 1893 1899 1907 1913 
1                 -                  486                256                 144  
2                 -               2,816             1,799                 866  
3                 -               2,322             5,313             12,469  
4            5,445             3,087             4,351             47,190  
5            2,966            16,314            67,100           122,159  
  Number of high-end product varieties 

Output quintile 1893 1899 1907 1913 
1 0.0 0.5 0.4 0.3 
2 0.1 1.1 0.8 0.3 
3 0.3 0.6 0.9 1.9 
4 1.1 0.1 1.2 3.0 
5 1.1 1.3 3.3 6.5 
  Number of low-end product varieties 

Output quintile 1893 1899 1907 1913 
1 2.3 1.8 1.8 2.3 
2 2.7 3.4 2.9 2.7 
3 4.1 4.1 2.9 3.7 
4 4.6 3.8 5.4 5.0 
5 6.2 5.6 5.4 9.2 

Source: Our calculations using the data described in the main text and in the appendix. 
 

Table A7 presents high-end machine capacity (measured by the number of high-end machines 
spindles installed), the number of high-end product varieties and the number of low-end product varieties 
by quintiles of total output (firm size measured by output scale, as in the right panel of Figure 3) at four 
points in time during our sample. The top panel shows that as high-end machine capacity increases from 
virtually zero at the start of our sample, it spreads out across firms of different size, but remains heavily 
concentrated among the largest firms (even though the composition of the largest firms changes due to 
higher growth rates of firms with high-end machines, as we document below). Not surprisingly perhaps, 
we can see the same pattern in the number of high-end product varieties produced in the middle panel. 
What is most interesting, however, is that the number of low-end product varieties (which do not require 
high-end machines for their production) also becomes heavily concentrated over time, especially in the 
last period (which corresponds to the second subperiod in Table 2 in the main text when there was a big 
increase in within-firm number of product varieties). When the top decile firms (in terms of output) are 
compared with the second decile firms in 1913 (not shown), both categories are similar in the number of 
high-end product varieties and high-end machine capacity, but the number of low-end product varieties in 
the former category is twice as many as that in the latter category. This difference corresponds to the 
difference in total output, indicating that the expansion of low-end product varieties is also critical for 
firm growth.  

Table A8 presents the average numbers of all product varieties and of low-end product varieties 
among those, produced by firms that did and did not have high-end machines at a given point in time. We 
present these statistics for the whole sample as well as for two subperiods in Table 2 in the main text. 
Firms with high-end machines produced on average almost twice as many product varieties as firms that 
did not have such machines over the whole period, with the gap larger in the second period than in the 
first (all the differences in means in Table A8 are statistically highly significant). Even more interestingly, 
firms that had high-end machines produced more low-end product varieties compared to firms that only 
had low-end machines, and the gap, once again, is larger in the second subperiod than it is in the first. 
When limited to firms that had high-end capacity above the mean of 36,000 spindles (14 out of 42 firms 
that had high-end machines), the gap with firms with no high-end machines is even much larger. 
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Table A8. Number of products and low-end products by firms with and without high-end machines 

 	 Firms with high-end machines 

Of which: firms 
above the mean 
# of spindles in 

high-end 
machines 

Firms with no high-end machines 

 	 1893.2-1914.2 1893.2-
1906.2 

1907.1-
1914.2 

1893.2-1914.2 1893.2-
1914.2 

1893.2-
1906.2 

1907.1-
1914.2 

Number of products 
Mean 7.75 6.77 9.52 11.01 3.98 3.89 4.29 
St. Err. 0.19 0.18 0.42 0.46 0.07 0.07 0.17 
# obs 725 465 260 205 1031 810 221 

Number of low-end products 
Mean 4.94 4.59 5.57 6.00 3.77 3.71 3.99 
St. Err. 0.13 0.14 0.27 0.34 0.06 0.06 0.16 
# obs 725 465 260 205 1031 810 221 

 Source: Our calculations using the data described in the main text and in the appendix. The difference in means 
between firms with and without high-end machines are highly statistically significant using double-sided t-test. 
 

A.6 Selection into high-end machine adoption 
We have taken the separation of firms into those that adopt high-end machines with the aim of 

conducting product innovation and subsequent product diversification and firms that stick to scaling their 
existing products (or do not grow at all) as given. Here, we use our data to try to open the “black box” of 
this separation. 

We first conduct a simple cross-sectional comparison of founding team characteristics between 
firms that installed high-end machines at some point during our sample (including those that entered with 
high-end machines right away) and firms that never had high-end machines. Since university educated 
engineers played a crucial role at all stages of utilizing high-end machines and firm growth, we test 
whether firms that managed to secure the services of such engineers at the time of their founding 
(incorporation) were more likely to have high-end machines. We also test whether market ties, proxied by 
the presence of merchants among members of founding teams, played an independent role in high-end 
machine adoption. The results of estimating the effects of these two founding team characteristics are 
presented in columns (1) and (3) of Table A9. In column (1) the dependent variable is the firm-specific 
dummy equal to one if the firm had high-end machines at some point during our sample and zero 
otherwise, while in column (3), where the sample is limited to post-1893 entrants, it is the dummy equal 
to one if the firm entered with high-end machines and zero otherwise (pre-1893 entrants basically did not 
have a chance to install high-end machines at the time of entry). 

The estimation results show that firms which installed high-end machines were indeed much 
more likely to employ a university educated engineer already at the time they were founded (note that no 
firm employed more than one at the time they were founded). The presence of merchants on the founding 
teams is also positively associated with high-end machines, but the magnitude of the coefficient is much 
smaller and it is statistically not significant at conventional levels. Historical evidence documented in 
Kinugawa (1964), company histories and other sources shows that it was both (i) forward-looking firms 
realizing that they needed to secure high-level engineering human capital if they wanted to install high-
end machines and try to adopt new, unfamiliar production technologies required to operate at the high end 
of the product space; and (ii) hired educated engineers playing a key role in working with the British 
suppliers to order, customize, and install high-end machines. Thus, while we cannot claim “causality” 
whereby having university educated engineers at founding led to adoption of high-end machines, we do 
see strong selection (positive assortative matching) on both sides (founding teams and engineers), 
associated with the adoption of high-end machines. 

To probe for this assortative matching further, we add firm size (measured by the number of 
spindles installed) at the time of entry as another regressor. Initial entry size has been shown to be 
associated with the entrepreneurial ability both theoretically (Lucas, 1978) and empirically (Klepper, 
2010), so we use it as a proxy for entrepreneurial ability of the founding team in our data. Estimation 
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results presented in columns (2) and (4) of Table A9 show that higher entry size in our data is indeed 
positively and statistically highly significantly associated with the adoption of high-end machines. 
However, while whatever impact the presence of merchants had on high-end machines adoption is almost 
completely absorbed by entry size, the coefficients on university educated engineers employed at 
founding, although smaller in magnitude, remain economically and statistically significant. Indeed, 
comparing the magnitudes of the coefficients on engineers and entry size, we can see that having a 
university-educated engineer has an estimated association with high-end machines adoption which is 
equivalent to an increase in more that 10,000 spindles (more than one standard deviation from the mean) 
in entry size. Thus, hiring university-educated engineers’ human capital can be seen to be a critically 
important independent factor in high-end machine adoption, alongside higher entry size.34 
 

Table A9. Founding Team Differences Among Firms with and without High-End Machines 

DV: Probability of ever having high-end 
machines 

Probability of entry with high-end 
machines 

VARIABLES (1) (2) (3) (4) 

University educated engineer employed 
at founding 

0.333*** 0.241** 0.313** 0.230* 
(0.111) (0.109) (0.132) (0.125) 

Merchant a member of founding team 
0.071 0.018 0.064 0.024 

(0.094) (0.090) (0.100) (0.093) 

Firm capacity (in thousands of spindles) 
at entry 

 0.019***  0.018*** 
 (0.005)  (0.005) 

Constant 
0.287*** 0.170** 0.144* -0.003 
(0.069) (0.074) (0.073) (0.080) 

Observations (firms) 105 105 69 69 
R-squared 0.093 0.191 0.091 0.231 
 Linear probability estimation. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1The sample in columns (3) and (4) 
is limited to post-1893 entrants. Probit estimations lead to very similar results. 

 
We next utilize observations on firms which we observe while they did not yet have high-end 

machines they would have in the future. Among the 42 firms that had high-end machines at some point 
during our sample, 19 entered with high-end machines right from the beginning but 23 installed them at 
some point after entry. Four of these 23 added their first high-end machines prior to the start of product 
variety data, so we do not get a chance to observe them before that. For the remaining 19 firms we do 
have this opportunity, and we use this sample to look into the issue of “pre-treatment” selection by 
comparing those firms before they actually adopted high-end machines with the firms that never 
introduced such machines during our sample. If the “treatment” (adoption of high-end machines) was an 
outcome of a random draw, we should not observe systematic differences in the pre-treatment period. 

In Panel A of Table A10 we present the results of the estimations, where the dependent variable is 
a dummy equal to one if the firm adopted high-end machines in the future and zero otherwise. We regress 
this on various actions and characteristics before they had high-end machines (if any). To err on the side 
of caution, we exclude not only observations after the high-end machines appear on firms’ balance sheets 
but also all observations pertaining to the period after firms placed their first high-end machines order (if 
any), even though the machines are not reflected in the balance sheets yet. While this results in losing 
observations (including all observations on three of the 19 firms whose orders were placed early), it 

 
34 While, once again, we cannot claim causality based on our data, it is worth noting that in a recent paper, Choi et al. (2019) 
establish causal effect from founding team’s human capital to startup growth. 



 60 

makes sure that, especially when looking at experimental production, we do not inadvertently pick up 
experiments conducted with high-end machines that may have been partially installed.35 

The estimation results in column (1) in Panel A of Table A10 show that firms that ordered high-
end machines in the future (hereafter, “future adopters,” for short) tended to introduce significantly more 
new products on experimental basis than firms that never adopted high-end machines, already prior to 
adoption. Strikingly, they were even more likely to conduct product upgrading experiments than 
diversification experiments compared to other firms during the pre- adoption stage. Although, as 
mentioned, producing most high-end products was impossible without high-end machines, stretching low-
end machines enabled some small-scale production at the (lower end of the) high-end product space, and 
this is what we apparently observe in these data. Thus, one interpretation of these results is that potential 
entrepreneurial firms were conducting small pre-adoption experiments to determine whether they should 
make the costly decision of investing in high-end machines (Kerr et al., 2014). 

According to the model in McCardle (1985), experiments with new technologies result in a 
separating equilibrium where some firms (receiving bad signals) decide not to adopt the new technology, 
while other firms (receiving good signals) decide to go ahead with investment. We test this in another 
regression, the results of estimating which are presented in Panel B of Table A10. In column (1) we 
calculate the fraction of successful experiments (products first introduced on experimental basis and 
subsequently scaled) among all experiments started by firms at time t and we use it as a key explanatory 
variable in a regression where the dependent variable is, once again, the dummy equal to one if the firm 
was a future adopter and zero otherwise. Because we are conditioning on starting at least one experiment 
at t, the number of observations is much smaller than in Panel A. Nevertheless, there is an economically 
important and statistically significant at the 10 percent level relationship between success in experimental 
production and future high-end machine adoption––the standard deviation from the mean in this sample is 
0.44, so one standard deviation from the mean success rate is estimated to increase the probability of 
high-end machine adoption in the future by about 8 percentage points, or by about 40 percent, given that 
the mean fraction of future high-end machines adoption in the sample is 0.2. Thus, future adopters both 
conducted more experiments than non-adopters and were more successful in the experiments they did 
conduct, in line with the predictions in McCardle (1985). 

In columns (2) and (3) of Panel B in Table A10 we look at how the duration of successful and 
failed experiments, respectively, was different between future adopters and non-adopters. As can be seen 
from the corresponding coefficients, in the case of successful experiments, those conducted by future 
adopters were significantly shorter than those conducted by non-adopters, but the opposite is true of 
eventually failed experiments. The first finding is consistent with future adopters having better success 
odds (higher exponential arrival rate of success in any given experiment). The latter finding renders itself 
to several possible interpretations, the most likely ones (not necessarily mutually exclusive) being (a) 
extra confidence future adopters had about their chances to eventually succeed which made them persist 
longer despite a string of bad signals, and (b) higher value placed by future adopters on experiments as a 
means of accumulating technological and marketing knowledge, even regardless of outcome. 

In column (2) of Panel A in Table A10 we add more regressors capturing time-varying firm 
characteristics––employment of university educated engineers, market ties (proxied by merchants as 
board members), the situation in top management teams (TMT), expansion of (low-end) machine 
capacity, as well as output scale and scope. The coefficient on upgrading experiments is reduced in 
magnitude but remains economically and statistically highly significant in predicting which firms are 
going to order high-end machines in the future. Among other variables, market ties (as captured by the 
presence of merchants on boards) significantly positively affect the probability of adding high-end 
machines in the future in this sample, but the number of university educated engineers employed has no 
such impact. Thus, even though having a university-educated engineer at the time of founding is an 
important predictor of high-end machines at entry or at some point in the future (see Table A11 above), 

 
35 The results remain similar if we use all observations prior to high-end machines appearing on the balance sheets. 
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firms that did not adopt high-end machines at the time of entry did not on average employ more educated 
engineers than other firms either, until they decided to order such machines for the first time or even later. 

 

 

Table A10. “Selection” Among Firms with no High-End Machines 

Panel A. Characteristics and actions associated with future high-end machine orders 
 

DV: Dummy equal to 1 if placed high-end machines orders in the future 
VARIABLES (1) (2) 
Number of upgrade experiments started at t 0.418*** 0.350*** 

(0.147) (0.119) 
Number of diversification experiments started at t 0.066** 0.031 

(0.031) (0.038) 
Firm age -0.003 0.006 

(0.008) (0.009) 
Number of university-educated engineers employed at t 

 
-0.073  
(0.057) 

Dummy equal to one if merchant a board member at t 
 

0.167**  
(0.079) 

Shared TMT leadership at t 
 

0.003  
(0.096) 

Dummy equal to one if a TMT leader ousted in the 
previous two years 

 
-0.169***  

(0.063) 
Dummy equal to one if added low-end machines at t 

 
-0.044  
(0.042) 

Logged firm total output at t 
 

0.111**  
(0.047) 

Logged number of products at t 
 

-0.014  
(0.058) 

Constant 0.211** -0.734** 
(0.080) (0.361) 

Semiannual time dummies Included Included 
Observations 964 921 
R-squared 0.065 0.212 
Pooled OLS. Robust standard errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sample limited to 
firms before high-end machine orders were placed for the first time. 
 
Panel B. Success rates and duration of successful and unsuccessful experimental production 
  DV: Dummy equal to 1 if placed high-end machines orders in the future 
VARIABLES (1) (2) (3) 
Fraction of successful experiments among those 
started at t 

0.208*     
(0.117)     

Average duration of successful experiments 
  -0.037**   
  (0.015)   

Average duration of failed experiments 
    0.043*** 
    (0.010) 

Firm age 
0.008 0.025 -0.000 

(0.006) (0.016) (0.006) 
Constant 0.201*** 0.266** 0.203*** 
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(0.070) (0.128) (0.064) 
Semiannual time dummies Included Included Included 
Observations 153 98 172 
R-squared 0.294 0.430 0.335 
Pooled OLS. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Looking at the top management teams (TMT), Agarwal et al. (2020) find that stable shared 
leadership (that is, having multiple TMT leaders who created division of labor while avoiding rifts 
leading to forced departures) contributed to firm growth and ability to attract engineering talent. We test 
this here by including also dummies capturing whether a firm had shared TMT leadership and whether 
there was a forced TMT leader departure in the two years preceding time t (where “forced” is defined as 
not due to death, illness, or resignation for personal circumstances unrelated to the firm). While shared 
TMT leadership by itself does not predict future adoption of high-end machines, we do find that within-
TMT conflicts leading to forced departures are strongly negatively associated with high-end machines 
adoption. Since such departures represent disruptions and loss of managerial human capital, this finding is 
in line with the conclusions drawn in Choi, et al. (2019) using U.S. Census data. Finally, we also see that 
while future adopters were somewhat larger in terms of their output scale, they were neither more 
diversified nor more likely to expand their (low-end) machine capacity than other firms prior to adopting 
high-end machines. Thus, we have another strong piece of evidence showing that diversification and 
expansion of low-end machines happened after firms adopted high-end machines and successfully 
expanded into the high-end product space, not before. 

To conclude, it appears that (a) conducting more experiments and being more successful in those 
experiments; (b) stronger market ties (merchants as members of boards); and (c) ability to avoid within-
TMT conflicts leading to forced departures and loss of human capital were all salient features associated 
with “selection into treatment” (future high-end machine adoption). At the same time, most of the impact 
on growth, product varieties proliferation and hiring of educated engineers (as well as further increase in 
experimental production) happened already after high-end machines had been adopted and the firms had 
embarked on the process of growth using those machines and exploiting the complementarity channel 
from product upgrading to product diversification. 
 

A.7 Flexible production system 
 According to our interviews with Kanji Tamagawa (a prominent Japanese historian of cotton 
spinning technology), switching the direction of twist (from S to Z and vice versa) and/or changing the 
count to be spun between adjacent counts (say, from 16 to 18 or from 20 to 22) involved the following 
operations: 
 

Operation Required time 
(1) Changing the draft (adjusting the draft change gear) About 10 minutes 
(2) Changing the twist number (adjusting the twist change gear) About 10 minutes 
(3) Changing the direction of the twist (changing the direction of the tin roller) About 10 minutes 
(4) Changing the spindles rotation speed (adjusting the gear) About 10 minutes 
(5) Changing the traveler (choosing a traveler of appropriate weight) About 30 minutes 

 
With appropriate skill, the first four operations could be completed during the time required to 

complete the fifth, so, under ideal conditions, the whole process would take about 30 minutes. 
However, if the task was to change to a count of yarn  that was further apart (such as from 16 

count to 20 or from 24 count to 32 count), such a change also required a change in roving to be fed into 
the machine, taking about two hours, so such adjustment was much costlier. Thus, firms with a more 
diversified product portfolio could change counts more easily.  
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Figure A4. Historical trend in the fraction of non-S twist products in the total number of product varieties 

 
 

A.8 Low-end product quality 

Table A11. Comparing 20-count Prices and Female Operative Wages Dispersion 

  Coefficient of 
variation 

Quartile coefficient of 
dispersion 

90-10 percentile 
coefficient of dispersion 

Prices of 20 count 0.028 0.016 0.031 
Wages of female operatives 0.147 0.094 0.182 

Note: The coefficient of variation is the ratio of the mean over the standard deviation. The quartile coefficient of 
dispersion is (p75-p25)/(p75+p25). The 90-10 percentile coefficient of dispersion is (p90-p10)/(p90+p10). Averages 
for the whole sample. 
 

Table A12. OLS Regression of Logged Market Share of 20 Count on Logged 20-count Price 
 DV: Logged market share of 20 count 
Estimation OLS 

Logged 20-count price -3.056** 
(1.191) 

Constant 7.132 
(5.432) 

Semiannual time dummies and firm dummies Included 
Observations 743 
R-squared 0.732 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Figure A5. Estimated Quality Index and Historical Quality Ratings 

 
Note:  Quality rating is firm-level quality ratings of Z-twist 20 count in 1907 determined by the cotton yarn quality rating 
committee at the Osaka Three Articles Exchange (Arao, 1920, pp. 33-36). Rating 4 indicates the highest quality and rating 1 
indicates the lowest quality. “Quality index IV” represents sample averages of our estimated quality measures for the same firms. 
 

A.9 Market competition 

Figure A6.  Fraction of Firms, Output ratio, and Price 
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