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Abstract. We argue that automation has contributed to sluggish wage growth despite

historically low unemployment rates during the recovery from the Great Recession. This

argument is based on a quantitative general equilibrium framework that incorporates au-

tomation decisions. A firm can choose to hire a worker or adopt a robot to produce goods.

The threat of automation strengthens the firm’s bargaining power against job seekers in

wage negotiations, suppressing wages in economic expansions. The option to automate also

raises the value of a vacancy, boosting the incentive for job creation, and thereby ampli-

fying fluctuations in vacancies and unemployment. Our mechanism helps account for the

large fluctuations in unemployment and vacancies relative to that in real wages, a puzzling

observation through the lens of the standard labor search models.

I. Introduction

Despite the longest economic expansion and the lowest unemployment rate in recent U.S.

history, wage growth has been subdued since the Great Recession (Krueger, 2018). Accom-

panying these developments in the labor market, recent advances in robotics and artificial

intelligence have raised concerns that automation might put an increasing share of workers

at risk of losing their jobs. There is an on-going debate about whether automation reduces

overall employment (Autor, 2015; Acemoglu and Restrepo, 2017). But workers may have

become more reluctant to ask for pay increases in a tight labor market, if they perceive their

jobs as being more at risk of automation.

In this paper, we develop and estimate a general equilibrium framework to assess the

quantitative impact of automation on wages and employment. Our analysis highlights a
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novel channel through which automation drives labor market fluctuations: the ability to

automate, or the “threat of automation,” provides an outside option to firms in wage nego-

tiations, effectively raising their bargaining power. The automation threat creates a source

of real wage rigidity that mutes wage increases during economic expansions, while boosting

employment. The predictions of our estimated model are consistent with the strong labor

markets and muted wage growth observed during the later part of the recovery from the

Great Recession. More broadly, our model helps explain the large fluctuations in unemploy-

ment and vacancies relative to that in real wages in the data, a puzzling observation through

the lens of the standard labor search models (Shimer, 2005).

I.1. Model mechanism. Our framework builds on the standard Diamond-Mortensen-Pissarides

(DMP) model with labor market search frictions and generalizes it to incorporate automa-

tion decisions. In line with Acemoglu and Restrepo (2018) and Zeira (1998), firms in our

model first make a choice of technologies (adopting or not adopting a robot); and only

non-automated tasks (or vacancies) are available for hiring workers. Firms can produce

consumption goods using either workers or robots. Since robots are perfect substitutes for

workers in production, they are different from the physical capital in the standard neoclas-

sical production functions, where capital and labor are complementary inputs.1

In the beginning of each period, a firm observes an i.i.d. cost of automation and decides

whether or not to automate an unfilled job position that is carried over from the previous

period. If the cost of automation lies below a threshold determined by the net benefit of

automation, then the firm adopts a robot for production and takes the job vacancy offline.

The probability of automation is thus the cumulative density of the automation cost draws

evaluated at the automation threshold.

If the job position is not automated, then the firm posts the vacancy in the labor market

to search for a potential match with a job seeker. If the match is successful, the vacancy will

be filled with a worker and both the firm and the worker obtain their respective employment

surplus from bargaining over the wage rate. If no match is formed, then the vacancy remains

open and the firm obtains the continuation value of the vacancy, including the option to

automate the position in future periods.2

1Krusell et al. (2000) study a neoclassical model in which capital equipment complements skilled labor

but substitutes for unskilled labor. The relation between robots and workers in our model is analogous to

the relation between equipment and unskilled labor in their model. For simplicity, we abstract from labor

heterogeneity (skilled vs. unskilled). See He and Liu (2008) for a general equilibrium extension of the Krusell

et al. (2000) model to incorporate endogenous skill accumulations.
2We interpret a job position broadly as consisting of a bundle of tasks, which are ex ante identical, but

a fraction of which will be automated depending on the realization of the idiosyncratic costs of automation.
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Our approach to modeling automation decisions requires a job vacancy to carry a positive

value in equilibrium. Unlike the standard DMP model with free entry, we introduce a fixed

cost of vacancy creation. A firm will choose to create a new vacancy if the vacancy-creation

cost (drawn from an i.i.d. distribution) is below the value of the vacancy. Since vacancy

creation is costly, an unfilled vacancy carries a positive value, allowing the firm to choose

whether or not to automate an unfilled vacancy. Furthermore, different from the standard

DMP model where the number of vacancies is a jump variable, it becomes a slow-moving

state variable in our setup, enabling the model to match the persistent vacancy dynamics in

the data (Leduc and Liu, 2019). Importantly, an increase in the value of a vacancy raises

the firm’s reservation value in wage negotiations, putting downward pressures on equilibrium

wages.

I.2. Model implications. We estimate the model to fit quarterly U.S. time series data.

These time series include unemployment, vacancies, real wage growth, and nonfarm business

sector labor productivity growth, with a sample ranging from 1985:Q1 to 2018:Q4. To fit

these four time series, we assume four shocks in our model, including a discount factor shock,

a neutral technology shock, an automation-specific shock, and a job separation shock. We

find that matching the observed fluctuations in labor productivity is an important disciplin-

ing device on the endogenous automation mechanism, especially because of the slowdown in

productivity growth since the mid-2000s (Fernald, 2015).

In our estimated model, we find that automation amplifies employment fluctuations. Au-

tomation has a direct job-displacing effect since goods produced by robots are perfect sub-

stitutes for goods produced by workers. But automation has also a job-creation effect: the

option of automating an unfilled job vacancy boosts the present value of a vacancy, raising

the incentive for firms to create vacancies. The net effect of automation on employment can

be ambiguous, depending on the relative strength of the two opposing effects. Under our

estimated parameters, automation amplifies employment fluctuations.

We also find that the threat of automation dampens wage increases in a business cy-

cle boom. Since the net value of automation is procyclical, the probability of automation

increases in good economic times, raising the firm’s reservation value (i.e., the value of a

vacancy) in wage bargaining, and therefore muting wage increases.

This approach simplifies our analysis significantly. We have considered an alternative timing of the automa-

tion decisions, under which firms first post the job vacancies for hiring workers, and then decide whether or

not to automate the unfilled vacancies. The results are similar.
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Increased automation in a boom also boosts aggregate productivity, further fueling the

expansion. Since automation improves labor productivity while muting wage increases, it

implies a countercyclical labor income share, as observed in the data.3

Overall, automation helps generate large fluctuations in unemployment and vacancies

relative to that in real wages. The threat of automation gives rise to a source of endogenous

real wage rigidities, which are important for amplifying labor market fluctuations (Christiano

et al., 2020). In addition, automation raises aggregate productivity in a business cycle boom,

further fueling the boom. This mechanism is quantitatively important. In our estimated

model and the data, the volatility of the vacancy-unemployment ratio (i.e., the v-u ratio),

which is a measure of labor market tightness, is about 40 times that of the real wage rate.4

In contrast, a counterfactual model without the automation mechanism produces a much

smaller volatility ratio of about 9, less than 25 percent of that predicted by our estimated

model. Furthermore, we show that search frictions are also important: a more competitive

labor market tends to mitigate the real wage rigidity stemming form the threat of automation,

making unemployment and vacancies less volatile. Thus, examining automation decisions

within a search framework is important.

Although automation effectively weakens workers’ bargaining power, its quantitative gen-

eral equilibrium impact on the labor market cannot be reproduced in a counterfactual model

with a lower worker bargaining power but without the automation mechanism. Absent the

automation channel, reducing workers’ bargaining power can amplify unemployment and va-

cancy fluctuations and dampen wage adjustments, yet these effects are substantially weaker

than those in our benchmark model. In addition, the implied dynamics of wages are qual-

itatively different from those in our model with automation. For instance, in response to

a positive discount factor shock, our model predicts a decline in the real wage, while it in-

creases in the counterfactual model without automation and with a lower workers’ bargaining

weight. In addition, labor productivity rises in our benchmark model, which, coupled with

the fall in the real wage, leads to a fall in the labor share. In contrast, the labor share

increases in the counterfactual model. These differences reflect the threat of automation on

wage bargaining and the endogenous productivity changes through the automation channel.

I.3. Evidence for the model’s mechanism. Independent micro-level studies support our

model’s prediction that the threat of automation suppresses wage growth. For example,

3Karabarbounis and Neiman (2013) focus on the trend declines in the labor share since the mid-1970s

for 59 countries. Their analysis attributes about half of the declines in the labor share to declines in the

relative price of investment goods. Our model has implications for the cyclical dynamics of the labor share,

instead of its trends.
4Since we fit our model to these time series, the actual volatility ratio in the data is the same.



ROBOTS OR WORKERS 5

Arnoud (2018) examines occupation-level relations between the threat of automation and

wage adjustments using data from the 2013 U.S. Current Population Survey and an index of

automatability developed by Frey and Osborne (2017). He finds that, controlling for observ-

able characteristics, occupations that are more susceptible to automation have experienced

lower wage growth, in line with our model’s mechanism. Dinlersoz and Wolf (2018) present

plant-level evidence that more automated establishments in the U.S. manufacturing sector

have had a smaller fraction of high-wage workers, higher labor productivity, and a smaller

labor share in production. Graetz and Michaels (2018) use a panel of robot adoptions within

industries in 17 countries from 1993 to 2007 and find that adoption of industrial robots boosts

labor productivity and also raises wages, although the positive effects on wages are much

smaller than those on productivity. Acemoglu and Restrepo (2017) study U.S. county-level

data and report a negative effect of robot adoptions on local wages.

While the empirical literature using disaggregated data is well suited to examine the

impact of automation on different types of industries, jobs, and tasks, it is difficult to aggre-

gate the micro-level effects into a macroeconomic impact. Our dynamic stochastic general

equilibrium (DSGE) model instead embeds the general equilibrium effects, although it does

not directly speak to heterogeneous effects across different types of jobs or workers. In an

environment with heterogeneous agents, automation can have important distributional con-

sequences because it affects different occupations differently. For example, the recent work

by Jaimovich et al. (2020) shows that increased automation has accounted for a large frac-

tion of the declines in jobs in routine occupations. To the best of our knowledge, our model

is the first quantitative general equilibrium model that incorporates automation decisions

into a framework with labor search frictions to study the interactions between automation,

bargaining power, and labor market fluctuations over the business cycle.

II. The model with labor market frictions and automation

This section presents a DSGE model that generalizes the standard DMP model to incor-

porate endogenous decisions of automation.

To keep automation decisions tractable, we impose some assumptions on the timing of

events. In the beginning of period t, a job separation shock δt is realized. Workers who lose

their jobs add to the stock of unemployment from the previous period, forming the pool of

job seekers ut. Firms carry over the stock of unfilled vacancies from the previous period, a

fraction of which is automated by adopting robots. The stock of vacancies vt available for

hiring workers consists of the remaining vacancies after automation, the jobs separated in

the beginning of the period, and newly created vacancies. The job seekers (ut) randomly

match with the vacancies (vt) in the labor market, with the number of new matches (mt)
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determined by a matching technology. Production then takes place, with a homogeneous

consumption good produced using either workers or robots. The unfilled vacancies and the

pool of employed workers at the end of the period are carried over to the next period, and

the same sequence of economic activities repeats in period t+ 1.

Compared to the standard DMP model, our model introduces two new features. First, we

replace the free-entry assumption in the DMP model with costly vacancy creation. Creating

a new vacancy incurs a fixed cost e, which is drawn from an i.i.d. distribution F (e), as

in Leduc and Liu (2019). Thus, a vacancy has a positive value even if it is not filled by a

worker. The number of vacancies becomes a slow-moving state variable (instead of a jump

variable as in the standard DMP framework), enabling our model to match the persistent

vacancy dynamics in the data. Second, we introduce endogenous automation decisions. In

the beginning of period t, each firm draws a fixed automation cost x from an i.i.d. distribution

G(x), the realization of which determines whether the firm will adopt a robot or post the

vacancy for hiring a worker. If the automation cost lies below a threshold value x∗t , then

the firm adopts a robot and obtains the automation value, and the vacancy would be taken

offline. If the automation cost exceeds the threshold, then the firm posts the vacancy for

hiring a worker.5 Since robots can substitute for workers for production, they are different

from the traditional capital input, which is typically complementary to labor input in the

standard macro models.

II.1. The Labor Market. In the beginning of period t, there are Nt−1 existing job matches.

A job separation shock displaces a fraction δt of those matches, so that the measure of

unemployed job seekers is given by

ut = 1− (1− δt)Nt−1, (1)

where we have assumed full labor force participation and normalized the size of the labor

force to one.

The job separation rate shock δt follows the stationary stochastic process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + εδt, (2)

5A plausible alternative way of thinking about automation is to allow firms to automate an existing

job instead of an open vacancy. We have considered such an alternative setup. We find that automation

implies counterfactual comovements between unemployment and vacancies, since it acts as an endogenous

job destruction. See Appendix D for details. Furthermore, the alternative model with automated jobs

underperforms our baseline model with automated vacancies in fitting the time-series data, with much lower

log data density (1026.18 vs. 1258.54). Thus, the data strongly prefer our baseline model.
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where ρδ is the persistence parameter and the term εδt is an i.i.d. normal process with a

mean of zero and a standard deviation of σδ. The term δ̄ denotes the steady-state rate of

job separation.

The stock of vacancies vt consists of the unfilled vacancies carried over from period t−1 that

are not automated, plus the separated employment matches and newly created vacancies.

The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat ))vt−1 + δtNt−1 + ηt, (3)

where qvt−1 denotes the job filling rate in period t − 1, qat denotes the automation rate in

period t, and ηt denotes the newly created vacancies (i.e., entry).

In the labor markert, new job matches (denoted by mt) are formed between job seekers

and open vacancies based on the matching function

mt = µuαt v
1−α
t , (4)

where µ is a scale parameter that measures match efficiency and α ∈ (0, 1) is the elasticity

of job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool, and job separations subtract

from it. Aggregate employment evolves according to the law of motion

Nt = (1− δt)Nt−1 +mt. (5)

At the end of period t, the searching workers who failed to find a job match remain

unemployed. Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (6)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (7)

Similarly, we define the job filling probability qvt as

qvt =
mt

vt
. (8)

II.2. The firms. A firm makes automation decisions in the beginning of the period t. Adopt-

ing a robot requires a fixed cost x in units of consumption goods. The fixed cost is drawn

from the i.i.d. distribution G(x). A firm chooses to adopt a robot if and only if the cost

of automation is less than the benefit. For any given benefit of automation, there exists a

threshold value x∗t in the support of the distribution G(x), such that automation occurs if

and only if x ≤ x∗t . If the firm adopts a robot to replace the job position, then the vacancy

will be taken offline and not available for hiring a worker. Thus, the automation threshold
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x∗t depends on the value of automation (denoted by Jat ) relative to the value of a vacancy

(denoted by Jvt ). In particular, the threshold for automation decision is given by

x∗t = Jat − Jvt . (9)

The probability of automation is then given by the cumulative density of the automation

costs evaluated at x∗t . That is,

qat = G(x∗t ). (10)

The flow of automated job positions adds to the stock of automatons (denoted by At),

which becomes obsolete at the rate ρo ∈ [0, 1] in each period. Thus, At evolves according to

the law of motion

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (11)

where qat (1− qvt−1)vt−1 is the number of newly automated job positions.

Once adopted, a robot produces Ztζt units of output, where Zt denotes a neutral technology

shock and ζt denotes an automation-specific shock. The neutral technology shock Zt follows

the stochastic process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + εzt. (12)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock. The term

εzt is an i.i.d. normal process with a zero mean and a finite variance of σ2
z . The term Z̄ is

the steady-state level of the technology shock.6 The automation-specific technology shock

ζt follows a stochastic process that is independent of the neutral technology shock Zt. In

particular, ζt follows the stationary process

ln ζt = (1− ρζ) ln ζ̄ + ρζ ln ζt−1 + εζt. (13)

The parameter ρζ ∈ (−1, 1) measures the persistence of the automation-specific technology

shock. The term εζt is an i.i.d. normal process with a zero mean and a finite variance of σ2
ζ .

The term ζ̄ is the steady-state level of the automation-specific technology shock.

Operating the robot incurs a flow fixed cost of κa. The value of automation satisfies the

Bellman equation

Jat = Ztζt − κa + (1− ρo)EtDt,t+1J
a
t+1, (14)

where the term κa captures the costs of energy, facilities, and space for automated production,

and Dt,t+1 is a stochastic discount factor of the households.

If the automation cost exceeds the threshold x∗t , then the vacancy will be posted in the

labor market for hiring a worker. In addition, newly separated jobs and newly created

vacancies add to the stock of vacancies for hiring workers. Following Leduc and Liu (2019),

6The model can easily be extended to allow for trend growth. We do not present that version of the

model to simplify presentation.
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we assume that creating a new vacancy incurs an entry cost e in units of consumption goods.

The entry cost is drawn from an i.i.d. distribution F (e). A new vacancy is created if and

only if the net value of entry is non-negative. The benefit of creating a new vacancy is the

vacancy value Jvt . Thus, the number of new vacancies ηt is given by the cumulative density

of the entry costs evaluated at Jvt . That is,

ηt = F (Jvt ). (15)

Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with the probability qvt ), the firm obtains the employment value

Jet . Otherwise, the firm carries over the unfilled vacancy to the next period, which will be

automated with the probability qat+1. If the vacancy is automated, then the firm obtains the

automation value Jat+1; otherwise, the vacancy will remain open, and the firm receives the

vacancy value Jvt+1. Thus, the vacancy value satisfies the Bellman equation

Jvt = −κ+ qvt J
e
t + (1− qvt )EtDt,t+1

[
qat+1J

a
t+1 + (1− qat+1)Jvt+1

]
. (16)

If a firm successfully hires a worker, then it can produce Zt units of intermediate goods.

The value of employment satisfies the Bellman equation

Jet = Zt − wt + EtDt,t+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (17)

where wt denotes the real wage rate. Hiring a worker generates a flow profit Zt − wt in the

current period. If the job is separated in the next period (with probability δt+1), then the

firm receives the vacancy value Jvt+1. Otherwise, the firm receives the continuation value of

employment.

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt (lnCt − χNt) , (18)

where E [·] is an expectation operator, Ct denotes consumption, and Nt denotes the fraction

of household members who are employed. The parameter β ∈ (0, 1) denotes the subjective

discount factor, and the term Θt denotes an exogenous shifter to the subjective discount

factor.

The discount factor shock θt ≡ Θt
Θt−1

follows the stationary stochastic process

ln θt = ρθ ln θt−1 + εθt. (19)

In this shock process, ρθ is the persistence parameter and the term εθt is an i.i.d. normal

process with a mean of zero and a standard deviation of σθ. Here, we have implicitly assumed

that the mean value of θ is one.
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The representative household chooses consumption Ct and savings Bt to maximize the

utility function (18) subject to the sequence of budget constraints

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt) + dt − Tt, ∀t ≥ 0, (20)

where rt denotes the gross real interest rate, dt denotes the household’s share of firm profits,

and Tt denotes lump-sum taxes. The parameter φ measures the flow benefits of unemploy-

ment.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max lnCt − χNt + βEtθt+1Vt+1(Bt, Nt), (21)

subject to the budget constraint (20) and the employment law of motion (5), the latter of

which can be written as

Nt = (1− δt)Nt−1 + quut, (22)

where we have used the definition of the job finding probability qut = mt
ut

, with the measure

of job seekers ut given by Eq. (1). In the optimizing decisions, the household takes the

economy-wide job finding rate qut as given.

Define the employment surplus (i.e., the value of employment relative to unemployment)

as SHt ≡ 1
Λt

∂Vt(Bt−1,Nt−1)
∂Nt

, where Λt denotes the Lagrangian multiplier for the budget con-

straint (20). We show in the Appendix that the employment surplus satisfies the Bellman

equation

SHt = wt − φ−
χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)SHt+1, (23)

where Dt,t+1 ≡ βθt+1Λt+1

Λt
is the stochastic discount factor, which applies to both the house-

hold’s intertemporal optimization and firms’ decisions.

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gain would be wage income net of the

opportunity costs of working, including unemployment benefits and the disutility of working.

The household also enjoys the continuation value of employment if the employment relation

continues. Having an extra worker today adds to the employment pool tomorrow (if the

employment relation survives job separation); however, adding a worker today would also

reduce the pool of searching workers tomorrow, a fraction qut+1 of whom would be able to

find jobs. Thus, the marginal effect of adding a new worker in period t on employment in

period t + 1 is given by (1 − qut+1)(1 − δt+1), resulting in the effective continuation value of

employment shown in the last term of Eq. (23).
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We also show in the appendix that the household’s optimizing consumption-savings deci-

sion implies the intertemporal Euler equation

1 = EtDt,t+1rt. (24)

II.4. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage optimally splits the joint surplus of

a job match between the worker and the firm. The worker’s employment surplus is given

by SHt in Eq. (23). The firm’s surplus is given by Jet − Jvt . The possibility of automation

affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its

bargaining decisions.

The Nash bargaining problem is given by

max
wt

(
SHt
)b

(Jet − Jvt )1−b , (25)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Jet − Jvt + SHt . (26)

Then the bargaining solution is given by

Jet − Jvt = (1− b)St, SHt = bSt. (27)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (27) and the expression for household surplus in equation (23)

together imply that the Nash bargaining wage wNt satisfies the Bellman equation

b

1− b
(Jet − Jvt ) = wNt − φ−

χ

Λt

+EtDt,t+1(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (28)

We do not impose any real wage rigidities. Thus, the equilibrium real wage rate is just

the Nash bargaining wage rate. That is, wt = wNt .

II.5. Government policy. The government finances unemployment benefit payments φ for

unemployed workers through lump-sum taxes. We assume that the government balances the

budget in each period so that

φ(1−Nt) = Tt. (29)
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II.6. Search equilibrium. In a search equilibrium, the markets for bonds and goods both

clear. Since the aggregate bond supply is zero, the bond market-clearing condition implies

that

Bt = 0. (30)

Goods market clearing requires that consumption spending, vacancy posting costs, au-

tomation costs, and vacancy creation costs add up to aggregate production. This requirement

yields the aggregate resource constraint

Ct + κvt + κaAt + (1− qvt−1)vt−1

∫ x∗t

0

xdG(x) +

∫ Jvt

0

edF (e) = Yt, (31)

where Yt denotes aggregate output, which equals the sum of goods produced by workers and

by robots and is given by

Yt = ZtNt + ZtζtAt. (32)

III. Empirical Strategies

We solve the model by log-linearizing the equilibrium conditions around the deterministic

steady state.7 We calibrate a subset of the parameters to match steady-state observations

and the empirical literature. We estimate the remaining structural parameters and the shock

processes to fit U.S. time-series data.

We focus on the parameterized distribution functions

F (e) =
(e
ē

)ηv
, G(x) =

(x
x̄

)ηa
, (33)

where ē > 0 and x̄ > 0 are the scale parameters and ηv > 0 and ηa > 0 are the shape

parameters of the distribution functions. We set ηv = 1 and ηa = 1, so that both the

vacancy creation cost and the automation cost follow a uniform distribution.8 We estimate

the scale parameters ē and x̄ and the shock processes by fitting the model to U.S. time series

data.

7Details of the equilibrium conditions, the steady state, and the log-linearized system are presented in

the appendix.
8Our assumption of the uniform distribution for the vacancy creation cost is in line with Fujita and

Ramey (2007). We have estimated a version of the model in which we include the parameter ηa in the set of

parameters to be estimated. We obtain a posterior estimate of ηa close to one and very similar estimates for

the other parameters. For simplicity and for obtaining a closed-form solution for the steady-state equilibrium,

we assume that ηa = 1 in our benchmark model.
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III.1. Steady-state equilibrium and parameter calibration. Table 1 shows the cali-

brated parameter values. We consider a quarterly model. We set β = 0.99, so that the model

implies an annualized real interest rate of about 4 percent in the steady state. We set α = 0.5

following the literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009). In line with

Hall and Milgrom (2008), we set b = 0.5 and φ = 0.25. Based on the data from the Job

Openings and Labor Turnover Survey (JOLTS), we calibrate the steady-state job separation

rate to δ̄ = 0.10 at the quarterly frequency. We set ρo = 0.03, so that robots depreciate at

an average annual rate of 12 percent. We normalize the level of labor productivity to Z̄ = 1

and automation-specific productivity to ζ̄ = 1.

We target a steady-state unemployment rate of U = 0.0595, corresponding to the average

unemployment rate in our sample from 1985 to 2018. The steady-state employment is given

by N = 1 − U , hiring rate by m = δ̄N , the number of job seekers by u = 1 − (1 − δ̄)N ,

and the job finding rate by qu = m
u

. We target a steady-state job filling rate qv of 0.71 per

quarter, in line with the calibration of den Haan et al. (2000). The implied stock of vacancies

is v = m
qv

. The scale of the matching efficiency is then given by µ = m
uαv1−α

= 0.6594. We set

the flow cost of operating robots to κa = 0.98. Given the average productivities Z̄ = ζ̄ = 1,

this implies a quarterly profit of 2 percent of the revenue by using a robot for production.

The steady-state automation value Ja can then be solved from the Bellman equation (14).

Conditional on Ja and the estimated values of ē and x̄ (see below for estimation details),

we use the vacancy creation condition (15), the automation adoption condition (9), and law

of motion for vacancies (3) to obtain the steady-state probability of automation, which is

given by

qa =
Ja

x̄+ βē(1− qv)v
.

Given qa and v, the law of motion for vacancies implies that the flow of new vacancies

is given by η = qa(1 − qv)v. The vacancy value is then given by Jv = ēη. The stock of

automatons A can be solved from the law of motion (11), which reduces to ρoA = qa(1 −
qv)v = η in the steady state. Thus, in the steady state, the newly created vacancies equal

the flow of automated jobs that become obsolete. The law of motion for employment implies

that, in the steady state, the flow of hiring equals the flow of separated employment relations.

With A and N solved, we obtain the aggregate output Y = Z̄(N + ζ̄A). We calibrate

the vacancy posting cost to κ = 0.0939, so that the steady-state vacancy posting cost is 1

percent of aggregate output (i.e., κv = 0.01Y ).

Given Jv and Ja, we obtain the cutoff point for robot adoption x∗ = Ja−βJv. The match

value Je can be solved from the Bellman equation for vacancies (16), and the equilibrium
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real wage rate can be obtained from the Bellman equation for employment (17). Steady-

state consumption is solved from the resource constraint (31). We then infer the value of

χ = 0.7292 from the expression for bargaining surplus in Eq. (28).

III.2. Estimation. We estimate the structural parameters ē and x̄ and the shock processes

by fitting the DSGE model to quarterly U.S. time series.

III.2.1. Data and measurement. We fit the model to four quarterly time series: the unem-

ployment rate, the job vacancy rate, the growth rate of average labor productivity in the

nonfarm business sector, and the growth rate of the real wage rate. The sample covers the

period from 1985:Q1 to 2018:Q4.

The unemployment rate in the data (denoted by Udata
t ) corresponds to the end-of-period

unemployment rate in the model Ut. We demean the unemployment rate data (in log units)

and relate it to our model variable according to the measurement equation

ln(Udata
t )− ln(Ūdata) = Ût, (34)

where Ūdata denotes the sample average of the unemployment rate in the data and Ût denotes

the log-deviations of the unemployment rate in the model from its steady-state value.

Similarly, we use demeaned vacancy rate data (also in log units) and relate it to the model

variable according to

ln(vdatat )− ln(v̄data) = v̂t, (35)

where v̄data denotes the sample average of the vacancy rate data and v̂t denotes the log-

deviations of the vacancy rate in the model from its steady-state value. Our vacancy series

for the periods prior to 2001 is the vacancy rate constructed by Barnichon (2010) based

on the Help Wanted Index. For the periods after 2001, we use the vacancy rate from the

JOLTS.

In the data, we measure labor productivity by real output per person in the nonfarm busi-

ness sector. We use the demeaned quarterly log-growth rate of labor productivity (denoted

by ∆ ln pdatat ) and relate it to our model variable according to

∆ ln(pdatat )−∆ ln(pdata) = Ŷt − N̂t − (Ŷt−1 − N̂t−1), (36)

where ∆ ln(pdata) denotes the sample average of productivity growth, and Ŷt and N̂t denote

the log-deviations of aggregate output and employment from their steady-state levels in our

model.

We measure the real wage rate in the data by real compensations per worker in the nonfarm

business sector. We relate the observed real wage growth (denoted by ∆ ln(wdatat )) to the
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model variables by the measurement equation

∆ ln(wdatat )−∆ ln(wdata) = ŵt − ŵt−1, (37)

where ∆ ln(wdata) denotes the sample average of wage growth in the data and ŵt denotes

the log-deviations of real wages from its steady-state level in the model.

III.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters ē and x̄ are drawn from the gamma distribution.

We assume that the prior mean of each of these three parameters is 5, with a standard

deviation of 1. The priors of the persistence parameter of each shock are drawn from the

beta distribution with a mean of 0.8 and a standard deviation of 0.1. The priors of the

volatility parameter of each shock are drawn from an inverse gamma distribution with a

mean of 0.01 and a standard deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distri-

butions are displayed in the last three columns of Table 2. The posterior mean estimate

of the vacancy creation cost parameter is ē = 8.60. The posterior mean estimates of the

automation cost parameter is x̄ = 1.80. These parameters imply a steady-state share of

output produced by automation of A/Y = 0.24. Thus, our model implies that, in the long

run, about 24 percent of the jobs will be performed by robots, which lies in the range of

the estimates in the empirical literature (Nedelkoska and Quintini, 2018). The 90 percent

probability intervals indicate that the data are informative about the structural parameters.

The posterior estimation suggests that the shocks to both neutral technology and the

discount factor are highly persistent, whereas the automation-specific shock is less persis-

tent but more volatile. The 90 percent probability intervals suggest that the data are also

informative for these shock processes.

IV. Economic implications

Based on the calibrated and estimated parameters, we examine the model’s transmission

mechanism and its quantitative performance for explaining the labor market dynamics. We

also present some counterfactuals to illustrate the quantitative importance of both automa-

tion and labor market search frictions.

IV.1. The model’s transmission mechanism. The equilibrium dynamics in our model

are driven by both the exogenous shocks and the model’s internal propagation mechanism.

To help understand the contributions of the shocks and the model’s mechanism, we examine

impulse response functions and forecast error variance decompositions.
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IV.1.1. Impulse responses. Figure 1 shows the impulse responses of several key macro vari-

ables to a positive neutral technology shock in the benchmark model. The shock leads to

persistent declines in unemployment and persistent increases in vacancies and hiring. The

shock also raises the value of automation, leading to an increased probability of robot adop-

tion, which raises the value of a vacancy and boosts the incentive for vacancy creation. The

increase in vacancy value also strengthens the firm’s bargaining power in wage negotiations,

dampening the responses of real wages. Increased automation also raises labor productivity,

reinforcing the initial expansionary impact of the technology shock. The increase in labor

productivity, coupled with muted wage responses, implies persistent declines in the labor

income share.

Figure 2 shows the impulse responses to a positive discount factor shock. The shock raises

the present values of a job match, an open vacancy, and a worker’s employment surplus.

Thus, it generates a persistent boom in employment, vacancies, and hiring. The shock also

raises the value of automation and therefore increases the probability of robot adoption. The

increased automation probability raises the vacancy value, incentivizing vacancy creation.

The increase in actual robot adoption raises labor productivity, further fueling the boom.

However, as the threat of automation rises, the workers’ bargaining power weakens, leading

to a modest short-run decline in the real wage. By boosting productivity and reducing the

real wage rate, the discount factor shock generates a persistent decline in the labor share.

A job separation shock raises both unemployment and vacancies and mechanically boosts

hiring through the matching function, as shown in Figure 3. This finding is consistent with

Shimer (2005), who argues that the counterfactual implication of the job separation shock

for the correlation between unemployment and vacancies renders the shock unimportant for

explaining observed labor market dynamics. The shock reduces the automation probability.

Labor productivity increases slightly, since the decline in employment outpaces the decline

in aggregate output. The shock also leads to small declines in real wages and the labor

income share.

Figure 4 shows the impulse responses to a positive automation-specific shock. The shock

directly raises the value of automation. In turn, the increased probability of automation

raises the vacancy value and boosts the incentive for vacancy creation. With more job

openings, the job finding rate increases, raising hiring and reducing unemployment. Since

a greater fraction of output is produced with robots, labor productivity improves. The

increased threat of automation weakens the worker’s bargaining power, leading to a decline

in the real wage rate. The improvement in labor productivity and the reduction in the real

wage rate result in a persistent decline in the labor income share.
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IV.1.2. Forecast error variance decompositions. We now examine the unconditional forecast

error variance decompositions for the four observable labor market variables used for our

estimation.9 Table 3 displays the results.

The variance decompositions suggest that fluctuations of unemployment and vacancies

are mostly driven by the neutral technology shock and the discount factor shock. The

neutral technology shock accounts for about one-third of the variances of unemployment and

vacancies, and the discount factor shock accounts for about 60 percent. The job separation

shock is not important for these labor market variables, consistent with Shimer (2005).

The automation-specific shock does not directly contribute to the fluctuations in unem-

ployment and vacancies; instead, the threat of automation works to amplify the effects of the

other shocks, particularly the neutral technology and the discount factor shocks, by raising

the probability of automation. These two shocks explain about 70 percent of the fluctua-

tions in the automation probability (not shown in the table). As discussed in the previous

section, the resulting procyclical threat of automation dampens real wage adjustments and

thus magnifies the impact of the neutral technology and the discount factor shocks on labor

market variables.

While the threat of automation dampens wage adjustments, the actual adoption of robots

raises labor productivity. Through these channels, the automation-specific shock plays a

quantitatively important role in driving fluctuations of the growth rates of both labor pro-

ductivity and real wages. This shock accounts for about 32 percent of the variance of

productivity growth and 37 percent of that of real wage growth. Perhaps not surprisingly,

the neutral technology shock is also important for explaining the fluctuations in labor pro-

ductivity, explaining about half of its variance.10 In addition, about 62 percent of the real

wage fluctuations are accounted for by shocks to the neutral technology and the discount

factor.

IV.2. The role of automation in the propagation mechanism. To isolate the role of

automation in driving labor market dynamics, we consider a counterfactual specification of

“no automation,” which is a version of our benchmark model with all automation-related

variables held constant at their steady-state levels and with no automation-specific shocks.

To highlight the effect of the threat of automation on the worker’s bargaining power in wage

negotiations, we also compare our benchmark model’s impulse responses to a version of the

9We have also computed the conditional forecast error variance decompositions with forecasting horizons

between 4 quarters and 16 quarters and found that they deliver the same message as the unconditional

variance decomposition.
10In the standard DMP model without automation, labor productivity fluctuations would be entirely

driven by the neutral technology shock.
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“no automation” case, in which we also reduce the bargaining weight for workers by a half

(i.e., setting b = 0.25). We refer to this version of the model as the “low bargaining power”

case.

Figure 5 displays the impulse responses to a discount factor shock in the three models: the

benchmark model (the black solid lines), the counterfactual with no automation (the blue

dashed lines), and the counterfactual with no automation and a lower bargaining power for

workers (the red dot-dash lines). These impulse responses suggest that the automation chan-

nel is a powerful amplification mechanism for labor market dynamics. Without automation,

the counterfactual model implies much more muted responses of unemployment, vacancies,

and hiring to the discount factor shock than those in the benchmark model. The responses

of the real wage rate are also different: the counterfactual model implies a small increase

in the real wage rate, whereas the benchmark model implies a modest decrease. This pat-

tern suggests that the threat of automation is important for suppressing wage adjustments.

Without automation, labor productivity is solely driven by the neutral technology shock,

so that productivity does not respond to the discount factor shock. With automation, as

in our benchmark model, labor productivity rises following a discount factor shock, because

the shock raises the value of automation and thus leads to increased adoption of robots. As

a consequence, the labor income share rises in the counterfactual but falls in our benchmark

model.

In the no-automation model, reducing workers’ bargaining weight mechanically dampens

real wage adjustments and thus should help amplify the responses of the unemployment and

vacancy rates. This can be seen from the steady-state version of the Nash bargaining wage

solution in Eq. (28):

wN = φ+
χ

Λ
+

b

1− b
[1− β(1− qu)(1− δ)](Je − Jv). (38)

Clearly, ceteris paribus, the Nash bargaining wage wN increases with the worker’s bargaining

weight b and decreases with the firm’s reservation value Jv. A reduction in b reduces the

equilibrium wage, as does an increase in Jv when firms have the option to automate.

However, the impulse responses shown in Figure 5 reveal that reducing the worker’s bar-

gaining weight is much less effective in amplifying labor market fluctuations than granting

firms the ability to automate job positions. In addition, even if the worker’s bargaining

weight is reduced, the real wage rate still rises following the discount factor shock, leading to

an increase in the labor share. In contrast, our benchmark model with automation implies

a fall in the real wage and a persistent decline in the labor share.

The impulse responses to a neutral technology shock in these counterfactual models display

similar patterns, as shown in Figure 6. These impulse responses suggest that the automation
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channel is an important mechanism for amplifying labor market fluctuations and generating

a countercyclical labor income share.

IV.3. The role of labor market search frictions in the propagation mechanism.

The model’s amplification mechanism depends not only on automation, but also on labor

market search frictions. To illustrate the importance of the search frictions, we consider a

counterfactual version of the model which features low levels of labor search frictions. In

particular, that counterfactual model has a smaller vacancy posting cost (of 0.5 percent of

aggregate output in the steady state instead of 1 percent) and a higher average job separation

rate (with δ̄ = 0.5 instead of 0.1).11

Figure 7 shows the impulse responses of the macro variables following a positive neutral

technology shock, and compares the impulse responses from the benchmark model (the black

solid lines) with those from the counterfactual with low search frictions (the blue dashed

lines). Although both models have the automation channel operating, the benchmark model

produces much stronger amplification effects of the shock on unemployment and vacancies

than does the counterfactual with low search frictions. As we have discussed, automation

displaces jobs because robots and workers are substitutable inputs of production; meanwhile,

automation also boosts job creation because the option of automating increases the present

value of a job vacancy. In an economy with a spot labor market without search frictions, an

employment relation would cease to be a long-term relation, and the option of automation

in the future would not directly affect current hiring decisions. In that case, robots would

replace workers, and increased automation in response to a positive technology shock would

raise unemployment and reduce vacancies. The counterfactual model with lower search

frictions lies between our benchmark model and the spot labor market, with mitigated job-

creating effect of automation, and thus more muted responses in unemployment and vacancies

than those in the benchmark economy.12

With low search frictions, the present value of a vacancy responds less to the technol-

ogy shock (because the model becomes closer to a spot labor market). Since the neutral

technology shock directly raises the productivity of both workers and robots, the value of

automation rises on impact. Thus, the automation threshold (i.e., x∗t = Jat − Jvt ) and the

11In the limit with κ = 0 and δ = 1, there is no vacancy posting cost and employment becomes a jump

variable, approximating a spot labor market. We do not consider that extreme case to minimize deviations

from our benchmark framework.
12We have also considered the case with a higher average job separation rate of δ̄ = 0.8 (not reported in

the paper). In that case, we find that a positive neutral technology shock raises unemployment and lowers

vacancies, because the forward-looking job-creating effect becomes further mitigated.
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automation probability rises more sharply than in the benchmark model, as shown in Fig-

ure 7, leading to stronger increases in labor productivity. Although the real wage rate also

increase more than that implied by the benchmark model, the productivity effects dominate,

leading to a more pronounced and persistent decline in the labor share.

The importance of labor search frictions can be further illustrated by comparing the im-

pulse responses following a positive automation-specific shock, as shown in Figure 8. In the

counterfactual model with low search frictions, the automation-specific shock raises unem-

ployment and reduces vacancies because the direct job-displacing effect dominates the (mit-

igated) job-creating effect. In contrast, in the benchmark model, the same shock reduces

unemployment and increases vacancies. As in the case with a neutral technology shock, the

automation-specific shock directly raises the value of automation, while the counterfactual

with low search frictions implies a more muted response of the value of vacancies. Thus,

the automation probability, labor productivity and real wages all increase more sharply than

those in the benchmark model.

The impulse responses shown in Figures 7 and 8 suggest that search frictions are important

because they give rise to forward-looking hiring decisions, generating a job-creating effect of

automation that would be otherwise absent in a spot labor market.

The results discussed in this section and those presented in Section IV.2, taken together,

suggest that the automation channel interacts with labor search frictions, enabling our model

to confront the time-series data of the U.S. labor market.

IV.4. Automation threat and labor market dynamics. Our model predicts that the

threat of automation dampens wage adjustments and amplifies labor market fluctuations. Is

the automation mechanism quantitatively important? To examine the empirical importance

of the automation mechanism, we compare our model’s predictions for labor productivity

and real wages with those from two counterfactuals: one without the automation channel

and the other with low search friction. As discussed in Section IV.2, the no-automation

counterfactual is a version of our benchmark model with the automation-related variables

held constant at their steady-state values and the automation-specific shock shut off. The

low search frictions counterfactual is a version of the benchmark model with a lower vacancy

posting cost and a higher average job separation rate, as in Section IV.3.

Our benchmark model implies that the probability of automation is procylical, rising

in business cycle booms and falling in recessions. Thus, the increased threat of automation

mutes wage growth in a business cycle boom, allowing the model to generate large volatilities

of the labor market tightness (the v-u ratio) relative to that of the real wage rate. In this

sense, the automation channel helps resolve the Shimer puzzle.
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Indeed, both automation and search frictions are important for generating the observed

large relative volatility of the labor market tightness, as illustrated in Table 4. The table

shows the standard deviations of the labor market tightness (i.e., the v-u ratio), the real

wage rate (w), and the relative volatility of the tightness (relative to that of real wages). In

the benchmark model, the v-u ratio is about 39 times as volatile as the real wage rate. This

relative volatility is the same as in the actual data, because the model is estimated to fit

these time series.

The counterfactual with no automation generates a much smaller volatility of the v-u ratio

(0.298 vs. 1.159) and modestly larger volatility of the real wage rate (0.031 vs. 0.029) than

does the benchmark model, implying a much smaller relative volatility (9.56 vs. 39.47).

This no-automation case essentially reproduces the Shimer (2005) volatility puzzle. The

counterfactual with low search frictions also generates less volatility of the v-u ratio (0.99)

and more volatility of the real wage rate (0.034), implying a smaller relative volatility than

in the benchmark model (29.48). Thus, both automation and labor search frictions are

important for the model’s transmission mechanism.

Our model’s mechanism also sheds light on the driving factors for the muted wage growth

over the past few years despite an increasingly tightened labor market. To assess the contri-

bution of the automation mechanism to the observed dynamics of real wages and unemploy-

ment, we simulate a counterfactual model in which we shut off the automation channel, and

into which we feed in the same parameters and shocks as those in our benchmark model. We

then compare the smoothed time series generated from the counterfactual model with those

from the benchmark model, the latter of which replicates the actual time series data under

our Bayesian estimation. We find that, between 2013 and 2018, the automation mechanism

has reduced the cumulative real wage growth by roughly 10 percent; it has also reduced the

unemployment rate by an average of about 2.5 percentage points per year during the same

period. Thus, absent automation, both the real wage rate and the unemployment rate would

have been substantially higher during this period. In this sense, the automation mechanism

has contributed significantly to the persistent declines in unemployment accompanied by

sluggish wage growth in the recovery from the Great Recession.

V. Conclusion

We have studied the role of automation in explaining the observed labor market dynamics

in a quantitative general equilibrium framework. The threat of automation raises the firm’s

reservation value in wage bargaining, dampening increases in real wages in a business cycle

boom. Thus, automation creates a source of real wage rigidity. At the same time, the option

to automate a job position boosts the incentive for job creation, which offsets the direct
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job-displacing effects of automation. By muting wage growth while improving productivity,

automation helps amplify fluctuations in unemployment and vacancies.

Our estimated general equilibrium model shows that the automation channel is quantita-

tively important. The automation mechanism has contributed significantly to the observed

sluggish wage growth despite strong labor markets during the long expansion following the

Great Recession. More broadly, automation helps account for the large volatility in unem-

ployment and job vacancies relative to that of real wages, a puzzling observation through

the lens of the standard DMP model with labor search frictions.

Similar effects could also arise from other labor-saving mechanism, such as offshoring.

When firms have the option of importing intermediate goods instead of producing them

domestically, the threat of offshoring could also weaken domestic workers’ bargaining power

in wage negotiations, similar to the threat of automation in our model. Other factors such

as increases in product market concentration and declines in union powers may have also

contributed to the observed labor market dynamics in the past few decades. Assessing

the quantitative importance of these alternative contributing factors requires a coherent

general equilibrium framework that can be used to fit time series data. Our framework with

automation provides a useful step in that promising direction for future research.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

φ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.6594

δ̄ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κ Vacancy posting cost 0.0939

b Nash bargaining weight 0.50

ηv Elasticity of vacancy creation cost 1

ηa Elasticity of automation cost 1

κa Flow cost of automated production 0.98

χ Disutility of working 0.7292

Z̄ Mean value of neutral technology shock 1

ζ̄ Mean value of equipment-specific technology shock 1
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for vacancy creation cost G [5, 1] 8.6001 7.7510 9.4607

x̄ scale for robot adoption cost G [5, 1] 1.8020 1.3155 2.2557

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9432 0.9235 0.9598

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9702 0.9535 0.9838

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9354 0.9019 0.9662

ρζ AR(1) of automation-specific shock B [0.8, 0.1] 0.8205 0.7991 0.8471

σz std of tech shock IG [0.01, 0.1] 0.0109 0.0095 0.0128

σθ std of discount factor shock IG [0.01, 0.1] 0.0124 0.0090 0.0170

σδ std of separation shock IG [0.01, 0.1] 0.0489 0.0452 0.0515

σζ std of automation-specific shock IG [0.01, 0.1] 0.0320 0.0244 0.0406

Log data density 1258.54

Note: This table shows our benchmark estimation results. For the prior distribution types,

we use G to denote the gamma distribution, B the beta distribution, and IG the inverse

gamma distribution.
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Table 3. Forecasting Error Variance Decomposition

Variables Neutral Discount Job Automation

technology shock factor shock separation shock specific shock

Unemployment 34.48 63.30 1.22 0.99

Vacancy 31.69 57.27 10.03 1.01

Productivity growth 50.16 17.60 0.25 32.00

Real wage growth 43.64 18.48 0.48 37.40

Note: The numbers reported are the posterior mean contributions (in percentage terms) of

each of the four shocks in the benchmark estimation to the forecast error variances of the

variables listed in each row.
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Table 4. Labor market volatilities implied by alternative models

Model Labor market tightness Real wage Relative volatility

Benchmark model 1.1591 0.0294 39.4676

No automation 0.2982 0.0312 9.5605

Low search friction 0.9904 0.0336 29.4758

Note: The three rows in the table correspond to three alternativ models: the benchmark

model, the no-automation counterfactual, and the low-search-friction counterfactual (see

the text for more detailed explanations of these models). For each model, the numbers in

the three columns are (1) the standard deviation of labor market tightness measured by

the ratio of vacancies to unemployment, (2) the standard deviation of the real wage rate,

and (3) the ratio of the first two columns.
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Figure 1. Impulse responses to a positive neutral technology shock in the

benchmark model.
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Figure 2. Impulse responses to a positive discount factor shock in the bench-

mark model.
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Figure 3. Impulse responses to a job separation shock in the benchmark model.
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Figure 4. Impulse responses to a positive automation-specific shock in the

benchmark model.
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Figure 5. Impulse responses to a positive discount factor shock in the bench-

mark model (black solid lines), the counterfactual with no automation (blue

dashed lines), and the counterfactual with no automation and low worker bar-

gaining power (red dot-dash lines).
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Figure 6. Impulse responses to a positive neutral technology shock in the

benchmark model (black solid lines), the counterfactual with no automation

(blue dashed lines), and the counterfactual with no automation and low worker

bargaining power (red dot-dash lines).
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Figure 7. Impulse responses to a positive neutral technology shock in the

benchmark model (black solid lines) and the counterfactual with low search

frictions (blue dashed lines).
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Figure 8. Impulse responses to a positive automation-specific shock in the

benchmark model (black solid lines) and the counterfactual with low search

frictions (blue dashed lines).
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Appendix A. Data

We fit the DSGE model to four quarterly time-series data of the U.S. labor market: the

unemployment rate, job vacancies, real wage growth, and labor productivity growth. The

sample covers the period from 1985:Q1 to 2018:Q4.

(1) Unemployment: Civilian unemployment rate (16 years and over) from the Bureau

of Labor Statistics, seasonally adjusted monthly series (LRUSECON in Haver).

(2) Job vacancies: For pre-2001 periods, we use the vacancy rate constructed by Bar-

nichon (2010) based on the Help Wanted Index. For the periods starting in 2001, we

use the job openings from the Job Openings and Labor Turnover Survey (JOLTS),

seasonally adjusted monthly series (LIJTLA@USECON in Haver).

(3) Real wages: real compensation per worker in the nonfarm business sector. We

first compute the nominal wage rate as the ratio of nonfarm business compensa-

tion for all persons (LXNFF@USECON in Haver) to nonfarm business employment

(LXNFM@USECON) and then deflate it using the nonfarm business sector implicit

price deflator (LXNFI@USECON).

(4) Labor productivity: nonfarm business sector real output per person (LXNFS@USECON

in Haver)

Appendix B. Derivations of household’s optimizing conditions

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max lnCt − χNt + βEtθt+1Vt+1(Bt, Nt), (A1)

subject to the budget constraint

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt) + dt − Tt, (A2)

and the law of motion for employment

Nt = (1− δt)Nt−1 + qut ut, (A3)

where the measure of job seekers is given by

ut = 1− (1− δt)Nt−1. (A4)

The household chooses Ct, Bt, and Nt, taking prices and the average job finding rate as

given.
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Denote by Λt the Lagrangian multiplier for the budget constraint (A2). The first-order

condition with respect to consumption implies that

Λt =
1

Ct
. (A5)

The optimizing decision for Bt implies that

Λt

rt
= βEtθt+1

∂Vt+1(Bt, Nt)

∂Bt

. (A6)

The envelope condition with respect to Bt−1 implies that

∂Vt(Bt−1, Nt−1)

∂Bt−1

= Λt. (A7)

We thus obtain the intertemporal Euler equation

1 = Et
βθt+1Λt+1

Λt

rt, (A8)

which is equation (24) in the text.

The envelope condition with respect to Nt−1 implies that

∂Vt(Bt−1, Nt−1)

∂Nt−1

=

[
Λt(wt − φ)− χ+ βEtθt+1

∂Vt+1(Bt, Nt)

∂Nt

]
∂Nt

∂Nt−1

. (A9)

Equations (A3) and (A4) imply that

∂Nt

∂Nt−1

= (1− δt)(1− qut ) (A10)

and that
∂ut
∂Nt−1

= −(1− δt). (A11)

Define the employment surplus (i.e., the value of employment relative to unemployment)

as

SHt =
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt

=
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt−1

∂Nt−1

∂Nt

=
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt−1

1

(1− δt)(1− qu(st))
.

(A12)

Thus, SHt is the value for the household to send an additional worker to work in period t.

Then the envelope condition (A9) implies that

SHt = wt − φ−
χ

Λt

+ Et
βθt+1Λt+1

Λt

(1− δt+1)(1− qut+1)SHt+1. (A13)

The employment surplus SHt derived here corresponds to equation (23) in the text, and it is

the relevant surplus for the household in the Nash bargaining problem.
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Appendix C. Summary of equilibrium conditions

A search equilibrium is a system of 18 equations for 18 variables summarized in the vector

[Ct, rt, Yt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt, J

e
t , J

v
t , J

a
t , At, x

∗
t , wt] .

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 = Etβθt+1
Ct
Ct+1

rt, (A14)

(2) Matching function

mt = µuαt v
1−α
t , (A15)

(3) Job finding rate

qut =
mt

ut
, (A16)

(4) Vacancy filling rate

qvt =
mt

vt
, (A17)

(5) Employment dynamics

Nt = (1− δt)Nt−1 +mt, (A18)

(6) Number of searching workers

ut = 1− (1− δt)Nt−1, (A19)

(7) Unemployment

Ut = 1−Nt, (A20)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δtNt−1 + ηt, (A21)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (A22)

(10) Employment value

Jet = Zt − wt + Etβθt+1
Ct
Ct+1

[
δt+1J

v
t+1 + (1− δt+1)Jet+1

]
, (A23)

(11) Vacancy value

Jvt = −κ+ qvt J
e
t + (1− qvt )Etβθt+1

Ct
Ct+1

[
(1− qat+1)Jvt+1 + qat+1J

a
t+1

]
. (A24)



ROBOTS OR WORKERS 40

(12) Automation value

Jat = Ztζt − κa + (1− ρo)Etβθt+1
Ct
Ct+1

Jat+1, (A25)

(13) Automation threshold

x∗t = Jat − Jvt , (A26)

(14) Robot adoption

qat =

(
x∗t
x̄

)ηa
, (A27)

(15) Vacancy creation

ηt =

(
Jvt
ē

)ηe
, (A28)

(16) Aggregate output

Yt = ZtNt + ZtζtAt. (A29)

(17) Resource constraint

Ct + κvt + κaAt +
ηa

1 + ηa
qat x

∗
t (1− qvt−1)vt−1 +

ηe
1 + ηe

ηtJ
v
t = Yt, (A30)

(18) Nash bargaining wage

b

1− b
(Jet − Jvt ) = wt − φ− χCt + Et

βθt+1Ct
Ct+1

(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1), (A31)

Appendix D. Automating jobs instead of vacancies

In our benchmark model, we assume that firms can automate a vacancy if that vacancy

is not filled with a worker. A plausible alternative way of thinking about automation is to

allow firms to automate an existing job instead of an open vacancy. We now consider that

alternative setup.

D.1. Main ingredients in the model. In the beginning of period t, after observing all

aggregate shocks, a firm can decide whether or not to replace a worker in an existing job

match by a robot. The firm draws a cost x of automation from an i.i.d. distribution F (x) and

chooses to automate if the cost lies below the expected benefits of automation. There exists

a threshold level of the automation cost—denoted by x∗t—such that the firm automates the

job position if and only if x ≤ x∗t . Thus, the automation probability is given by qat = F (x∗t ).

If the firm adopts a robot, it obtains the automation value Jat (see Eq. (14)), but gives up

the employment value Jet . Thus, the automation threshold is given by x∗t = Jat − Jet .

The employment value takes into account the possibility of automation, and is given by

Jet = Zt − wt + Etβθt+1
Ct
Ct+1

{
δt+1J

v
t+1 + (1− δt+1)

[
qat+1J

a
t+1 + (1− qat+1)Jet+1

]}
, (A32)
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A job match yields the flow profit Zt − wt in period t. In period t + 1, the job can be

exogenously separated, in which case the firm obtains the vacancy value Jvt+1. If the job is

not separated, it can be automated with the probability qat+1, in which case the firm obtains

the automation value Jat+1. If the job is neither separated nor automated, then the firm

obtains the continuation value of employment Jet+1.

Since a fraction of non-separated jobs are automated, the employment stock follows the

law of motion

Nt = (1− δt)(1− qat )Nt−1 +mt. (A33)

The system of equilibrium conditions is summarized in Appendix D.2.

The law of motion for employment (A33) reveals that, in this model setup, automation acts

like a job separation shock. This intuition is confirmed by the impulse responses to a discount

factor shock in Figure A1. The figure shows that a positive discount factor shock raises the

net present value of automation and thus increases the probability of automation. Since

automation directly replaces workers, the unemployment rate rises following the shock. At

the same time, automation improves labor productivity and boosts employment and vacancy

creation, offsetting its direct job-displacing effect. With estimated parameters and shocks

in the model (using the same time-series data as in our benchmark case), the job-displacing

effect dominates the employment boosting effect in the short run, so that a positive discount

factor shock raises unemployment and vacancies, similar to the effects of an exogenous job

separation shock.
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Figure A1. Impulse responses to a positive discount factor shock in the

alternative model with automated jobs instead of vacancies.

D.2. Equilibrium conditions in the model with automated jobs. A search equilib-

rium is a system of 18 equations for 18 variables summarized in the vector

[Ct, rt, Yt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt, J

e
t , J

v
t , J

a
t , At, x

∗
t , wt] .

(1) Household’s bond Euler equation:

1 = Etβθt+1
Ct
Ct+1

rt, (A34)

(2) Matching function

mt = µuαt v
1−α
t , (A35)

(3) Job finding rate

qut =
mt

ut
, (A36)

(4) Vacancy filling rate

qvt =
mt

vt
, (A37)

(5) Employment dynamics

Nt = (1− δt)(1− qat )Nt−1 +mt, (A38)
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(6) Number of searching workers

ut = 1− (1− δt)(1− qat )Nt−1, (A39)

(7) Unemployment

Ut = 1−Nt, (A40)

(8) Vacancy dynamics

vt = (1− qvt−1)vt−1 + δtNt−1 + ηt, (A41)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− δt)Nt−1, (A42)

(10) Employment value

Jet = Zt − wt + Etβθt+1
Ct
Ct+1

{
δt+1J

v
t+1 + (1− δt+1)

[
qat+1J

a
t+1 + (1− qat+1)Jet+1

]}
, (A43)

(11) Vacancy value

Jvt = −κ+ qvt J
e
t + (1− qvt )Etβθt+1

Ct
Ct+1

Jvt+1, (A44)

(12) Automation value

Jat = Ztζt − κa + (1− ρo)Etβθt+1
Ct
Ct+1

Jat+1, (A45)

(13) Automation threshold

x∗t = Jat − Jet , (A46)

(14) Robot adoption

qat =

(
x∗t
x̄

)ηa
, (A47)

(15) Vacancy creation

ηt =

(
Jvt
ē

)ηe
, (A48)

(16) Aggregate output

Yt = ZtNt + ZtζtAt. (A49)

(17) Resource constraint

Ct + κvt + κaAt +
ηa

1 + ηa
qat x

∗
t (1− δt)Nt−1 +

ηe
1 + ηe

ηtJ
v
t = Yt, (A50)

(18) Nash bargaining wage

b

1− b
(Jet − Jvt ) = wt − φ− χCt + Et

βθt+1Ct
Ct+1

(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1), (A51)


