Teacher Preferences, Working Conditions, and Compensation Structure

Andrew C. Johnston ${ }^{1}$

July 20, 2020

Abstract

Improving schools depends on attracting talented teachers and fostering retention, both made possible by appealing to teacher preferences. I deploy a discrete-choice experiment in a setting where teachers have reason to reveal their preferences. Those data allow me to calculate willingness-to-pay for a comprehensive set of workplace attributes including salary structure, retirement benefits, performance pay, class size, and time-to-tenure. Highly rated teachers have stronger preferences for schools offering performance pay, which may be used to differentially attract and retain them. Under various criteria, schools seem to underpay in salary and performance pay while overpaying in retirement benefits.

JEL Codes: I20, J32, J45, M50

[^0]
I. Introduction

If schools are the forges of human capital, teachers are the smiths. Perhaps more than any other public input, teachers foster the formation of human capital and long-run outcomes, implying the importance of teacher selection and retention (Darling-Hammond 2003; Rockoff 2004; Rivkin, Hanushek, and Kain 2005). Great teachers promote in their pupils higher achievement, non-cognitive skills, and elevated adult earnings than students afforded lower-rated teachers (Chetty et al. 2011; Petek and Pope 2019). ${ }^{2}$ Simply replacing a poor teacher with a median one for a single year may be worth $\$ 407,000$ (net present value) in students' future earnings (Chetty, Friedman, and Rockoff 2014b). ${ }^{3}$ In this light, it is unfortunate that gauges of teacher quality have declined over the past half century (Murnane et al. 1991; Corcoran, Evans, and Schwab 2004; Bacolod 2007).

Ensuring teacher quality has proven difficult. On the demand side, schools struggle to identify the best prospective teachers when hiring (Hanushek 1986, 1997; Greenwald et al. 1996; Rockoff et al. 2011), and known training programs are typically ineffective at improving value-added (Rockoff 2004; Rivkin et al. 2005; Kane et al. 2008a; Harris and Sass 2011). On the supply side, the profession is taxing, but it pays less than other collegiate professions (Baumol and Bowen 1965; Ingersoll and Smith 2003; Bratsberg and Rogeberg 2018; Kraft et al. 2018). The institution of rigid pay schedules, moreover, may lead to negative selection in the profession (Stinebrickner 2001; Hoxby and Leigh 2004; Correa, Parro, and Reyes 2015; Biasi 2019), especially if highly rated teachers have attractive options outside of teaching (Murnane and Olsen 1989; Feng 2005; Bacolod 2007; Chingos and West 2012; Wiswall 2013; Nagler, Piopiunik, and West, 2019).

At the same time, US governments spend almost $\$ 1$ trillion per year on K-12 education, the principal cost of which is personnel. Teachers take part in a distinctive compensation structure, which has less salary growth, greater retirement benefits, and lacks performance incentives-a structure which may be optimal if teachers are risk averse, incentives erode valued teaching, and generous pensions induce a better selection (Holmstrom and Milgrom 1991; Morrissey 2017; Weller 2017). However, because public schools have significant market power as employers and operate without typical market pressures, districts may not select an optimal structure unguided (de Ree et al. 2018). In this paper, I estimate teacher preferences and evaluate how schools would structure pay if they were pursuing various objectives, an exercise that allows us to explore opportunities for efficiency gains.

[^1]Estimating teacher preferences presents a challenge. First, normally, economists would collect data on the options available to each teacher when she accepted her job offer to disentangle worker preferences from those of the employer (Train 2009; Wiswall and Zafar 2017). These records (concurrent job offers) do not appear to exist. ${ }^{4}$ Second, since teachers rarely have simultaneous offers, the data would be sparse and likely unrepresentative. Third, existing data would naturally confound observed characteristics with unobserved ones. Fourth, and most critically, the variation needed to estimate preferences is extremely limited-and ultimately insufficient-since contracts are largely uniform with many important attributes being colinear. ${ }^{5}$

To address these challenges, I deploy a choice experiment that permits me to estimate teacher preferences for compensation structure, contract type, and working conditions. In a large, urban school district, I present primary- and secondary-school teachers with a series of hypothetical job offers, among which they select their preferred offer, and teachers make tradeoffs between features including starting salary, retirement generosity, larger merit rewards, smaller class sizes, principal support, and expedited time-to-tenure. Importantly, the survey was delivered through an organization hired to provide recommendations to the district in a setting with weak union presence, so teachers have reason to consider and reveal their preferences. The response rate was high (98 percent), and inattention is not a significant concern. ${ }^{6}$ The resulting choice data allow us to explore preferences over several facets of the work setting, and evaluate tradeoffs among them, which has not been feasible to date.

Responses appear highly realistic and even sophisticated, suggesting confidence in the results. For a handful of attributes, we compare the estimates from this study to theory or touchstone literatures; consistently, the estimates retrieved here closely match those benchmarks, lending support to the other, more novel, estimates. For instance, if teachers pay part of their health insurance premium, they should be indifferent between an additional dollar of salary or an additional dollar offsetting what they pay for insurance. Reassuringly, teachers value health-insurance subsidies identically to an equivalent increase in salary. This is especially remarkable because these two features are presented in different units (monthly premia versus yearly salaries). Moreover, the discount rate that rationalizes teachers' salary-

[^2]retirement tradeoff is exactly that estimated in the empirical literature on discounting. And, interestingly, the cost of commuting matches a developed urban literature estimating the same. More broadly, a range of evidence suggests the method's robustness and realism (Camerer and Hogarth 1999; Mas and Pallais 2017; Wiswall and Zafar 2018; Maestas et al. 2018).

Policymakers can improve the appeal of teaching by shifting compensation into vehicles that teachers prefer (relative to their cost). To understand how teachers value different components of their work place, I calculate willingness-to-pay (WTP) for several attributes. Teachers value a ten-student class-size reduction equal to a $\$ 5,950$ increase in salary (11.9 percent of base pay), ${ }^{7}$ seven times less than the cost of such a reduction. Teachers consistently prefer riskier, though portable, defined-contribution retirement plans over a traditional pension. Teachers also value quicker tenuring: an additional year of probationary status is equivalent to a salary reduction of $\$ 500$. Teachers prefer schools with fewer students in poverty and higher academic achievement. Many of these estimates are novel, and I provide additional estimates on the WTP for a broad array of other school attributes including shorter commutes, administrative support, and different evaluation schemes.

The attribute teachers most value (that is, having the highest odds ratio) is a principal who supports them with disruptive students. Having such a principal is valued equal to a 17.3-percent increase in salary. A supportive principal also reduces teacher aversion to teaching in disadvantaged settings. A supportive principal erases 90 percent of the disutility of teaching in a low-achieving school and reduces the cost of teaching in a low-income setting by 85 percent. ${ }^{8}$ The results imply that student misbehavior is taxing and that attentive principals greatly reduce those costs.

I also explore whether highly rated teachers have distinctive preferences which policymakers could use to promote positive selection. Forecasting which prospective teachers will be most effective is challenging (Hanushek 1986, 1997; Greenwald et al. 1996; Rockoff et al. 2011; though see Jacob et al. 2018; Sajjadiani et al. 2019). If high-type teachers have distinct preferences for conditions controlled by policy, policymakers can construct a separating equilibrium by structuring compensation, contracts, and working conditions to conform to the preferences of high performers.

By implementing policies preferred by high-types, the selection and retention of excellent teachers might increase (Ballou 1996; Hanushek 2011). ${ }^{9}$ Using value-added models and principal evaluations, I find that highly rated teachers have broadly similar preferences

[^3]to their colleagues, except in one regard. Excellent teachers systematically prefer jobs that include the opportunity to earn performance pay. Highly rated teachers (top decile) are 22 percent more likely than a low-rated teacher (bottom decile) to select an offer providing $\$ 3,000$ in merit pay, which would induce favorable selection in retention. It is unclear whether merit pay would affect sorting into the profession since people may not know their teaching ability before entering.

These comprehensive estimates allow us to explore the consequences of restructuring compensation and working conditions. I estimate teacher utility functions with diminishing marginal returns, use prior estimates to simulate retention patterns (Hendricks 2014), and calibrate an achievement production function using estimates from the literature (Krueger 1999; Papay and Kraft 2015; Imberman and Lovenheim 2015).

Whether maximizing teacher utility, teacher retention, or student achievement, I find that teachers are overpaid in retirement benefits and underpaid in salary and merit rewards. Restructuring what teachers are paid-subject to the current budget constraint-to maximize their utility generates a 21.6 percent increase in teacher welfare, the equivalent of a permanent $\$ 17,000$ raise. Structuring pay to maximize teacher experience increases starting pay (relative to the status quo) and includes a modest growth rate to retain experienced teachers. The resulting compensation structure increases the odds of a student having a veteran teacher by 25 percent and raises the average experience by 16 percent; when maximizing experience, achievement would increase by 0.07σ per year, generated by a more experienced workforce and the introduction of a modest performance-pay program, which promotes retention since teachers value it more than its cost.

Restructuring pay (subject to the current budget constraint) to maximize student achievement also increases salaries and performance pay. Simulations based on the estimated utility of teachers suggest that a $\$ 5,000$ bonus to highly rated teachers affects their retention such that students are 23.5 percent more likely to have a teacher from the top of the distribution. The achievement-optimal structure is predicted to improve learning by 0.19σ, though the full effect would take shape over time since improvements come by changing retention patterns over time. The achievement gains are driven by better overall retention fostering a more experienced faculty (5%), added effort by teachers (35%), and positively selected retention (60%). Salary increases come primarily from lower replacement rates in retirement and shifts toward defined-contributions plans which are preferred by teachers and less costly for schools.

The preferences of marginal teachers are especially relevant. Marginal teachers are not only the relevant margin of labor supply, but some research finds that marginal teachers have higher academic ability and value-added measures, so their choices influence the quality distribution of teachers (Weaver 1979, 1983; Schlechty and Vance 1981, 1982;

Wiswall 2013; Wheelan 2019). To explore the preferences of marginal teachers, (1) I test whether teachers who eventually leave the district have the same preferences as those who remain; and (2) I survey college students in the vicinity of the district to test whether preferences differ between students who are determined to teach and those on the margin. In each case, preferences among marginal and inframarginal teachers are indistinguishable, lending support to the view that marginal teachers exhibit the same preferences for compensation structure and working conditions but have a lower taste for teaching.

This study builds on literatures that explore teacher preferences (Antos and Rosen 1975; Ballou 1996; Boyd et al. 2013; Biasi 2019), teacher compensation (Hanushek 1986; Card and Krueger 1992; Ballou and Podgursky 1997; Figlio 1997; Loeb and Page 2000; Hendricks 2014), and teacher quality (Rockoff 2004; Hanushek and Rivkin 2006; Chetty, Rockoff, and Friedman 2014). Previous studies have largely relied on equilibrium data to estimate preferences, inheriting a host of confounding factors. Due to data limitations, moreover, prior studies were not able to estimate willingness-to-pay for most components of teacher compensation and working conditions which do not vary independently.

The key contribution of this study is to circumvent these issues by creating a transparent choice environment to measure teacher preferences over several important elements of the work setting, including dimensions for which there would be insufficient variation in naturally occurring records. By measuring preferences for a comprehensive set of attributes, moreover, I can evaluate tradeoffs between them. It is the first to use choice data to calculate policy experiments for compensation structure and working conditions. Finally, this paper demonstrates that compensation structure may be an effective tool for policymakers, not only by inducing effort but also by affecting selection.

II. Background

The School District

The district we study has in its charge 69,716 students in the Houston area, spending $\$ 700$ million dollars annually (U.S. Department of Education, 2016; National Center for Education Statistics, 2019). Students in the district are predominantly Hispanic (72.6 percent) and black (23.1 percent). Just over three-quarters are eligible for free school meals (77.2 percent), which places them at the $92^{\text {nd }}$ percentile of student poverty among districts in Texas (calculation from data provided by Texas Education Agency 2018; Elementary \& Secondary Information System 2019). Students in the district perform better than their disadvantage would predict. Their achievement registers at the $43^{\text {rd }}$ percentile in math where other districts with the same poverty share achieve at the $23^{\text {rd }}$ percentile ($19^{\text {th }}$ percentile in reading, compared to $15^{\text {th }}$ percentile at similar districts).

At the time the survey was delivered, the district had 4,358 full-time teachers who were invited to take the district's annual survey, which, in 2016, included my experiment. The average teacher in the district has 9.0 years of experience, and 29.9 percent of teachers have advanced degrees. Just over two-thirds are female (68.0 percent); the plurality is black (36.7 percent), and the remaining teachers are white (27.6 percent) and Hispanic (20.8 percent) (online Appendix table 2). Though there is no performance pay, the district evaluates its teachers using a Danielson rubric in which the principal rates each teacher in four categories based on announced visits: planning and preparation, classroom environment, instruction, and professional responsibilities each on a scale from 1 (ineffective) to 4 (highly effective). The average score is 3.2 out of 4 with a standard deviation of 0.50 .

The Structure of Teacher Compensation

In the U.S., the median teacher receives $\$ 58,000$ in annual salary and another $\$ 28,000$ in benefits, primarily in health insurance and retirement. ${ }^{10}$ The National Compensation Survey (NCS) reports that the costs of employing American primary and secondary school teachers are divided 69 percent toward salary, 11 percent toward health benefits, and 11 percent toward retirement benefits. The remaining 9 percent of compensation costs constitute legally required benefits, other pay (usually comprising bonuses), and paid leave. ${ }^{11}$ Though typical civilian workers earn a slightly larger fraction of their compensation in salary, the primary difference in the structure of teacher pay is in the allocation of benefits. Teachers earn 20 percent more of their income in health insurance, twice as much in retirement benefits, and earn an order of magnitude less in supplemental pay, largely reflecting the fact that few schools employ bonus pay (Figlio and Kenny 2007; Bureau of Labor Statistics, 2018).

To study where the district falls in the distribution of teacher pay among districts, I use data from the Local Education Finance Survey (LEFS), which collects financial information from each school district. The district spent $\$ 89,461$ per teacher in 2014; these data show that Texas schools pay a smaller fraction of their compensation in benefits (26.1 percent) and a larger fraction in salary (73.9 percent) than other states. A Freedom-of-Information-Act request (FOIA) to the district reveals a similar picture: 74.1 percent of their pay is received as salary and 25.9 percent is received in benefits. The school district reports paying the average teacher $\$ 62,186$ in salary, $\$ 3,960$ toward health insurance, $\$ 5,161$ toward pension, $\$ 964$ for retirement healthcare, and $\$ 0$ in performance pay.
${ }^{10}$ This tally does not include special retirement health plans schools provide or the underfunding of pensions that the government is obliged to pay (Farmer 2014; Novy-Marx and Rauh 2014). Government contributions would have to rise by 24.1 percent of payroll (a more than doubling from its current contribution of 16.3 percent of payroll) to close the fiscal gap on retirement promises.
${ }_{11}$ The parallel shares for a generic civilian worker are 68.7 percent in salary, 8.8 percent in health benefits, and 5.2 percent in retirement. https://www.bls.gov/news.release/archives/ecec $03102016 . \mathrm{htm}$

These three data sources (NCS, LEFS, and the FOIA disclosure) understate the amount state and local agencies will compensate teachers because they do not reflect the total cost of pension and retirement health plans, which are underfunded but essentially guaranteed (Novy-Marx and Rauh 2014). My calculations suggest that the state would need to double its contribution to retired health benefits and triple its pension contribution to reliably deliver on its promises. If funds do not cover promised benefits, the government will likely be required to make up the shortfall. ${ }^{12}$ When calculating compensation structures under various criteria, I calculate the total cost of providing the current compensation structure so that compensation bundles are comparable in terms of total expected costs.

III. Experimental Design and Econometric Framework

The Empirical Challenge

When economists set out to estimate preferences, they collect data on the choices people make and the options available to them at the time of choosing. Unfortunately, the records needed to construct choice sets from which teachers select offers are unavailable. Districts have no reason to keep records of offers made, and, because of the structure of the market, teachers tend not to receive competing offers simultaneously. ${ }^{13}$ If these records were collected, omitted variables would present a difficulty for inferring preferences. Variation in pay, for instance, may be correlated with other, unobservable factors (e.g., amenities, staffing, neighborhood, etc.), making it difficult to separate the influence of compensation structure on teacher choice from other factors.

Even if these challenges were surmountable, the results would not be particularly informative. There is essentially no independent variation in most of the school attributes that form the work setting. It is common for competing schools to have identical compensation structures, tenure timelines, and rules governing working conditions like class size. Even across districts, variation is extremely limited by statewide requirements and the common influence of union bargaining. Districts within a state often share a pension program, health-insurance plan, class-size regulations, and salary schedules. Where variation may exist at the borders between districts, the wealthier district usually offers a work setting that exceeds the neighboring district in every dimension, providing no information on preferences other than what was already known: that more compensation is usually

[^4]preferred. ${ }^{14}$ Choices along the borders of neighboring states suffer similar problems and are complicated by the fixed cost teachers face when acquiring a teaching certificate in a second jurisdiction.

How, then, can we study teacher preferences? I generate hypothetical job offers that randomly vary compensation structure and working conditions that teachers select from. The experiment is deployed through an organization commissioned by the district to reform its compensation structure and working conditions, so teachers have reason to thoughtfully consider their preferences. Importantly, the experiment neatly addresses the empirical challenges endemic to the question. First, the setting allows us to directly observe menus so that we can see the options from which teachers select. Second, it addresses omitted variables using a controlled experimental setting in which there are no factors unobserved. And third, the environment allows me to introduce independent variation in important policy variables that don't exist or vary in the natural world. These are precisely the issues that make the study of teacher preferences challenging and, in some cases, impossible with naturally occurring data.

Choice Experiments and Conjoint Analysis

The choice experiment, sometimes called a conjoint, is a tool developed to measure consumer preferences and forecast demand for components of a prospective product or service. The design started in marketing and is valued because these experiments predict real-world purchasing behavior and broader market shares (Beggs, Cardell, and Hausman 1981; Green and Srinivasan 1990; Hainmueller, Hopkins, and Yamamoto 2013). In recent years, economists have used the method to study the career preferences of college students (Wiswall and Zafar 2017) and worker preferences for labor conditions (Mas and Pallais 2017; Maestas et al. 2018). These authors find that preferences elicited in hypothetical experiments closely correspond with real-world choices. ${ }^{15}$ Political scientists, too, have found that conjoint preference estimates align "remarkably well" with choices in the natural world (Hainmueller, Hangartner, and Yamamoto 2015).

This paper aims to estimate teacher utility over prospective compensation structures, contract terms, and working conditions. I construct a survey that invites teachers to make a series of choices between hypothetical job offers. To increase power, I use the statistical package, JMP, which varies the attributes using a fractional conjoint design. Each choice set requires the teacher to make tradeoffs, and the package maximizes efficiency of the

[^5]parameters of the utility model for a given number of choice sets. ${ }^{16}$ The choice experiment allows the analyst to evaluate several hypotheses in a single study and, importantly, compare the influence of various factors within a shared setting, making estimates directly comparable.

The method also avoids the influence of social-desirability bias. In addition to being an essentially anonymous online survey, respondents have available multiple reasons to justify any choice in the conjoint setting since several attributes vary at once, similar to Karlan and Zinman (2012) (see also, Hainmueller, Hopkins, and Yamamoto 2010). Respondents enjoy privacy, even from the researcher. The analyst cannot infer the preferences of any individual because each respondent makes fewer choices than there are factors (Lowes et al. 2017).

In this survey, I consider fourteen attributes recommended by the literature. These include (1) starting salary, (2) salary growth rate, (3) health insurance plan (in terms of the deductible and monthly premium), (4) retirement benefits (in terms of the expected replacement rate and the mode, either a defined benefits (DB) or defined contribution (DC) plan), (5) performance pay program, (6) class size, (7) the duration of the probationary contract (essentially "time-to-tenure"), (8) the frequency of contract review and renewal, (9) how many hours of teaching assistance a school provides the teacher, (10) the percent of students who are low income, (11) the percent of students who are minorities, (12) the average achievement percentile of students, (13) commuting distance in time, and (14) whether the principal is "supportive" or "hands-off" with disruptive students. Attributes take on several values, shown in online Appendix table 1. ${ }^{17}$

When constructing the survey, the analyst faces a tradeoff between the realism of the options (made richer in the number and detail of attributes) and the ability of respondents to compute their preferences in a short time. If the attributes are too numerous (generally considered more than six in a single choice (Green and Srinivasan 1990)), respondents tend to resort to a simplifying rule in which they consider a subset of attributes they find most important. To estimate preferences over many factors, I split the attributes into three sets of questions, called "decks."
${ }^{16}$ I assume, for instance, that teachers prefer more of each type of compensation (higher staring salary, greater salary growth, a more generous retirement, etc.) while assuming that teachers prefer less of other things (e.g., fewer students to a class, shorter probationary period, smaller student-poverty shares, etc.). The software generates choice sets that present tradeoffs between attributes that are assumed to be desirable. The compensation questions present options that are essentially equally costly.
${ }_{17}$ Some of these features change in more than one dimension. For instance, the retirement description varies the replacement rate the plan provides in expectation and whether retirement is based on a defined-contribution or a traditional, defined-benefit plan (essentially the difference between a $401(\mathrm{k})$ and a pension). The health insurance description varied how much the district paid, the deductible, and the copay for an office visit. The performance-pay attribute varied how much a teacher could receive for being in the top 25 percent of teachers, either based on student growth and principal evaluations or student growth alone.

The first deck asks teachers to choose between different compensation structures, varying starting salary, salary growth rate, health insurance subsidies, retirement plans, and merit compensation. I include the starting-salary attribute in each of the other decks to "bridge" the decks, allowing for preference comparisons between attributes in different decks. The second deck varies working conditions, including class size, how long new teachers are on probationary contracts, how often term contracts are reviewed and renewed, distance to work from home in travel time, and how many hours of instructional support are provided the teacher each week. The third asks teachers to choose between job offers that vary starting salary (again, to assimilate estimates across decks), student poverty share, student minority share, average achievement percentile, and whether a principal was "supportive" or "hands-off" with disruptive students, as well as a placebo attribute. The statistical software generated 30 questions for each of the three decks and respondents were presented, at random, four questions from the compensation deck, four questions from the workingconditions deck, and three questions from the student and principal characteristic deck, since the final deck had fewer parameters to estimate. Examples of these survey questions are presented in online Appendix figures 1-3.

Because the survey is distributed on behalf of an organization hired to make recommendations regarding the district's compensation structure, teachers have an incentive to thoughtfully consider and reveal their preferences. Teacher responses are confidential and have been reliably private in previous surveys implemented by the consulting group I partnered with; thus, teachers have no reason to believe their employer will ever be able to review their individual response but know their response will inform the district's decision. This setting is not formally strategy proof, but there is reason to believe that teachers' responses are reflective of their preferences. Hypothetical choice experiments in a variety of settings successfully predict individual choice behavior and willingness-to-pay in natural settings, even absent express incentives (Hainmueller, Hangartner and Yamamoto 2015; Wlomert and Eggers 2016; Parker and Souleles 2017; Wiswall and Zafar 2017). ${ }^{18}$

Moreover, formally incentive-compatible designs do not significantly alter the predictive validity of experiments (Holt and Laury 2002; Ding 2007; Wlomert and Eggers 2016). Incentive compatibility seems to matter only if discovering one's preferences requires significant effort, or if subjects have a distinct reason to dissemble; ${ }^{19}$ estimates from

[^6]hypothetical choices align with those from incentivized elicitations in settings where respondents already know their preferences (Camerer and Hogarth 1999; Mas and Pallais 2017; Maestas et al. 2018). Because compensation and working conditions affect a teacher's daily life, they have likely considered their preferences, suggesting the need for new effort to discover their preferences is minimal. This conduces truth-telling. Early research in marketing, too, found that conjoint responses are strongly predictive of an individual's later choices (Robinson 1980; Srinivasan 1988) and out-of-sample market share (Benbenisty 1983; Clarke 1992).

To evaluate whether revealed preferences are rational, I test whether choice is monotonic in ordered variables that have clear impacts on utility (Hainmueller and Hiscox 2010). I find that choosing an offer is strongly increasing, all along the support, in starting salary, salary growth, retirement replacement rate, class-size reductions, and support provided to teachers, with teachers significantly more likely to select the highest categories than the medium one, and significantly more likely to select a medium category than the lowest, a result that holds when making within-teacher comparisons. An important exception to this is performance pay, which reduces utility at high levels.

It could be that by asking teachers to make tradeoffs between hypothetical job offers, we are implicitly asking them to value things they may not care about in a normal setting, a type of Hawthorne effect. To address this concern, I include in the choice sets a placebo feature that should have no plausible impact on teacher utility-whether the school bus at the featured school is blue (McFadden 1981)—to evaluate whether the experimental setting stimulates teachers to exhibit preferences for things that have no impact on their welfare. Reliably, I find that teachers express no preference over this irrelevant detail, aiding a preferential interpretation. Uninstructed, subjects may fill in the state space, inferring other characteristics that influence their choice other than those features explicitly described. I frame each question by asking teachers to imagine that two hypothetical job offers are identical in every other way, indicating that the presented school qualities do not relate to unobserved aspects, as in Wiswall and Zafar (2017): "If two schools that were identical in every other way made the following offers, which would you prefer?"

Inattention is not a major issue. First, inattention that is not correlated with the attributes themselves generates classical measurement error in the outcome variable-their choice—which does not intoruce bias, but reduces precision (Wooldridge 2010). Second, the survey is administered digitally, and the option to advance to the next question does not appear for the first few seconds each question is available, nudging teachers to read the prompt as they wait for an unstated amount of time. Third, the online survey environment records how long each teacher takes to respond to each question; teachers appear to take
enough time to read and understand the options, on average 35 seconds per question. I estimate the models separately among respondents who took longer-than-average and shorter-than-average times to respond, and the estimates are identical in the two subsamples, suggesting that more attention is not associated with different preference estimates, alleviating the concern that some teachers resort to simplifying rules by paying attention to some attributes and not others. ${ }^{20}$ If this bias were at play, we would expect measured preferences to be distinct for subjects spending more time to consider each question.

I deployed the experiment in a large, urban school district in Texas, at end of the school year in May 2016. I invited each of the district's 4,358 teachers to participate in the experiment, 97.8 percent of whom completed the survey. The high response rate was encouraged by district support, reminder emails, and a lottery for gift cards.

Conceptual and Econometric Framework

Teachers are presented a series of eleven questions in which they choose between two competing job offers, where each selection requires the teacher to make a tradeoff between two or more features that are assumed to generate positive utility. For instance, one option may provide a higher salary, but comes at the cost of a larger class; or, a more generous retirement plan accompanies a smaller potential for merit pay. Under weak conditions, the hypothetical job selection data identify job preferences over several factors while standard realized choice data do not (Wiswall and Zafar 2017). Teacher i chooses offer a if $U_{i}\left(\vec{c}_{a}, \vec{w}_{a}\right)>U_{i}\left(\vec{c}_{b}, \vec{w}_{b}\right)$, where \vec{c}_{x} represents a vector describing the compensation structure of option $x \in[a, b]$, and \vec{w}_{x} is a vector describing the working conditions, including contract features like the time-to-tenure. I assume the attribute utility is additively separable.

Offers are indexed by j, and there is a finite set of offers $j=1, \ldots, \mathrm{~J}$. Each offer is characterized by a vector of K attributes: $X_{j}=\left[X_{j 1}, \ldots, X_{j K}\right]$. These offer attributes include compensation structure and non-pecuniary attributes like class size and time-to-tenure. To explore the influence of each factor, I use a linear-probability model that estimates the conditional mean, regressing respondent choices on a vector of characteristics, conditioning on choice-set fixed effects to account for the options available to the teacher in each choice:

$$
\begin{equation*}
u_{i(X)}=X_{j S}^{\prime} \beta+\alpha_{s}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

${ }^{20}$ To identify people who take longer, I regress response time on question and teacher indicators. The composite of the residual plus the teacher fixed effect reflects the average residualized time that the teacher took to respond to questions. The method identifies people who systematically take longer and shorter durations when rendering a decision. The only systematic association between taking longer and preferences appears to be that those taking longer express stronger preferences for defined contributions plans over defined benefits ($p<0.001$).

Here, teacher i selects option j from choice set S. In each, parts-worth utilities are denoted β and characteristics of alternative j are given by X_{j}. For comparison, I also present the results from conditional logistic regression (Louviere et al. 2000). To aid interpretation in the main table, I convert parts-worth estimates into willingness-to-pay (WTP) by dividing each coefficient by the salary coefficient and multiplying by $\$ 1,000$. In the main analysis, the linear-probability model is marginally more successful in explaining choice variation and in accurately predicting the choices of subjects. For example, the LPM accurately predicts 64 percent of choices, whereas the conditional logit predicts slightly less, at 62 percent, in the working-condition deck. The standard errors are clustered by teacher ID to account for persistence in preferences across questions by a single respondent. Summary statistics for the attributes are presented in table 1, and the demographic breakdown of teachers is presented in online Appendix table 2.

IV. Results

Teacher Preferences for Compensation and Working Conditions

The main results are presented in figures 1-3 and table 2 . The figures visualize the results nonparametrically by showing estimates of model (1) with bins of each attribute, making it easy to compare the influence of different school characteristics. In table 2, I use the continuous variables and present part-worth utility $\beta \mathrm{s}$ and translate them to an interpretable willingness-to-pay (WTP) for each trait; the left three columns represent estimates from a linear probability model, whereas the right three represent estimates from the conditional logistic model estimated with maximum likelihood. All estimates are standardized across the three decks using subjects' responses to the salary feature. ${ }^{21}$ Columns (3) and (6) represent a money metric, which measures how much teachers value a unit of that feature in terms of a permanent salary increase. As far as I am aware, these are the first direct estimates of teacher WTP for several attributes including elements of compensation structure, class size, contract attributes (time-to-tenure, review frequency), commuting time, and principal support.

Teachers value $\$ 1,000$ of district subsidies for insurance equal to $\$ 970$ in salary increases, suggesting the marginal benefit is close to the marginal cost. (These two forms of compensation receive the same tax treatment: employer-paid premiums are exempt from federal income tax as are employee contributions (Brookings 2016)). An additional onepercent increase in salary growth is valued equivalent to a permanent $\$ 2,270$ increase in salary. This suggests that the average teacher expects to remain in teaching for six or more

[^7]years, since only after her sixth year does the total present value of an additional 1 percent growth exceed the total present value of a higher starting salary. ${ }^{22}$

Moving to a defined-contribution (DC) retirement plan from a traditional pension increases teacher utility equal to a salary increase of $\$ 907$, presumably because DC plans are portable and possibly less subject to political risk. Prior work finds that public workers are concerned about the future of their pensions because of underfunding (Ehrenberg 1980; Smith 1981; Inman 1982). Teachers value an additional ten-point replacement rate in pension equivalent to a $\$ 1,730$ salary increase, somewhat less than its cost of $\$ 2,870$ per year, consistent with Fitzpatrick (2015). I use the tradeoff teachers are willing to make between higher salary today and higher retirement benefits in the future to calculate their intertemporal substitution parameter, δ, the discount factor. Teachers value a 1 percent increase in their retirement replacement the equivalent of a $\$ 173$ starting-salary increase, which would increase their yearly retirement benefit by $\$ 840$ under the current salary schedule after 30 years, when teachers become eligible for retirement. Reassuringly, the implied discount factor is 0.949 (solving for delta, $840 \times \delta^{30}=173$), a value that aligns closely with the empirical literature estimating discount factors (Best et al. 2018; Ericson and Laibson 2018). ${ }^{23}$ This reinforces the claim that teachers respond realistically.

Teachers value performance pay but are averse to being evaluated only on the basis of value-added measures. An additional $\$ 1,000$ in performance pay to the top quarter of teachers costs $\$ 250$ per teacher ($\$ 1,000 \times 1 / 4$). On average, teachers value a thousand dollars in merit awards available at $\$ 346$, a third more than its cost. Having rewards based solely on value-added measures is the equivalent of reducing a salary by $\$ 910$. It is possible that teachers prefer Danielson scores because they can be influenced less costlessly (Phipps 2018). While a teacher can prepare for a small number of scheduled observations, success in value-added models (VAM) requires sustained effort. Alternatively, teachers may prefer an objective measure to an observation score that could be permeated by bias or be used to privilege friends of the evaluator. In the end-of-survey questions I ask a few more detailed questions and learn that teachers prefer a tandem evaluation over being evaluated by observation scores alone, suggesting teachers prefer having multiple, independent measures enter their evaluation. I also test whether teachers' aversion to rewards based only on VAM differs by whether the teacher has a relatively low VAM compared to their Danielson score. Preferences do not differ by relative strength on VAM or Danielson, suggesting that teachers prefer composite evaluations non-strategically.

[^8]The presented job offers vary how many years teachers are evaluated before granting a permanent contract, similar to tenure. Reducing the probationary period by one year (when it normally takes three years to receive permanent status) is valued equivalent to a $\$ 470$ salary increase. The district also has regular review periods in which a teacher's performance is reviewed once she has permanent status. More frequent reviews impose no discernible disutility, suggesting they are not searching or demanding. An additional tenminute commute is equivalent to a salary reduction of $\$ 530$, suggesting that teachers are willing to be paid $\$ 9$ per hour to commute to work, half a teacher's hourly wage (\$19)— exactly consistent with the literature on the cost of commuting (Small 2012; Mas and Pallais 2017).

Reducing class size by one student increases teacher utility the equivalent of a $\$ 595$ salary increase (1.2 percent of starting salary). Translating estimates of the effects of class size and compensation on teacher attrition, we can infer WTP from previous studies for comparison, though these estimates do not rely on quasi-experimental designs. Estimates from Mont and Rees (1996) suggest that a teacher would give up 3 percent of her salary to reduce class size by one student; Feng (2005) finds no relationship between class size and teacher turnover, suggesting weaker preferences regarding class size. Teachers value an additional hour of teaching assistance each week at $\$ 260$, less than the cost of hiring someone to provide assistance at minimum wage. This preference is possibly related to the costly nature of transferring tasks (Goldin 2014). The WTP for the first few hours of help is higher than the average (marginal) WTP, suggesting that providing a low level of assistance would be cost effective.

The third deck varied student attributes and school-leadership characteristics. Teachers prefer schools with higher-achieving students and fewer children in poverty, but they have no preference over the racial composition of their students, consistent with Antos and Rosen (1975) who find the same pattern. A ten percentage-point reduction in student poverty is equivalent to a salary increase of $\$ 320$. Prior analysts have noted that the costs of teaching low-income students lead highly rated teachers to leave low-income schools, yielding an obstacle for equal opportunity without implementing compensating differentials (Lankford, Loeb, and Wyckoff 2002; Mansfield 2015). ${ }^{24}$ Student achievement is important to teachers. A ten-point increase in the average student percentile is worth $\$ 550$ in yearly salary. If teachers sort into the district based on lower aversion to teaching poor students, the studentattribute estimates found here will be unlikely to generalize.
${ }^{24}$ How much would it cost to compensates teachers for teaching in schools with many low-income students? In the district, it would cost $\$ 8.2$ million each year (about 3 percent of the budget the district now spends on teacher compensation) to equalize teacher utility to the level of a typical suburban school. Because the district is largely low income, the teachers' preferences are those of a selected group. The needed compensating differential for the marginal teacher, outside the district, is likely higher.

The most predictive attribute in any deck is whether the principal is "supportive" of or "hands-off" with disruptive students. Having a supportive principal provides utility equivalent to a permanent $\$ 8,700$ increase in salary. The importance of this factor is so large that a supportive principal in the lowest-utility setting presented is preferred to a hands-off principal in the highest-utility one. To understand how teachers interpreted having a "supportive" or "hands-off" principal regarding disruptive students, I contact a random sample of respondents, who indicate that a supportive principal would meet with disruptive students, support the teacher in enforcing discipline, and side with the teacher in disputes over discipline with parents.

Some research shows the influence of disruptive students on peers (Lavy and Schlosser 2011; Kinsler 2013; Horoi and Ost 2015; Ahn and Trogdon 2017; Carrell et al. 2018; Pope and Zuo 2020; Cheng 2020), but little has been done to explore the costs borne by teachers or the influence of principal-aided discipline in reducing those costs. Lacoe and Steinberg (2018) show that a reform discouraging (1) teachers from reporting willful defiance to principals and (2) out-of-school suspensions by principals, in favor of (a) discussion-oriented interventions and (b) praise for good behavior led to a reduction in suspensions from nonviolent infractions while increasing the number of violent incidents. At the same time, the policy reduced student attendance, possibly because schools became less safe (Bowen and Bowen 1999). The policy coincided with significant reductions in math and English achievement. Two other recent studies show the influence of school discipline on outcomes. Pope and Zuo (2020) show that exogenously reducing school suspensions reduces achievement. Cheng (2020) shows that stricter discipline regimes in schools increase the adult earnings of affected cohorts. Both are consistent with Lazear (2001) in which disruptive peers can interrupt human-capital formation.

An important question is whether supportive principals reduce teacher aversion to working in low-income or low-achieving schools. I estimate models where achievement and poverty share are interacted with the supportive-principal indicator. Supportive principals erase 90 percent of the costs of working in a low-achieving school and 85 percent of the disutility associated with teaching in a high-poverty setting (table 3). This suggests both that disruptive students are perceived by teachers as costly and that principal support is highly effective in mitigating those costs. ${ }^{25}$
Scope for Separating Equilibria
Whether or not compensation and working conditions can generate a separating equilibrium in which high-type teachers differentially select into, and then remain in, a school depends on whether excellent teachers have distinctive preferences. For instance,
${ }^{25}$ A conditional logistic version of the model finds that supportive principals reduce teacher aversion to lowachieving schools by $73-75$ percent but suggests little reduction in aversion to student poverty.
perhaps high-quality teachers have weaker aversion to long probationary periods (worrying less about dismissal), stronger preferences for small classes (placing a higher value on individual attention), high starting salaries (having stronger outside options), or more generous pensions (being more committed to a long career in teaching), as put forth in Morrissey (2017) and Weller (2017). It's also important to know whether highly rated teachers have different preferences for working conditions that are not affected by policysuch as student demographics-to understand whether larger compensating differentials are needed to draw high-quality teachers into low-income schools.

To evaluate teacher quality, I estimate value-added models (VAM) from student data and incorporate Danielson observation scores. The student data contain test scores for each student in each year they are tested and linked to the student's teacher covering students in grades 3-8 for years running from 2011 through 2016. I estimate VAMs using all the available test scores that a student has from their previous school year while controlling for student fixed effects, school-year fixed effects, and indicators for whether last year's test score is missing in each subject. The VAM used in the primary analysis is the average of the subject-specific VAMs available, usually math and reading. The resulting VAMs are 0 on average with a standard deviation of 1. I sort teachers into ten deciles based on their VAM and generate a quality index from those deciles from 0 to 1 . Since students are not tested in all grades and courses, there are records to estimate value-added for just under half of teachers. To provide a measure of quality that covers a broader array of teachers, I incorporate Danielson observation scores for teachers without VAMs, which were discussed in section II.

I sum each teacher's four Danielson scores (one for each of the four categories described in the background) and assign deciles based on the total score to generate a quality index from 0 to 1 . The VAM index and the Danielson index are significantly correlated for those with both measures ($p<0.001$). For those teachers who do not have a VAM index, I input the Danielson index as their quality measure. Together, the VAM index and the Danielson index provide a quality measure for just under 80 percent of respondents. I find the same results when using either measure in isolation. ${ }^{26}$

To test whether preferences vary by teacher rating, I interact each of the attributes from table 2 with the quality index in a model of teacher choice. To show visually how preferences vary throughout the teacher-quality distribution, I interact decile dummies with each attribute and plot the resulting interaction coefficients. In both the statistical test and the nonparametric figures, I condition on experience dummies that indicate having exactly
${ }^{26}$ This finding also holds when using only VAM or only Danielson observation scores, shown in online Appendix table 8.
n years of experience to account for the fact that more experienced teachers may systematically have higher value-added and have distinct preferences related to experience and not their ability to teach. The results are also robust to controlling for experience bins interacted with each attribute (table 4).

The most highly rated teachers have similar preferences to their colleagues for most school attributes (table 4 and online Appendix tables 6 and 7). High-quality teachers do not, for instance, have a stronger preference for more generous pensions, higher salary, or high-performing students. In terms of work setting characteristics that policymakers can influence, effective teachers have the same preferences as other teachers with regards to class size, salary, income growth, insurance subsidies, retirement benefits, and supportive principals. The only way in which high-performing teachers systematically differ is their preferences for offers including merit rewards (table 4 and figure 4). A teacher in the bottom decile values a $\$ 1,000$ merit reward as equivalent to a $\$ 160$ salary increase. Teachers in the top decile value the same merit program as equivalent to a $\$ 610$ salary increase (the interaction $p<0.001$). ${ }^{27}$ If teachers received two comparable offers, the highly rated (top decile) teacher is 22 percent more likely than a bottom-decile one to select the offer providing $\$ 3,000$ in merit pay per year. Over time, this preferences could generate meaningful positive selection, at least in retention. Since the best teachers receive increased compensation, the probability of attrition is reduced relative to teachers with lower ratings. Whether merit rewards can generate favorable selection on entry into teaching is not clear. Performance pay may not affect selection on entry if prospective teachers do not know their ability to teach. If low-quality prospective teachers are more overconfident about their teaching ability, merit pay could even drive negative selection.

The relationship between teacher quality and preferences for performance pay is illustrated in figure 4 . Deciles 2 through 7 express differential preferences that are very close to zero. Teachers in deciles 9 and 10, however, have significantly stronger preferences for merit pay than low-decile teachers. The top decile is 4.1 percent $(p=0.010)$ more likely to select an offer providing $\$ 1,000$ in merit pay and teachers in the next top decile are 3.7 percent ($p=0.004$) more likely. I present the corollary plot for each of the other school attributes in online Appendix figures 4-6, each of which lack a systematic pattern, findings that are consistent with the results in table 4 and in online Appendix tables 6 and 7 in which higher quality teachers do not differ significantly in their preferences for other school
${ }^{27}$ In the district, teachers are informed their VA measure and Danielson score each year, so they know their placement in the distribution. Why then do they have some (weak) preference for offers containing performance pay. Potentially, low-rated teachers believe they can improve their instruction to benefit directly from the incentive, or low-rated teachers believe the incentive would improve the professional environment.
attributes. In future work, it may be fruitful to study whether there are differential preferences for other attributes including dismissal rules and measures of colleague quality.

Preference Heterogeneity

Here I explore how preferences vary by teacher race, sex, and experience level. A considerable body of work finds that students progress more quickly when taught by experienced teachers and teachers whose race or sex matches their own (Dee 2004, 2007; Bettinger and Long 2005; Clotfelter et al. 2006; Carrell et al. 2010; Kofoed and McGovney 2017; and, in particular, Gershenson et al. 2018). It bears mention that the black-white and male-female achievement gaps may partly be the byproduct of skewed teacher demographics (Goldhaber and Theobald 2019). Understanding how preferences differ by group may help districts attract and retain teachers of a particular group (for instance, to retain experienced teachers or to tilt the sex/race distribution of teachers to mirror the sex/race distribution of students).

To study how preferences differ by experience level, I divide teachers into four experience quartiles: novices, who have $0-1$ years of experience; new teachers, who have $2-$ 6 years of experience; experienced teachers, who have 7-14 years of experience; and veterans, who have 15 or more years of experience. I then interact dummies for "new," "experienced," and "veteran" with each attribute and estimate models like equation (1). The main estimate provides the preferences of novice teachers (the omitted category). The interaction coefficients show the preference differential from novice teachers for each experience category.

More experienced teachers have weaker preferences for higher salary and stronger preferences for more generous retirement plans (online Appendix table 9). In working conditions, preferences are similar to those of novices in time-to-tenure, term length, and commute time, but older teachers have a higher tolerance for larger classes and a stronger demand for teaching assistance. Senior teachers also have stronger preferences in favor of high-achieving students than their less experienced colleagues. Novice, new, and experienced teachers have similar preferences for having a "supportive" principal, but veteran teachers place an additional premium on it (online Appendix tables 9-11). In principle, a district could attempt to retain veteran teachers by providing compensation options that suited the preferences of established teachers.

I follow the same course to study how preferences differ by sex, interacting male dummies with each attribute. Men have stronger preferences for salary than women and are more averse to high-deductible health plans, suggesting that women are more likely to receive supplemental health insurance through a spouse. Like senior teachers, men are more willing to teach large classes, but they place a lower value on assistance with grading. Men and women have similar preferences for student demographic characteristics, but men
exhibit less demand for a supportive principal (online Appendix tables 12-14). I also explore how preferences differ by race. Black teachers have weaker preferences for salary growth than white and Hispanic teachers. Black and Hispanic teachers have stronger preferences for performance pay than white teachers. Black teachers place higher value on a short tenure clock and less frequent reviews than white and Hispanic teachers. All three groups have similar preferences for commuting and assistance with grading. While white and Hispanic teachers have precisely zero preference for student race, black teachers prefer student bodies that have a higher minority share, again similar to Antos and Rosen (1976). While everyone has strong preferences for a supportive principal, black and Hispanic teachers value supportive principals $8-12$ percent less than white teachers (online Appendix tables 15-17). That both male and minority teachers have weaker preferences for principal support suggests they either experience lower costs of classroom disruption or enjoy additional social capital with disruptive students.

The Preferences of Marginal Teachers

A final dimension of heterogeneity that may be important is whether marginal teachers (those close to indifference between remaining in the profession and exiting) have similar preferences to their inframarginal peers. For marginal teachers, changes in the compensation structure are more likely to affect their labor-supply decision, and they may also have preferences similar to prospective teachers who, also being near indifference, choose not to become teachers. I incorporate information on which teachers who took the survey in 2016 left the district by 2018 and interact an indicator for leaving with each attribute while controlling for experience dummies and experience bins interacted with each attribute. Marginal teachers largely have identical preferences for compensation structure and student characteristics. Of the 18 attributes in the study, teachers who leave the profession have systematically different preferences in two of those attributes, both significant at the fivepercent level. Leavers have slightly weaker aversion to large classes and slightly stronger interest in having teaching aids. In other attributes (student characteristics, principal support, contract type), leavers have statistically identical preferences (online Appendix tables 18-20). ${ }^{28}$

To explore whether the preferences of marginal teachers differ on entry, I survey 1,193 college students in a large public university near of the district. Students are asked to describe how likely they are to teach (on a Likert scale from "I would never consider teaching" to "I've never considered it, but I'd be open to it" to "I've thought about teaching"
${ }^{28}$ I also test whether preferences differ by grade level. In general, teachers in elementary schools, middle schools, and high schools have similar preferences for compensation, student attributes, principal affect, commuting, and assistance. Middle and high school teachers, however, express less aversion to large classes and stronger aversion to longer tenuring periods than elementary-school teachers (online Appendix tables 21-23).
to "I've considered it seriously" to "I plan to be a teacher"). I ask the respondents to imagine that, regardless of their interest in teaching, they decided to become a teacher at least for one year. They then respond to the same choice experiment used in the district to elicit their preferences for compensation structure and working conditions. What is of interest is whether those planning on teaching have similar preferences to marginal teachers-those considering it or open to it. Preferences are similar throughout the spectrum of interest in teaching. Comparing the preferences of those set on teachings with those seriously considering it discovers no difference in preferences. The significance in the interacted terms (attributes interacted with teaching propensity) is null in each model, though it should be noted that power is limited. Even when including the full gamut of interest in teaching, preferences differ little along the teacher-propensity index. The joint significance, for instance, of attributes interacted with the teacher-propensity index is jointly insignificant in the main deck. Areas in which inframarginal teachers seem to differ from other respondents tend to be in attributes on which those investigating the profession would have a clearer view. For instance, those who plan on teaching have a deeper aversion to larger classes and a stronger preference for supportive principals than those who do not intend on teaching. This exercise suggests that tastes for compensation structure are largely uniform along the distribution of interest in teaching, suggesting that the preferences uncovered in the experiment likely generalize to marginal teachers on the entry and exit margins. What differs is their tastes for teaching and not their tastes for compensation structure.

Compensation Structure

What do preferences suggest about how the district should structure compensation? I calculate the structure of teacher compensation that maximizes three related objective functions: First, I consider an objective that allocates resources to maximize the utility of teachers. Second, I calculate the compensation structure affecting retention to maximize teacher experience, embedding the influence of teacher utility on retention. Third, I use estimates from the literature to specify an achievement production function that includes the influence of teacher experience (Papay and Kraft 2015), class size (Krueger 1999; Hoxby 2000; Cho Glewwe, and Whitler 2012), and performance pay (Imberman and Lovenheim 2015). Retention-giving rise to experience-is influenced by the teacher utility from compensation and working conditions. Performance pay influences achievement by affecting the effort of teachers (Lavy 2002, 2009; Imberman and Lovenheim 2015; Biasi 2019) and by differentially retaining better teachers (Lazear 2000, 2003). I use the utility estimates from the experiment to simulate quality-specific attrition patterns as performance pay increases, allowing me to calculate the resulting distribution of teacher VA from introducing performance pay.

All the simulations are based on the same estimated model of teacher utility which comes with some unavoidable limitations. By using the estimated utility function for current teachers, I implicitly assume that incoming teachers have similar preferences and ignore the effect of compensation structures on selection on entry. Since preferences seem similar along propensity-to-teach, this assumption is not far afield. The assumption likely understates the influence of a compensation structure on achievement if performance pay induces positive selection on entry as well as in retention. The optima may fall outside of the experimental range. Since preferences are primitives (and not treatment effects) the out-of-sample extrapolations based on a model tend to perform well (Todd and Wolpin 2006). Compensation Structure to Maximize Teacher Utility

Teacher-utility maximization may be the goal of districts with strong unions that represent the preferences of members (Farber 1978). By understanding the teacher-optimal structure, schools can improve the well-being of their teachers by directing scarce resources toward their most preferred allocation. To simulate the optimal pay structure for teacher utility, I estimate teacher utility models that allow for diminishing marginal returns by including a squared term of relevant non-binary features including salary growth, class size, performance pay, and the replacement rate in retirement (online Appendix tables 24 and 25), which blends utility estimates on compensation from the compensation-structure deck and utility estimates on class size from the working-conditions deck. Without allowing for nonlinearity, the results would degenerate to a corner solution in which all compensation would load into the attribute with the highest utility per dollar. I specify costs for the budget constraint, which accounts for the costs of starting salary, the rate of salary growth, retirement replacement, guaranteed pensions, merit pay, and the cost of recruiting and training when someone quits. The costs interact. For example, retirement replacement becomes more expensive as salary increases. Class-size reductions also become more costly as total compensation rises since it requires paying additional teachers. The details of the cost function are found in online Appendix B. I solve the optimization problem using a nonlinear programming solver. For inference, I bootstrap 1,000 estimates of teacher utility and solve the maximization problem separately with each estimate (results displayed in Table 5).

At the time of the survey, the district paid $\$ 50,000$ in base salary, with a 1.8 percent average yearly increase in salary earnings. They provided no performance pay, had an average class size of 28.7 students, paid $\$ 3,960$ in health-insurance subsidies, and promised to replace 69 percent of a teacher's top earnings in retirement through a pension program after 30 years of service. To maximize teacher utility subject to the current budget constraint, the school would pay 50 percent more in base salary $(\$ 75,655)$ and offer $\$ 1,477$ in merit pay to the top quarter of teachers. These increases are financed by reduced
expenditure elsewhere: increased class size (4.5 percent), reductions in salary growth (from 1.8 percent growth to 0.0), and a reduced replacement rate (20 percent). Schools would also shift to a defined-contributions retirement plan that is both less costly to districts and more attractive to teachers. In total, these changes incur no additional costs but increase teacher welfare by 21.6 percent, the equivalent of a $\$ 17,000$ increase in annual salary. Utility improvements are generated by salary increases (91.6%), the introduction of merit pay (5.0%), and shifting toward a defined-contributions retirement plan (3.4%).

I assess the influence of this compensation structure on other outcomes. Maximizing teacher utility would increase teacher retention and thereby raise average teacher experience by 20.7 percent in equilibrium. This reform also increases student achievement by 0.066σ each year, which comes in from increased teacher experience (31\%), induced effort from merit pay (30%), and increased retention of high-caliber teachers (38%).

Moving to a defined-contributions plan may not be politically feasible. To understand the optimal replacement rate without shifting to a DC retirement program, I re-calculate the optimal structure constraining the model to use a traditional pension. The calculation suggests an optimal replacement rate 55.5 percentage points (or 80 percent) lower than the status quo, owing to a higher salary (which makes replacement more expensive) and the expense guaranteeing income.

Compensation Structure to Maximize Teacher Experience

Experience reliably predicts teacher effectiveness, and new evidence suggests that teachers improve throughout their career (Wiswall 2013; Papay and Kraft 2015). Districts could structure compensation and working conditions to promote retention. To find the structure that maximizes experience, I use estimates from Hendricks (2014) who measures the effect of compensation on retention rates over the life cycle of teachers in Texas. To simulate the resulting experience profile with different compensation structures, I calculate the salary-equivalent utility of the attribute bundle and compare it to the salary-equivalent bundle prevailing in Hendricks (2014). I modify the baseline retention probabilities with the salary-equivalent-utility differences at each experience level multiplied by the elasticity of retention at the same experience. I use those (modified) retention probabilities to simulate the share of teachers who will be in each experience cell in steady state. The dot product of experience shares and experience itself produces the average experience level, which is the object I maximize. And, importantly, because the estimates in Hendricks (2014) derive from Texas, they likely generalize to teachers in my setting.

The compensation structure that maximizes experience stipulates starting salary above the status quo $(\$ 66,688)$ and targets higher compensation to teachers that already have experience with a positive salary growth rate of 1.4 percent. Like the teacher-optimal bundle, the retention-optimal bundle offers performance bonuses of $\$ 1,487$ for the top quarter of
teachers each year (statistically higher than the status quo with $p<0.001$). These increases are paid for with larger classes (3.5 percent) and 18 percent lower replacement rate in retirement, statistically distinct from the status quo bundle. When I require the district to use a pension, the solution replaces 25.5% of salary in retirement instead of 56.6%. These lower replacement rates overstate the reduction in retirement income since the replacement rate applies to a higher final salary. The replacement rate for DB is a third the status quo, but the resulting retirement annuity is only 50 percent less owing to the higher salary replaced. I also model the influence of pensions and defined contributions on retention probabilities using estimates from Costrell and McGee (2010), who estimates the influence of pension wealth accumulation on attrition. Pensions benefits are backloaded, so they produce a strong pull for teachers nearing ~ 28 years of experience, when pension benefits spike, but do little to retain younger teachers. These simulations suggest that defined contributions plans, on net, increase teacher experience, consistent with regressiondiscontinuity evidence in Goda, Jones, and Manchester (2017). The logic is twofold: teachers prefer defined contributions, and the marginal accretion of retirement wealth is larger for the main mass of teachers in DC plans than in pensions.

The reform increases average teacher experience by 21 percent, raises the odds that a student has a veteran teacher by 34 percent, and reduces the chances they have a novice by 28 percent. When compared to the utility-maximizing bundle, the retention-optimal structure increases average teacher experience using a higher salary growth rate that improves the odds of retaining teachers who already have experience. The changes produce a 0.066σ increase in student achievement each year, an improvement that arises from an increase in teacher experience (32%), an increase in teacher effort from performance pay (30%), and positive selection in retention (38\%).

Compensation Structure to Maximize Student Achievement

Improving teacher welfare may not directly increase achievement (for example, De Ree et al. 2017). Policymakers may construct compensation and working conditions to promote human-capital formation to a greater extent with available resources. I specify an achievement production function using averages of domestic estimates or, when available, recent estimates from Texas.

In the achievement function, students learn more in smaller classes (Krueger 1999; Hoxby 2000; Cho, Glewwe, and Whitler 2012) and somewhat more with merit rewards (Lavy 2009; Imberman and Lovenheim 2015; Bond and Mumford 2018). Merit compensation produces selection in retention based on teacher ratings (Biasi 2019), and teacher utility affects the distribution of experience (Hendricks 2014), with more experienced teachers having increasing, concave impacts on students (Papay and Kraft 2015). To simulate the influence of experience on achievement, I calculate retention probabilities, as above, and
then simulate the equilibrium experience profile and take the dot product with VAM over the life cycle from Papay and Kraft (2015). To calculate the influence of performance pay on selection, I take a cross section of new teachers, calculate their utility based on the attribute bundle with heterogeneity in preferences along the quality distribution. I add to their utility a random component from the empirical distribution of the error terms in the data and, after calculating the quantity who exit each year from the retention probabilities, remove teachers with the lowest utility up to that cutoff. Additional details are discussed in online Appendix C. ${ }^{29}$

The reform that maximizes achievement would include higher base pay than the status quo $(\$ 66,774)$, a modest rate of salary growth rate (1.3 percent growth rate), $\$ 5,000$ available each year in merit pay, and a class size that's 3.5 percent larger. Whereas the other optimizations recommended using VAM in combination with observation scores to distribute performance payments, this model recommends using VAM-only to evaluate performance. This practice improves targeting payments to high-VA teachers to reduce their attrition while reducing teacher utility. ${ }^{30}$ The resulting achievement-optimal bundle reduces the replacement rate by 17 percent, relative to the status quo, while moving to a definedcontributions retirement plan. This structure increases teacher experience by 10.7% (relative to baseline) and increases achievement by 0.194σ per year. The achievement gains come from more experienced teachers (5\%), effort induced by merit pay (35\%), and improved retention of high-caliber teachers (60\%).

These reforms are simulated based on a partial-equilibrium framework in which one district adopts the estimated structure that is assumed to have no impact on the selection into the school district, leading to a suitably conservative estimate. The achievement gains are fully realized in the long term by affecting retention patterns. With the exception of induced effort, retention and selection effects grow slowly over time. One question of interest is whether merit pay can generate positive selection into teaching if broadly adopted. Though the question is beyond the scope of this study, two testable conditions are necessary. First, prospective teachers would need to have private information regarding their ability to teach before they enter the profession. If the beliefs of prospective teachers about their effectiveness is uncorrelated with their eventual quality, performance pay programs will fail to drive positive selection on the entry margin. Second, marginal teachers, those open to teaching, must have similar (affirmative) preferences for merit pay as other teachers. Both

[^9]in the district and among prospective teachers, I find that marginal teachers have identical preferences for performance pay.

Across objectives, the maximization exercises suggest an increase in salary and merit pay and a reduction in the replacement rate while moving towards defined-contributions retirement programs would improve outcomes. The achievement-maximizing structure recommends a level of performance pay that roughly mirrors the share of compensation private sector workers receive in bonuses, 2 percent of compensation (U.S. Department of Labor 2018).

Although the environment generates rich, novel variation with which to study preferences, the setting has important limitations that bear mention. As would be true in a survey of any district, the experimental variation reveals the preferences for a given group of workers who selected into the district, possibly because of the compensation structure already in place. Therefore, the results do not naturally generalize to the state, or indeed, the country. Instead, the estimates provide some sense for whether the district compensation structures are distorted from its own optimal.

It is striking that, even among a selected group of teachers choosing the district, the status quo compensation structure does not reflect either teacher preferences or a structure that maximizes experience or achievement. If the calculated optimal structures were similar to the district's practice, we might suspect that it reflects endogenous sorting into the district. That the optimal structure diverges so clearly from practice among an endogenously selected group implies that working conditions and compensation structure are structured especially poorly.

V. Discussion

The district's compensation scheme does not conform to goals of teacher preferences, teacher retention, or achievement maximization. Although it has weak union presence, it may be that bargaining distorts compensation in some way. Since unions are typically led by older, veteran teachers, they might bargain for compensation structures that reflec their private preferences. ${ }^{31}$ If true, we might expect places with stronger union presence to pay a larger share of compensation in benefits, conditional on total compensation. ${ }^{32}$ I gather a measure of state-level union strength provided by the Fordham Institute, which identifies the strength of unions based on five measures: resources and membership, involvement in politics, scope of bargaining, state policies, and perceived influence. These several factors

[^10]are combined to form five quintiles, with the top quintile representing states with the strongest union presence. A one quintile increase in union strength is associated with a benefit-share increase of $2.6-2.8$ percentage points ($p<0.001$), explaining a nine-point difference between states with the weakest unions (where compensation is 29.8 percent benefits) and where unions are strongest (where compensation is 39.8 percent benefits), conditional on total compensation (online Appendix table 26).

To evaluate the generalizability of the recommendations for optimal structure, I compare the district's compensation structure to the rest of the state and country. ${ }^{33}$ One of the consistent lessons from the maximization exercise is that the district may improve teacher welfare, experience, and student achievement by increasing salary expenditures as a fraction of total compensation. If the district has low salary share compared to other districts, it may simply fall on the high side of a distribution that is centered on what is optimal. In online Appendix figure 9, I show where the district's compensation falls in the distribution of US districts in terms of salary share. Two-thirds of school districts have salary shares below the district; when weighting by the number of teachers in a district, we learn that 90 percent of teachers are in school districts with salary shares lower than the district. Since the district appears to underinvest in salary, the many school districts who invest less are likely also underinvesting.

The results highlight several areas for future work. Because of the potential use of separating equilibria, designs that study whether excellent teachers have differential preferences for colleague quality, dismissal risk, or other attributes may provide policymakers with additional tools to recruit and retain excellent instructors. Research to evaluate whether the preferences we report here are comparable to teacher preferences in other areas of the country would be useful for discerning how general these preferencesand their implications-are. Little is known about teacher entry. It would be useful to expand the study of how compensation and working conditions affects the decisions of individuals to become teachers, especially among highly able students. Finally, considering the apparent importance of principals, a deeper examination of principal influence may pay dividends.

[^11]
References

Ahn, Tom, and Justin G. Trogdon. "Peer Delinquency and Student Achievement in Middle School." Labour Economics 44 (2017): 192-217.
Altonji, Joseph G., and Richard K. Mansfield. "The Role of Family, School, and Community Characteristics in Inequality in Education and Labor Market Outcomes." Whither Opportunity (2011): 339-358.

Antos, Joseph R., and Sherwin Rosen. "Discrimination in the Market for Public School Teachers." Journal of Econometrics 3, no. 2 (1975): 123-150.
Avery, Christopher N., Mark E. Glickman, Caroline M. Hoxby, and Andrew Metrick. "A Revealed Preference Ranking of US Colleges and Universities." The Quarterly Journal of Economics 128, no. 1 (2012): 425-467.
Bacolod, Marigee P. "Do Alternative Opportunities Matter? The Role of Female Labor Markets in the Decline of Teacher Quality." The Review of Economics and Statistics 89, no. 4 (2007): 737751.

Ballou, Dale. "Do Public Schools Hire the Best Applicants?" The Quarterly Journal of Economics 111, no. 1 (1996): 97-133.
Ballou, Dale, and Michael Podgursky. "Recruiting Smarter Teachers." Journal of Human Resources (1995): 326-338.

Ballou, Dale, and Michael John Podgursky. Teacher Pay and Teacher Quality. WE Upjohn Institute, 1997.
Baumol, William J., and William G. Bowen. "On The Performing Arts: The Anatomy of Their Economic Problems." The American Economic Review 55, no. 1/2 (1965): 495-502.
Beggs, Steven, Scott Cardell, and Jerry Hausman. "Assessing the Potential Demand for Electric Cars." Journal of Econometrics 17, no. 1 (1981): 1-19.
Benbenisty, Rochelle L. "Attitude Research, Conjoint Analysis Guided Ma Bell's Entry into Data Terminal Market." Marketing News 13 (1983): 12.
Best, Michael Carlos, James Cloyne, Ethan Ilzetzki, and Henrik Kleven. "Estimating the Elasticity of Intertemporal Substitution Using Mortgage Notches." No. w24948. National Bureau of Economic Research, 2018.
Bettinger, Eric P., and Bridget Terry Long. "Do Faculty Serve as Role Models? The Impact of Instructor Gender on Female Students." American Economic Review 95, no. 2 (2005): 152-157.
Biasi, Barbara. "Unions, Salaries, and the Market for Teachers: Evidence from Wisconsin." Working paper (2019).
Bond, Timothy, and Kevin J. Mumford. "Teacher Performance Pay in the United States: Incidence and Adult Outcomes." Working Paper (2018).
Bowen, Natasha K., and Gary L. Bowen. "Effects of Crime and Violence in Neighborhoods and Schools on the School Behavior and Performance of Adolescents." Journal of Adolescent Research 14, no. 3 (1999): 319-342.
Boyd, Donald, Grossman, P., Lankford, H., Loeb, S., \& Wyckoff, James. (2008). "Who Leaves? Teacher Attrition and Student Achievement." National Bureau of Economic Research, working paper N. 14022.
Boyd, Donald, Hamilton Lankford, Susanna Loeb, and James Wyckoff. "Analyzing the Determinants of the Matching of Public School Teachers to Jobs: Disentangling the Preferences of Teachers and Employers." Journal of Labor Economics 31, no. 1 (2013): 83-117.

Bratsberg, Bernt, and Ole Rogeberg. "Flynn Effect and its Reversal Are Both Environmentally Caused." Proceedings of the National Academy of Sciences 115, no. 26 (2018): 6674-6678.
Brookings Institute (2016). "Briefing Book: Key Elements of the U.S. Tax System." Tax Policy Center. https://www.taxpolicycenter.org/briefing-book/how-does-tax-exclusion-employer-sponsored-health-insurance-work (accessed March 23, 2020).
Bureau of Labor Statistics. News Release Bureau of Labor Statistics: Employer Costs for Employee Compensation. December, 2018, https://www.bls.gov/news.release/pdf/ecec.pdf.
Bureau of Labor Statistics. Retirement Costs for Defined Benefit Plans Higher than for Defined Contribution Plans. December, 2012, www.bls.gov/opub/btn/volume-1/pdf/retirement-costs-for-defined-benefit-plans-higher-than-for-defined-contribution-plans.pdf.
Camerer, Colin F., and Robin M. Hogarth. "The Effects of Financial Incentives in Experiments: A Review and Capital-Labor-Production Framework." Journal of Risk and Uncertainty 19, no. 13 (1999): 7-42.
Card, David, and Alan B. Krueger. "Does School Quality Matter? Returns to Education and the Characteristics of Public Schools in the United States." Journal of Political Economy 100, no. 1 (1992): 1-40.

Carrell, Scott E., Marianne E. Page, and James E. West. "Sex and Science: How Professor Gender Perpetuates the Gender Gap." The Quarterly Journal of Economics 125, no. 3 (2010): 11011144.

Carrell, Scott E., Mark Hoekstra, and Elira Kuka. "The Long-Run Effects of Disruptive Peers." American Economic Review 108, no. 11 (2018): 3377-3415.
Cheng, Cheng (2020). "The Long-Run Effect of School Discipline on Schooling and Earnings." Working paper.
Chetty, Raj, Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D. W., \& Yagan, D. (2011). "How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project STAR." The Quarterly Journal of Economics, 126(4), 1593-1660.
Chetty, Raj, Friedman, J. N., \& Rockoff, J. E. (2014). "Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates." The American Economic Review, 104(9), 2593-2632.
Chetty, Raj, Friedman, J. N., \& Rockoff, J. E. (2014). "Measuring the Impacts of Teachers II: Teacher Value-Added and Student Outcomes in Adulthood." The American Economic Review, 104(9), 2633-2679.
Chingos, Matthew M. (2012). "The Impact of a Universal Class-Size Reduction Policy: Evidence from Florida's Statewide Mandate." Economics of Education Review, 31, 543-562.
Chingos, Matthew M., and Martin R. West. "Do More Effective Teachers Earn More outside the Classroom?" Education Finance and Policy, 7, no. 1 (2012): 8-43.
Clarke, Darral G. Marketing Analysis \& Decision Making: Text and Cases with Spreadsheets. Vol. 1. Scientific Press, 1992.

Clotfelter, Charles T., Helen F. Ladd, and Jacob L. Vigdor. "Teacher-Student Matching and The Assessment of Teacher Effectiveness." Journal of Human Resources 41, no. 4 (2006): 778-820.
Cook, Jason. "Segregation, Student Achievement, and Postsecondary Attainment: Evidence from the Introduction of Race-Blind Magnet School Lotteries." (2018).
Corcoran, Sean P., William N. Evans, and Robert M. Schwab. "Changing Labor-Market Opportunities for Women and the Quality of Teachers, 1957-2000." American Economic Review 94, no. 2 (2004): 230-235.

Correa, Juan A., Francisco Parro, and Loreto Reyes. "Self-Selection in the Market of Teachers." Applied Economics 47, no. 13 (2015): 1331-1349.
Cowen, Tyler. The Great Stagnation: How America Ate All the Low-Hanging Fruit of Modern History, Got Sick, and Will (Eventually) Feel Better: A Penguin eSpecial from Dutton. Penguin, 2011.
Dahl, Gordon B., Andreas Ravndal Kostøl, and Magne Mogstad. "Family Welfare Cultures." The Quarterly Journal of Economics 129, no. 4 (2014): 1711-1752.
Dalrymple, Theodore. Society is Broken. The Centre for Independent Studies, 2016.
Darling-Hammond, Linda. "Keeping Good Teachers: Why It Matters, What Leaders Can Do." Educational Leadership 60, no. 8 (2003): 6-13.
de Ree, Joppe, Karthik Muralidharan, Menno Pradhan, and Halsey Rogers. "Double for Nothing? Experimental Evidence on an Unconditional Teacher Salary Increase in Indonesia." The Quarterly Journal of Economics 133, no. 2 (2017): 993-1039.
Dee, Thomas S. "Teachers and the Gender Gaps in Student Achievement." Journal of Human Resources 42, no. 3 (2007): 528-554.
Dee, Thomas S. "Teachers, Race, and Student Achievement in a Randomized Experiment." Review of Economics and Statistics 86, no. 1 (2004): 195-210.
Dee, Thomas S., and James Wyckoff. "Incentives, Selection, and Teacher Performance: Evidence from IMPACT." Journal of Policy Analysis and Management 34, no. 2 (2015): 267-297.
Ding, Min. "An Incentive-Aligned Mechanism for Conjoint Analysis." Journal of Marketing Research 44, no. 2 (2007): 214-223.
Dolton, Peter, \& Van der Klaauw, Wilbert. (1999). "The Turnover of Teachers: A Competing Risks Explanation." The Review of Economics and Statistics, 81(3), 543-550.
Elementary \& Secondary Information System. "Table Generator." National Center for Education Statistics. https://nces.ed.gov/ccd/elsi (accessed January 28, 2019).
Ehrenberg, Ronald G. "Retirement System Characteristics and Compensating Wage Differentials in the Public Sector." ILR Review, 33, no. 4 (1980): 470-483.
Ericson, Keith Marzilli, and David Laibson. "Intertemporal Choice." No. w25358. National Bureau of Economic Research, 2018.
Farber, Henry S. "Individual Preferences and Union Wage Determination: The Case of the United Mine Workers." Journal of Political Economy, 86, no. 5 (1978): 923-942.
Feng, Li. "Hire Today, Gone Tomorrow: The Determinants of Attrition Among Public School Teachers." Working paper (2005).
Feng, Li, \& Sass, Tim R. (2017). "Teacher Quality and Teacher Mobility." Education Finance and Policy, 12(3), 396-418.
Figlio, David N. "Teacher Salaries and Teacher Quality." Economics Letters 55, no. 2 (1997): 267271.

Figlio, David N., and Lawrence W. Kenny. "Individual Teacher Incentives and Student Performance." Journal of Public Economics 91, no. 5-6 (2007): 901-914.
Fitzpatrick, Maria Donovan. "How Much Are Public School Teachers Willing to Pay for Their Retirement Benefits?" American Economic Journal: Economic Policy 7, no. 4 (2015): 165-88.
Gershenson, Seth, Cassandra Hart, Joshua Hyman, Constance Lindsay, and Nicholas W. Papageorge. "The Long-Run Impacts of Same-Race Teachers." No. w25254. National Bureau of Economic Research, 2018.
Goldhaber, Dan, Roddy Theobald, and Christopher Tien. "Why We Need a Diverse Teacher Workforce." Phi Delta Kappan, 100, no. 5 (2019): 25-30.

Goldin, Claudia. "A Grand Gender Convergence: Its Last Chapter." American Economic Review, 104, no. 4 (2014): 1091-1119.
Gordon, Robert J. The Rise and Fall of American Growth: The US Standard of Living since the Civil War. Princeton University Press, 2016.
Green, Paul E., and Venkat Srinivasan. "Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice." The Journal of Marketing (1990): 3-19.
Greenwald, Rob, Larry V. Hedges, and Richard D. Laine. "The Effect of School Resources on Student Achievement." Review of Educational Research, 66, no. 3 (1996): 361-396.
Hainmueller, Jens, Daniel J. Hopkins, and Teppei Yamamoto. "Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices via Stated Preference Experiments." Political Analysis, 22, no. 1 (2013): 1-30.
Hainmueller, Jens, Dominik Hangartner, and Teppei Yamamoto. "Validating Vignette and Conjoint Survey Experiments against Real-World Behavior." Proceedings of the National Academy of Sciences, 112, no. 8 (2015): 2395-2400.
Hainmueller, Jens, and Michael J. Hiscox. "Attitudes Toward Highly Skilled and Low-Skilled Immigration: Evidence from a Survey Experiment." American Political Science Review, 104, no. 1 (2010): 61-84.
Hanushek, Eric A. "Assessing the Effects of School Resources on Student Performance: An Update." Educational Evaluation and Policy Analysis, 19, no. 2 (1997): 141-164.
Hanushek, Eric A. "The Economic Value of Higher Teacher Quality." Economics of Education Review 30, no. 3 (2011): 466-479.
Hanushek, Eric A. "The Economics of Schooling: Production and Efficiency in Public Schools." Journal of Economic Literature, 24, no. 3 (1986): 1141-1177.
Hanushek, Eric A., and Steven G. Rivkin. "Generalizations about Using Value-Added Measures of Teacher Quality." American Economic Review, 100, no. 2 (2010): 267-71.
Hanushek, Eric A., and Steven G. Rivkin. "Teacher Quality." Handbook of the Economics of Education 2 (2006): 1051-1078.
Harris, Anthony R., Stephen H. Thomas, Gene A. Fisher, and David J. Hirsch. "Murder and Medicine: the Lethality of Criminal Assault 1960-1999." Homicide Studies 6, no. 2 (2002): 128166.

Harris, Douglas N., and Tim R. Sass. "Teacher Training, Teacher Quality and Student Achievement." Journal of Public Economics 95, no. 7-8 (2011): 798-812.
Heckman, James J., John Eric Humphries, and Gregory Veramendi. "Returns to Education: The Causal Effects of Education on Earnings, Health, and Smoking." Journal of Political Economy 126, no. S1 (2018): S197-S246.
Hendricks, Matthew D. "Does It Pay to Pay Teachers More? Evidence from Texas." Journal of Public Economics, 109 (2014): 50-63.
Hess, Richard (2010). "Missing the point: Tomorrow's Big Merit Pay Study Will Tell Us...Nothing." Education Week, September.
Holt, Charles A., and Susan K. Laury. "Risk Aversion and Incentive Effects." American Economic Review 92, no. 5 (2002): 1644-1655.
Horoi, Irina, and Ben Ost. "Disruptive Peers and the Estimation of Teacher Value Added." Economics of Education Review, 49 (2015): 180-192.
Hoxby, Caroline M., \& Leigh, Andrew. (2004). "Pulled away or Pushed out? Explaining the Decline of Teacher Aptitude in the United States." The American Economic Review, 94(2), 236-240.

Hoxby, Caroline M. "The Effects of Class Size on Student Achievement: New Evidence from Population Variation." The Quarterly Journal of Economics, 115, no. 4 (2000): 1239-1285.
Imberman, Scott A., and Michael F. Lovenheim. "Incentive Strength and Teacher Productivity: Evidence from a Group-Based Teacher Incentive Pay System." Review of Economics and Statistics, 97, no. 2 (2015): 364-386.
Imazeki, J. (2005). "Teacher Salaries and Teacher Attrition." Economics of Education Review, 24(4), 431-449.
Ingersoll, Richard M., and Thomas M. Smith. "The Wrong Solution to the Teacher Shortage." Educational Leadership 60, no. 8 (2003): 30-33.
Inman, Robert P. "Public Employee Pensions and the Local Labor Budget." Journal of Public Economics, 19, no. 1 (1982): 49-71.
Jackson, C. Kirabo. "Student Demographics, Teacher sorting, and Teacher Quality: Evidence from the End of School Desegregation." Journal of Labor Economics, 27, no. 2 (2009): 213-256.
Jacob, Brian A., Jonah E. Rockoff, Eric S. Taylor, Benjamin Lindy, and Rachel Rosen. "Teacher Applicant Hiring and Teacher Performance: Evidence from DC Public Schools." Journal of Public Economics, 166 (2018): 81-97.
Jensen, Robert. (2010). "The (Perceived) Returns to Education and the Demand for Schooling." The Quarterly Journal of Economics, 125(2), 515-548.
Kane, Thomas J., Jonah E. Rockoff, and Douglas O. Staiger. "What Does Certification Tell Us about Teacher Effectiveness? Evidence from New York City." Economics of Education Review, 27, no. 6 (2008): 615-631.
Kane, Thomas J., \& Staiger, Douglas O. (2008). "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation" (No. w14607). National Bureau of Economic Research.
Karlan, Dean S., and Jonathan Zinman. "List Randomization for Sensitive Behavior: An Application for Measuring Use of Loan Proceeds." Journal of Development Economics, 98, no. 1 (2012): 71-75.
Kinsler, Josh. "School Discipline: A Source or Salve for the Racial Achievement Gap?" International Economic Review, 54, no. 1 (2013): 355-383.
Kofoed, Michael S. "The Effect of Same-Gender and Same-Race Role Models on Occupation Choice: Evidence from Randomly Assigned Mentors at West Point." Journal of Human Resources (2017): 0416-7838r1.

Kraft, Matthew A., Eric J. Brunner, Shaun M. Dougherty, and David Schwegman. "Teacher Accountability Reforms and the Supply of New Teachers." Unpublished manuscript. Retrieved from https://scholar. harvard. edu/files/mkraft/files/kraft et al. 2018'teacher accountability reforms. pdf (2018).
Krueger, Alan B. "Experimental Estimates of Education Production Functions." The Quarterly Journal of Economics 114, no. 2 (1999): 497-532.
Lacoe, Johanna, and Matthew P. Steinberg. "Rolling Back Zero Tolerance: The Effect of Discipline Policy Reform on Suspension Usage and Student Outcomes." Peabody Journal of Education 93, no. 2 (2018): 207-227.
Lankford, Hamilton, Susanna Loeb, and James Wyckoff. "Teacher Sorting and the Plight of Urban Schools: A Descriptive Analysis." Educational Evaluation and Policy Analysis 24, no. 1 (2002): 37-62.
Lavy, Victor. "Evaluating the Effect of Teachers' Group Performance Incentives on Pupil Achievement." Journal of Political Economy 110, no. 6 (2002): 1286-1317.

Lavy, Victor. "Performance Pay and Teachers' Effort, Productivity, and Grading Ethics." American Economic Review 99, no. 5 (2009): 1979-2011.
Lavy, Victor, and Analia Schlosser. "Mechanisms and Impacts of Gender Peer Effects at School." American Economic Journal: Applied Economics 3, no. 2 (2011): 1-33.
Lazear, Edward P. "Performance Pay and Productivity." American Economic Review 90, no. 5 (2000): 1346-1361.

Lazear, Edward P. "Teacher Incentives." Swedish Economic Policy Review 10, no. 2 (2003): 179-214.
Loeb, Susanna, and Marianne E. Page. "Examining the Link between Teacher Wages and Student Outcomes: The Importance of Alternative Labor-Market Opportunities and Non-Pecuniary Variation." Review of Economics and Statistics 82, no. 3 (2000): 393-408.
Louviere, Jordan J., David A. Hensher, and Joffre D. Swait. Stated Choice Methods: Analysis and Applications. Cambridge University Press, 2000.
Lowes, Sara, Nathan Nunn, James A. Robinson, and Jonathan L. Weigel. "The Evolution of Culture and Institutions: Evidence from the Kuba Kingdom." Econometrica 85, no. 4 (2017): 1065-1091.
Maestas, Nicole, Kathleen J. Mullen, David Powell, Till Von Wachter, and Jeffrey B. Wenger. "The Value of Working Conditions in the United States and Implications for the Structure of Wages." No. w25204. National Bureau of Economic Research, 2018.
Mansfield, Richard K. "Teacher Quality and Student Inequality." Journal of Labor Economics 33, no. 3 (2015): 751-788.
Mas, Alexandre, and Amanda Pallais. "Valuing Alternative Work Arrangements." American Economic Review 107, no. 12 (2017): 3722-59.
McFadden, Daniel. "Econometric Models of Probabilistic Choice." Structural Analysis of Discrete Data with Econometric Applications 198272 (1981).
Mont, Daniel, and Daniel I. Rees. "The Influence of Classroom Characteristics on High School Teacher Turnover." Economic Inquiry 34, no. 1 (1996): 152-167.
Morrissey, Monique. "Teachers and Schools Are Well Served by Teacher Pensions." Economic Policy Institute (2017).
Muralidharan, Karthik, and Venkatesh Sundararaman. "Teacher Performance Pay: Experimental Evidence from India." Journal of Political Economy 119, no. 1 (2011): 39-77.
Murnane, Richard J., and Randall J. Olsen. "The Effect of Salaries and Opportunity Costs on Duration in Teaching: Evidence from Michigan." The Review of Economics and Statistics (1989): 347-352.

Murnane, Richard J., Judith D. Singer, John B. Willet, James J. Kemple, and Randall J. Olsen. Who Will Teach?: Policies That Matter. Cambridge, MA: Harvard University Press, 1991.
Nagler, Markus, Marc Piopiunik, and Martin R. West. "Weak Markets, Strong Teachers: Recession at Career Start and Teacher Effectiveness." Journal of Labor Economics (2019).
National Center for Education Statistics. "District Detail For Aldine ISD." Search For Public School Districts. https://nces.ed.gov/ccd/districtsearch/index.asp (accessed January 24, 2019).
Novy-Marx, Robert, and Joshua Rauh. "The Revenue Demands of Public Employee Pension Promises." American Economic Journal: Economic Policy 6, no. 1 (2014): 193-229.
Papay, John P., and Matthew A. Kraft. "Productivity Returns to Experience in the Teacher Labor Market: Methodological Challenges and New Evidence on Long-Term Career Improvement." Journal of Public Economics 130 (2015): 105-119.

Parker, Jonathan A., and Nicholas S. Souleles. "Reported Preference vs. Revealed Preference: Evidence from the Propensity to Spend Tax Rebates." No. w23920. National Bureau of Economic Research, 2017.
Petek, Nathan, and Nolan Pope. "The Multidimensional Impact of Teachers on Students." (2019).
Phipps, Aaron. "Personnel Contracts with Production Uncertainty: Theory and Evidence from Teacher Performance Incentives." Working paper (2018).
Podgursky, M. (2006). "Teams versus Bureaucracies: Personnel Policy, Wage-Setting, and Teacher Quality in Traditional Public, Charter, and Private Schools." Education and Policy Analysis.
Pope, Nolan, and George Zuo. "Suspending School Suspensions." Working paper (2020).
Reid, Timothy. "California Judge Bars Voter-Approved Pension Cuts for City Workers." Reuters
Rivkin, Steven G., Eric A. Hanushek, and John F. Kain. "Teachers, Schools, and Academic Achievement." Econometrica 73, no. 2 (2005): 417-458.
Robinson, Patrick J. "Applications of Conjoint Analysis to Pricing Problems." In Market Measurement and Analysis: Proceedings of the 1979 ORSA/TIMS Conference on Marketing, pp. 183-205. Cambridge, MA: Marketing Science Institute, 1980.
Rockoff, Jonah E. "The Impact of Individual Teachers on Student Achievement: Evidence from Panel Data." American Economic Review 94, no. 2 (2004): 247-252.
Rockoff, Jonah E., Brian A. Jacob, Thomas J. Kane, and Douglas O. Staiger. "Can You Recognize an Effective Teacher When You Recruit One?" Education Finance and Policy 6, no. 1 (2011): 43-74.
Rothstein, Jesse. (2010). "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement." The Quarterly Journal of Economics, 125(1), 175-214.
Rothstein, Jesse. (2015). "Teacher Quality Policy When Supply Matters." American Economic Review, 105(1), 100-130.
Sajjadiani, S., A. Sojourner, J. Kammeyer-Mueller \& E. Mykerezi (forthcoming). "Using Machine Learning to Translate Pre-Hire Work History into Predictors of Performance and Retention." Journal of Applied Psychology.
Schlechty, Phillip C., and Victor S. Vance. "Do Academically Able Teachers Leave Education? The North Carolina Case." The Phi Delta Kappan 63, no. 2 (1981): 106-112.
Schlechty, Phillip C., and Victor S. Vance. 1982. "The Distribution of Academic Abililty in the Teaching Force: Policy Implications." Phi Delta Kappan 64.
Smith, Robert Stewart. "Compensating Differentials for Pensions and Underfunding in the Public Sector." The Review of Economics and Statistics (1981): 463-468.
Srinivasan, Venkat. "A Conjunctive-Compensatory Approach to the Self-Explication of Multiattributed Preferences." Decision Sciences 19, no. 2 (1988): 295-305.
Stinebrickner, T. R.. "A Dynamic Model of Teacher Labor Supply." Journal of Labor Economics, 19.1 (2001), 196-230.
Texas Education Agency. "STAAR Aggregate Data for 2017-2018." Student Testing and Accountability. https://tea.texas.gov/Student Testing and Accountability/Testing/State of Texas Assessments of Academic_Readiness (STAAR)/STAAR Aggregate Data for 20172018/ (accessed on January 25, 2019),
Todd, Petra E., and Kenneth I. Wolpin. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility." American Economic Review 96, no. 5 (2006): 1384-1417.
Train, Kenneth E. Discrete Choice Methods with Simulation. Cambridge university press, 2009.
U.S. Department of Education, "Enrollment, Poverty, and Federal Funds for 120 largest School Districts, by Enrollment Size in 2016," Digest of Education Statistics, table 215.30, https://nces.ed.gov/programs/digest/d16/tables/dt16_215.30.asp (accessed January 24, 2019).
Ventura, Stephanie J., and Christine A. Bachrach. "Nonmarital Childbearing in the United States, 1940-99." http://www.cdc.gov/nchs/data/nvsr/nvsr48/nvs48_16.pdf National Vital Statistics Reports 48, no. 16 (2000): n16.
Vinicky, Amanda. "No Pension Cuts for Illinois Judges." Illinois Public Media, 24 May 2013, will.illinois.edu/news/story/no-pension-cuts-for-illinois-judges.
Weaver, W. Timothy. "In Search of Quality: The Need for Talent in Teaching." The Phi Delta Kappan 61, no. 1 (1979): 29-46.
Weller, Christian. "Win-Win: Pensions Efficiently Service American Schools and Teachers." National Institute on Retirement Security (2017).
Wheelan, Charles. Naked Economics. WW Norton \& Company, 2019.
Wiswall, Matthew. "The Dynamics of Teacher Quality." Journal of Public Economics, 100 (2013): 61-78.
Wiswall, Matthew, and Basit Zafar. "Preference for the Workplace, Investment in Human Capital, and Gender." The Quarterly Journal of Economics 133, no. 1 (2017): 457-507.
Wlömert, Nils, and Felix Eggers. "Predicting New Service Adoption with Conjoint Analysis: External Validity of BDM-Based Incentive-Aligned and Dual-Response Choice Designs." Marketing Letters 27, no. 1 (2016): 195-210.
Wooldridge, Jeffrey M. Econometric Analysis of Cross Section and Panel Data. MIT press, 2010.

Figure 1-Effects of Compensation Attributes on the Probability that Teachers Accept a Job Offer

[^12]Figure 2-Effects of Working-Condition Attributes on the Probability that Teachers Accept a Job Offer

Note: Dots with horizontal lines indicate point estimates with cluster-robust, 95%-confidence intervals (CI) from least-squares regression. The unfilled dots on the zero line denote the reference category for each job-offer attribute. Online Appendix Table 3 displays the underlying regression results.

Figure 3-Effects of Student and Principal Attributes on the Probability that Teachers Accept a Job Offer

[^13]Figure 4-Differential Effect of Merit Pay on the Probability that Teachers Accept a Job Offer

Note: In this figure, I identify the teacher-quality decile of each teacher using VAM and, for those teachers who lack a VAM score, the decile of their Danielson observation score. The coefficients above represent the differential effect of merit pay (in $\$ 1,000 \mathrm{~s}$) on the probability a teacher will accept a job offer.

TABLE 1—Summary Statistics on Offer Attributes for Conjoint Experiment

	Average	Std. Dev.	Units
Choice	0.50	(0.50)	Indicator
Starting Salary	49.51	(2.38)	$\$ 1,000 \mathrm{~s}$
Salary Growth	1.44	(0.71)	$\%$ growth
Bonus amount	1.25	(1.29)	$\$ 1,000 \mathrm{~s}$
VAM only	0.20	(0.40)	Indicator
Replacement	48.09	(9.31)	$\%$ of salary
401k-style	0.37	(0.48)	Indicator
Premium (yearly)	0.78	(0.30)	$\$ 1,000 \mathrm{~s}$
Deductible	1.48	(0.18)	$\$ 1,000 \mathrm{~s}$
Probationary period	1.72	(0.93)	Years
Term length	2.26	(0.96)	Years
Commute time	0.187	(0.096)	Hours
Class size	24.55	(3.39)	Students
Assistance	3.26	(3.66)	Hours $/$ week
Percent low income	6.79	(1.86)	$10 \% \mathrm{~s}$
Percent minority	5.62	(2.97)	$10 \% \mathrm{~s}$
Ave. achievement	4.99	(1.65)	10% tiles
Supportive	0.42	(0.49)	Indicator
Blue bus	0.50	(0.50)	Indicator

Note: This table presents the mean and standard deviation of the experimental data. The units column describes the units of each variable to aid interpretation of regression results.

TABLE 2-Linear Preferences over Compensation Structure and Working Conditions

	Linear Probability			Conditional Logit		
	Coeff (1)	SE (2)	WTP (3)	Coeff (4)	SE (5)	WTP (6)
Panel 1: Compensation Deck						
Salary						
Starting salary	0.085**	(0.002)	\$1,000	0.395**	(0.008)	\$1,000
Salary growth	0.192**	(0.009)	\$2,270	0.948**	(0.034)	\$2,400
Merit reward						
Bonus amount	0.029**	(0.003)	\$346	0.192**	(0.012)	\$486
VAM only	-0.077**	(0.015)	-\$907	-0.209**	(0.055)	-\$529
Retirement						
Replacement	0.015**	(0.001)	\$173	0.071**	(0.002)	\$181
401k-style	$0.077^{* *}$	(0.010)	\$907	0.413**	(0.035)	\$1,046
Health insurance						
Premium (yearly)	-0.082**	(0.014)	-\$970	-0.438**	(0.048)	-\$1,109
Deductible	-0.312	(0.212)	\$3,688	-1.009	(0.760)	-\$2,554
Panel 2: Working-Conditions Deck						
Contract						
Probationary period	-0.058**	(0.005)	-\$502	-0.320**	(0.022)	-\$467
Term length	-0.004	(0.005)	-\$33	0.014	(0.021)	\$21
Working conditions						
Commute time	-0.365**	(0.043)	\$3,177	-2.880**	(0.200)	-\$4,204
Class size	-0.068**	(0.001)	-\$595	-0.399**	(0.007)	-\$582
Assistance	0.030**	(0.001)	\$257	0.175**	(0.005)	\$255
Panel 3: Students-\&-Leaders Deck						
Students						
Percent low income	-0.022**	(0.002)	-\$324	-0.117**	(0.010)	-\$285
Percent minority	0.0027	(0.0014)	\$40	0.007	(0.006)	\$18
Ave. achievement	0.036**	(0.003)	\$546	0.237**	(0.011)	\$577
Principal affect						
Supportive	0.575**	(0.009)	\$8,673	$3.04 * *$	(0.042)	\$7,392
Placebo						
Blue bus	0.007	(0.008)	\$101	0.019	(0.038)	\$47

Notes: * p < 0.05, ** p < 0.001. Each coefficient represents the parts worth impact of an attribute on the odds of accepting a presented job offer. These estimates are translated into willingness-to-pay values by scaling the impact of an attribute by the impact of $\$ 1,000$ starting salary. Regression summaries: Deck $1: \mathrm{N}=31,820$, \%Predicted=64, Rsquared $=0.19$; Deck 2: $\mathrm{N}=31,574, \%$ Predicted $=64$, R-squared=0.28; Deck 3: $\mathrm{N}=23,678$, \%Predicted=62, R-
squared $=0.36$.

Table 3-Do Principals Mitigate Difficult Work Settings?

	$\frac{\text { LPM }}{(1)}$	$\frac{\text { LPM }}{(2)}$	LPM (3)
Principal supportive (PS)	$0.575^{* *}$	$0.794^{* *}$	$0.683^{* *}$
	(0.009)	(0.054)	(0.067)
Achievement pctl.	$0.036^{* *}$	$0.058^{* *}$	$0.067^{* *}$
	(0.003)	(0.006)	(0.006)
Achievement \times PS	.	$-0.045^{* *}$	$-0.061^{* *}$
	.	(0.011)	0.0115
Poverty rate	$-0.022^{* *}$	$-0.020^{* *}$	$-0.033^{* *}$
	(0.002)	(0.003)	(0.005)
Poverty \times PS	.	.	0.028^{*}
	.	.	(0.009)
Observations			
R-squared	23,678	23,678	23,678
	0.365	0.366	0.366

Note: ${ }^{*} \mathrm{p}<0.05,^{* *} \mathrm{p}<0.001$. This table presents the results of linear probability models in which I test whether having a principal "supportive with disruptive students" attenuates a teachers' aversion to poorer or lower-achieving school settings.

Table 4-Teacher Preferences by Quality

| | Choice | Choice | |
| :---: | :---: | :---: | :---: | :---: |
| | Quality- | | Quality- |
| Reference | index | Reference | index |
| Group | interaction | Group | interaction |
| (1) | (2) | (3) | (4) |

Salary

Starting salary	$0.090^{* *}$	-0.002	$0.091^{* *}$	-0.001
	(0.004)	(0.006)	(0.004)	(0.006)
Salary growth	$0.178^{* *}$	0.004	$0.183^{* *}$	0.008
	(0.014)	(0.017)	(0.014)	(0.017)
Merit reward				
Bonus amount	0.014^{*}	$0.041^{* *}$	0.018^{*}	$0.041^{* *}$
	(0.007)	(0.011)	(0.007)	(0.011)
VAM only	-0.064^{*}	-0.025	-0.075^{*}	-0.022
	(0.022)	(0.027)	(0.025)	(0.028)
Retirement				
Replacement	$0.013^{* *}$	0.002	$0.013^{* *}$	0.002
	(0.001)	(0.0014)	(0.001)	(0.0014)
401k-style	0.062^{*}	0.034	$0.079^{* *}$	0.042
	(0.019)	(0.030)	(0.022)	(0.030)
Health insurance				
Premium (yearly)	$-0.112^{* *}$	0.071	$-0.106^{* *}$	0.071
	(0.031)	(0.054)	(0.031)	(0.054)
Deductible	-0.453	-0.130	-0.270	-0.163
	(0.284)	(0.226)	(0.287)	(0.225)

Experience bins	X	X
Exp. interactions	\cdot	X
R-squared	0.201	0.203
Observations	21,358	21,358

Note: * p < $0.05,{ }^{* *} \mathrm{p}<0.001$. Columns (1) and (2) represent one regression in which the main effects are displayed in column (1) and the interactions with the quality index are represented in column (2). The regression displayed in columns (3) and (4) follows a similar form but adds controls for experience bins interacted with each attribute.

Table 5-Simulated Compensation Structure under Various Objectives

	Status quo	Teacher- utility optimal	Teacher- retention optimal	Student- achievement optimal
	(1)	(2)	(3)	(4)
Starting salary	$\$ 50,000$	$\$ 75,655^{* *}$	$\$ 66,688^{* *}$	$\$ 66,774^{* *}$
Salary growth	1.8%	$0.0 \%^{* *}$	1.4%	1.3%
Merit pay	$\$ 0$	$\$ 1,477^{* *}$	$\$ 1,487^{* *}$	$\$ 5,000^{* *}$
VAM-only merit	0	0	0	$1^{* *}$
Replacement rate	69.0%	$55.5 \%^{* *}$	$56.6 \%^{* *}$	$56.9 \%^{* *}$
Defined contribution	0	$1^{* *}$	$1^{* *}$	$1^{* *}$
Insurance subsidy	$\$ 3,960$	$\$ 0$	$\$ 0$	$\$ 0$
Class size	28.7	$30.0^{* *}$	$30.0^{* *}$	$30.0^{* *}$
Teacher utility	79.2	96.3	90.8	85.0
Teacher experience	9.03 years	10.9 years	11.0 years	10.0 years
Student achievement	0.092σ	0.158σ	0.158σ	0.286σ

Note: ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.001$. This table presents the results of maximizing teacher utility, teacher experience, and student achievement subject to the current budget constraint. Statistical significance is calculated by bootstrapping 1,000 estimates of the utility function and re-solving the maximization problem for each one.

Online Appendices

Teacher Preferences, Working Conditions, and Compensation Structure

Andrew C. Johnston

Online Appendix A: Estimation of Value-Added Measures

In the empirical analysis on separating equilibria, we divide teachers into bins based on their value-added measure (VAM). In this online Appendix, I discuss the methodology for estimating VAM for teachers in Aldine ISD.

The school district provided student-teacher linked test score records from the 2011-12 school year through to the 2015-16 school year, covering some 60,501 students and 3,559 teachers. These files contain yearly student performance on the STAAR exam (State of Texas Assessments of Academic Readiness) administered statewide by the Texas Education Agency. STAAR tests mathematics, reading, writing, science, and social studies, depending on the year. The state tests reading and mathematics in grades 3-8; writing in grades 4 and 7 ; science in grades 5 and 8 ; and social studies in grade 8 . Like commonly used VA models, I estimate teacher value-added using the equation

$$
A_{i s t m}=f\left(A_{i, t-1}\right)+\delta_{s t}+\alpha_{i}+\gamma_{m}+\varepsilon_{i s t m}
$$

I parameterize the control function for lagged test scores using a linear expression of prior-year scores in all available subjects, with indicators for whether the student lacks scores in each subject. To account for student-specific student achievement trajectories, I include student fixed effects, α_{i}; and control for school-year differences in achievement gains with school-year specific fixed effects, $\delta_{s t}$, to capture yearly school/neighborhood effects that are unrelated to the teacher assignment. The parameters γ_{m} capture average teacher-specific contributions to student achievement, holding all else constant, which I take as the measure of teacher value-added.

Online Appendix B: Cost Function of Compensation Structure

Crucial to calculating the optimal structure of compensation and working conditions is properly specifying the cost as a function of each element. In this Appendix, I provide detail on how the cost function is constructed.

Salary

Because Aldine ISD does not participate in Social Security, they pay modest payroll taxes. Both in documents from the district and in the district's financial disclosures, the district pays 1.5 percent of its payroll in payroll taxes, approximately the rate owed for Medicare taxes, 1.45 percent. Thus, the cost of an additional $\$ 1$ in salary compensation costs the district $\$ 1.015$. The cost of salary provision also interacts with the cost of salary growth and retirement, discussed below.

Health Insurance

In July 2016, three months after the survey was administered, I collected data from the Affordable Care Act (ACA) health exchange which indicated the monthly premium, deductible, cost of an office visit, and plan type (HMO, PPO, POS, PD, catastrophic) for 50 plans available in the Houston area. A hedonic pricing model revealed that the cost of office visits (the copay) had no systematic relationship with price (premia), which was most predicted by the deductible ($p<0.001$) and HMO status ($p<$ 0.001). With no deductible, a generic plan cost $\$ 385.70$ (CI: $\$ 361.34-\$ 410.06$) per month, and the cost declined by $\$ 24.40$ ($\$ 20.30-\$ 28.49$) for every $\$ 1,000$ increase in the deductible. There is no evidence that the price is a quadratic function of the deductible. ${ }^{34}$

$$
\text { Annual Cost }=12 \times(385.7-24.4 \times \text { deductible })
$$

In my model, I use the value of insurance subsidies, in part because we do not have enough power or variation to precisely pick out the "right" health plan. Moreover, in practice, teachers have an insignificant preference in favor of dollars paid in salary over dollars paid in health insurance, meaning that, when optimizing teacher utility, the school district shifts away from health insurance compensation, allowing teachers to privately optimize their insurance decision.

Merit Pay

[^14]The merit compensation teachers are offered in the survey is paid to "the top 25 percent of each school based on principal ratings and student growth." Because performance compensation is paid only to a quarter of teachers, the cost of providing an additional $\$ 1$ in merit pay is $\$ 0.25$ per teacher. This income is subject to Medicare taxes, 1.45 percent.

Defined Benefits Plan (Pension)

The explicit promise of a defined benefits program is that it is not subject to risk-the benefit, rather than just the contribution, is fixed. Marx and Rauh (2014) show that, in order to satisfy the funding requirements, pension managers assume a constant, high rate of growth (7.5-8.0 percent) with no risk in order to balance their revenues with expected demands. This leads to underfunding above and beyond the shortfall recognized under even these optimistic assumptions. The actual return of an essentially risk-free investment, like treasury bonds, is 1.57 percent. I assume a rate of 1.57 percent and calculate what would be saved by retirement's onset if a teacher were setting aside 1 percent of her wages each year. I then take the lump sum accumulated by retirement (assumed at age 65) and annuitize it, using an online annuity calculator. ${ }^{35}$ I then take the annual annuity as a fraction of the teacher's highest salary to make a mapping from what percent of salary the teacher is saving to her replacement rate. With a 1.57 percent riskfree rate of return, a one-percent saving pattern replaces two percent of the teacher's salary, meaning that teachers must save 0.559 percent of their income to finance an additional percentage point of replacement rate under a risk-free rate of return. Pensions, however, enjoy a cost saving since some teachers will pay into the pension but will not persist long enough to vest. I calculate the share of those paying into the pension each year who will leave before the vesting period is complete. That fraction is then applied as a discount on the cost of the pension.

[^15]
Defined Contributions Plan (403(b))

Nonprofit and governmental agencies can provide a retirement plan that is corollary to the $401(\mathrm{k})$, called the $403(\mathrm{~b})$, which are available to all tax-exempt organizations. In 403(b) accounts, the school commits to contributing a defined amount to the worker's retirement rather than promising a defined level of benefits at retirement. While pensions take several years for a worker to vest and retirement benefits are heavily backloaded, ${ }^{36}$ 403(b) plans accumulate retirement wealth proportional to employment and vest immediately, making retirement contribution totally portable. I follow the same calculation as described above to generate the cost of an average replacement rate through the $403(\mathrm{~b})$, but use as the expected interest rate 7.5 percent, under the historical trend (ten percent) (Cowen 2011; Gordon 2016). Here from, the cost of saving enough to replace one percent of a teacher's salary (in expectation) is 0.220 percent of your salary. If one assumed an eight-percent return, the coefficient on rep would be 0.202 percent.

Class Size
One of the chief conceptual issues in structuring the cost function is how to formalize the cost of class-size choices while allowing compensation to vary flexibly. For instance, by simply using the average cost of class-size reductions from a paper, the analysis would not account for the fact that class-size changes become more and less costly based on the costliness of the compensation package itself. The fundamental problem is that reducing class size requires hiring an additional teacher, the cost of which depends on the cost of the compensation package. Moreover, the cost of additional class-size reductions increase quadratically as class size falls. To accommodate this tradeoff in optimization, I conceptualize the cost function as a joint choice of compensation structure (which determines the average cost per teacher) and class size (which determines the number of teachers needed), allowing the cost structure of teacher pay to flexibly affect
${ }^{36}$ Vesting refers to when the employee becomes eligible for retirement payments even should they retire or quit. The granting to an employee of credits toward a pension even if separated from the job before retirement.
the cost of class-size adjustments. To provide a smooth function for optimizing, we model teacher quantity as continuous.

Endogenous Retention

What makes the calculation of the cost of salary growth rates somewhat complicated is that providing more generous compensation reduces attrition, increasing the cost both through salaries and by increasing the odds that teachers are retained to be paid at higher steps of the salary schedule. Hendricks (2014) estimates the effect of additional salary on the attrition probability of teachers at different points of their experience profile and finds that compensation has significant impacts on attrition for new teachers which influence declines as teachers approach veteran status. His study uses data from Texas, and it's fortunate to have estimates on the impact of compensation on retention, throughout the teacher life cycle, from the labor market in question.

To adjust for the cost of endogenous retention, I calculate the total utility of teachers with status-quo compensation and difference it from candidate compensation structures. I multiply those differences by turnover elasticities for teachers of every experience level from Hendricks, which generates a vector describing how the new compensation structure would affect turnover at each experience point. I add these adjustments to the natural turnover rate and then calculate the steady-state distribution of teacher experience based on the affected retention patters. This allows me to construct the average compensation cost in steady state, a function of compensation and the distribution of teacher experience.

Cost of Turnover

A related element affecting the cost of lower retention and reduced class size is the fixed costs of employing an additional teacher, the primary cost of which is more frequent hiring and training. Barnes, Crowe, and Shaefer (2007) and Watlington et al. (2010) study the costs of turnover in terms of recruiting, screening, and training. The authors do an indepth accounting exercise with five school districts and find that a typical new hire costs $\$ 11,891$, on average. Because the average teacher turns over every 6.13 years (the average
years of experience in Hendricks (2014)), the yearly cost of hiring is $\$ 1,938$ per teacher each year under the status quo retention pattern. I allow retention patterns to evolve in response to compensation and working conditions and explicitly calculate the cost of turnover based on the share of teachers that attrit in a year multiplied by the number of teachers times the cost of replacing each.

I calculate other fixed costs of employment, but they are trivial. The wage base of unemployment insurance is smaller than the typical yearly salary, so UI taxes function effectively as a head tax, of only $\$ 11$ per teacher per year in this district (calculated from financial disclosures from the district). The district also pays $\$ 167$ per teacher per year for workers compensation. A final consideration is the costs for space. Throughout, I use as the benchmark a sort of steady state. If a class is made smaller, I assume that each classroom can be made smaller costlessly, either in new construction or in a one-time construction cost. It may be that teachers have their own office space in some districts, but I ignore this cost for simplicity.

Online Appendix C: Objective Functions

Teacher Utility

As a kind of baseline, I use as the objective function the teacher-utility model estimated from the data, essentially acting as if the district's goal is to structure conditions to maximize the wellbeing of teachers, subject to the budget constraint. This may also be similar to the stated goals of a teachers' union. This model provides some of the core influence of the other optimization criteria because teacher utility affects the retention probabilities that influence, for instance, achievement. I estimate the model of teacher utility (the coefficients from simply regressing teacher choices on attributes) with nonlinearities for merit pay, growth rate, replacement rate, and class size; these nonlinearities prevent compensation from loading into the attribute with the highest average return.

When the maximization is unfettered, class size balloons to pay for higher salaries. In Texas, classes can be no more than 22 students for students from kindergarten through
fourth grade, but there is no statutory requirement for more advanced students, though legislation was proposed to limit class sizes to no more than 28 students for students in fifth through eighth grade (Green 2014). While the structure of other elements of compensation have little direct impact on students, class-size reductions are not intended, primarily, to appeal to teachers. For this exercise and those that follow, I limit the permissible range of class size to no more than 30 so that, should class-size reductions be an appealing improvement to teaching conditions, we can see those materialize in smaller class size, but not allow classes to explode in order to provide more generous compensation to incumbent teachers.

Teacher Retention

When teachers leave Aldine ISD, either by retirement from the profession or by transferring to another district, the district typically must replace the departed with novice teachers, which is quite costly to student achievement (Wiswall 2013). One objective that districts could pursue would be to structure compensation and working conditions to improve retention. I use the same basic structure used above to adjust for endogenous retention: retention probabilities are adjusted off a baseline based on how much the structure improves teacher utility. Using those adjusted retention probabilities, I simulate the share of teachers who will be in each experience cell in steady state. The dot product of experience shares and experience produces the average experience level with that structure of compensation, which is the object I maximize.

Student Achievement Production Function

What structure of pay maximizes student achievement rather than teacher satisfaction or retention? I construct the achievement function to reflect the representative estimates of quasi-experimental domestic studies in terms of experience, class size, merit pay, and selection. I assume student achievement is a function of parent and teacher inputs, $A=g(P, T)$, where P reflects the input of parent and T reflects inputs of the teacher. The parents' impact, $P=h(t, r, k)$, is a function of the time parents allot to children (t), the resources made available to children (r), and the number of children the
parents care for (k) (Price 2008; Loken, Mogstad, and Wiswall 2012; Black, Devereux, and Salvanes 2005). The teacher's role in achievement is a function of her innate teaching ability ψ, her skill σ which is influenced by experience ϵ and training τ, her effort e, and the size of her class c.

$$
T=f(\psi, \sigma(\epsilon, \tau), e, c)
$$

The teacher's skill increases quickly in experience ϵ before slowing its incline after the first few years. Traditional training programs have demonstrated little effect on teacher skill, though we might consider professional evaluations and mentoring programs a new generation of training (Taylor and Tyler 2012). Finally, effort is conceived as induced, unnatural effort-the increase prompted by incentive or accountability (Fryer et al. 2012; Imberman and Lovenheim 2015; Macartney 2016). In part because of limits in the literature, the achievement function I calibrate is a linearization in most arguments.

Experience

Retention affects teacher quality through two channels. First, teachers improve as they gain experience, especially at the beginning of their careers. If a given teacher turns over, the students she would have had will instead be taught by a novice who is systematically less effective. Second, early in the career, teachers with the largest positive impacts on students are the most likely to leave the profession. Thus, when increasing the retention odds, the stock of teacher quality improves both in experience and in composition because the marginal teacher to leave is, on average, of higher quality. In the basic model, we focus on the influence of additional experience improving a teacher's ability, since the effects of retention on the distribution of initial quality is somewhat unclear (Wiswall 2013; Hendricks 2018).

To quantify the influence of experience in the model, I rely on estimates from the discontinuous career model in Table 2 of Papay and Kraft (2015). I normalize average new-teacher VAM to zero and infer the typical teacher improvements in math and English (at five years, a typical teacher has improved 0.1216 in math and 0.0824 in English; by
year 15, the typical teacher has improved an additional 0.1315 in math (suggesting that the typical teacher is 0.2531 better than a new teacher after having earned that much experience) and an additional 0.0831 in English (suggesting that the typical teacher with that experience is 0.1655 better than a new teacher)). Finally, the estimates suggest that teachers with 25 years of experience have improved from their 5 -year experience level by an additional 0.2413 in mathematics and 0.1513 in English (0.3629 cumulatively in math and 0.1845 cumulatively in English by year 25).

To provide a general profile of experience on quality, I average the math and English returns. I fit a regression model of average VAM on experience and experiencesquared using the first three experience nodes $(0,5$, and 15$)$, and a second model using the latter three points (5,15 , and 25) and use the predicted values (y-hat) from 0 through 5 in the first model and between 6 and 30 in the second model. Without the combination of these two piecewise models, the resulting experience profile either suggests convex increases in quality among veteran teachers, something never found in empirical work, or declines in quality among veteran teachers, which would contradict the estimates used to train the VAM profile in experience. The value-added profile that results from this procedure is most steeply increasing for new teachers but reflects the gains of experience throughout the life cycle of a teacher (Wiswall 2013; Papay and Kraft 2015). The resulting quality profile is presented in online Appendix figure 11.

Class Size

Analysts typically conclude that large class sizes reduce student achievement, especially for students that are young or low-income (Angrist and Lavy 1999; Krueger and Whitmore 2001; Jepsen and Rivkin 2009; Fredriksson, Ockert, Oosterbeek 2012, 2016; Schanzenbach 2014), but the literature contains a split (Hoxby 2000; Chingos 2013; Angrist, Lavy, Leder-Luis, and Shany 2019). In this paper, I incorporate domestic estimates of the influence of class size into the education production function. Krueger (1999) finds that an eight-student reduction (from 23 students to 15) increased achievement by 0.035σ per year, with larger effects in kindergarten $(0.120 \sigma$), using random
assignment from the Tennessee STAR experiment. ${ }^{37}$ In contrast, Hoxby (2000) exploits natural variation arising from cohort sizes and class-size rules and finds no impact of class size on student achievement; her use of test scores after summer break may reflect rapid fadeout for class-size induced achievement gains. Dee and West (2011) use a withinstudent comparison for middle-school students and, similarly, find no overall impact of class size on student achievement. Cho, Glewwe, and Whitler (2012) follow Hoxby using new data and find that a ten-student reduction in class size by $0.04-0.05 \sigma$ for students in elementary school, essentially in line with Krueger (1999). The domestic evidence tends to suggest class size does not matter as much for older grades and matters most for very young children. I take the average of these four estimates to predict that student achievement rises by 0.022σ for elementary students, with no effect of class sizes for students in middle or high school (Rivkin, Hanushek, and Kain 2005; Dee and West 2011; Chingos 2012). I use data from the National Center for Education Statistics to know what proportion of the district in question is a part of each school-type. The district serves a student body of 15.2 percent pre-school aged children, 37.6 percent elementary-school aged children, 22.5 percent middle school aged children, and 24.7 percent high-school aged children. I calculate the average effect (the dot product of the percent-in-group times the class size effect) which yields 0.012σ per ten-student change or 0.0012σ per student change.

Merit Pay

The evidence on merit pay suggests modest improvements to achievement in the presence of stronger incentives (Lavy 2002; Springer et al. 2010; Muralidharan and Sundararaman 2011; Sojourner, Fryer et al. 2011; Fryer 2013; Mykerezi, and West 2014; Dee and Wyckoff 2015; Imberman and Lovenheim 2015; Balch and Springer 2015). The settings of each study differ enough to make comparison difficult. In many programs, schools implemented the reform with other supports; in others, the incentives apply to
${ }^{37}$ The experimental setting may alter teachers' incentives, since the results of a known experiment may influence future working conditions.
school-wide or district-wide goals. Because of the program's similarity to the one posed to teachers in my survey and the setting is geographically proximate (from Houston, Texas), I use Imberman and Loveheim (2015) for a parameter value. They use the fact that gradelevel incentives are stronger for smaller grades, and find that a $\$ 1,000$ merit-pay increase induces a 0.0136σ increase in student achievement.

Highly rated teachers express stronger preferences for an offer containing merit pay than other teachers. To calculate the influence of performance pay on selection in retention, I simulate the retention patterns of a cohort of 10,000 hypothetical teachers and assume that they are uniformly distributed across ten quality deciles when they begin teaching (no positive selection into the teaching environment based on performance pay). I calculate the utility each of those teachers have for teaching, using the differential estimates of the top three deciles for performance pay, and I add a random component to their utility from the empirical distribution of the errors in the empirical model to reflect that estimated preferences are not deterministic. I then rank each teacher's utility for teaching from greatest to least so that I have an ordered set of teachers with the most prone to leave the profession at the bottom of the ranked set and the least likely arranged at the top.

Using the retention model constructed from Hendricks, I calculate what fraction of new teachers will attrit based on the considered compensation structure and working conditions. To construct the set of teachers who persists into a second year, I assume that those who attrit count up to that fraction of leavers from the bottom of the ranked set of teachers. (For example, if the Hendricks model predicts that 5 percent of new teachers will attrit, I copy the list of teachers from the first year to the second year while removing the 5 percent of teachers who had the lowest utility from teaching). Because the random component is substantial, those that least prefer teaching includes a substantial share of highly rated teachers, even when considering compensation bundles including significant in performance pay. I iterate this process for each year of a teacher's career to calculate, in
the end, the distribution of types (what share of teachers are in each decile bin in steady state).

I allow the model to select whether to evaluate teachers using "VAM only" or "VAM and Danielson," a distinction that is important for calculating the impact of changing retention patterns. Using the teacher data, I calculate the average VA in each decile bin, controlling for teacher experience. That is, the performance pay program compares teachers to those with similar experience to reward talent, rather than experience, which is already rewarded by the salary gradient. (Interestingly, VA does not have a significant experience gradient in Aldine, but Danielson scores do). When creating deciles based on VAM and Danielson together, I normalize both VAMs and Danielson scores to have a SD equal to 1 and add the two measures together before generating decile bins based on the sum. I calculate the average VA in each decile bin based on VAM + Danielson and the average VA in each decile bin based on VAM alone, using only teacher observations that have both VAM and Danielson so the samples forming the VA vectors are identical. The dot product of the decile shares and these VA vectors generates the VA produced by the selection in retention of the considered compensation structure.

Online Appendix D: Online Appendix Figures

Online Appendix Figure 1—Sample Compensation Question

If two schools that were identical in every other way made the following offers, which would you prefer:

	School 1	School 2
Starting salary:	\$52,850	\$46,850
Health plan:	\$1,400 deductible; $\$ 40$ monthly premium	$\begin{aligned} & \$ 1,250 \text { deductible; } \\ & \$ 90 \text { monthly } \\ & \text { premium } \end{aligned}$
Salary growth:	1.0\% each year	2.0\% each year
Reward:	Teachers receive $\$ 0$ reward if they are in the top 25% of the school based on principal ratings and student growth	Teachers receive $\$ 0$ reward if they are in the top 25% of the school based on principal ratings and student growth
Retirement:	A pension that replaces 65% of your salary in retirement if you stay 30 years	A pension that replaces 35% of your salary in retirement if you stay 30 years
	C	6

Note: This figure presents an illustration of the questions answered by teacher respondents with respect to compensation structure.

Online Appendix Figure 2-Sample Working-Condition Question

If two schools that were identical in every other way made the following offers, which would you prefer:

	School 1	School 2
Starting salary:	$\$ 49,850$	$\$ 52,700$
		Teachers receive

Teachers receive a renewable 2year term contract after a 1-year probationary contract

Distance from home:	15-minute drive	1-minute drive
Class size:	23	27

| Assistance: | The school hires
 someone to help
 you with
 instructional
 support for 9
 hours each week |
| :---: | :---: | | The school hires |
| :---: |
| someone to help |
| yyou with |
| instructional |
| support for 0 |
| hours each week |\(\left|\left\lvert\, \begin{array}{c|c|}\hline \& C

\hline \hline\end{array}\right.\right.\)

Note: This figure presents an illustration of the questions answered by teacher respondents with respect to working conditions.

If two schools that were identical in every other way
made the following offers, which would you prefer:

	School 1	School 2
Starting salary:	$\$ 47,150$	$\$ 50,300$
Percent of students in poverty:	38%	53%
Percent of students who are minority:	36%	66%
Average student achievement:	$43^{\text {rd }}$ percentile	$57^{\text {th }}$ percentile
Principal support:	Principals are hands-off with disruptive students	Principals are hands-off with disruptive students
School bus:	The school's buses are blue	The school's buses are not blue
C	C	

[^16]Online Appendix Figure 4-Differential Compensation Preference by Teacher-Quality Decile

Note: This figure shows visually whether teachers of different quality deciles have distinct preferences for various compensation attributes, relative to bottom-decile teachers.

Note: This figure shows visually whether teachers of different quality deciles have distinct preferences for various working-condition attributes, relative to bottom-decile teachers.

Online Appendix Figure 6-Differential Students-\&-LEADERSHip Preference by Teacher-Quality Decile

Note: This figure shows visually whether teachers of different quality deciles have distinct preferences for various student-and-leadership attributes, relative to bottom-decile teachers.

Online Appendix Figure 7-Stand-Alone Attribute Evaluation Question

Note: This figure presents the results of additional survey questions in which a subset of teachers were asked to evaluate the probability that they would accept an offer that featured varying attributes.

Online Appendix Figure 8-Comparing Aldine-ISD Total Compensation to Distribution

Note: This figure compares the average total compensation at Aldine ISD to the distribution of total compensation in the U.S. and in Texas using data from the Local Education Finance Survey.

Online Appendix Figure 9-Comparing Aldine-ISD Salary Share to Distribution

Note: This figure compares the average total compensation at Aldine ISD to the distribution of total compensation in the U.S. and in Texas using data from the Local Education Finance Survey.

Online Appendix Figure 10-Value-Added Growth with Experience

[^17]Online Appendix Figure 11-Union Strength and Benefit Share

Note: This figure shows the relationship between union strength and the share of a teacher's
compensation that comes to her in the form of benefits, conditional on salary bins.

Online Appendix E: Online Appendix Tables

Online Appendix Table 1—Offer Attributes for Conjoint Experiments

Attribute	Levels
Salary	$\$ 46,550, \$ 46,700, \$ 46,850, \$ 47,000, \$ 47,150, \$ 47,300 \ldots \$ 53,300, \$ 53,450$ $0.2 \%, 0.4 \%, 0.6 \%, 0.8 \%, 1.0 \%, 1.2 \%, 1.4 \%, 1.6 \%, 1.8 \%, 2.0 \%, 2.2 \%, 2.4 \%$,
Growth	2.6\%
Deductible	\$1,200, \$1,250, \$1,300, \$1,350, \$1,400, \$1,450, \$1,500, \$1,550, \$1,600...\$1,800
Premium	Monthly health insurance premium: $\$ 40, \$ 90$
Co-pay	\$0, \$5, \$10, \$15, \$20, \$25, \$45, \$50, \$55, \$60, \$65, \$70, \$75
Reward	$\$ 0, \$ 1,750, \$ 2,000, \$ 2,250, \$ 2,500, \$ 2,750, \$ 3,000, \$ 3,250$
Rating	Evaluated based on: student growth and principal evaluations, student growth only
Retirement plan	pension, 403(b) (defined contributions)
Replacement rate	$33 \%, 35 \%, 37 \%, 39 \%, 41 \%, 43 \%, 45 \%, 48 \%, 50 \%, 52 \%, 54 \%, \ldots 63 \%, 65 \%, 67 \%$
Time till tenure	immediate, 1 year, 2 years, 3 years
Review term	1 year, 2 years, 3 years, 4 years, 5 years 1 minutes, 3 minutes, 5 minutes, 7 minutes, 9 minutes, 11 minutes... 19
Commute time	minutes
Hired assistance	0 hours per week, 5 hours per week, 7 hours per week, 9 hours per week
Poverty rate	$38 \%, 43 \%, 47 \%, 48 \%, 53 \%, 58 \%, 63 \%, 68 \%, 72 \%, 77 \%, 82 \% \ldots 97 \%, 99 \%$
Minority share Av. achmt prctle	$12 \%, 18 \%, 24 \%, 30 \%, 36 \%, 42 \%, 48 \%, 66 \%, 72 \%, 78 \%, 90 \%, 96 \%, 100 \%$ percentiles: 23 rd, 27 th, 31 st, 35 th, 39 th, 43 rd, 47 th, 53 rd, 57 th, 61 st... 73 rd , 77th
Principal	hands-off with disruptive students, supportive with disruptive students
Bus color	blue, not blue

Online Appendix Table 2 - Teacher Demographics

	Average	Std. Dev.
Experience in years	9.03	(9.21)
Bachelor's	0.455	(0.498)
Master's	0.299	(0.458)
White	0.276	(0.447)
Hispanic	0.208	(0.406)
Black	0.367	(0.482)
Female	0.680	(0.467)
VAM score	0.000	(0.995)
Danielson score	12.8	(2.07)

Online Appendix Table 3- Effects of Compensation Attributes on the Probability that Teachers Accept the Job Offer (Complement to Figure 1)

	Coeff. (1)	Choice Std. err. (2)	P-value (3)
Starting salary			
\$51,000	0.266**	(0.010)	0.000
\$54,000	0.460**	(0.015)	0.000
Salary growth			
1 percent	0.175**	(0.015)	0.000
2 percent	0.324**	(0.016)	0.000
Merit pay			
\$2000	0.107**	(0.013)	0.000
\$3000	0.062**	(0.012)	0.000
VAM only	-0.077^{*}	(0.015)	0.000
Retirement			
Replaces 40\%	0.095**	(0.022)	0.000
Replaces 50\%	0.177**	(0.031)	0.000
Replaces 60\%	0.381**	(0.022)	0.000
Replaces 70\%	0.497**	(0.028)	0.000
401 k -style	0.144**	(0.017)	0.000
Health insurance $\$ 50 / \mathrm{mo}$.			
$\begin{gathered} \text { premium } \\ \$ 1,300 \end{gathered}$	0.048**	(0.009)	0.000
deductible	0.018	(0.030)	0.544
R-squared	0.1904		
Adj. R-squared	0.1894		
Num. obs.	31,820		

Online Appendix Table 4- Effects of Working-Condition Attributes on the Probability that Teachers Accept the Job Offer (Complement to Figure II)

		Choice	
	Coeff. (1)	Ctd. err. (2)	P-value (3)
Class size			
24 students	$-0.163^{* *}$	(0.018)	0.000
28 students	$-0.408^{* *}$	(0.014)	0.000
Probationary period			
1-year	$-0.084^{* *}$	(0.021)	0.000
2-year	$-0.072^{* *}$	(0.019)	0.000
3-year	$-0.190^{* *}$	(0.021)	0.000
Renewable terms			
2-year	0.025^{*}	(0.012)	0.047
3-year	-0.005	(0.010)	0.603
Commute time			
~10 minutes	$-0.036^{* *}$	(0.011)	0.001
~20 minutes	$-0.075^{* *}$	(0.011)	0.000
Teacher support			
5 hours/wk	$0.169^{* *}$	(0.011)	0.000
7 hours/wk	$0.157^{* *}$	(0.010)	0.000
9 hours/wk	$0.188^{* *}$	(0.011)	0.000
R-squared	0.281		
Adj. R-squared	0.280		
Num. obs.	31,574		

Online Appendix Table 5- Effects of Working-Condition Attributes on the Probability that Teachers Accept the Job Offer (Complement to Figure III)

	Choice		
	Coeff. (1)	Std. err. (2)	P-value (3)
Student poverty			
60\% low-income	$-0.017^{* *}$	(0.019)	0.379
80\% low-income	-0.081**	(0.017)	0.000
100\% low-income	$-0.116^{* *}$	(0.023)	0.000
Student ethnicity			
60\% minority	0.031	(0.019)	0.110
90\% minority	0.012	(0.015)	0.429
Average achievement			
50 th percentile	0.153**	(0.012)	0.000
66 th percentile	0.253**	(0.030)	0.000
Principal affect			
Supportive	0.764**	(0.012)	0.000
Placebo			
Bus blue	0.009	(0.011)	0.402
R-squared	0.365		
Adj. R-squared	0.364		
Num. obs.	23,678		

Online Appendix Table 6-Preferences for Working Conditions by Teacher
QuALITY

Online Appendix Table 7-Preferences for Student and Leadership Characteristics by Teacher Quality

Choice		Choice		
	Reference	Quality-decile	Reference	Quality-decile
Group	interaction	Group	interaction	
(1)	(2)	(1)	(2)	

Benchmark

Starting salary	$0.068^{* *}$	-0.002	$0.068^{* *}$	-0.002
	(0.002)	(0.002)	(0.002)	(0.002)
Students				
Percent low income	$-0.025^{* *}$	0.002	$-0.025^{* *}$	0.002
	(0.005)	(0.008)	(0.005)	(0.008)
Percent minority	0.001	0.006	0.001	0.006
	(0.003)	(0.005)	(0.003)	(0.005)
Ave. achievement	$0.027^{* *}$	0.010	$0.027^{* *}$	0.010
	(0.005)	(0.009)	(0.005)	(0.009)

Principal affect

Supportive	$0.588^{* *}$	-0.007	$0.555^{* *}$	-0.026
	(0.020)	(0.034)	(0.024)	(0.034)
Placebo				
Blue bus	-0.014	0.037	-0.026	0.034
	(0.017)	(0.028)	(0.020)	(0.029)

Experience bins	X	X
Exp. interactions	.	X
R-squared	0.373	0.375
Observations	15,982	15,982

[^18]Online Appendix Table 8-AsSEsSing the Influence of Different Quality Measures on Differential preferences for Performance Pay

	Choice (1)	Choice (2)	Choice (3)	Choice (4)	Choice (5)
Reward	$0.029^{* *}$	0.023^{*}	$0.018^{* *}$	0.019	0.013^{*}
	(0.003)	(0.009)	(0.007)	(0.013)	(0.007)
Reward \times VAM index		$0.037^{* *}$		0.036^{*}	
		(0.014)		(0.018)	
Reward \times Danielson index			$0.032^{* *}$	0.011	
			(0.012)	(0.018)	
Reward \times Quality index					$0.043^{* *}$
					(0.010)
Observations					

Note: * $p<0.05,{ }^{* * *} p<0.001$. This table presents the interaction of merit pay with various teacher-quality indices; the results are qualitatively similar across the measure of quality we use.

Online Appendix Table 9-Experience Heterogeneity in Compensation Preferences

	Linear Probability			
	$\begin{gathered} \text { Novice } \\ \text { teachers } \\ \begin{array}{c} \text { (1st quartile: } \\ \text { yrs) } \end{array} \end{gathered}$ (1)	New-teacher differential $\underset{\text { yrs) }}{(2 \text { nd quartile: }} \text { 2-6 }$ (2)	Experiencedteacher differential (3rd quartile: $7-14 \mathrm{yrs}$) (3)	Veteran-teacher differential (4th quartile: $15-36$ (4)
Starting salary	$\begin{aligned} & \hline 0.093^{* *} \\ & (0.003) \end{aligned}$	$\begin{gathered} \hline 0.001 \\ (0.004) \end{gathered}$	$\begin{aligned} & \hline-0.009 * \\ & (0.004) \end{aligned}$	$\begin{gathered} \hline-0.029 * * \\ (0.004) \end{gathered}$
Salary growth	$\begin{aligned} & 0.205^{* *} \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.019 \\ (0.012) \end{gathered}$	$\begin{aligned} & -0.025^{*} \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.02 \\ (0.012) \end{gathered}$
Bonus amount	$\begin{aligned} & 0.026^{* *} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.009 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.007) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.008) \end{aligned}$
VAM only	$\begin{gathered} -0.077^{* *} \\ (0.017) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.018) \end{gathered}$	$\begin{gathered} -0.012 \\ (0.017) \end{gathered}$
Replacement	$\begin{aligned} & 0.012^{* *} \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.003^{*} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.006^{* *} \\ & (0.001) \end{aligned}$
401k-style	$\begin{gathered} 0.079 * * \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.014 \\ & (0.020) \end{aligned}$
Premium (yearly)	$\begin{gathered} -0.064^{*} \\ (0.022) \end{gathered}$	$\begin{gathered} -0.01 \\ (0.037) \end{gathered}$	$\begin{gathered} -0.013 \\ (0.036) \end{gathered}$	$\begin{gathered} -0.057 \\ (0.036) \end{gathered}$
Deductible	$\begin{aligned} & -0.589^{*} \\ & (0.221) \end{aligned}$	$\begin{gathered} -0.062 \\ (0.156) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.149) \end{gathered}$	$\begin{aligned} & 0.965^{* *} \\ & (0.151) \end{aligned}$

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying different levels of teacher experience. Standard errors clustered at the teacher level.

Online Appendix Table 10-Experience Heterogeneity in Working-Condition Preferences

	Linear Probability			
	Novice teachers (1st quartile: $0-1$ yrs) (1)	New-teacher differential (2nd quartile: 2-6 yrs) (2)	Experiencedteacher differential (3rd quartile: 7-14 yrs) (3)	Veteran-teacher differential (4th quartile: $15-36$ yrs) (4)
Probationary period	$\begin{gathered} -0.045^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.006) \end{gathered}$
Term length	$\begin{aligned} & -0.003 \\ & (0.005) \end{aligned}$	$\begin{gathered} -0.010 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.007) \end{gathered}$
Commute time	$\begin{gathered} -0.005^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$
Class size	$\begin{gathered} -0.054^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.002) \end{gathered}$	$\begin{aligned} & 0.004^{*} \\ & (0.002) \end{aligned}$
Assistance	$\begin{gathered} 0.021^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.002) \\ \hline \end{gathered}$	$\begin{gathered} 0.004^{*} \\ (0.002) \\ \hline \end{gathered}$	$\begin{aligned} & 0.005^{*} \\ & (0.002) \end{aligned}$

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying different levels of teacher experience. Standard errors clustered at the teacher level.

Online Appendix Table 11-Experience Heterogeneity in Student/Principal Preferences

	Linear Probability			
	Novice teachers (1st quartile: yrs) (1)	New-teacher differential $\underset{\text { yrs) }}{\text { (2nd quartile: }}$ 2-6 (2)	Experiencedteacher differential (3rd quartile: 7-14 yrs) (3)	Veteran-teacher differential (4th quartile: 15-36 yrs) (4)
Percent low income	$\begin{gathered} -0.031^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.007) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.007) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.007) \end{gathered}$
Percent minority	$\begin{aligned} & -0.001 \\ & (0.003) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.004) \end{gathered}$	$\begin{aligned} & 0.009^{*} \\ & (0.004) \end{aligned}$
Ave. achievement	$\begin{gathered} 0.048^{* *} \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.009) \end{aligned}$	$\begin{gathered} -0.010 \\ (0.008) \end{gathered}$	$\begin{aligned} & 0.018^{*} \\ & (0.008) \end{aligned}$
Supportive principal	$\begin{gathered} 0.722^{* *} \\ (0.020) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.126^{* *} \\ (0.029) \end{gathered}$
Blue bus	$\begin{gathered} 0.001 \\ (0.016) \\ \hline \end{gathered}$	$\begin{gathered} 0.022 \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} 0.009 \\ (0.024) \\ \hline \end{gathered}$	$\begin{gathered} 0.007 \\ (0.024) \\ \hline \end{gathered}$

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying different levels of teacher experience. Standard errors clustered at the teacher level.

Online Appendix Table 12-Sex Heterogeneity in Compensation Preferences

	Linear Probability	
	Female teachers (1)	Male differential (2)
Starting salary	$0.082^{* *}$ (0.002)	$0.011^{* *}$ (0.003)
Salary growth	$0.192^{* *}$ (0.009)	-0.001 (0.011)
Bonus amount	$0.030^{* *}$	-0.005
	(0.004)	(0.007)
VAM only	$-0.079^{* *}$	0.011
	(0.015)	(0.016)
Replacement	$0.015^{* *}$	0.000
	(0.001)	(0.001)
401k-style	$0.084^{* *}$	-0.035
	(0.011)	(0.018)
Premium (yearly)	$-0.093^{* *}$	0.053
	(0.016)	(0.033)
Deductible	-0.211	$-0.513^{* *}$
	(0.214)	(0.134)

Note: ${ }^{*} p<0.05,^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying male teachers. Standard errors clustered at the teacher level.

Online Appendix Table 13-Sex Heterogeneity in Working-Condition Preferences

	Linear Probability	
	Female teachers (1)	Male differential (2)
Probationary period	$-0.043^{* *}$	-0.008
	(0.004)	(0.006)
Term length	-0.003	0.002
	(0.004)	(0.006)
Commute time	$-0.005^{* *}$	0.000
	(0.001)	(0.001)
Class size	$-0.055^{* *}$	$0.007^{* *}$
	(0.001)	(0.002)
Assistance	$0.025^{* *}$	$-0.008^{* *}$
	(0.001)	(0.002)

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying male teachers. Standard errors clustered at the teacher level.

Online Appendix Table 14-Sex Heterogeneity in Student and Principal Preferences

	Linear Probability	
Female		
teachers		
(1)		

differential

(2)\end{array}\right]\)| | | |
| :---: | :---: | :---: |
| Percent low income | $-0.027^{* *}$ | -0.005 |
| | (0.003) | (0.006) |
| Percent minority | 0.004^{*} | -0.001 |
| | (0.002) | (0.004) |
| Ave. achievement | $0.048^{* *}$ | 0.000 |
| | (0.004) | (0.008) |
| Supportive principal | $0.792^{* *}$ | $-0.130^{* *}$ |
| | (0.013) | (0.027) |
| Blue bus | 0.015 | -0.028 |
| | (0.012) | (0.022) |

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying male teachers. Standard errors clustered at the teacher level.

Online Appendix Table 15-Racial Heterogeneity in Compensation Preferences

	Linear Probability		
	White teachers (1)	Black differential (2)	Hispanic differential (3)
Starting salary	$\begin{gathered} 0.082^{* *} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.003) \end{gathered}$	$\begin{aligned} & 0.008^{*} \\ & (0.004) \end{aligned}$
Salary growth	$\begin{gathered} 0.213^{* *} \\ (0.011) \end{gathered}$	$\begin{gathered} -0.048^{* *} \\ (0.010) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.011) \end{gathered}$
Bonus amount	$\begin{aligned} & 0.011^{*} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.037^{* *} \\ (0.006) \end{gathered}$	$\begin{aligned} & 0.023^{*} \\ & (0.007) \end{aligned}$
VAM only	$\begin{gathered} -0.086^{* *} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.028 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.017) \end{gathered}$
Replacement	$\begin{aligned} & 0.016^{* *} \\ & (0.001) \end{aligned}$	$\begin{gathered} -0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.001) \end{gathered}$
401k-style	$\begin{aligned} & 0.059^{* *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.035^{*} \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.024 \\ (0.019) \end{gathered}$
Premium (yearly)	$\begin{gathered} -0.077^{* *} \\ (0.021) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.02 \\ (0.035) \end{gathered}$
Deductible	$\begin{array}{r} -0.239 \\ (0.221) \\ \hline \end{array}$	$\begin{array}{r} -0.067 \\ (0.127) \\ \hline \end{array}$	$\begin{gathered} -0.247 \\ (0.148) \\ \hline \end{gathered}$

Online Appendix Table 16-Racial Heterogeneity in Working-Condition Preferences

	Linear Probability		
	White teachers (1)	Black differential (2)	Hispanic differential (3)
Probationary period	$-0.037^{* *}$	$-0.021^{* *}$	-0.003
	(0.005)	(0.005)	(0.006)
Term length	0.002	-0.014^{*}	0.000
	(0.005)	(0.006)	(0.007)
	$-0.006^{* *}$	0.001	0.001
Commute time	(0.001)	(0.001)	(0.001)
	$-0.055^{* *}$	$0.007^{* *}$	-0.005^{*}
Class size	(0.001)	(0.002)	(0.002)
		0.001	-0.001
Assistance	$0.023^{* *}$	$0.001)$	(0.002)

Online Appendix Table 17-Racial Heterogeneity in Student and Principal Preferences

	Linear Probability		
	White teachers	Black differential (2)	Hispanic differential (3)
Percent low income	$\begin{gathered} -0.031^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.006) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.007) \end{aligned}$
Percent minority	$\begin{gathered} 0.000 \\ (0.003) \end{gathered}$	$\begin{aligned} & 0.011^{*} \\ & (0.003) \end{aligned}$	$\begin{gathered} -0.001 \\ (0.004) \end{gathered}$
Ave. achievement	$\begin{gathered} 0.058^{* *} \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.021^{*} \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.008) \end{aligned}$
Supportive principal	$\begin{aligned} & 0.809^{* *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.065^{*} \\ & (0.024) \end{aligned}$	$\begin{gathered} -0.099 * * \\ (0.030) \end{gathered}$
Blue bus	$\begin{array}{r} 0.013 \\ (0.014) \\ \hline \end{array}$	$\begin{array}{r} -0.014 \\ (0.020) \\ \hline \end{array}$	$\begin{array}{r} 0.005 \\ (0.024) \\ \hline \end{array}$

Online Appendix Table 18-Leaver Heterogeneity in Compensation Preferences

	Linear Probability		Linear Probability	
	Teachers that stay (1)	Marginalteacher differential (2)	Teachers that stay (3)	Marginalteacher differential (4)
Starting salary	$\begin{gathered} 0.085^{* *} \\ (0.002) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.087^{* *} \\ (0.002) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.002) \end{aligned}$
Salary growth	$\begin{gathered} 0.186^{* *} \\ (0.010) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.010) \end{gathered}$	$\begin{aligned} & 0.193^{* *} \\ & (0.010) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.010) \end{gathered}$
Bonus amount	$\begin{gathered} 0.031^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.035^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.006) \end{gathered}$
VAM only	$\begin{gathered} -0.068^{* *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.015) \end{gathered}$	$\begin{gathered} -0.069^{* *} \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.009 \\ & (0.016) \end{aligned}$
Replacement	$\begin{gathered} 0.014^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.014^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$
401k-style	$\begin{aligned} & 0.085^{* *} \\ & (0.012) \end{aligned}$	$\begin{gathered} -0.023 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.097^{* *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.015 \\ (0.017) \end{gathered}$
Premium (yearly)	$\begin{gathered} -0.095^{* *} \\ (0.027) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.027) \end{gathered}$	$\begin{gathered} -0.088^{* *} \\ (0.017) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.027) \end{gathered}$
Deductible	$\begin{aligned} & -0.252 \\ & (0.225) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.037) \end{gathered}$	$\begin{gathered} -0.124 \\ (0.228) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.037) \end{gathered}$
Experience bins Exp. interactions	X		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying teachers who left shortly after the survey, while nonparametrically controlling for teaching experience in yearly bins. Standard errors clustered at the teacher level.

Online Appendix Table 19-LEAver Heterogeneity in Working Condition Preferences

	Linear Probability		Linear Probability	
	Teachers that stay (1)	Marginalteacher differential (2)	Teachers that stay (3)	Marginalteacher differential (4)
Probationary period	$\begin{gathered} -0.049^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.047^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.005) \end{gathered}$
Term length	$\begin{gathered} 0.000 \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.001 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.006) \end{gathered}$
Commute time	$\begin{gathered} -0.004^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.005^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \end{gathered}$
Class size	$\begin{gathered} -0.055^{* *} \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.004^{*} \\ & (0.002) \end{aligned}$	$\begin{gathered} -0.055^{* *} \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.004^{*} \\ & (0.002) \end{aligned}$
Assistance	$\begin{gathered} 0.022^{* *} \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.003^{*} \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.022^{* *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.003^{*} \\ & (0.002) \end{aligned}$
Experience bins Exp. interactions	X		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	
Note: ${ }^{*} p<0.05, * * p<$ nonparametrically controll the teacher level.	1. This table entifying tea for teaching	ents a heteroge who left s ience in yearly	$\begin{aligned} & \text { y analysis by } \\ & \text { ly after the } \\ & \text { s. Standard er } \end{aligned}$	teracting each survey, while s clustered at

Online Appendix Table 20-Leaver Heterogeneity in Student and Principal Preferences

	Linear Probability		Linear Probability	
	Teachers that stay (1)	Marginalteacher differential (2)	Teachers that stay (1)	Marginalteacher differential (2)
Percent low income	$\begin{gathered} -0.028^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.006) \end{gathered}$	$\begin{gathered} -0.029^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.006) \end{gathered}$
Percent minority	$\begin{gathered} 0.004 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.003) \end{gathered}$
Ave. achievement	$\begin{gathered} 0.043^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.007) \end{gathered}$	$\begin{aligned} & 0.043^{* *} \\ & (0.004) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.007) \end{gathered}$
Supportive principal	$\begin{gathered} 0.760^{* *} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.709 * * \\ (0.024) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.026) \end{gathered}$
Blue bus	$\begin{gathered} 0.006 \\ (0.013) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.016 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.022) \end{gathered}$
Experience bins	X		X	
Exp. interactions	.		X	

Online Appendix Table 21-Grade-Level Heterogeneity in Compensation Preferences

	Linear Probability		
	Elementary School	Middle School	High School
	(1)	(2)	(3)
Starting salary	$0.090^{* *}$	0.002	0.001
	(0.003)	(0.004)	(0.004)
Salary growth	$0.193^{* *}$	0.003	-0.007
	(0.012)	(0.012)	(0.013)
Bonus amount	$0.035^{* *}$	-0.001	-0.017^{*}
	(0.006)	(0.008)	(0.008)
VAM only	$-0.074^{* *}$	0.010	0.011
	(0.019)	(0.018)	(0.019)
Replacement	$0.014^{* *}$	0.000	0.000
	(0.001)	(0.001)	(0.001)
Premium			
(yearly)			
Deductible	-0.010	0.011	
401k-style	$0.079^{* *}$	-0.061^{*}	0.009
(0.015)	(0.021)	(0.022)	
	(0.025)	(0.038)	0.039
		-0.082	0.043
		(0.156)	(0.167)

Note: ${ }^{*} p \bar{i} 0.05,{ }^{* *} p ; 0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying school type. Standard errors clustered at the teacher level.

Online Appendix Table 22- Grade-Level Heterogeneity in Working-Condition Preferences

	Linear Probability		
	Elementary School (1)	Middle School (2)	High School (3)
Probationary period	$\begin{gathered} -0.038^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.017^{*} \\ (0.006) \end{gathered}$	$\begin{gathered} -0.022^{*} \\ (0.007) \end{gathered}$
Term length	$\begin{gathered} 0.006 \\ (0.006) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.012) \end{aligned}$	$\begin{gathered} -0.014 \\ (0.007) \end{gathered}$
Commute time	$\begin{gathered} -0.004^{* *} \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$
Class size	$\begin{gathered} -0.062^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.011^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.016^{* *} \\ (0.002) \end{gathered}$
Assistance	$\begin{gathered} 0.023^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.002) \end{gathered}$

Note: ${ }^{*} \bar{p} 0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying school type. Standard errors clustered at the teacher level.

Online Appendix Table 23-Grade-Level Heterogeneity in Student and Principal Preferences

	Linear Probability		
	Elementary	Middle	High
	School	School	School
	(1)	(2)	(3)
Percent low income	$-0.029^{* *}$	-0.004	-0.008
	(0.005)	(0.007)	(0.007)
Percent minority	0.000	0.006	0.008
	(0.003)	(0.004)	(0.004)
Ave. achievement	$0.038^{* *}$	0.004	0.012
	(0.006)	(0.008)	(0.009)
Supportive principal	$0.757^{* *}$	0.034	0.012
	(0.022)	(0.031)	(0.033)
Blue bus	0.023	-0.011	-0.057^{*}
	(0.018)	(0.025)	(0.027)

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents a heterogeneity analysis by interacting each attribute with dummies identifying school type. Standard errors clustered at the teacher level.

Online Appendix Table 24-COMPEnsation Estimates for Simulation ExERCISES

	Linear (1)	Quadratic (2)
Starting salary	$\begin{gathered} 0.0846^{* *} \\ (0.0022) \end{gathered}$	$\begin{aligned} & 0.2863^{*} \\ & (0.1376) \end{aligned}$
Starting sal. sqr.		$\begin{gathered} -0.0020 \\ (0.0014) \end{gathered}$
Salary grth.	$\begin{gathered} 0.1918^{* *} \\ (0.0091) \end{gathered}$	$\begin{gathered} 0.2225^{* *} \\ (0.0370) \end{gathered}$
Salary grth. sqr.		$\begin{gathered} -0.0145 \\ (0.0136) \end{gathered}$
Performance pay	$\begin{gathered} 0.0293^{* *} \\ (0.0034) \end{gathered}$	$\begin{gathered} 0.1326 * * \\ (0.0232) \end{gathered}$
Performance pay sqr.		$\begin{gathered} -0.0386^{* *} \\ (0.0085) \end{gathered}$
VAM only	$\begin{gathered} -0.0767^{* *} \\ (0.0145) \end{gathered}$	$\begin{gathered} -0.0699^{* *} \\ (0.0175) \end{gathered}$
Retirement replcmnt.	$\begin{gathered} 0.0146^{* *} \\ (0.0005) \end{gathered}$	$\begin{gathered} 0.0388^{* *} \\ (0.0077) \end{gathered}$
Retire. replmt. sqr.		$\begin{gathered} -0.0002^{*} \\ (0.0001) \end{gathered}$
401k-style	$\begin{gathered} 0.0767^{* *} \\ (0.0100) \end{gathered}$	$\begin{gathered} 0.0524^{* *} \\ (0.0135) \end{gathered}$
Deductible	$\begin{gathered} -0.3117 \\ (0.2115) \end{gathered}$	$\begin{gathered} -0.3003 \\ (0.2335) \end{gathered}$

Premium	$-0.0821^{* *}$	$-0.1000^{* *}$
(0.0141)	(0.0160)	

Observations	0.193	0.195
R-squared	31,820	31,820

Note: ${ }^{*} p<\overline{0.05,}{ }^{* *} p<0.001$. This table presents the estimated utility coefficients for the simulation exercises; standard errors clustered at the teacher level.

Online Appendix Table 25-Working Conditions Estimates for Simulation EXERCISES

	Linear (1)	Quadratic (2)
Starting salary	$0.0846^{* *}$	$0.0787^{* *}$
	(0.0013)	(0.0016)
Time-to-tenure	$-0.0424^{* *}$	$-0.0450^{* *}$
	(0.0036)	(0.0037)
Review frequency	-0.0028	-0.0065
	(0.0037)	(0.0037)
Commute time (mins)	$-0.0045^{* *}$	$-0.0026^{* *}$
	(0.0005)	(0.0006)
Class size	$-0.0502^{* *}$	0.0916^{*}
	(0.0011)	(0.0289)
Class size sqr.		$-0.0029^{* *}$
		(0.0006)
Assistance (hrs/wk)	$0.0217^{* *}$	$0.0351^{* *}$
	(0.0008)	(0.0039)
Assistance sqr.		$-0.0018^{* *}$
Observations		(0.0005)
R-squared		0.279

Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents the estimated utility coefficients for the simulation exercises; estimates are adjusted so that they are directly comparable to the coefficient estimates in prior table. Standard errors clustered at the teacher level.

Online Appendix Table 26-Relationship between Union Influence and Benefit Share

	Benefit share	Benefit share	Benefit share
	(1)	(2)	(3)
Union strength	$0.0260^{* *}$	$0.0274^{* *}$	$0.0278^{* *}$
	(0.006)	(0.007)	(0.007)

Salary level No Yes No

Salary bins No No Yes

Mean DV	0.355	0.355	0.355

$\begin{array}{lll}\text { Observations } & 14,389 \quad 14,389 & 14,389\end{array}$
$\begin{array}{llll}\text { R-squared } & 0.187 & 0.192 & 0.268\end{array}$
Note: ${ }^{*} p<0.05,{ }^{* *} p<0.001$. This table presents the relationship between union strength and the share of a teacher's compensation received in benefits. Data from LEFS; standard errors clustered at the state level.

Online Appendix F: Invitation Materials

Exhibit 1—Email Invitation

Subject: Annual Aldine Survey for [David] (Amazon Gift Card as Payment)
Dear [David],
Please take a few minutes to respond to Aldine's annual survey. Your insights will be really helpful as we improve [MacArthur Elementary] policies to meet your needs.

Follow this link to the Survey: Take the Survey
Or copy and paste the URL below into your internet browser:
https://wharton.qualtrics.com/SE?Q DL=2hF0dupiHRHRNPL 3kOTLRFe6J82Uy9 M LRP eajfSglx4nJPpOt\&Q CHL=email

Participating in this survey means answering a series of questions about your experience in an Aldine ISD school. It will take about 15 minutes to complete. All information will be kept strictly confidential and no Aldine ISD employee will have access to your individual responses. If you take the survey in the next three days, you have a chance to win one of $75 \$ 10$ Amazon gift certificates as payment which we will email to you directly!

Please feel free to contact me with any comments or questions.
Thank you so much for all your help and all you do!
Thanks so much!
Andrew
Researcher, University of Pennsylvania

Follow this link to the Survey:

Take the Survey
Or copy and paste the URL below into your internet browser:
https://wharton.qualtrics.com/SE?Q DL=2hF0dupiHRHRNPL 3kOTLRFe6J82Uy9 M LRP eajfSglx4nJPpOt\&Q CHL=email
Follow the link to opt out of future emails:
Click here to unsubscribe

Exhibit 2-Overview of Teacher Survey

Overview of Teacher Survey

Contact Information: University of Pennsylvania, 3700 Market Street, Philadelphia, PA 19104, iohnsta@upenn.edu

What is the purpose of the study and what will you be asked to do?
The purpose of the study is to learn more about the attitudes and experiences of teachers. Your insights will contribute to the improvement of Aldine ISD's teacher policies and training. Participating in this study entails answering a series of questions about your attitudes and experiences toward your work. The survey will take no more than 10-15 minutes to complete.

How will confidentiality be maintained and your privacy be protected?

Your participation in this study is voluntary. The research team will make every effort to keep all the information you tell us during the study strictly confidential, as required by law. The Institutional Review Board (IRB) at the University of Pennsylvania is responsible for protecting the rights and welfare of research volunteers like you. We have assigned you a confidential ID number, and any information you provide will be stored using that ID number. Separately, we maintain a key linking ID to name, and this key is stored in a separate file on a password-protected server at the University of Pennsylvania. All data collected in the study will be kept strictly confidential and separate from official Aldine ISD records. No Aldine ISD staff member will have access to your individual responses.

What should you do if you have questions?

If you have questions about the survey or your participation in this study, please email johnsta@upenn.edu.

By completing the following web pages, you are agreeing to take part in the research study. Thank you very much for your participation.

Exhibit 3—Pre-Question Instructions

The first 11 questions will ask you to choose between two hypothetical job offers.
We thank you for carefully considering each offer and designating which offer you would prefer.

[^0]: ${ }^{1}$ Johnston: Department of Economics, University of California, Merced; email: acjohnston@ucmerced.edu. For clear insight, I am grateful to David Card, Damon Clark, Mark Duggan, Laura Giuliano, Alex Mas, Jesse Rothstein, Kenneth Shores, and Christopher Walters, as well as seminar participants at the National Bureau of Economic Research, Princeton University, UC Berkeley, and Stanford University. Benjamin Feis provided outstanding research assistance. Financial support from the Institute for Education Science, the U.S. Department of Labor, and National Bureau of Economic Research is gratefully acknowledged. Views expressed are those of the author and should not be attributed to The University of California. © Johnston, 2020.

[^1]: ${ }^{2}$ For example, Chetty et al. (2014) find that being exposed to a teacher with 1σ higher VAM for a single year increases a student's future earnings by about 1 percent each year; these students are also more likely to attend college, less likely to have children while in high school, and they save a greater share of their income.
 ${ }^{3}$ It bears mention that providing talented teachers is a rare intervention that produces long-term benefits, especially for low-income children. See, for instance, Altonji and Mansfield (2011), Dahl, Kostol, and Mogstad 2014, Chetty, Friedman, and Rockoff 2014, Heckman, Humphries, and Veramendi (2018).

[^2]: ${ }^{4}$ Contacted districts did not keep records of job offers made. Conversations with firms that provide HR software to school districts indicate that fewer than 1% of schools use the software to make offers. Teachers, moreover, rarely entertain simultaneous offers because offers explode on the same day they are extended.
 ${ }_{5}$ State policy and common union influence generate similar compensation structures across districts. Within district, compensation is totally uniform. Many states provide a broadly shared pension and health insurance programs, rendering teacher choice uninformative. Importantly, real-world data are particularly unhelpful in determining preferences for merit pay or alternative retirement vehicles which almost never vary. When studying choices across states, say in a city that spans two states like St. Louis, the transition cost associated with state licensing may be such that teachers are only able to choose across state lines at an additional cost, collinear with any state-level differences.
 ${ }^{6}$ Measurement error (i.e., mistakes) in respondent choice will not lead to bias in the parameter estimates so long as mistakes are independent of the attributes (Wooldridge 2010).

[^3]: ${ }^{7}$ Here, base starting pay is $\$ 50,000$ for a new teacher without a master's degree.
 ${ }^{8}$ Said another way, student poverty and achievement matter much less in the presence of a supportive principle.
 ${ }^{9}$ Over time, the effect may be especially pronounced since the preferred compensation differentially retains highperforming teachers who also prefer work settings inhabited by other high-caliber colleagues (Feng and Sass 2016). Raising everyone's compensation may improve the average quality of new recruits, but it reduces the scope for new hiring since ineffective teachers are also more likely to be retained.

[^4]: ${ }^{12}$ Several judges have rejected attempts made by local officials to reduce pension benefits, and the BLS describes pension benefits as "guaranteed" (BLS 2012; Reid 2013; Vinicky 2013).
 ${ }^{13}$ The job market is highly decentralized, so schools make offers at widely varying times; since offers explode within 24 hours, teachers rarely entertain two or more concurrent offers. If these records could be assembled, the resulting estimation would reflect the preferences of a relatively distinct subsample of highly sought-after teachers. In the dozens of districts interviewed, none kept records of offers made, precluding the assembly of what offers from which a teacher selected. One alternative is to work though software companies providing application and hiring software to multiple school districts, called consortiums. These software systems include the functionality to extend and accept offers through their interface, but less than one percent of offers were delivered through the software, and many appear to have been in error. Essentially no one accepted their offer through the interface.

[^5]: ${ }^{14}$ This empirical problem is inherent to the setting: wealthy areas often create their own district so as not to subsidize poorer areas. For instance, the wealthy parts of Los Angeles-Beverly Hills, Manhattan Beach, Santa Monica-are all visibly gerrymandered out of the largely poor Los Angeles Unified School District. Each area has its own distinct school district, some of which are the most highly rated districts in the country.
 ${ }^{15}$ Mas and Pallais, for instance, find that preferences elicited in a survey and those elicited in the real world imply valuations that are essentially identical.

[^6]: ${ }^{18}$ Three-quarters of the time, one's conjoint responses correctly predicts market behavior (Wlomert and Eggers 2016). Similar predictive ability is seen in Brazell et al. (2006) and Iyengar and Jedidi (2012).
 ${ }^{19}$ Camerer and Hogarth (1999) remark "In many tasks incentives do not matter, presumably because there is sufficient intrinsic motivation...or additional effort does not matter... In other tasks, incentives can actually hurt, if increased incentives cause people to overlearn a heuristic..., to overreact to feedback...to exert 'too much effort' when a low-effort habit would suffice... or when arousal caused by incentives raises self-consciousness."

[^7]: ${ }^{21}$ Specifically, each coefficient in Deck 2, for instance, is multiplied by $\beta_{\text {salary }}^{\text {Deck }} / \beta_{\text {salary }}^{\text {Deck } 2}$, relating estimates across decks to be in the same units. Each coefficient in Deck 3 is multiplied by $\beta_{\text {salary }}^{\text {Deck }} / \beta_{\text {salary }}^{\text {Deck } 3}$.

[^8]: ${ }^{22}$ Interestingly, teachers in the district have on average just over six years of experience, again suggesting the realism of teacher responses.
 ${ }^{23}$ The WTP for retirement income by new teachers is slightly lower, but implies a similar δ of 0.939 .

[^9]: ${ }^{29}$ Inattention in the survey will suggest a larger random component than exists in nature. Thus, if inattention played a role, the achievement effects discovered in the simulation will tend to be conservative.
 ${ }^{30}$ When performance pay influences selection (on entry or attrition), the standard for being in the top quarter evolves. Schools could fix the standard by benchmarking VA measures to the distribution of VA in districts that do not implement VA, or they could benchmark VA so that scores that would have qualified as being in the top quarter before the policy was implemented are still rewarded.

[^10]: ${ }^{31}$ Indeed, I find that teachers value more generous retirement plans the more senior they are, and the relationship is strictly monotonic for bins of teacher experience.
 ${ }^{32}$ There is a strong negative relationship between total compensation and salary share, perhaps since other amenities become more important as the value of a marginal increase in salary diminishes. There is also a strong relationship between total compensation and union strength. I control for total compensation to avoid confounding benefit-share increases with increased total compensation.

[^11]: ${ }^{33}$ Compared to teachers in other districts, teachers in the district receive total compensations at the $55^{\text {th }}$ percentile in Texas and the $24^{\text {th }}$ percentile across the country. See, for reference, online Appendix figure 10.

[^12]: Note: Dots with horizontal lines indicate point estimates with cluster-robust, 95%-confidence intervals (CI) from least-squares regression. The unfilled dots on the zero line denote the reference category for each job-offer attribute. Online Appendix Table 2 displays the underlying regression results.

[^13]: Note: Dots with horizontal lines indicate point estimates with cluster-robust, 95%-confidence intervals (CI) from least-squares regression. The unfilled dots on the zero line denote the reference category for each job-offer attribute. Online Appendix Table 4 displays the underlying regression results.

[^14]: ${ }^{34}$ When the quadratic term is included, the coefficient's p-value is 0.688 .

[^15]: ${ }^{35} \mathrm{http}: / /$ money.cnn.com/tools/annuities/

[^16]: Note: This figure presents an illustration of the questions answered by teacher respondents with respect to student and principal characteristics.

[^17]: Note: This figure shows the value-added estimates from Papay and Kraft (2015) in the solid dots. The open dots represent the inferred value add for each experience level that I use in the achievement production function.

[^18]: Note: * p < 0.05, ** p < 0.001. Columns (1) and (2) represent one regression in which the main effects are displayed in column (1) and the interactions with the quality index are represented in column (2). The regression displayed in columns (3) and (4) follows a similar form, but controls with experience bins interacted with each attribute.

