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Abstract

Big data, machine learning and AI inverts adverse selection problems. It allows insurers
to infer statistical information and thereby reverses information advantage from the insuree
to the insurer. In a setting with two-dimensional type space whose correlation can be inferred
with big data we derive three results: First, a novel tradeoff between a belief gap and price
discrimination emerges. The insurer tries to protect its statistical information by offering
only a few screening contracts. Second, we show that forcing the insurance company to reveal
its statistical information can be welfare improving. Third, we show in a setting with naïve
agents that do not perfectly infer statistical information from the price of offered contracts,
price discrimination significantly boosts insurer’s profits. We also discuss the significance our
analysis through three stylized facts: the rise of data brokers, the importance of consumer
activism and regulatory forbearance, and merits of a public data repository.
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1 Introduction

Advances in big data analytics, artificial intelligence and the Internet of Things promise to
fundamentally transform the insurance industry and the role data plays in insurance. New
sources of digital data, for example in online media and the Internet of Things, reveal infor-
mation about behaviours, habits and lifestyles that allows us to assess individual risks much
better than before.

International “Geneva" Association for the Study of Insurance Economics, Keller et al. [2018]

The rise of big data, artificial intelligence (AI), and machine learning is one of the defining char-
acteristics of the 21st century economy. Almost every action we take is recorded and correlates
are constructed, to better predict our behavior. The direct effects of these developments are being
felt in the insurance industry, which is undergoing a radical transformation– price discrimination
and contract structures will fundamentally change.

Most models in information economics assume that customers have an informational advan-
tage. Hence, the principal, e.g. the insurance company, faces an adverse selection problem, which
it tries to mitigate by offering a menu of screening contracts to potential customers.1 While cus-
tomers might still have private information about some of their characteristics, with big data,
insurance companies develop superior aggregate information, using new statistical tools to better
infer correlates about the characteristics and the ultimate risk. In other words, the principal here
can "invert" the mapping from characteristics to risks through an informational and technical
advantage. Thus, big data and AI transform many adverse selection problems to what we call
"inverse selection" problems.

Our setting is close in spirit to the informed principal approach in mechanism design (Myer-
son [1983] and Maskin and Tirole [1990, 1992]). It departs from the canonical structure in two
ways: first, while the agent has hard private information – family history, eating habits, zip code,
etc; the principal has statistical private information – how all these characteristics interact and
determine the agent’s probability of say, getting cancer; and, second, as a regulatory constraint,
it asks the principal to commit to a menu of contracts. Also, the basic structure of our model
is inspired from the classical insurance problem studied by Rothschild and Stiglitz [1976] with
two key differences: we consider a richer information structure, and we restrict attention to a
monopolistic screening setup.

Inverse selection does not only differ from the standard adverse selection but also from the more
recent advantageous selection literature. Advantages selection stresses the importance of preference
heterogeneity in order to overturn the standard theoretical, but empirically counterfactual, result
that the high-risk agents get full insurance whereas low-risk agents opt for partial insurance. With

1Akerlof [1970] pionnered the study of adverse selection and screening. The core idea has found applications is
variety of settings: Rothschild and Stiglitz [1976] study the insurance problem, Mailath and Postlewaite [1990] study
public goods provision, and Biais, Martimort, and Rochet [2000] and Tirole [2012] study various aspects of financial
markets, to name a few. See Green and Laffont [1979] and Laffont and Martimort [2009] for general theoretical
treatments of the principal agent screening problem.
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preference heterogeneity, highly risk-averse agents buy more insurance, despite the fact that they
are less risky, since they behave more cautiously.2 In both settings, adverse and advantageous
selection, the insurance provider suffers from an informational disadvantage, which is in sharp
contrast to our “inverse selection" setting, which in the chronology of ideas may thus be regarded
as pointing towards a third generation of models.

Wemodel the inverse selection problem using a two-dimensional type space. Both dimensions
determine the riskiness of the agent, but the agent only knows one (type of) characteristic, the
first dimension of the type, in addition to the marginals along both dimensions. In contrast, the
principal, e.g. the insurer, knows the entire joint distribution, her statistical advantage manifests
in private information about the correlation between the two dimensions. At a high level, we
equip the agent with greater hard or physical information and the principal with greater soft or
statistical information. This marks a departure from most standard principal-agent models of
asymmetric information.3

The basic tension the principal faces is the following: She can use a set of screening contracts,
i.e. price discrimination, to elicit agent’s private information, but she has to beware that by of-
fering more fine-tuned screening contracts, she may partially reveal her informational advantage,
the statistical correlation. In other words, the principal faces a novel belief gap-versus-price discrim-
ination trade-off. By offering a richer set of contracts, the principal can discriminate more but will
also end up giving up some of its statistical informational advantage. Note that this trade-off is
different from the rent-versus-efficiency trade-off prevalent in standard principal agent problems,
where the principal worsens efficient risk-sharing in order to minimize the information rent that
the agent can extract. Of course, the standard rent-versus-efficiency trade-off is also present in our
setting (with respect to the agent’s private information).

As in the classical setup, the optimal contract separates along the insuree’s private informa-
tion. However, along the private statistical information of the insurer, the optimal contract fea-
tures either complete pooling or partial pooling; interestingly, complete separation along both
dimensions is never optimal for the insurer. When the insurer pools certain correlation types she
is giving up on price discrimination in order to maintain the statistical information advantage.
We show that the insurer always offers a finite number of contracts. This result is based on a novel
mechanism design problem that features “ironing almost everywhere” (in the sense of Myerson
[1981]). To be best of our knowledge, this is the first paper to model beliefs as private informa-
tion in an otherwise classical mechanism design setup, and deal with ironing on the entire type
space. The number of contracts turns out to be small, highlighting that the belief gap-versus-price
discrimination trade-off is firmly resolved in the favor of the former. Indeed, in many settings the

2Einav and Finkelstein [2011] provide an excellent overview of the key ideas. See Finkelstein and McGarry [2006]
and Fang, Keane, and Silverman [2008] for empirical evidence on adverse and advantageous selection.

3The model can be equivalently interpreted as the first dimension being the set of all characteristics and the second
dimension being the riskiness of the agent. Then the agent has private information about personal characteristics, and
the principal understands the mapping between characteristics and risks.
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contract space along the statistical information is partitioned into only two contracts.4

To further understand this trade-off it is instructive to consider a few "special cases": First,
we say the insuree is gutgläubig if he does not infer any statistical information from the menu of
contract and in addition believes whatever the insurer tells him about the correlation coefficient.
For such an insuree, only two correlations are ever reported– the lowest and highest possible
values, and a distinct contract is chosen for each possible actual realization of the correlation. This
model, although theoretically non-standard, clarifies the direction in which the insurer would like
to push the contract if she could create the maximal belief gap and implement the maximal price
discrimination. Second, we say that insuree is naïve if he again does not infer any statistical
information from the menu of contract, but unlike gutgläubig, sticks to the prior. Here too the
insurer gains on average, but ex post the ranking is not uniform: dictated by feasibility constraints,
the insurerwould like the insuree to change/update his belief (even correctly) in certain situations.
For the naïve case, the belief gap is exogenously fixed by the prior and the insurer maximizes on
the price discrimination channel, given this constraint.

Another set of regulatory implications concerns the question of whether the insurer should
be forced to reveal her private statistical information to the insuree prior to the posting of con-
tracts. Such a regulatory or societal requirement would ensure that the insuree is not kept in the
dark about his own risks. Formally, a mechanism design problem is solved as if the correlation
is common knowledge in the extensive form of the interaction, for each possible report of corre-
lation by the insurer. The conceptual innovation here is that the insurer has to be incentivized
to reveal the information, and hence a family of shadow prices now constrain the size of the pie.
The profit of insurer is uniformly reduced (and sometimes the total size of the pie too), but the
hope is that it can still increase consumer (or insuree) surplus.

In each of the four cases, the standard model, gutgläubig, naïve, and optimal full revelation,
we compare the insurance premiums to the benchmark model where the statistical correlation
is common knowledge at the outset– in this latter case, the problem collapses to the standard
monopolistic Rothschild and Stiglitz [1976] insurance problem. The key difference is following:
While the benchmark case features either full or partial insurance, in each of the four cases stud-
ied in the paper, the optimal contract features some over insurance. This mirrors the findings
in advantageous selection literature, but here following a novel mechanism of differential endow-
ment of initial information between the principal and the agent, as opposed to multidimensional
private information of risk and preferences on the side of the agent.

Finally, we look at welfare implications under the various settings considered in the paper.
The following comparison are salient: First, the insurer’s profit is extremely high and the insuree’s
surplus is uniformly negative in the special gutgläubig case. Second, when the optimal contract

4Eilat, Eliaz, and Mu [2020] study a standard quasi-linear monopolistic screening where the information change of
the principal is exogenously restricted by a cap on KL-divergence between the prior and posterior. They too find that
the number of contracts offered at the optimum is finite. Their model, mechanism and the application are however
quite different than ours.

4



(in the standard model) features at most two partitions, the insurer’s profit and insuree’s surplus
are comparable to the benchmark model in the following sense: the insurer tries to replicate the
price discrimination as in the benchmark model but while maintaining the maximal amount of
belief gap permissible by feasibility constraints. As a consequence, optimal profits in the standard
model correspond to a linear approximation around the benchmark case and beliefs are split to
keep high differentiation among contracts. And, third, when the insurer is forced to reveal all
of its private information to the insuree, then her profits are by a significant amount the lowest
and the insuree’s surplus is the highest, suggesting government intervention can significantly help
buyers.

While our model is admittedly stylistic, it provides a conceptual framework to think about
the role of big data and AI in the design of screening contracts. The contrast between our standard
model and the gutgläubig case shows that the returns to statistical information for the principal
can be quite large, especially when the agents are not sophisticated. This points towards a market
for acquiring consumer information, which in reality has manifested in the rise of data brokers
such as Oracle, Nielsen and Salesforce; see, for example, Financial Times [2019]. On the other
hand, the limits to exploitation of consumer data when consumers are completely sophisticated
points towards the returns to consumer activism and greater regulatory forbearance; see, for ex-
ample, the call for transparency by the Federal Trade Commission (Ramirez et al. [2014]) and the
framework for a general data protection regulation issued by the European Parliament (Council
of the European Union [2016]). Finally, the increase in consumer welfare from forcing the prin-
cipals to make private statistical information public points towards the merits of a public data
repository; see, for example, Rajan [2019].

The informed principal problem seems to us a likely candidate to capture the essence of inverse
selection. To the best our knowledge, Villeneuve [2005] is the first paper to think systemically
about insurance markets in the realm of the informed principal model. This has been followed
up by Abrardi, Colombo, and Tedesch [2020], simultaneously, with our work. Both these pa-
pers though focus on competing principals, in contrast to our monopolistic setup. Moreover,
Villeneuve [2005], and for the most part, Abrardi et al. [2020] focus on one-dimensional private
information on the side of the principal, whereas, we look at a two-dimensional state, part of
which is known to the principal and part is known to the agent. In addition, the modeling of
information in our paper is driven by the stylistic fact that nature of information asymmetry
between the principal and agent itself can be classified into statistical and physical, soft and hard,
with both components correlated to each other. Finally, the four different settings considered
here under the monopolistic setup, are unique to our paper. While the setup and results are quite
different, we view both of these other papers as being complimentary to our work in a push
towards the aforementioned "third generation" of insurance models.5

5Beyond insurance markets, see also Mylovanov and Tröger [2014] and Koessler and Skreta [2019] for related
theoretical models of the informed principal.
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2 Model

As discussed in the introduction, the model we present can be thought of as an informed principal
problem (Myerson [1983]) where a risk-neutral principal can commit to a menu and the private
information she holds is statistical. The agent is risk averse and informed about some underlying
characteristic that influences the risk he faces.

Preferences. A profit maximizing monopolist insurer (principal/seller) interacts with an insuree
(agent/buyer) who wants to insure himself against some damage/loss. The insurer is risk neutral
and offers a standard insurance contract

(
p, x

)
, where p represents the price (or premium), and x

represents the proportion of the insuree’s loss that is covered by the contract. So, x < 1 means
under, x = 1 means exact, and x > 1 means over insurance.

The insuree has an initial wealth w . The uncertain loss he faces is distributed according to a
normal distribution N (µ, ν). He has a CARA utility parameterized by γ. Let the realized loss
be given by `. Then under the contract

(
p, x

)
, his ex post utility is given by:

u0(w, `, x, p) = −e xp(−γ(w − p − (1 − x)`)),

and his ex ante (expected) utility is given by:

u(w, µ, x, p) = −e xp
(
−γ

(
w − p − (1 − x)µ −

η

2
(1 − x)2

))
,

where η = γν > 0. It is well known that maximizing expected utility in a CARA-Gaussian set
up is equivalent to maximizing its certainty equivalent, which is given by

CE[u(w, µ, x, p)] = w − p − (1 − x)µ −
η

2
(1 − x)2

= w − µ︸︷︷︸
a

+
[
xµ −

η

2
(1 − x)2

]
︸                 ︷︷                 ︸

v(x)

−p

= a + v(x) − p .

From hereon, we will abuse notation a bit in writing u to mean the certainty equivalent. Since
a fully concave utility function makes the analysis intractable, we use the CARA-Gaussian setup
to introduce risk aversion while maintaining linearity in money.

Information. The canonical CARA-Gaussian version of the insurance model would assume that
themean loss, µ, is the agent’s private information. We depart from this crucial assumption on the
"endowment" of information as follows. A relevant bidimensional state θ = (θ1, θ2) determines
µ, where θi ∈ {L,H } for i ∈ {1, 2}. So, given state θ, the mean loss of the agent is given by µθ .
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Without loss of generality, we assume that

µHH > µHL > µLL and µHH > µLH > µLL.

The joint distribution is of θ, given by q =
(
qHH , qHL, qLH , qLL

)
, is depicted in Table 1. Here

θ2

L H

θ1 L qLL qLH q1

H qHL qHH 1 − q1

q2 1 − q2

Table 1: Joint distribution of θ.

q1 = qLL + qLH and q2 = qLL + qHL are the marginal distributions of θ1 and θ2, respectively. Let
ρ be the correlation between θ1 and θ2, and define σ =

√
q1(1 − q1)

√
q2(1 − q2). Then, as shown

in Table 2, the distribution can then be rewritten using three parameters: ρ, q1, q2.

θ2

L H

θ1 L q1q2 + ρσ q1(1 − q2) − ρσ q1

H (1 − q1)q2 − ρσ (1 − q1)(1 − q2) + ρσ 1 − q1

q2 1 − q2

Table 2: Joint distribution of θ in terms of correlation.

The insuree observes θ1 and knows the marginal distribution of θ2, and the insurer simply
knows the joint distribution of θ. In terms of the primitives, we assume that q1 and q2 are
common knowledge, the agent is privately informed about θ1, and the principal privately knows
ρ. Finally, to close the model, we assume that ρ is drawn from F on [ρ, ρ], where F is differential
and has a continuous density f , and is common knowledge.6

The question we ask is: what is the principal optimal contract in this insurance problem?

Remarks on modeling. A few remarks on modeling choices are in order. In a direct general-
ization of the monopolistic screening version of Rothschild and Stiglitz [1976], we could have

6The entire set of possible correlation is of course [-1,1]. However, once we fix the marginals to be q1 and q2,
it can be easily checked that the set of feasible correlations is [ρ, ρ], where ρ = min

{
q1(1−q2)

σ ,
q2(1−q1)

σ

}
and ρ =

max
{
−
q1q2
σ ,−

(1−q1)(1−q2)
σ

}
. Thus, technically, the distribution F is restricted by the marginals q1 and q2.
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written down the following model: the bidmensional state θ determines the probability of meet-
ing an accident, say αθ . The insurer is risk neutral as before, and the insuree has some general
concave utility function over final wealth, which is w − p in case of no-accident (with probability
1 − αθ ) and w − p + x − l in case of an accident (with probability αθ ); and x ≥ 0 here is the total
coverage in monetary value. The information structure and initial endowment of information
would be the same as above: q is the joint distribution of θ, etc. This model is similar in spirit
to the CARA-Gaussian one we write down, but is much harder to solve, because of the lack of
structure on the agent’s payoff.7

In addition we intentionally model the distribution of information between the insurer and
insuree as the former knowing ρ and latter knowing θ1 to capture the idea that the insurer has
some statistical knowledge and the insurer has some hard knowledge about the underlying state.
After the endowment of initial information, the insurer knows more about the general envi-
ronment in the form of the correlation coefficient between the two dimensions, and the insuree
knows something specific about his situation in the form of θ1. Once the insurer incentivizes the
insuree to reveal θ1, the insurer can make better inference about the state than the insuree, this
inverts the selection problem.

3 The optimization problem

To write down the problem formally, we introduce the associated mechanism design lexicon in
the spirit of Myerson [1982, 1983]. A message rule r : [ρ, ρ] → ∆(M ) represents how coarsely
(or finely) the insurer wants to communicate her information about the correlation coefficient to
the insuree, as part of the optimal contract. Further, invoking the revelation principle, we simply
look at a direct mechanism where the insurer reports her "type" ρ, the insuree reports his "type"
θ1, and a contract is selected from the menu:

C = (cm)m∈M where cm = {cm(H ), cm(L)} and cm(θ1) =
(
pm(θ1), xm(θ1)

)
for θ1 = H ,L.

A direct mechanism is then completely captured by (r ,C), which is chosen by a mediator with
the objective of maximizing the profit of the insurer subject to incentive compatibility for the
insurer, and incentive compatibility and individual rationality for the insuree.

The exact timing of the (dynamic) mechanism is as follows.
7One weakness of our model is that by assuming a Gaussian setup, we have to allow the possibility of losses to be

positive, which is absent in this alternate model. This is a standard problem of interpretation in many asset pricing
models such as Grossman and Stiglitz [1980]. We believe tractability trumps this limitation for representing the ideas
we have in mind.
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Stage 1

• nature draws ρ ∼ F ∧ θ ∼ q.

• seller learns ρ and reports it.

• r generates message m.

• buyer forms posterior Fm .

Stage 2

• menu {cm(H ), cm(L)} is offered.

• buyer learns θ1 and reports it.

• contract cm(θ1) is implemented.

• payoffs π and u are realized.

The goal going forward is to characterize the optimal choice of (r ,C). To that end, we now
define the objective and constraints of the optimization problem. Let π(ρ, ρ̂) be the (ex post)
profit of the insurer if her type is ρ but she reports ρ̂ to the mediator. So, under truthtelling, the
optimal profit is given by π(ρ; ρ) which we will simply refer to simply as π(ρ). The (ex ante)
objective of the mechanism design exercise is then given by:

Π =

∫
π(ρ) f (ρ)dρ.

For a fixed menu cm , the payoff of the insuree type θ1 ∈ {H ,L} from reporting θ̂1 is:

um(θ1; θ̂1) = w − pm(θ̂1) −
[
1 − xm(θ̂1)

]
µm(θ1) −

η

2

[
1 − xm(θ̂1)

]2
= w − µm(θ1)︸        ︷︷        ︸

am (θ1)

+

[
xm(θ̂1)µm(θ1) −

η

2

{
1 − xm(θ̂1)

}2]
︸                                         ︷︷                                         ︸

vm (θ1;θ̂1)

−pm(θ̂1)

= am(θ1) + vm(θ1; θ̂1) − p(θ̂1) (1)

where µm(θ1) is the expected value of µ based on realized value of θ1 and ρ which is drawn drawn
from the posterior Fm . Assuming truthteling by the agent, the mathematical expression for the
insurer’s profit is:

π(ρ, ρ̂) = q1
[
pr ( ρ̂)(L) − µρ(L)x r ( ρ̂)(L)

]
+ (1 − q1)

[
pr ( ρ̂)(H ) − µρ(H )x r ( ρ̂)(H )

]
(2)

where µρ(θ1) is the expected value of µ based on realized value of ρ and (truthfully) reported
value of θ1.

Three type of constraint are imposed on the optimization problem. First is the incentive
constraint of the insurer, that the insurer wants to truthfully report her type to the mediator:

ICρ : π(ρ; ρ) ≥ π(ρ; ρ̂) ∀ ρ̂.

Second is the incentive constraint for the insuree, that the insuree wants to truthfully report his
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type to the mediator:
ICθ1 : um(θ1; θ1) ≥ um(θ1; θ̂1) ∀ θ̂1.

As pointed out in the description of the dynamic mechanism above, insuree’s incentive constraint
incorporates the report of the insurer by conditioning the (expected) utility on the message m,
and hence the posterior Fm . Third, is the individual rationality constraint of the insuree which
guarantees him a minimum expected utility:

I Rθ1 : um(θ1; θ1) ≥ 0.

Any contract (r ,C) that satisfies these three (class of) constraints is said to be incentive-feasible.
Finally, the optimization problem can then be written simply as:

max
r ,C
Π s.t. ICρ, ICθ1, I Rθ1 .

4 Three "special" cases

Before we solve problem the main problem, we consider three related models that help identify
the key economic forces at work.

4.1 ρ is common knowledge

If ρ is common knowledge, our problem becomes isomorphic to the monopolistic version of
the classical Rothschild and Stiglitz [1976] problem. Both parties take expectations over θ2, and
insuree is incentivized to reveal θ1 truthfully. Since there is no need of communication from the
insurer, r here is irrelevant. The optimal contract is as follows.

Proposition 1. ∃ ρ∗ s.t. πRS (ρ∗) = max
ρ

πRS (ρ) and coverages are generically separating:

1. ρ > ρ∗⇒ 1 = xRSρ (H ) > xRSρ (L),

2. ρ < ρ∗⇒ xRSρ (H ) < xRSρ (L) = 1.

As in the standard monopolistic screening model, the optimal contract is always separating:
"high" risk type is offered exact coverage and "low" risk type is offered partial coverage, though
which type is "high" risk pivots around ρ∗. Fix ρ∗ to be the correlation where the expected value
of mean loss is the same for both θ1-types: that is ρ∗ solves µρ(H ) = µρ(L). Then, for ρ > ρ∗,
"high" risk type is θ1 = H and for ρ < ρ∗, the "high" risk type is θ1 = L (see Figure 1b). Also, note
that profit is maximized at ρ∗, because the agent’s private information of θ1 becomes statistically
irrelevant: the principal offers a pooling contract and extracts all the surplus associated with it
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(a) optimal profit as a function of ρ (b) optimal coverage as a function of ρ

Figure 1: Benchmark model when ρ is common knowledge

(see Figure 1a). We will refer to this as the benchmark model, and christen it RS , pointing towards
the classical reference.8

The extent of distortion for the "low" risk type is further determined by the primitives of the
problem. The economic force driving this result is typically known as the rent-versus-efficiency
tradeoff. Since insuree is the residual claimant of the surplus, she wants to maximize efficiency by
offering full (or exact) insurance to both types with different premia (or prices) that hold each of
them at their reservation utility. But due to asymmetric information she provides two different
coverages, one full and another partial, and chooses premia in way that incentivizes insurers to
self select into the contract corresponding to his type. In fact if the proportion of "low" risk types
is too low, the insurer will simply offer full insurance to the "high" risk types and exclude the
"low" risk ones from the market (see Figure 1b for high values of ρ ).

In all the models that follow, ρ is not common knowledge, rather it is the insurer’s private
information. These will feature an inversion of adverse selection: by designing an incentive com-
patible mechanism, once the insurer learns θ1, she knows more than the agent about the proba-
bility of the state θ. The insurer will exploit, to varying degrees, this belief gap, and one of the
tools we will use to capture this intuition will be termed flipped allocation.

Definition 1. A contract C is said to feature flipped coverages if there exists ρ̂ such that

x r (ρ)(H ) > xRSρ (H ) and x r (ρ)(L) < xRSρ (L) for ρ < ρ̂;

x r (ρ)(H ) < xRSρ (H ) and x r (ρ)(L) > xRSρ (L) for ρ > ρ̂.

In that case, will say that the coverages are flipped around ρ̂.

A final thought on the appropriate benchmark: It is also possible to let the benchmark to
be the case where both parties are perfectly uninformed about the correlation coefficient and

8Technically speaking for ρ > ρ∗, ICH binds at the optimum, and for ρ < ρ∗, ICL binds at the optimum, this
determines which type is offered the efficient contract and which one is distorted.

11



take expectations over it. In this case the optimal profits and coverages will be given by their
counterparts in Proposition 1 evaluated at the expected correlation: πRS

e = π
RS (E[ρ]), xRSe (H ) =

xRS
E[ρ]
(H ), and xRSe (L) = xRS

E[ρ]
(L).

4.2 Gutgläubig insuree

Another useful, and rather non-standard, model to consider is one where, in addition to offering
a contract, the insuree tells the insurer the correlation coefficient and the latter simply believes
it. This setting is different than the (standard) naïveté model that we discuss in the next subsec-
tion. We will refer to such an insurer as gutgläubig, which is a German word that approximately
translates to gullibly trusting.

Knowing that she can basicallymislead the insurer about theway inwhich the two dimensions
are correlated provides the insuree with great freedom in selecting contracts. She will choose r
and C in tandem to create both the maximal belief gap and the maximal price discrimination.9

Proposition 2. If the buyer is a gutgläubig, ∃ ρ̃ ∈ [ρ, ρ] such that: fix this

1. binary messages are sent: M =
{
m,m

}
s.t. r (ρ) = m for ρ < ρ̃ and m(ρ) = m for ρ > ρ̃,

2. posterior of the insuree is extreme: Fm = δρ and Fm = δρ ,

3. profits are uniformly higher than benchmark: π(ρ) > πRS (ρ) ∀ ρ almost surely,

4. coverages are generically separating and inexact: x ρ(H ) , x ρ(L) ∀ρ , ρ̃, and x ρ , 1 ∀ ρ a.s.,

5. coverages are flipped around ρ̃.

There exists a threshold value of ρ, to the right of which the insuree reports the extreme
negative correlation, ρ, and to the left of which she reports the extreme positive correlation, ρ.
Even though the cardinality of the message space is just 2, still a distinct contract is offered for
each value of ρ, since the insuree does not infer anything about ρ from the menu of contracts.

When the actual correlation is high, it means that the type θ1 = H is likely to suffer a large
loss and θ1 = L is likely to suffer a small loss. In this scenario, the insurer reports a large negative
correlation, in fact the largest possible negative value, over insures θ1 = L and underinsures
θ1 = H . In the process, she is able to achieve dramatic price discrimination while maintaining
an extreme belief gap. The exact opposite it true for the case when the actual correlation is
low: insuree reports large positive correlation, overinsures θ1 = H and underinsures θ1 = L. In
sum, the insurer sells a large amount of insurance to at high price to the type who actually has
a low probability of loss, and a small amount of insurance to the type who actually has a high
probability of loss.

9Since the Bayes’ consistency condition is no longer valid, technically the class of contract is given by C =
(
cm,ρ

)
because the contract offered for the actual realization of ρ has no relation to the reported value m.
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(a) optimal profit as a function of ρ (b) optimal coverage as a function of ρ

Figure 2: Model with gutgläubig insuree

Figure 2 depicts the profit and coverages when the insuree is gutgläubig. That the profits
are uniformly higher (Figure 2a) is intuitive: the model allows the insurer to input any value
of the correlation in the insuree’s incentive compatibility condition, which in turn allows her
to manipulate which type is perceived to be high risk type and then decide what coverages to
offer each θ1 type (Figure 2b). The last part of the proposition also points out that allocation are
flipped in comparison to the benchmark model, signifying the role asymmetric information of
correlation plays in the structure of contracts.

This analysis has two take away messages: First, private information on the side of the in-
suree, especially statistical information, fundamentally changes the incentives of the insurer and
hence the nature of contracts that are observed in the market for insurance. Second, an inability
on part of the insuree to infer information results in a maximal belief gap and maximal price
discrimination at the optimum, leading to large increase in profits for the insurer in comparison
to the benchmark.10

4.3 Naive insuree

Amore standard "behavioral" way ofmodeling limitations on information processing is to assume
that the agent ignores the signals offered by the contract about the correlation coefficient, so that
Fm = F ∀m ∈ M .11 Thus, in this situation, the role of r is moot. The insuree designs the contract
as a function of ρ with the knowledge that the insurer will evaluate his payoffs using the prior F .

Proposition 3. If the buyer is naive (and thus sticks to the prior):

1. profits are higher in expectation: E(π(ρ)) > E(π r s (ρ)),

2. coverages features both pooling and separation,

3. coverages are generically inexact: x ρ(θ1) , 1 ∀ ρ a.s.,
10We are using the word "maximal" formally for belief gap but somewhat informally for price discrimination.
11See Benjamin [2019] for an overview of the literature.
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(a) optimal profit as a function of ρ (b) optimal coverage as a function of ρ

Figure 3: Model with naive insuree

4. coverages are flipped around E(ρ).

The salient difference between the naivemodel and gutgläubig case (and also the general model
we will present next) is that here the belief gap is determined exogenously by the fixed prior
and the realization of ρ, and the insurer cannot influence it. This works in the insurer’s favor
sometimes and other times it works against her. As a consequence, when the insuree is naive, the
insurer is better off on average in comparison to the benchmark, however, unlike the gutgläubig
case, this ranking is not uniform (see Figure 3a).

Here is a simple intuition for the result: Suppose the expected correlation according to F
is high enough, so that according to insuree, the "high risk" type is θ1 = H . If the realized
correlation is close to ρ, then the insurer wants to sell a lot of insurance to θ1 = H and little
insurance to the type θ1 = L, because θ1 = H is actually the "low risk" type but believes his risk
to be at a higher level, according to F , and θ1 = L is actually "high risk" (see left part of Figure
3b). On the other hand, when the realized correlation is close to ρ, the insurer cannot sell a lot
of insurance to θ1 = H because he does not internalize the extent of risk he faces, and moreover,
she cannot sell a lot of insurance to θ1 = L, because the nature of binding incentive constraints
demands x ρ(H ) ≥ x ρ(L); thus, for extremely high correlations, the insuree is forced to pool the
coverages.12

4.4 Breakdown of the key forces

The key take away message from these special cases is this. The coverages very as a function of
ρ, the insurer’s private information, and θ1 the insuree’s private information. The latter is the
classical rent-versus-efficiency tradeoff which runs through each of the cases since the insurer’s
incentive constrain needs to satisfied. The former generates a new tension of belief gap versus
price discrimination.

12If expected correlation according to F is low enough, then in a symmetric contrast to Figure 3, the profit curve
would intersect benchmark profits from below, and pooling in coverages will happen for high negative correlations.
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In the first case, when correlation is common knowledge, belief gap is zero, and price discrim-
ination is determined exogenously through the realized value of ρ. In the gutgläubig case, both
belief gap and price discrimination are endogenously determined. Since the insurer can choose
the contract independently from the insurer’s belief, there is a no-longer a tradeoff, and both are
selected to maximize the insurer’s profit. In the naïve case the belief gap exists but is determined
exogenously for the insuree sticks to the prior no matter what contract is offered. Pice discrimina-
tion is then endogenously chosen to maximize the insurer’s profit given the exogenous belief gap
constraint. In what follows, both these forces will be determined endogenously and will interact
with each other and with the rent-versus-efficiency tradeoff to pin down the optimal contract.

5 Characterizing incentive compatibility and optimality

Our model differs from the standard screening problem in that it also features an incentive con-
straint for the principal, i.e. the insuree. In this section we analyze the incentive constraints of
the insuree for any fixed reporting strategy r : [ρ, ρ] → ∆(M ) by the mediator. The standard
Myersonian characterization of the insurer’s incentive compatibility is first stated.

Lemma 1. ICρ holds if and only if π satisfies the following

1. envelope characterization of local incentives:

∂π(ρ, ρ̂)

∂ρ

����
ρ̂=ρ

= σx r (ρ)(L) · (µLH − µLL) − σx r (ρ)(H ) · (µHH − µHL) ≡ c(ρ) (3)

2. convexity: π(ρ) is convex in ρ.

Proof. Part two is standard property of value functions that satisfy incentive compatibility on a
continuous type space (see for example Börgers [2015]). We show here the exact functional form
of the envelope characterization stated in equation (3). Assuming truthteling by the insuree, the
profit function from (mis)reporting ρ̂ is given by:

π(ρ, ρ̂) = q1
[
pr ( ρ̂)(L) − µρ(L)x r ( ρ̂)(L)

]
+ (1 − q1)

[
pr ( ρ̂)(H ) − µρ(H )x r ( ρ̂)(H )

]
where the only terms that are a function of ρ are

µρ(L) = (q2 + ρσ/q1)µLL + ((1 − q2) − ρσ/q1)µLH , and

µρ(H ) = (q2 − ρσ/(1 − q1))µHL + (1 − q2 + ρσ/(1 − q1))µHH

Taking a derivative with respect to ρ, then gives us:

∂π(ρ, ρ̂)

∂ρ
= −σx r ( ρ̂)(L)(µLL − µLH ) − σx r ( ρ̂)(H )(−µHL + µHH )
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Figure 4: Costs and benefits of adding extra partitions.

and, substuiting ρ̂ = ρ delivers equation (3). �

By fixing r , we fix M , which is basically a partition of the correlation type space [ρ, ρ]. Hence
we also fix the number of contracts offered at the optimum, |C| = |M |. Now, for a given r , Lemma
1 tells us two things. First that slope of the profit function, say c , can be written as

c(ρ) = kLφL(ρ) − kH φH (ρ),

where kL and kH are positive constants, and φL(ρ) = x r (ρ)(L) and φH (ρ) = x r (ρ)(H ) are the
coverages choses for the low and high types corresponding to the partition of M in which ρ

falls. And, second, by convexity of π, that c(ρ) must be non-decreasing. These two together put
restrictions on what coverages/allocations can be feasibly chosen, specifically they limit the price
discrimination that the insurer can employ even for a fixed number of contracts.

The typical approach taken in mechanism design is to ignore the convexity constraints, solve
the relaxed problem using only the envelope condition, and invoke a regularity condition such as
the monotone hazard rate. But this problem is not standard in at least three ways: (i) the "policy
function" is multidimensional, there are two allocation rules in the envelope condition, φL and
φH , ( ii) these functions in turn solve another downstream screening problem for the agent, and
(iii) the mechanism still has to jointly choose r and C at the optimum.

All of the aforementioned contribute in reducing the richness of contracts considerably. In
fact, we show that an optimal contract must be finite. Recollect that C = {cm | m ∈ M } where
M is essentially a partition of [ρ, ρ]. For every additional element we introduce in M , there
is a cost and benefit associated with it. Figure 4 presents precisely that for an example where
the insurer moves from two to three partitions. Here the single-peaked blue curve is the profit
associated with the benchmark model that we discussed in Section 4.1, the red straight line is the
optimal profit with two partitions and the black step-function is the profit constructed for a three
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partition contract.
Take the straight red line representing the profit of optimal two partitions. Each partition

has an expected correlation marked at the two vertical dotted lines. Feasibility demands that red
profit line must not be above the blue benchmark profit at each of those two points. This is
because in the subgame in which correlation is common knowledge the best the insurer can do is
to achieve a profit of πRS (ρ). In the two subgames, on each for the two partitions, it is as if the
insurer is in the benchmark model with the correlation being the expectation of correlation in
those partitions.

Now, in the relaxed problem in which we ignore the convexity constraint from Lemma 1, we
could choose the highest piecewise linear curve that crosses the blue curve at those expected cor-
relations. Alas, the incentive constraints of the insurer also put restrictions on the coverages that
pushes the slope of the profit function (equation (3)) in the opposite direction. This culminates in
a concave kink in the piecewise linear profit unction, which would violate the ignored convexity
constraint no matter the primitives of the problem. Thus, the best highest convex profit function
that the insurer can construct while satisfying incentive-feasibility is the one shown as the red line
in Figure 4.

Finally, we increase the the number of partitions from two to three. This transition still
needs to satisfy all the incentive-feasibility restrictions we imposed before. Following those similar
logics, we draw the best piecewise linear function that is convex and weakly below the benchmark
profit at each of the three expected correlations corresponding to the three partitions. In doing
this, the insurer incurs some costs and some benefits. The cost is shown in the lower yellow
triangle in what constitutes the loss in profit, and the benefit is shown in the upper green triangle
in what constitutes the gain in profit. In this case clearly, going from two to three partitions is
sub-optimal.

It turns out that single-peakness of the benchmark profit function, along with the limitations
that the insuree and insurer ’s incentive compatibility constraints impose in the profits that can
be reached in the subgame, make the costs of having an arbitrary number of partitions outweigh
their benefits. Splitting the profit function while ensuring convexity and information rent for the
agent is not very useful. The culmination of this reasoning is that at the optimum, the number
of contracts offered is not just countable, it is also finite. Recollect C = {cm | m ∈ M}. The
following definition and result document this point.

Definition 2. A mechanism is f-partitional if C is a finite set.

Proposition 4. The optimal mechanism is f-partitional.

6 Optimal contract

In the previous section we showed that incentive compatibility restricts the shape of the profit
function and further evaluated the cost and benefit of having partitions of the correlation type
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space to conclude that set of the contract offered at the optimummust be finite. This dramatically
simplifies the search for the optimal contract. Here we show further that at the optimum, under
reasonable conditions, only two contracts are offered; that is, |M| = |C| 6 2. And, then we
characterize the optimal one and two partition contracts.

Proposition 5. Under (xx), the optimal contract features at most two partitions, i.e. |M| = |C| 6 2.

At a conceptual level, Proposition 5 states in the duel between costs and benefits of more
finely partitioning the already finite message space for reporting correlations, costs resoundingly
win. In other words, the tradeoff between belief gap and price discrimination, maintaining belief
gap strongly trumps greater price discrimination. At a technical level, the convexity constraint
implied by incentive compatibility of the insurer and the monotonicity constraint on the alloca-
tion for fixed message implied by the incentive compatibility constraint leave such little wiggle
room for optimum, that in culminates in the profit function being a straight line– this can only
happen if the optimal contract has one or two partitions.

Ex ante, looking at the model and problem first defined in Sections 2 and 3 respectively, this
result is rather striking. Put simply, it says that, Bayesian sophistication of the agent results in
at most two contracts being offered at the optimum, instead of potentially uncountably many.
Note that if only one contract is offered at the optimum, the insurer simply throws away her
informational advantage by not using any price discrimination to maintain the maximal possible
belief gap with the insuree.

Now, if the optimal number of turns out to be one, it is fairly intuitive to conclude that the
coverages offered would be same as those offered in the benchmark model at the ex ante expected
correlation, and the optimal profit too will be equal to the optimal profit at that correlation.
This result is summarized in the next proposition. Recollect that πRS

e = πRS (E[ρ]), xRSe (H ) =
xRS
E[ρ]
(H ), and xRSe (L) = xRS

E[ρ]
(L).

Proposition 6. When the optimal contract chooses |M| = |C| = 1:

1. expected profits are the same as in benchmark: E[π(ρ)] = πRS
e ,

2. coverages are the ones offered for the expected correlation in the benchmark: x r (ρ)(H ) = xRSe (H )
and x r (ρ)(L) = xRSe (L) ∀ ρ.

Figure 5 plots the optimal profit and coverages for this case. The coverages are simply straight
horizontal lines for the insuree is not using any of her private information about ρ and is instead
offering a completely pooling contract along ρ. The profit function is a straight downward sloping
line for the allocation are fixed, and π is linear in ρ. As is standard in the benchmark model, the
(endogenously chosen) "high risk" insuree (which is type θ1 = H in the figure) is given full
insurance and the "low risk" insuree is given partial insurance.13

13For all the optimal contracts, we plot the profit and the coverages of the benchmark model simultaneously to help
motivate the impact of the privacy of statistical information on the side of the insuree, which actually separates our
model form (most of) the literature on insurance markets.
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(a) optimal profit

(b) optimal coverage for θ1 = H (c) optimal coverage for θ1 = L

Figure 5: Optimal contract features complete pooling
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(a) optimal profit

(b) optimal coverage for θ1 = H (c) optimal coverage for θ1 = L

Figure 6: Optimal contract features two partitions
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Next, we consider the case where the optimal number of partitions is two. In this case, the
type space of correlations is split into two intervals, say I1 and I2. The coverages in each interval
are evaluated using the expected correlation in those intervals while ensuring that the insuree’s
incentive constraint is satisfied between reporting interval I1 or I2 and within each interval, the in-
surer’s incentive constraint is satisfied in reporting θ1 = H or L. The following result summarizes
the key aspects of the optimal contract.

Proposition 7. When the optimal contract chooses |M| = |C| = 2, let I1 and I2 be the two intervals
in the partition of M , ci = (x i(H ), x i(L)) be the two contracts offered in the

and define ρ1 = E[ρ | ρ ∈ I1], ρ2 = E[ρ | ρ ∈ I2]:

1. profits are linear in correlation: dπ(ρ)
dρ = c f.s. c ,

2. expected profits are larger than the benchmark: E[π(ρ)] > πRS
e

3. coverages are flipped in comparison to the benchmark in the following sense:

(a) x1(H ) ≥ xRS
ρ1
(H ) and x1(L) ≤ xRS

ρ1
(L), whenever x1H , x1L,

(b) x2(H ) ≤ xRS
ρ1
(H ) and x2(L) ≥ xRS

ρ1
(L), whenever x1H , x1L.

Figure 6 plots the optimal profit and coverages when the optimal number of partitions is two.
Each partition corresponds to two coverages, one for each insuree type, which gives the profit
function its slope. In addition, the first result in Proposition 7 states that optimality forces both
these slopes to be the same. The coverages variedly feature overinsurance for θ1 = H , partial
insurance for both insuree types and no insurance for θ1 = L.

7 Optimal full revelation contract

So far we have analyzed the case where the insurer in sole proprietor of statistical information ρ

and can decide, as part of the optimal contract, how much of it to reveal to the insurees. For a
variety of regulatory and (presumably) welfare concerns, the insurer can be asked to reveal the
information about ρ publicly. One obvious way to model this is to assume that we "nationalize"
the system by taking over the insurance company and putting this information in the public
domain. In this case the model would become isomorphic to the one studied in Section 4.1,
where ρ is common knowledge.

An alternate way is to assume that there are some shadow prices associated with publicly
revealing the value of ρ. At a high level, what we have in mind is that information is dispersed in
a society and collecting it andmaking it public is a non-trivial exercise. Wemodel this situation by
exogenously fixing the message rule chosen by the mediator to be the identity mapping: r (ρ) =
ρ, but then requiring the principal (the insuree) be compensated for this through her incentive
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constraint. This obviously has the downstream effect of influencing the contractC that are offered
to the insurees. The entire optimization problem can be written in one piece as follows:

max
C?
Π s.t. ICρ, IC?

θ1
, I R?θ1

where C? =
{
c ρ | ρ ∈ [ρ, ρ]

}
, c ρ =

{
c ρ(H ), c ρ(L)

}
and c ρ(θ1) =

(
pρ(θ1), x ρ(θ1)

)
for θ1 = H ,L,

and IC ∗θ1 I R
∗
θ1
are evaluated using um which plugs in the actual realization of ρ as opposed the

expectation generated using the posterior by the messagem is the earlier model. The optimal cov-
erages will be denoted by x ρ(H ) and x ρ(L). The following proposition summarizes the optimal
full revelation contract.

Proposition 8. When the insurer is forced to reveal ρ, that is, r (ρ) = ρ is fixed exogenously:

1. profits are uniformly lower than the benchmark: π(ρ) < πRS (ρ) ∀ρ,

2. generically inexact insurance: x i , 1 for i = H ,L.

3. there is pooling and separation at the optimum:

(a) ρ > ρ∗⇒ x ρ(H ) ≥ x ρ(L),

(b) ρ < ρ∗⇒ x ρ(H ) ≤ x ρ(L).

(c) one of these may hold as an equality..

4. ∃ ρ̃ such that the contract is flipped around ρ̃.

Figure 7 depicts the profit and coverages for the optimal full revelation contract. The profit
of course lies uniformly below the benchmark. The dotted line shows the profit would also be
uniformly higher if the insuree did not use her information at all and offered instead a pooling
contract.

8 Welfare implications

The welfare implications of incorporating greater knowledge for the insurer in modeling insur-
ance contracts is an important question. We take on these issues in at least three guises: How
is consumer (or insuree) surplus impacted by equipping the insurer with some private statistical
information? How much does it hurt the insuree to be unable to do Bayesian inference from
contracts? What are the welfare consequence of forcing the insurer the publicly reveal the corre-
lation? Since the profit performances of the insurer have already been documented, here we focus
mostly on the insuree surplus under the various scenarios studied above.

Let um,ρ(θ1) is the payoff of the insuree of type θ1 when in the gutgläubig case where m is the
correlation reported by the insurer and ρ is the actual realization correlation, and uρ(θ!) be the
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(a) optimal profit

(b) optimal coverage for θ1 = H (c) optimal coverage for θ1 = L

Figure 7: Optimal contract with full information revelation
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(a) When one partition is optimal in the stan-
dard case

(b) When two partitions are optimal in the stan-
dard case

Figure 8: Insuree surplus

payoff of the insuree of type θ1 where ρ is the actual realized and reported correlation. It is easy
to document the extreme cases.

Corollary 1. The insuree’s surplus (or utility) satisfies the following:

1. In the gutgläubig case it is uniformly negative, that is, E
[
um,ρ(θ1)

]
< 0 for m = ρ, ρ and ∀ ρ.

2. For the full revelation contract, it is is uniformly positive: uρ(θ1) > 0 for all ρ, θ1.

So, in the case where the insuree creates the maximal belief gap and implements the maximal
price discrimination, the insuree of course does badly in terms of payoff. Moreover, when the
insuree can do Bayesian inference and the mediator or the government forces the insurer to reveal
all private information about the correlation, never incurs a negative payoff.

The welfare consequences and ranking of the intermediate cases– the benchmark and standard
model– depend more finely on the primitives of the model. At the outset is clear that in an ex
ante sense, the expected payoff of the insuree is the highest in the model with full information
revelation.

Corollary 2. The insuree’s ex ante surplus across in the full revelation model is strictly higher than
that in the standard model and the benchmark models.

This statement essentially means that the expected value of the black curve in Figure 8 is
higher than the blue and red curves. Numerical results suggest that this ranking is not uniform
in the ex post sense. There are some values of ρ for which the blue or red curves could lie above
the black curve. At a high level, the revelation of information is good for the insuree in at least
two ways: First. no matter the realization of ρ the insurer is guaranteed a non-negative ex post
payoff. Second, in ex ante sense he always does better from this regulation than not. However, it
is possible, owing to the incentive-feasibility constraints the it is not pointwise beneficial for the
insuree to have the statistical information in the pubic domain.
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9 Final remarks

A big debate in ensuing right now on the merits of technological advancements in data docu-
mentation and processing. Foregrounding these issues, in the summer of 2019, the New York
Times carried a series of articles under the rubric of The Privacy Project.14 One of the key issues
of discussion therein was the impact of big data and AI on the insurance industry. This paper is
an attempt to mainstream these discussions in the modeling choices made by classical economic
theory in formalizing the key ideas in insurance markets.

Traditionally mechanism design models of insurance assume that the agent (or insuree) has
some private information about his probability of incurring a loss or meeting with an accident.
This results in the proverbial rent-versus-efficiency trade-off wherein the principal (or insurer)
gives up on efficiency and provides information rents in order to separate the high risk from the
low risk agents. We depart from this standard model in one crucial way- we make the state of
world that influences the probability of loss to be two dimensional, allow the agent to posses
information about one of these dimensions and the principal to know the statistical correlation
between the two dimensions. This creates an informed principal problem where the agent too is
privately informed.

The primary findings are as follows. Private statistical information on the side of the insurer
introduces a novel belief gap versus price discrimination, in addition to the usual rent versus effi-
ciency in standard screening contracts. The insurer wants to price discriminate along her private
information dimension but is also wary that fine-tuning the contract too much to the details of
the environment which will allow the insuree to infer her private information. This latter desire
to maintain a belief gap pulls against the desire to price discriminate. In the standard framework
in which the agent is Bayesian sophisticated, the insuree resolve this tradeoff by offering very few
contracts (at most two in most cases) in order to maintain the belief gap. In the case where the
insurer is gullible, this tradeoff disappears, the the insurer is able to maximize price discrimination
while maintaining the maximal belief gap. And, further in the case where the insurer is forced to
reveal all the information, a larger variety of contracts are offered and the insuree (or consumer)
surplus is higher, pointing to welfare improvements from making data public.

The approach invoked in the paper can potentially be pursed in various directions to better
understand richer theoretical constructs in modeling insurance markets. We study insurance un-
der the monopolistic set up. While there is considerable evidence that insurance companies do
enjoy market power, it is not absolute. So, it is definitely useful to also think about the com-
petitive version, and moreover, it is an important benchmark of the classical model (Rothschild
and Stiglitz [1976]). Since our model has correlated types, it would be a non-trivial exercise to
determine the off-path beliefs of both the insurers and insuree in an equilibrium setting.

The ideas developed here can potentially be applied to contexts other than insurance. For
example, in credit markets, owing to big data and AI, the credit issuing agencymay also have some

14See www.nytimes.com/interactive/2019/opinion/internet-privacy-project.html.
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statistical information about the credit worthiness of a client, in addition to the client knowing
some hard information about his financial circumstances. In the capital markets, the venture
capitalist may know more statistically about the probability success of various projects. Finally,
aggregating across multiple principal-agent interactions. a greater information on the side of the
principal may encourage more market concentration, of the kind we see in tech industry these
days.

10 Appendix

Proof of Proposition 1. Let ρ∗ be the correlation for which µ(H , ρ∗) = µ(L, ρ∗). When ρ = ρ∗,
the seller does not need to provide an information rent to any of the types and can maximize
efficiency. Therefore, at this poin profits are maximized.

Suppose that µ(H , ρ) > µ(L, ρ), that is, ρ > ρ∗. Then the only constraints that bind are IC
H-L and IR L. Letting λ be the multiplier in the first constraint and δ the multiplier in the second
constraint, we have that the FOCs that characterize an interior solution are given by:

q1 − δ + λ = 0
−µ(L, ρ)q1 + δµ(L, ρ)q + σ(1 − x(L, ρ))δ − λµ(H , ρ) − λη(1 − x(L, ρ)) = 0
(1 − q1) − λ = 0
−(1 − q1)µ(H , ρ) + λµ(H , ρ) + η(1 − x(H , ρ))λ = 0.

From the first and third conditions it is easy to conclude that λ = (1− q1) and δ = 1. Using these
values it is straightforward to see that x(H , ρ) = 1 and x(L, ρ) = 1− 1−q1

ηq1 (µ(H , ρ) − µ(L, ρ)) < 1.
In a corner solution it is trivial to show that x(H , ρ) = 1 and x(L, ρ) = 0.

An analogous argument shows the result for the case in which µ(H , ρ) < µ(L, ρ), that is,
when ρ < ρ∗. �

Proof of Proposition 2. Let µ̂L and µ̂H the beliefs that are generated by using the seller’s message.
Then for each correlation ρ the problem of the seller is to choose those beliefs, coverage and
prices that solve

max
pL,pH ,xL,xH ,µ̂L,µ̂H

q1(pL − µ(L, ρ)xL) + (1 − q1)(pH − µ(H , ρ)xH )

s .t . µ̂θ xθ − η
2 (1 − xθ )2 − pθ ≥ µ̂θ xθ′ − η

2 (1 − xθ′)2 − pθ′ ∀θ1, θ ′1 ∈ {L,H } IC θ1 − θ
′
1

µ̂θ xθ − η
2 (1 − xθ )2 − pθ ≥ − η2 ∀θ1 ∈ {L,H } IR θ1

First, notice that the problem is bang-bang in terms of µ̂θ . Then the solutions have to be
on the extreme of the feasible set. Since the extreme beliefs are reached when the buyer believes
that the correlation is either ρ or ρ̄, the seller sends only send two signals m and m̄ that generate
buyer’s posteriors Fm = δρ and Fm̄ = δ ρ̄ .
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Suppose that the seller sends the message m̄. This message generates posterior beliefs µ̄H >

µ̄L. Furthermore, for any ρ < ρ̄, µ̄H > µ(H , ρ) and µ̄L < µ(L, ρ). Using the first order
approach, it is straightforward to show that in an interior solution it has to be that xH = 1 +
µ̄H−µ(H ,ρ)

η > 1, and xL = 1 − (1−q1)µ̄H+q1µ(L,ρ)−µ̄Lq1η < 1, and a corner solution xL = 0 and xH takes
the same value. An analogous argument shows that when sending the message m, we obtain
xH < 1 and xL > 1.

We only need to argue now that for low correlations the seller will send messages m̄ and for
high correlations the seller will send the message m. Let π̄(ρ) be the profits the seller obtains
after sending message m̄ and actual correlation is ρ, and analogously define π(r ℎo). Plugging in
we obtain that when the optimal contract is interior:

∂π̄(ρ)

∂ρ
−
∂π(ρ)

∂ρ
=
−µ̄L + (1 − q1)µ̄H + q1µL

η

∂µ(L, ρ)
∂ρ

+
µ
H
− (1 − q1)µ̄H − q1µL

η

∂µ(H , ρ)
∂ρ

< 0,

since ∂µ(L,ρ)
∂ρ < 0, ∂µ(H ,ρ)∂ρ > 0, µ̄L < µ

L
, µ̄L < µ̄H , µ̄H > µ

H
, and µ

H
<> µ

L
.

Then if for a correlation ρ the seller send message m (m̄ ), then for all ρ ′ > ρ ( ρ ′ < ρ ) the
seller sends the samemessage. This and our characterization above shows that there is a ρ̃ ∈ [ρ, ρ̄]
and the contract flips around ρ̃. Finally, notice that when ρ̃ ∈ (ρ, ρ̄) the argument above shows
that the seller always offer contracts that over insure or under insure the insuree. �

Proof of Proposition 3. Denote by µeH and µeL the expected probabilities the buyers face a loss
when he stick to his prior belief E. Suppose that µeH > µeL

In an interior solutionwe obtain that xH (ρ) = 1+ µ
e
H−µ(H ,ρ)

η and xL(ρ) = 1− (1−q1)µ
e
H+q1µ(L,ρ)−µ

e
L

q1η .
Notice that xH (ρ) is decreasing in ρ and xL(ρ) is increasing in ρ. Then there are two corner so-
lutions: one in which x(L, ρ) = 0 and x(H , ρ) = 1 + µeH−µ(H ,ρ)

η , and another one in which
xL = xH = 1 + µeL −

q1µ(L,ρ)+(1−q1)µ(H ,ρ)
η .

Notice that coverage are flipped around E. At correlation E(ρ) the contract is as in RS. Fur-
ther, the slope of the coverage has the opposite sign than those of RS.

We show that the profits generated by this contract are concave. Since at correlation E(ρ) we
have π(E(ρ)) = πRS (E(ρ)), Jensen’s inequality implies that (π(ρ)) > πRS (E(ρ)).

In an interior contract we have that

∂2π

∂ρ2
=

q1
η

(
∂µL
∂ρ

)2
+
1 − q1
η

(
∂µH
∂ρ

)2
> 0,

for the corner solution in which xL(r ℎo) = 0 we have that ∂2π
∂ρ2
= 0 and for the corner solution in

which x(L, ρ) = x(H , ρ) we have

∂2π

∂ρ2
=

1
η

(
q1
∂µL
∂ρ
+ (1 − q1)

∂µH
∂ρ

)2
.

Therefore, the profit function is concave and we obtain the inequality as desired.
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An analogous argument shows the proposition for the case µeH < µeL. �

Proof of Proposition 4. Proposition ?? implies that the profit function’s slope can take at most a
countable number of different values. Suppose by contradiction that the profit function’s slope
takes an infinite number of different values. Then there exists two different messages m1 and
m2 such that both preimages r−1(m1) and r−1(m2) are measure zero, they are contiguous, the
contracts cm1 and cm2 generate different profits slopes c1 < c2, and there are not other contracts
that are offered the generate the same slopes. Then the expected correlations ρ1 = E[ρ | r (ρ) =
m1] < ρ2 = E[ρ | r (ρ) = m1] are such that for any ε > 0, ρ2 − ρ1 < ε . Without loss assume that
ρ1 > ρ∗.

Suppose first that c1 > c(ρ1) as defined in Lemma 2. The same lemma implies that c2 > c(ρ2).
Then Lemma 2 and Lemma 3 imply that π̂(ρ2, c1)− π̂(ρ2, c2) = δ > 0. Furthermore, it is without
loss to assume that π(ρ1) = π̂(ρ1, c1) and π(ρ2) = π̂(ρ2, c2); if not, the seller could slightly increase
c1 or c2, respectively. Since the partitions containing either ρ1 or ρ2 have measure 0 this change
does not affect what happens with the rest of the profit function.

Since the optimal profit function is convex imply, it is continuous. Therefore, π̂(ρ1, c1) +
c1( Ûρ − ρ1) = π̂(ρ2, c2) + c2(ρ2 − Ûρ), where Ûρ is the correlation that defines the limit between the
partitions that generate the expected correlations ρ1 and ρ2. By continuity of π̂(ρ, c)with respect
to ρ there exists ε such that if ρ1 − ρ2 < ε then | π̂(ρ1, c1) − π̂(ρ2, c1) |< δ

4 . Take ε small enough
such that if c1 < 0 then ε < −δ

4c1 and if c2 > 0 then ε < δ
4c2 . Then we have that

π̂(ρ1, c1) + c1( Ûρ − ρ1) > (π̂(ρ2, c1) − δ
4 ) −

δ
4

= π̂(ρ2, c2) + δ − δ
2

> π̂(ρ2, c2) + δ
4 + c2(ρ2 − Ûρ)

> π̂(ρ2, c2) + c2(ρ2 − Ûρ),

a contradiction.
An analogous argument leads to a contradiction in the case in which c2 < c(ρ2).
The case remaining to show is the one in which c1 < c(ρ1) and c2 > c(ρ2). In this case we

can take c ∈ (c(ρ2), c(ρ1)) as the slope of the profit function in both partitions. Lemma 3 implies
that with this profit the bound on the seller’s profits increase, so that the firm’s IC constraint is
relaxed. Since the partitions containing either ρ1 or ρ2 have measure 0 the two partitions can
be merged without loss, and these changes do not affect what happens with the rest of the profit
function. Repeating this process we conclude that the seller’s profits function can take only a
finite number of different slopes.

In the optimal contract there can be at most two elements that generate a profit’s slope of
c . Lemma 2 implies that π̂(·, c) is convex. Therefore, three different messages that generate the
same slope is always dominated by a strategy in which there are only two different messages
with the same slope. Therefore, it is without loss to consider partitions with a finite number of
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elements. �

Proof of Proposition 6. When the seller sends only one message the buyer’s belief is equal to the
prior. Since the profits are linear on the correlation and only one contract is going to be of-
fered, the expected value of the profits is equal to the profits generated by the contract when the
correlation is equal to the expected correlation.

Therefore, in this case the optimal contract coincides with the Rothschild-Stiglitz contract
when ρ = E(ρ). Then it has to be that E(π(ρ)) = πRS (E(ρ)), xH (ρ) = xRSH (E(ρ)), and xL(ρ) =
xRSL (E(ρ)). �

Proof of Proposition 7. We first argue that the profit function slope has to be constant. For this
end we define the function π̂(ρ, c) as the maximum that the firm can obtain in the subgame in
which both parties belief that the correlation is and the relation between the offered coverages in
equation 3 is equal to c . This function has a nice behavior: it is single peak with respect to ρ,
with a peak at ρ∗ and it is convex with respect to ρ both to the right and the left of ρ∗; and it is
strictly concave with respect to c .

Lemma 2. Let ρ∗ be the correlation such that µ(H , ρ∗) = µ(L, ρ∗) and fix ρ ≥ ρ∗. Then:

1. there exists correlations ρ1 and ρ2 with ρ̄ ≥ ρ2 ≥ ρ1 ≥ ρ∗ and slopes c1 < c2 < 0 such that

(a) for ρ ∈ [ρ∗, ρ1], π̂(·, c) is linear and strictly decreasing with respect to ρ;

(b) for ρ ∈ [ρ1, ρ2], π̂(·, c) is strictly convex and strictly decreasing with respect to ρ;

(c) for ρ > ρ2, π̂(·, c) is constant with respect to ρ.

2. The function π̂(ρ, ·) is strictly concave with respect to c .

An analogous characterization holds for ρ < ρ∗.

Proof. Suppose that ρ ≥ ρ∗, that is, µ(H , ρ) ≥ µ(L, ρ). To simplify notation we let µL =
µ(L, ρ), µH = µ(H , ρ), xL = x(L, ρ), xH = x(H , ρ), pL = p(L, ρ) and pH = p(H , ρ). Let
KL = σ(µLH − µLL) and KH = −σ(µHH − µHL).

We prove 1. first. In an interior solution we obtain that:

xL = 1 − 1−q1
ηq1 (µH − µL) +

β
ηq1 KL

xH = 1 + β
η(1−q1)KH

where β = ηq1(1−q1)(c−KL−KH )+(1−q1)2(µH−µL)KL
(1−q1)K 2

L+q1K
2
H

, and up to β the profits in this solution are equal to

π̂ =
η

2
− (1 − q1)(µH − µL) +

(1 − q1)2

2ηq1
(µH − µL)

2 −
(1 − q1)K 2

L + q1K 2
H

2ηq1(1 − q1)
β2.
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Since β depends on ρ only through µH − µL, π is a quadratic equation with respect to ρ. Its first
derivative with respect to ρ is equal to

(1 − q)
(
∂(µH − µL)

∂ρ

) (
−1 +

1 − q1
ηq1

(µH − µL) −
βKL

ηq1

)
< 0

since the partial derivative is positive and the last term has to be negative to guarantee that xL is
positive; and its second derivative with respect to ρ is given by

(1 − q1)2kH 2

η((1 − q1)K 2
L + q1K 2

H )

(
∂(µH − µL)

∂ρ

)2
> 0.

Therefore, π(ρ, c) is strictly decreasing and strictly convex with respect to ρ when the solution
is interior.

A corner solution in which the buyer sells only to type H occurs when xL is negative, that
is, when η(q1K 2

H+(1−q1)(c−KH )KL)

(1−q1)K 2
H

< µH − µL. Since µH − µL is increasing in µ this condition may
hold only for large correlations. Let ρ2 to be equal to the correlation that makes this condition
to hold with equality if it is smaller than ρ̄ and equal to ρ̄, otherwise.

In such a corner it has to be that xH = max{ c
KH
, 0}. Using the constraint IR H we obtain

that (1− q1)(pH − µH xH ) = (1− q1)max{ ηc
2KH

(
2 − c

KH

)
, 0}, so that the profits are constant with

respect to ρ.
Finally, to satisfy both buyer’s IC constraints it has to be that xH ≥ xL, but this might no be

the case in the interior solution we characterized above. In particular for ρ < ρ2 the constraint
xH ≥ xL is not satisfied if

 µH − µL <
η(c−KL−KH )((1−q1)KL−q1KH )

(1−q1)KH (KH+KL)
if KH + KL > 0

µH − µL >
η(c−KL−KH )((1−q1)KL−q1KH )

(1−q1)KH (KH+KL)
if KH + KL < 0.

Notice that in the first case the inequality is never true if c − KL − KH < 0 and in the second
case it is never true if c − KL − KH > 0. In the domain in which the inequalities can be true,
the correlation that makes the first inequality to holds with equality is smaller than ρ2, and the
correlation that makes the second inequality to holds with equality is larger than ρ2. Then we
define ρ1 in the first case as the maximum of the correlation that makes the inequality to hold
with equality and ρ∗, and in the second case we just define it as ρ∗.

For correlations in [ρ∗, ρ1] the seller offers a unique package xH = xL = c
KH+KL

> 0 at the
price that makes the constraint IR L to hold with equality. This generates profits equal to

π̂ =
η

2
−
η

2

(
1 −

c
KL + KH

)2
− (1 − q1)(µH − µL)

c
KL + KH

.

Since the profits depend on ρ only trough µH − µL and this dependence is linear we conclude
that the profits are linear with a slope s1 = −

((1−q1)KL−q1KH )c
q1(KL+KH )

< 0.
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The second inequality is true only for correlations for which the constraint xL ≥ 0 binds
as well, that is, in the solution to the problem without these constraints both xL and xH are
negative. Therefore, since the H type is willing to pay more for insurance, the seller sells only to
him.

To prove 2. we only need to take the second derivative of each of the possible profit functions
with respect to c . In the corner solution with xL = 0 and xH > 0 we have

∂2π̂

∂c2
=
−(1 − q1)η

K 2
H

< 0,

in the corner solution with xL = xH > 0 we have

∂2π̂

∂c2
=

−η

(KL + KH )2
< 0,

and in the interior solution with xH > xL > 0 we have that

∂2π̂

∂c2
=

−ηq1(1 − q1)
(1 − q1)K 2

L + q1K 2
H
< 0.

Therefore, the function π̂(ρ, ·) is strictly concave with respect to c . �

Suppose by contradiction that optimally the seller offers two contracts that generate slopes
c1 < c2. To satisfy convexity of the profit function it has to be that the first contract is targeted to
small correlations and the second one to large correlations. Fix the optimal message function r
which sends messagem when the realized correlation is in [ρ, ρ̃] andmessage m̄ when the realized
correlation is in [ρ, ρ̃].

The problem that the seller wants to solve is

max
c1,c2, ρ̃,π1,π2

P r (ρ < ρ̃)π1 + P r (ρ > ρ̃)π2

s .t . π̂(ρi, ci) ≥ πi ∀i ∈ {1, 2} feasibility i
π1 + c1( ρ̃ − ρ1) = π2 + c2( ρ̃ − ρ2) continuity

where ρi is the expected correlation after observing the respective message, and the first con-
straints are feasibility constraints; the profits that the firm is going to obtain at the expected value
are possible to obtain in the subgame.

First, notice that the feasibility constraint has to bind. If not we can decrease c1 (increase c2)
which relaxes the continuity constraint, and allows to increase π1 (π2).

Denote by c(ρi) the unique value the maximizes π̂(ρi, c), which exists by Lemma 2. Lemma
3 implies that c(ρ1) > c(ρ2). Then since c2 > c1 there are three cases: c(ρ2) ≤ c2 and c(ρ1) ≥ c1,
c1 < c2 < c(ρ2) < c(ρ1), and c(ρ2) < c(ρ1) < c1 < c2.

In the first case, by increasing c1 and decreasing c2 simultaneously Lemma 2 implies that the
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LHS of the feasibility constraints increases (at least one of them and the other one stays constant).
Then it is possible increasing π1 and/or π2, contradicting that the initial contract is optimal.

In the second case increasing c2 reduces the RHS of continuity constraint and by Lemma 2
increases the LHS of feasibility constraint 2. Then it is possible to increase π2, contradicting that
the initial contract is optimal. A similar argument shows that in the third case the initial contract
cannot be optimal.

Then it has to be that c1 = c2 = c , that is, the slope of the profit function is constant. Further,
we have shown that c(ρ1) ≥ c ≥ c(ρ2).

The characterization of equilibrium in the proof of Lemma 2 shows that when contracts are
separating, xL is increasing in c and xH is decreasing in c . Since Rothschild-Stiglitz contracts
use constants c(ρ1) and c(ρ2), we have that when contracts are separating x1(H ) ≥ xRS

ρ1
(H ),

x1(L) ≤ xRS
ρ1
(L), x2(H ) ≤ xRS

ρ1
(H ), and x2(L) ≥ xRS

ρ1
(L). �

Lemma 3. In the solution to problem P − ρ, if µ(H , ρ) > µ(L, ρ), x(H , ρ) = 1 > x(L, ρ) and
∂xL(ρ)
∂ρ

��xL(ρ)>0 < 0 ; and if µ(H , ρ) < µ(L, ρ), x(L, ρ) = 1 > x(H , ρ) and ∂xH (ρ)
∂ρ

��xH (ρ)>0 > 0 .
Therefore, c(ρ) is strictly decreasing.

Proof. Suppose that µ(H , ρ) > µ(L, ρ). Then the only constraints that bind are IC H-L and IR L.
Letting λ be the multiplier in the first constraint and δ the multiplier in the second constraint,
we have that the FOCs that characterize an interior solution are given by:

q1 − δ + λ = 0
−µ(L, ρ)q1 + δµ(L, ρ)q + σ(1 − x(L, ρ))δ − λµ(H , ρ) − λη(1 − x(L, ρ)) = 0
(1 − q1) − λ = 0
−(1 − q1)µ(H , ρ) + λµ(H , ρ) + η(1 − x(H , ρ))λ = 0.

From the first and third conditios it is easy to conclude that λ = (1 − q1) and δ = 1. Using these
values it is straighforward to see that x(H , ρ) = 1 and x(L, ρ) = 1 − 1−q1

ηq1 (µ(H , ρ) − µ(L, ρ)).
Since ∂µ(L,ρ)

∂ρ = σ
q1 (µLL − µLH ) < 0 and ∂µ(H ,ρ)

∂ρ = σ
1−q1 (µHH − µHL) > 0, we have that

∂xL(ρ)
∂ρ

��xL(ρ)>0 < 0.
Finally, in a corner solution it is trivial to see that x(H , ρ) = 1 and x(L, ρ) = 0.
An analogous argument shows the result for the case in which µ(H , ρ) < µ(L, ρ). �

Proof of Proposition 8. Let [c, c̄] be the smallest interval that contains all the slopes of the profit
function in the optimal contract. Let cRS (ρ) and cRS ( ρ̄) be the maximizers of the function π̂(ρ, c)
for those correlations, and they are guaranteed to exist by Lemma 2. Lemma 3 implies that
cRS ( ρ̄) < cRS (ρ).

We argue that cRS (ρ) ≥ c or cRS ( ρ̄) ≤ c̄ . Suppose none of the two is true in the optimal
contract. Then cRS ( ρ̄) < cRS (ρ) < c or c̄ < cRS ( ρ̄) < cRS (ρ). In the first case, by decreasing the
slope of the profit function uniformly by Lemma 2 the profits that are feasible for each correla-
tion increase uniformly. By increasing the optimal profit function by a constant, the seller’s IC

32



constraints are satisfied. Then the original contract was not optimal. Similarly, in the second case
the objective function can be increased by increasing uniformly the slopes of the profit function.

Since convexity implies that c(ρ) is weakly increasing and cRS (ρ) is decreasing by Lemma 3
they can coincide at most a one correlation, call it ρ̃.15 Therefore, only at ρ̃ is possible that the
optimal profits are equal to Rothschild-Stiglitz’ profits.

By definition of ρ̃ we have that for ρ < ρ̃, c(ρ) < cRS (ρ) and for ρ > ρ̃, c(ρ) > cRS (ρ).
The characterization of equilibrium in the proof of Lemma 2 shows that when contracts are
separating, xL is incresing in c and xH is decreasing in c . Then when contracts are separating
xH (ρ) ≥ xRSH (ρ), and xL(ρ) ≤ xRSL (ρ) for ρ < ρ̃, and xH (ρ) ≤ xRSH (ρ), and xL(ρ) ≥ xRSL (ρ) for
ρ > ρ̃, with a strict inequality in each case. �
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