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Abstract

This paper isolates and estimates extreme weather uncertainty. Our framework identifies mar-
ket responses to the uncertainty regarding both potential hurricane landfall and subsequent
economic impact. Stock options of firms with establishments exposed to the landfall region
exhibit large increases in implied volatility of up to 30 percent, reflecting impact uncertainty,
which persists up to four months after landfall. Using hurricane forecasts, we find both landfall
uncertainty and expected impact uncertainty are reflected in option prices before landfall. Our
findings show the significant costs to hedging extreme weather uncertainty and have important
implications for assessing the economic effects of extreme weather.
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1 Introduction

From major hurricanes on the Atlantic and Gulf coasts, to droughts on the west coast, and flooding
across the US, extreme weather has devastated a variety of communities in recent years. Despite
an emerging climate finance literature that examines how investors can hedge climate risks (see,
for example, Andersson, Bolton, and Samama (2016); Baker, Hollifield, and Osambela (2019);
Engle, Giglio, Kelly, Lee, and Stroebel (2019); Krueger, Sautner, and Starks (2019); Roth Tran
(2019)) and a growing literature on the impacts of extreme weather,! little is known about the
magnitude and dynamics of extreme weather uncertainty. This gap in the literature is surprising,
as uncertainty in other contexts is known to affect financial markets and real economic activity.?
Researchers across disciplines are striving to assess the costs of extreme weather and better un-
derstand the mechanisms through which extreme weather affects local economies to improve their
resilience.® Extreme weather uncertainty could lead to substantial costs that are currently ignored
by conventional damage estimates and alter the decisions of economic agents, thereby affecting
local economies. For example, uncertainty about how a firm will be affected by an extreme weather
event can impact the hedging, insurance, financing, and investment decisions of the firm’s managers,
investors, customers, and suppliers. Thus, a comprehensive assessment of the costs and economic
effects of extreme weather events requires understanding the uncertainty surrounding them.

In this paper, we use financial markets to isolate and quantify extreme weather uncertainty,
analyze its dynamics and the costs to its hedging. We distinguish between two components of
extreme weather uncertainty: (a) the “landfall uncertainty” regarding where, when, and whether a
hurricane will make landfall, and (b) the “impact uncertainty” about a hurricane’s effect conditional
on it making landfall.* We proxy for uncertainty using changes to the implied volatility of stock
options, a measure that captures investor expectations of volatility.” We combine county-level firm

establishment data with hurricane forecast and landfall data to identify firm exposure to regions

!See, for example, Barrot and Sauvagnat (2016); Bernile, Bhagwat, and Rau (2017); Dessaint and Matray (2017);
Brown, Gustafson, and Ivanov (2017); Hong, Li, and Xu (2019).

2For example, political uncertainty is estimated to be high around elections (see Kelly, Pastor, and Veronesi
(2016)) and has been shown to reduce firm investments (see Julio and Yook (2012); Jens (2017)).

3See, for example, Melillo, Richmond, and Yohe (2014).

4We focus on hurricanes because they develop and resolve over fairly short but well-defined time frames, which
allows for an isolated estimation of the effects, and NOAA publishes a range of relevant data on hurricanes. However,
our framework can also be applied to other extreme weather events like snow storms and severe floods that are also
subject to uncertainty about where they occur and what the eventual impact will be.

®See, for example, Bloom (2009) and Kelly, Pastor, and Veronesi (2016).



(potentially) affected by particular hurricanes. We use these granular data to conduct an in-depth
analysis on extreme weather uncertainty using a difference-in-differences approach.

Our first hypothesis is that while a hurricane is out in the ocean and making its way toward
the coast, the associated landfall and expected impact uncertainty will be reflected in the stock
options of exposed firms. Using National Oceanographic and Atmospheric Administration (NOAA)
forecasts issued in the days leading up to a hurricane’s landfall or dissipation (in the case of a
hurricane that “missed”), we find implied volatilities of firms with exposure to the forecast path
increase even at low landfall probabilities and increase by up to 21 percent for high probabilities.”
These results imply that hurricanes cause substantial uncertainty and that investors pay attention
to hurricane forecasts. Such attention to climatic events is by no means a given, as some papers
in the climate finance literature assessing informational efficiency have found that investors are
inattentive to other climatic events as they unfold (see, for example, Hong, Li, and Xu (2019)).
Furthermore, investor attention to extreme weather events is important for correctly pricing assets
with exposure to extreme weather and other climate risks, thereby reducing the risks of sudden
large price corrections that could disrupt financial stability (see, for example, Carney (2015)).

Our second hypothesis is that immediately after a hurricane has made landfall, the implied
volatility of options of firms in the landfall region are elevated due to impact uncertainty, which
gradually resolves following landfall. Indicative of substantial impact uncertainty, we find that
immediately after hurricane landfall the implied volatility of options of firms with establishments
in the landfall region are elevated, rising up to 30 percent higher than before the hurricane’s
inception. Implied volatilities remain elevated for several months after hurricane landfall indicating
that resolution of impact uncertainty is slow.

These estimates are economically significant. If one were to hedge the shares outstanding of
the affected firms in our sample, the increase in implied volatilities in the aftermath of a hurricane
translates into hedging costs of up to $53 billion. This value is substantial considering that NOAA
estimates the total hurricane damages to be $583 billion over the same sample period.”

We build on these baseline results with several robustness checks and extensions. For example,

5We note here that unlike at the aggregate market level, stock returns and volatility at the firm level generally
exhibit positive contemporaneous correlation as shown in Duffee (1995); Albuquerque (2012); Grullon, Lyandres, and
Zhdanov (2012). As such, the negative return-volatility relationship documented for market index volatility is not
impacting our results, which are on firm-level volatility.

"These values are reported in 2017 inflation-adjusted US dollars.



our findings are not driven by small firms, are robust across industries, hold within industries, and
are also robust to the exclusion of the most damaging hurricanes according to NOAA (Katrina,
Sandy, and Harvey). While financial firms are excluded from our baseline analyses, we show
that single stock options of property and casualty insurance firms also reflect substantial impact
uncertainty immediately following a hurricane landfall, exhibiting implied volatility increases of as
much as 70 percent. We test if the large increases in implied volatilities from our baseline results
are due to investor overreaction, but find no evidence for it. Further, while our results show that
investors are attentive to short-term forecasts and price in landfall and potential impact uncertainty,
we find no evidence that they react to NOAA’s medium-term seasonal forecasts, which are much
less informative than the forecasts for individual hurricanes. Finally, we show that the stocks
of the worst performing firms exposed to hurricane landfall regions dramatically underperform
the worst performing firms in the control set. The cumulative abnormal return difference after 6
months is as much as 26 percent. This underperformance takes several months after landfall to
manifest, supporting the notion that investors price in significant uncertainty because it takes time
to determine the full effects of a hurricane and resolve which firms were most adversely affected.

This paper makes several key contributions. First, we present a novel framework of landfall and
impact uncertainty to formalize our notions of uncertainty before and after extreme weather events.
Second, our estimates imply that extreme weather uncertainty can impose significant financial costs
when hedging or insuring against extreme weather uncertainty, and these costs are currently ignored
when assessing the aggregate impact of extreme weather events. Third, given that research has
shown that other types of uncertainty can affect household and firm decision making—for example
political uncertainty around elections has been shown to reduce firm investments (see Julio and
Yook (2012) and Jens (2017))—the large economic magnitudes of our extreme weather uncertainty
estimates together with the slow resolution of impact uncertainty suggest that extreme weather
uncertainty could also be an important factor for such real outcomes. Fourth, we contribute to
the literature that analyzes investor attention to extreme weather by showing that investors are
attentive to short-term hurricane forecasts, but ignore medium-term seasonal forecasts possibly due
to a lack of accuracy.

The remainder of this paper is structured as follows. We begin with a discussion of the related

literature in Section 2. We describe our research design and data in Sections 3 and 4, respectively.



Section 5 presents our main results, followed by extensions and robustness tests in Section 6. We

conclude in Section 7.

2 Related literature

In showing that extreme weather events cause substantial uncertainty that is costly to investors,
our work is relevant to the literature examining the effects of extreme weather events. Barrot
and Sauvagnat (2016) find that extreme weather event shocks propagate in customer-supplier firm
networks. Bernile, Bhagwat, and Rau (2017) analyze the relationship between risk taking behavior
and the early-life disaster experiences of CEOs. Dessaint and Matray (2017) show that managers
overreact to hurricane risks after experiencing a hurricane. Brown, Gustafson, and Ivanov (2017) re-
port that firms experience decreased cash flows after extreme snowfall events and that they respond
by increasing their use of credit lines. Addoum, Ng, and Ortiz-Bobea (2019), Aladangady, Aron-
Dine, Dunn, Feiveson, Lengermann, and Sahm (2019), and Beatty, Shimshack, and Volpe (2019)
examine how extreme weather events affect sales, finding significant impacts of hurricanes but not
temperature deviations. Further research has shown how extreme weather affects local economies,
labor markets, schooling, household finance, and income (see Belasen and Polachek (2008); Imber-
man, Kugler, and Sacerdote (2012); Gallagher and Hartley (2017); Deryugina, Kawano, and Levitt
(2018); Martinez (2018); Roth Tran and Wilson (2019)).

Further, this paper introduces a novel topic to the emerging literature on climate finance that
includes early work on how Florida temperature fluctuations affect orange juice futures prices (see
Roll (1984); Boudoukh, Richardson, Shen, and Whitelaw (2007)); the pricing and usage of weather
derivatives (see Campbell and Diebold (2005); Perez-Gonzalez and Yun (2013); Purnanandam and
Weagley (2016); Weagley (2019)); how asset pricing theory can be used to calibrate the cost of
carbon dioxide emissions (see Bansal, Kiku, and Ochoa (2017); Daniel, Litterman, and Wagner
(2019); Barnett, Brock, and Hansen (2020)). Our research contributes to two branches of the
climate finance literature.

First, our analysis complements climate finance papers that develop hedging strategies. While
Baker, Hollifield, and Osambela (2019) and Roth Tran (2019) present theoretical models in which

green or emission-oriented investors can hedge risks by investing in polluters, Andersson, Bolton,



and Samama (2016) show empirically that investors can hedge against potential future prices on
carbon emissions by investing in a decarbonized index. Engle, Giglio, Kelly, Lee, and Stroebel
(2019) develop a climate change news index and assess strategies that can hedge an investor against
such news. In contrast to these papers, which focus largely on climate policy risk, we focus explicitly
on extreme weather events which are physical realizations of climate risks.

Second, this paper builds on recent papers in the finance literature focused on climatic events
and investor attention. Hong, Li, and Xu (2019) show that drought indices are predictive of
food company stock returns, indicating that investors are inattentive to droughts’ impacts on food
companies. Choi, Gao, and Jiang (2018) find evidence of a positive relationship between warmer-
than-usual temperatures and investors’ beliefs about climate change. Alok, Kumar, and Wermers
(2019) show that fund managers who are hit by a natural disaster subsequently misestimate the
risk of such disasters. Krueger, Sautner, and Starks (2019) survey institutional investors and
find these investors perceive that climate risks, especially regulatory risks, have already begun to
materialize and will have impact on equity valuations. Drawing mixed conclusions, several papers
(see Bernstein, Gustafson, and Lewis (2018); Giglio, Maggiori, Rao, Stroebel, and Weber (2018);
Bakkensen and Barrage (2019); Baldauf, Garlappi, and Yannelis (2019); Murfin and Spiegel (2019))
use NOAA sea level rise predictions to examine whether residential real estate prices reflect sea
level rise risks.

Finally, our paper investigates a novel type of uncertainty within the uncertainty literature. Our
analysis that investigates uncertainty around specific events is comparable to research on political
uncertainty. In this literature, scheduled elections are often used to isolate political uncertainty
and investigate how financial markets and firm investments are affected (see, for example, Julio and
Yook (2012); Pastor and Veronesi (2012, 2013); Kelly, Pastor, and Veronesi (2016); Jens (2017);
Kim and Kung (2017); Fried, Novan, and Peterman (2019)). Our paper complements this body of
work by showing that extreme weather events are an important source of uncertainty that affects
prices in financial markets. Compared to predetermined political events, our analysis introduces
a new layer of complexity as we separately examine the effects of the uncertainty about when,
whether, and where the hurricane will make landfall.

Several papers have analyzed macroeconomic uncertainty (see, for example, Bloom, Bond, and

van Reenen (2007); Bloom (2009); Jurado, Ludvigson, and Ng (2015); Baker, Bloom, and Davis



(2016); Dew-Becker, Giglio, Le, and Rodriguez (2017); Baker, Bloom, and Terry (2018); Dew-
Becker, Giglio, and Kelly (2018)). Our paper differs from the research on macroeconomic uncer-
tainty and economic growth in that our firm-level analysis is more granular than examinations
of the macroeconomy as a whole. This distinction matters because extreme weather events are

generally local phenomena.

3 Research design

3.1 Theoretical framework on landfall and impact uncertainty

Our framework distinguishes between two types of uncertainty that surround a hurricane: impact
uncertainty and landfall uncertainty. Intuitively, one can think of impact uncertainty as uncertainty
about the intensive margin of an extreme weather event and landfall uncertainty as uncertainty
regarding the extensive margin. Impact uncertainty is the uncertainty about how a hurricane will
impact firms with exposure to the landfall area. Prior to (potential) landfall, there is additional
uncertainty about whether and where a hurricane will make landfall. We call this landfall uncer-
tainty. More generally, this uncertainty is about the incidence or occurrence of an event. While
this paper focuses on hurricanes, our framework is general enough that it can be applied to other
types of extreme weather events.

More formally, if hurricane h is expected to make landfall at time ¢t + 1, then an all-equity firm

1’s stock return at ¢ + 1 is given by

Tit+1 = €41 + i hit19i hi+1, (1)

where €; 441 ~ N(0, 02) represents a random shock to the firm’s return at time ¢ 4+ 1. The random
variable g; p1+1 ~ N(fg, ag) is independent of €; ;41 and captures the impact of the hurricane on
the value of firm ¢, conditional on hurricane landfall in the firm’s geographic region. The random
variable 0; j, ;41 indicates whether firm ¢ is hit by hurricane h. 0; 5 ;41 has a Bernoulli distribution
(one draw of a binomial distribution), ; 441 ~ B(1, ¢), where Pr(6; 441 =1) =1—Pr(0; pt+1 =
0) = ¢ and 0 < ¢ < 1. The product of the two random variables, 04 1119; nt+1, is the component

of the return attributable to the hurricane.



Conditional on hurricane landfall at time t + 1, 03 represents the impact uncertainty.® In our
framework, a hurricane landfall introduces uncertainty for the local economy and firms. Predicting
at the time of landfall which firms will be most affected could be challenging for several reasons.
First, hurricane landfall in a particular location is a rare event, making it difficult to predict the
exact economic effect based on past experience. For example, Houston, TX, had not experienced
a hurricane for more than two decades before Hurricane Harvey hit in 2017. Second, a hurricane’s
impact on individual firms operating within a disaster region is largely unpredictable. Knowing
ex-ante exactly which areas will actually flood in a particular storm, the extent and duration of
power outages, whether a levy will break, or how long infrastructure repairs will take, is challenging
if not impossible.

At time t, we can decompose the uncertainty generated for the firm from the hurricane into
erpected impact uncertainty and landfall uncertainty as follows.

The expected return conditional on whether or not landfall occurs is Ey[r; 410 = 1] = p4 and

Ey[rit4+1]0 = 0] = 0. The conditional variance of firm ¢’s return is,

Var(riz1]0 = 0) = o2, (2)

Varyriz110 =1) = o + 03. (3)

It follows that the expected conditional variance? and the variance of the conditional expectation'”
are, respectively,

EVary(rii+1]0)] = o? + ¢U§7 (4)

Var(Erie1l6]) = ¢(1 — ¢)ug. (5)

Applying the law of total variance, we can derive the unconditional variance Var(r; 1) using (4)

and (5),

8This definition of uncertainty as the variance of an unpredictable disturbance is in line with Pastor and Veronesi
(2012 and 2013) and Jurado, Ludvigson, and Ng (2015).

YE[Var:(rii1]0)] = (1 — ¢)o® + ¢(0® + 02) = 0> + o

Y E[E[rie1|0]) = dug;

Var(E[ri+110]) = E[(Belria+110] — ¢pg)?] = ¢ug — ¢1g)* + (1 = 6)(0 — dpg)* = ¢(1 — ¢)p.



Vary(rigs1) = E[Vary(rig00)] + Var(Eiri110]),

=0+ g0, + (1 — P (6)

Landfall uncertainty is captured in the total variance by the third term in equation (6), ¢(1 —
?) ug. For a given py # 0, landfall uncertainty is highest when the probability of landfall ¢ is 0.5.
When pgy = 0, meaning that a hurricane is expected to have no impact, there is no contribution
from landfall uncertainty to total variance at time ¢. In this case, Var(r;+41) varies with ¢ purely
due to the expected impact uncertainty, qﬁag.

Figure 1 depicts how the variance prior to landfall Var(r; 1) varies with the probability of
hurricane landfall ¢ when o = 0.4 and 0, = 0.05. The four dashed lines have 11, (absolute) values of
0.1, 0.07, 0.05, and 0. The solid line shows what the level of variance would be following hurricane
landfall, Vary(ri41|60 = 1) = o + 03. The x-axis intersects the y-axis at the level of variance if
hurricane landfall does not occur, Vary(r; 41|60 =0) = o2.

Prior to landfall, depending on the parameter values of p, and 03, as the probability of landfall,
¢, varies from 0 to 1, the relative contribution to total variance from landfall uncertainty and
expected impact uncertainty will vary. All else equal, as j, increases, the contribution of landfall

uncertainty to total variance increases. In Figure 1, landfall uncertainty at a given ¢ is the vertical

distance between a curve and the red dot-dash straight line depicting Var(r; +1) when pg = 0.1

3.2 Firm exposure to hurricanes

We separately determine firm exposure to a hurricane forecast and a hurricane landfall region. In
both cases, we first determine which counties are in the forecast path or the landfall region of
a hurricane, and then measure a firm’s exposure based on the share of establishments located in
these counties. Figure 2 shows a stylized example of how we measure a firm’s exposure to a forecast
path or a landfall region. We are agnostic on the channel through which the hurricane affects a
firm. A firm could be negatively affected through, for example, damage to property, disruption to

production process, or decrease in demand due to the wealth shock to the local population. On

1
Iz
the dashed lines are above the solid black line. When ¢ > 0 and at least one of pg or o4 is non-zero, Vary(r,+1) is

greater than Var:(ri+4+1|0 = 0) = o2

YUY ary(rie41) will in fact be greater than Var(ri,¢41]0 = 1) when |ug| > ——0,. In the figure, this is the case where



the other hand, a firm could be positively affected because, for example, demand for its products
increases in the rebuilding process or local competitors were more severely affected. Due to these
range of possible channels, establishment locations seem to be the most natural way to capture
firm exposure to hurricanes.'?

We use hurricane wind speed forecasts to develop firm- and day-specific exposures to hurricanes
before landfall. For our purpose, wind speed forecasts have the advantage that NOAA issues
probabilities that a county will experience hurricane force winds for a given hurricane. These
probabilities facilitate the connection between our framework from Section 3 and our empirical
analysis. Forecasts on the hurricane eye or rainfall lack such granularity and exact probabilities.!?
Figure 3 shows an example of NOAA’s wind speed forecasts. We denote the set of counties that
have a probability of at least P to experience hurricane level wind speeds as Fp;, where ¢ is a
trading day. NOAA updates these forecasts multiple times a day, so for each trading day, we
use the last forecast made before market close. Importantly, counties in a forecast hurricane path
include both counties later hit by hurricanes and those spared by evolving hurricane paths. More
detail on the hurricane forecast data is presented in Section 4.1.

We compute firm ¢’s exposure to the forecast path of hurricane h, I' days before hurricane landfall

or dissipation, as the share of i’s establishments located in the set of counties in the forecast path,

Fpr, 1. This forecast exposure, a continuous variable ranging from 0 to 1, is given by

ForecastExposure; pr, -1 = Z(FirmCountyExposurei,Th,p,c X ICEFP,Th_r)' (7)

c

Figure 2(a) shows a stylized example of how the ForecastExposure variable is computed, where
the shaded blue squares represent the exposed counties in Fp, —r.

We take a similar approach for our post-landfall analyses by determining the set Lg 7, of counties
located in the landfall region. Using the landfall data described in section 4.2, we determine a county
¢ to be in the landfall region of a hurricane, if the county’s centroid is within a radius R of the
eye of the storm at landfall. The radius accounts for the fact that hurricanes can impact counties

that are not located in immediate proximity to the eye of the storm through wind and rain. Using

12County-firm level sales are used as robustness check in the Online Appendix.

13 Also, which storm is considered a hurricane is based on wind speed and not rainfall. There is clearly a strong
positive correlation between hurricane wind speed and rainfall. Therefore, the wind speed forecasts also proxy for
rainfall.

10



data on the eye of the storm location to determine a hurricane’s landfall region has the distinct
advantage that these data are available to investors in real-time during a hurricane strike.'* We
then calculate the share of firm i’s establishments in counties located in the hurricane’s landfall
region. Formally, on landfall day T}, firm i’s exposure to the landfall region of hurricane h is given
by

Landfall Region Exposure; r 1, = Z(FirmCountyExposurei,Th70 X IceLR,Th)- (8)

[

A firm’s exposure to a hurricane landfall region is again a continuous variable ranging from 0 to 1.
Similar to the forecast analyses prior to landfall that are performed on a series of probability thresh-
olds, we perform the landfall analyses for several radii around the eye of the storm. With larger
radii, the average intensity of impact on firms decreases but the number of treated firms and their
exposure increases. Figure 2(b) depicts a stylized example of how the Landfall Region Exposure

variable is computed, with the shaded red squares being counties in Lr T, .

3.3 Baseline estimation strategy

We employ a differences-in-differences framework to estimate the uncertainty dynamics surrounding
hurricanes. We jointly estimate the treatment effect across all hurricanes, where each hurricane
landfall or forecast yields a separate treatment. The treatment intensity varies, because treatment
is defined continuously as exposure to the forecast path or landfall region, shown in equations (7)
and (8), respectively. Firms with zero exposure to a hurricane serve as the controls for that event.
We follow the recommendation of Bertrand, Duflo, and Mullainathan (2004) by collapsing the time
series information into a pre- and post-treatment period for each difference-in-difference, that is,
each hurricane. The pre-treatment period is T}, the trading day before hurricane inception.'® For
the hurricane forecast analysis, the post-treatment period is I" days before landfall or dissipation,
while it is 7 days after landfall for the hurricane landfall analysis.

We examine how hurricane forecasts affect implied volatilities of firms located in the path of a

14 Alternative data that could be used to determine the landfall region of a hurricane, for example, county level
damages, are only published by agencies like the Federal Emergency Management Agency with a substantial time
lag of at least several months.

15The inception day of a hurricane is defined as the first day on which the hurricane is predicted to make landfall
with at least a 1 percent probability. For hurricanes before 2007, which are only used in the post-landfall analysis, we
do not have hurricane forecast data available and choose as inception day the first day that the hurricane appeared
as a tropical depression.
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hurricane by estimating the following firm-hurricane panel regression model

IV, 1, _
log (IZ"/T}LF> = ApprForecastExposure; pr, —r + Tp + Vind + € hr- (9)
i T}

Here, each hurricane enters the regression as a separate time period. The dependent variable is the
change in implied volatility IV;; of firm ¢ from the last trading day before hurricane h inception,
Ty, to I' calendar days before hurricane landfall or dissipation on T},. ForecastExposure; pr, -1
is our continuous treatment variable that ranges from 0 to 1, as defined in equation (7). We
include hurricane fixed effects (7, ), which is equivalent to including time fixed effects because each
hurricane has one distinct time period in each regression. We include industry fixed effects (¢1,,4)
based on firm two-digit SIC numbers. Given the geographic nature of our treatment, we cluster
standard errors by the county to which the firm has the largest exposure (see, for example, Dessaint
and Matray (2017) and Abadie, Athey, Imbens, and Wooldridge (2017)).

We estimate the regression separately for each combination of I' € {1,2,3,4,5} and probability
threshold P € {1, 10,20, 30,40, 50}. Only hurricanes for which the day Tj, — I is a trading day are
included in a regression for a given I'. This means that the set of hurricanes included in the regres-
sion sample depends on I' and P. We exclude firms that have missing implied volatility estimates
for more than half of the trading days from inception to Tj, — I' days before landfall/dissipation.
The time series starts in 2007, because we have hurricane wind speed forecast data from 2007
onwards, and ends in 2017. In terms of interpreting results, a positive and significant Appr is
consistent with firms in the forecast path of a hurricane facing substantial landfall and expected
impact uncertainty.

Prior to landfall, the higher implied volatility of firms in the forecasted path of a hurricane can
result from expected impact uncertainty as well as landfall uncertainty (as shown in equation (6)).
After landfall—when the landfall uncertainty has been resolved—options should only reflect impact
uncertainty. We isolate and estimate impact uncertainty by examining the implied volatilities
shortly after landfall, when investors know where the hurricane has hit, but do not know what the
eventual impact on exposed firms will be.

We estimate impact uncertainty using the following firm-hurricane panel regression model,

12



where again each hurricane enters the regression as a separate time period

1V;
log <IZ"/Th+T> = Ar,rrLandfall RegionExposure; r 1, + Th + Vind + €ihr (10)
0Ty

where 7 is the number of trading days since hurricane h made landfall on day T}, and T}’ designates
the last trading day before hurricane inception. LandfallRegionExposure; r 1, is the measure
defined in equation (8) of firm i’s exposure to counties within the landfall region, which can vary
from 0 to 1. Because this regression is estimated up to long periods post landfall (for large values of
7), we exclude firms that have been hit by a hurricane from the control set of other hurricanes that
occur within 180 calendar days to avoid distortions due to overlapping.'® A positive and significant

ArL,Rr, reflects impact uncertainty in the aftermath of a hurricane.

4 Data and summary statistics

Our analysis uses data from a range of sources. We combine NOAA data on wind speed forecasts and
realized storm tracks with firm establishment data from the National Establishment Time-Series
(NETS) database to determine firm-by-storm specific treatment levels. We use CRSP-Compustat
and OptionMetrics data for our stock and option outcome variables. We describe each of these data

sources below. Additional information on the hurricane data can be found in the Online Appendix.

4.1 Hurricane forecasts

We use NOAA’s National Hurricane Center (NHC) wind speed probability forecasts to measure
uncertainty prior to hurricane landfall. Figure 3 shows an example of the forecast chart of cumula-
tive probability bands for hurricane force winds, as presented by the NHC, over a five day period
in the case of Hurricane Sandy in 2012. The NHC publishes hurricane forecast charts and text
advisories, both produced from the same underlying hurricane forecast models, which are used in
real-time by news outlets in the run-up to hurricanes and stored in NOAA’s hurricane archives.'”

We use these time-stamped text files from the NOAA website which contain the probabilities

that a given set of locations, for example, Norfolk, VA, will experience winds in excess of 34, 50,

16For this purpose, we consider a firm as being hit if at least 10 percent of its establishments are located in the
landfall region. Varying this threshold leads to qualitatively similar results.
'"The NOAA hurricane archives can be found here https://www.nhc.noaa.gov/archive.
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and 64 knots for a particular hurricane over the subsequent days. These forecast data are updated
every six hours and available from 2007 to 2017. We obtain the forecasts just before market close for
each trading day in our analysis. Our analysis is based on the forecasts for 64 knots, the minimum
wind speed at which a tropical storm is considered a hurricane. The wind speed probabilities are
presented up to five days out from the time of each forecast. We translate the reported location-
specific wind speed forecasts to county specific forecasts in two steps. First, we determine the set of
locations that have reported probabilities of hurricane force winds above each probability threshold
P €{1,10,20,30,40,50}, and match these locations to counties. Second, we add counties that are
within a 75 mile radius of the counties identified in the first step.'® Figure 4 illustrates a sample
of processed wind speed data at different probability thresholds for Hurricane Sandy over a four
day period. Table 1 Panel A lists the hurricanes included in our forecast sample. Further details

on how we process the hurricane forecast data can be found in the Online Appendix.

4.2 Hurricane landfall regions

We use hurricane track data collected from forecast advisory files from the NOAA hurricane archives
to develop firm-specific exposure to hurricane landfall regions. These data show the actual location
and intensity of the hurricane’s eye at various points of time. To account for the fact that hurricanes
can impact counties that are not located in immediate proximity to the eye of the storm, we
consider a county to be in the hurricane landfall region if it is located within a given radius of the
hurricane’s eye within 24 hours before and after the hurricane makes landfall.'?-2* We use county
centroids to generate the sets of counties that lie within 50, 100, 150, 200 miles of the eye of each
hurricane. Having this time window around the landfall time ensures that we capture counties that
lie more inland and counties that were close to the eye of the hurricane before the actual landfall
for hurricanes that move along the coast. Figure 5 shows which counties fall within each set for
hurricanes Katrina (2005), Sandy (2012), Matthew (2016), and Harvey (2017). Table 1 Panel B
lists the hurricanes included in our landfall region sample. Additional details are presented in the

Online Appendix.

18The results presented in the paper are robust to using other radii.

19We also consider other time windows, for example, 12, 36, and 48 hours, and the results are qualitatively similar.

20Two hurricanes in the sample, Charley 2004 and Katrina 2005, made two landfalls in the US. To avoid double-
counting with these two hurricanes, we use as the landfall date, the date when the hurricane made landfall at a higher
storm strength on the Saffir-Simpson scale.
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Importantly, these data are published by NOAA in real-time. Therefore, investors have access
to the information on the landfall region of a hurricane as soon as it makes landfall. Other papers
have used damaged counties to discern which firms were affected by natural disasters (for example,
Barrot and Sauvagnat (2016) and Dessaint and Matray (2017).) In our setting, doing so would
introduce a forward-looking bias because investors do not know at the time of a hurricane landfall
which counties will experience damage from a hurricane. County-specific damage data only become

available with a substantial lag of at least several months.

4.3 Firm establishment, option, and stock data

We use NETS firm establishment location data to precisely estimate a firm’s exposure to each
hurricane. These data have been used in several other studies. For example, Neumark, Wall, and
Zhang (2011) investigate the job creation of small businesses based on NETS. Addoum, Ng, and
Ortiz-Bobea (2019) use NETS to analyze the effect of temperature fluctuations on firms’ sales.
The NETS data contain establishment information at the county level and are updated annually.?!
For each hurricane season, we use firm geographic footprints from the previous year to avoid the
possibility that we will miss establishments closed during the year. Because our NETS data extend
only through 2014, we use the 2014 geographic footprint for 2016 and 2017, in addition to 2015.
Figure 6 shows the number of establishments per county sorted into deciles using the NETS data
for 2010 and 2014. This map illustrates that economic activity as measured by the density of firm
establishments is high in areas prone to hurricanes along the Atlantic and the Gulf Coast.

We use firm name and headquarter address to link the firms in NETS to those in OptionMetrics
and CRSP-Compustat. Our linked sample starts in 1996, the first year in our OptionMetrics data.
Because financial firms’ geographical exposure to natural disasters may not be reflected by their
establishment locations and financial firms are generally excluded in asset pricing studies, our
baseline results exclude all financial firms by dropping firms with SIC numbers from 6000 to 6799
from our analysis. We provide a separate analysis on insurance firms in Section 6.3.

We obtain daily data on stocks from CRSP-Compustat and single-name stock options from

OptionMetrics. Consistent with previous studies (see, among others, Carr and Wu (2009); Kelly,

210ur baseline results rely on the establishment location data. NETS also contains establishment-level sales data,
but these data are often imputed. An analysis using sales data yield qualitatively similar results and is shown in the
Online Appendix.
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Pastor, and Veronesi (2016); Martin and Wagner (2018)), we use data from traded options with non-
missing pricing information that are slightly out-of-the-money. These options are more liquid and
have a relatively small difference due to any potential early-exercise premium between American
options and European options. We apply standard filters to the options data consistent with the
existing literature. In our sample, we include single-stock options which meet the following criteria:
(i) standard settlement, (ii) a positive open interest, (iii) a positive bid price and bid-ask spread
(valid prices), (iv) the implied volatility estimate is not missing, (v) greater than 7 days and at
most 200 calendar days to expiry, and (vi) an option delta, J, that satisfies 0.2 < |[6| < 0.5. The
estimate for the average implied volatility of firm ¢ at date ¢ is, IV;; = % Zjvzl IV; ;¢ mr, where M
is the nearest-to-maturity expiration at time ¢ with options for firm ¢ stock, which satisfy the above
six criteria and N is the number of valid options for firm ¢ with that expiry.

We report summary statistics on our sample of firms in Table 2. We have 1,645 unique firms in
our sample. On average, a firm has 7 percent of their establishments in a hurricane landfall region,
with a large number of firms having zero exposure as indicated by the 25" percentile. On average,
a firm has 107 establishments in a given year. For the subsample of firms that had 25 percent of
their establishment in a hurricane landfall region at least once during our sample period, that is,
the firms that were “hit” at least once, the average number of establishments is 116. Interestingly,
these hit firms are also comparable to the non-hit firms in terms of market capitalization. In fact,
the average market capitalization of hit firms is $5.3 billion compared to $4.5 billion of the total
sample. The summary statistics of the option measures are similar between the total sample and

the subsample of hit firms.

5 Baseline Results

5.1 Uncertainty before landfall

We first test whether option prices react to hurricane forecasts before landfall or dissipation and
price in landfall and expected impact uncertainty, as predicted by our framework. The change in
a firms’ implied volatilities should depend on the probability that a hurricane will make landfall in
counties in which the firm operates. The total sample of hurricanes used in the analysis is listed

in Table 1 Panel A. In Table 3, we report results of estimating equation (9) for each combination
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of days before landfall (I') and hurricane-force wind probability threshold (P) for which we have
sufficient observations.?? Each column presents results from a separate regression performed for the
specified " (1-5 days before landfall) and P (1 to 50 percent). Because the location-specific NOAA
wind speed probabilities rarely get high when a hurricane is far from the coast, the maximum P
for which we estimate equation (9) declines as we increase the number of days prior to landfall
or dissipation. Also, because for a given hurricane I' might be a non-trading day, the sample of
hurricanes differs across the columns of Table 3. For example, not all of the 12 hurricanes for 1%
probability and 5 days before landfall are in the sample for the regression for 1% probability and
4 days before landfall and vice versa. For each regression, the table reports the total number of
firm observations with a forecast-exposed establishment share of greater than 0% and at least 20%.
The higher the probability threshold, the smaller the number of firms with a given exposure to the
forecast path because the region covered by the forecast path becomes smaller as the probability
increases, as illustrated in Figure 4 using the forecast data for Hurricane Sandy.

The results in Table 3 show that substantial uncertainty arises from the forecast path of a
hurricane. The estimates of Ar pr are always positive, regardless of whether time and industry fixed
effects are included separately (Panel A) or interacted with each other (Panel B). In Panel A, the
Ap.pr estimates are generally significant with the exception of the estimates at the 1% probability
threshold more than one day prior to landfall which is insignificant in two specifications. For a
given I', the magnitude of A pr generally increases with higher landfall probabilities, reaching up
to 21.23 This implies that a firm with all its establishments located in the path of a hurricane
sees an increase in its implied volatility of 21 percent. The results in Panel B, for specifications
including time and industry fixed effects interacted with each other, show qualitatively similar
estimates. The coefficients are positive and increases with the probability threshold. The changes
to implied volatility represent substantial increases in hedging costs. A more detailed discussion
on the economic magnitude of these changes in implied volatility can be found in Section 5.3.

These results show that option markets price in substantial uncertainty before hurricane landfall,

in line with the framework presented in Section 3.1 that shows landfall uncertainty and expected

22We require a sample to include at least three hurricanes and 25 firm-storm observations with
ForecastExposure; p 1, T greater than or equal to 25 percent.

23The results for the 30% threshold are omitted to ensure readability of the table, but they are in line with the
reported results.
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impact uncertainty should be priced in before hurricane landfall. The empirical estimates confirm
that uncertainty generally increases with the probability of landfall as predicted in Figure 1. Also,
these increases in implied volatilities are not driven by the underlying stock pricing in expected
damage. While at the aggregate stock index level, volatility is known to increase when returns
decrease, the relationship changes at the individual stock level. At the individual stock level,
contemporaneous returns and volatility are positively correlated (see Duffee (1995); Albuquerque
(2012); Grullon, Lyandres, and Zhdanov (2012)).

These estimates of uncertainty before landfall are implicitly also a test of investor attention to
hurricane forecasts. If investors did not pay attention to NOAA’s hurricane forecasts, then we would
not observe an option price reaction. The emerging climate finance literature investigates investor
attention to other climatic events. For example, Hong, Li, and Xu (2019) show that investors are
inattentive to droughts. Also, there exists mixed evidence on whether or not residential real estate
owners pay attention to sea level rise forecasts (see, for example, Bernstein, Gustafson, and Lewis
(2018); Giglio, Maggiori, Rao, Stroebel, and Weber (2018); Murfin and Spiegel (2019)). In this
context, the strong evidence of investors paying attention to hurricane forecasts documented in this
paper is not necessarily a given. Potentially, these climatic events are different from one another
in terms of, for example, intensity and duration, and it might be these differences that capture

investors’ attention in distinct ways.

5.2 Uncertainty after landfall

We now turn to our estimates of uncertainty post landfall. After the hurricane has made landfall,
landfall uncertainty is resolved and only impact uncertainty remains. In Table 4, we present results
from the estimation of equation (10) for 5 trading days (1 week) after landfall in Panel A and for 30
trading days (1.5 months) after landfall in Panel B. We show results from regressions for which the
landfall region is based on different radii around the eye of the storm, ranging from 50 to 200 miles.
The specifications include separate industry and time fixed effects, as shown in equation (10), as
well as results based on interacted industry and time fixed effects.?* For each regression, the table
reports the total number of firm observations with an establishment share in the landfall region of

greater than 0%, at least 20%, and at least 50%. As the radius around the eye of the hurricane

24 A more detailed industry analysis is presented in Section 6.1.
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increases, that is, as the landfall region becomes larger, the number of firms with a given exposure
to the landfall region also increases. Table 1 Panel B lists the hurricanes included the sample.

Table 4 shows that the A7 g estimates are positive and significant across a range of radii and
fixed effect choices. The magnitude of the effect we estimate reaches up to 30 for the 50 mile
radius and 30 trading days post landfall. This implies that relative to its pre-inception IV level,
a firm with 100 percent exposure to the landfall region will see its implied volatility increase by
31 percent. These are substantial magnitudes of impact uncertainty. Section 5.3 discusses the
economic significance of these estimates in detail.

The magnitude of the effect decreases with larger radii, which implies that firms with estab-
lishments located further away from the epicenter of the storm face less impact uncertainty. Also,
while the statistical significance is stronger 5 trading days post landfall, the coefficient estimates are
often higher 30 trading days after landfall. While this result points to a slightly delayed reaction
of investors to the hurricane landfall, the differences between the 5 and 30 trading days estimates
are mostly insignificant.

In Figure 7, we build on the Table 4 results by showing how affected firms’ implied volatilities
evolve over the 90 trading days (4.5 months) after landfall. Each point in the figure shows the
coefficient estimate from a separate regression estimating equation (10) for a combination of trading
days after landfall, 7, and radius around the storm epicenter, R. In Panel A, which uses a 50 mile
radius (R) around the eye of the hurricane to determine a firm’s landfall region exposure, the
estimate of Ar g, increases until 30 trading days post landfall at which point it reaches about 30.
Thereafter, the implied volatility effect gradually decreases until it becomes insignificant around
80 trading days (4 months) after landfall based on 95% confidence bands. In Panel B, we apply a
200 mile radius to determine the hurricane landfall region, we similarly observe that the increase
in implied volatility rises for sometime before peaking and falling back to baseline. However, the
peak happens earlier at 20 trading days after landfall, falls back sooner (becoming insignificant 60
trading days or 3 months after landfall), and has a smaller magnitude peaking around 10.

A potential concern with our specification is whether our results are driven by small firms.
However, as reported in Table 2, relative to the total sample, the subsample of firms that were
hit by hurricanes at least once during our sample period, where we define a hit as having at

least 25 percent of establishments in a landfall region, has a comparable, if slightly higher, average
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market capitalization. Firms with coastal exposure can differ from other firms based on unobserved
characteristics, and it is possible that firms that would be more vulnerable to hurricanes because of
their particular line of business avoid being exposed to the Atlantic or Gulf Coast. However, such

sorting would bias us against finding evidence of firm exposure to landfall and impact uncertainty.

5.3 Economic significance

We have shown that the implied volatilities of firms in the forecast path or landfall region of a
hurricane increase substantially, indicating high uncertainty. What are the economic implications
of these implied volatility changes?

Investors often use options to hedge exposure to risks of stock price changes. The higher the
implied volatility of an option, all else equal, the higher the option premium (the price of the option),
reflecting increasing costs to hedging. We use our regression coefficient estimates to compute how
much hedging costs increase in the aftermath of a hurricane for investors of firms with exposure to
the landfall region, if investors were to hedge 100% of the equity of exposed firms. After hurricane
landfall, the total additional cost of hedging the impact uncertainty over our sample period would
have been as high as 34 to 53 billion U.S. dollars in 2017 inflation-adjusted terms.?® This magnitude
is considerable, representing up to 9 percent of the $583 billion (also inflation-adjusted to 2017) in
total hurricane damages estimated by NOAA for the same time period (see Table 1). Importantly,
we likely underestimate the total costs of hedging the uncertainty caused by a hurricane as we
drop firms from our sample due to insufficient data, as described in Section 4. Our estimates
show that uncertainty itself can lead to substantial costs associated with hurricanes. Conventional
damage estimates, as those published by NOAA, that ignore these types of costs may significantly
understate the true economic cost of extreme weather events.

While the changes in implied volatilities and consequently option premia directly affect investors,

the large extreme weather uncertainty estimates that we document can also have other wide-ranging

25These values are based on IV change coefficient estimates for the landfall region of 200 mile radius around the
eye of the storm, as shown in Table 4, of 5.444 and 8.515 for 5 and 30 trading days post landfall, respectively. These
estimates are multiplied by the average IV level of the firms, 0.48, to obtain the percentage point change in IV for a
fully exposed firm. This in turn is multiplied by the average Landfall Region Exposure; r T, for a firm in the landfall
region, 0.15. To obtain the increase in the option premium, we multiply this average increase in implied volatility by
the average vega of the same options, $0.034, where the option vega is defined as the change in option premium for a
1% change in implied volatility. Finally, we multiply the average premium increase for one option of an exposed firm
by the total number of shares outstanding of the exposed firms (2,237.6 billion in total for the period) to obtain the
total increase in hedging costs in dollars. The values are inflation-adjusted to 2017 dollars.
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consequences. Other types of uncertainty have been shown to affect decision making of economic
agents. For example, uncertainty around political elections and events is estimated to be large
(see Kelly, Pastor, and Veronesi (2016)) and causes firms to reduce investments as shown in Julio
and Yook (2012), Jens (2017), and Kim and Kung (2017). Based on our estimates, which show
that extreme weather uncertainty is large and long lasting, extreme weather uncertainty could
have similar effects. While an examination of how extreme weather uncertainty affects decisions
of economic agents is beyond the scope of this paper, it is straightforward to develop scenarios in
which extreme weather uncertainty has real consequences. For example, firms whose suppliers or
customers are located in hurricane landfall regions could be affected by uncertainty about their
supply chain. Similarly, firms may delay or backtrack on decisions on where to expand if there is

significant uncertainty due to a hurricane that has made landfall in regions of interest.

6 Robustness and extensions

In this section, we present analyses on the robustness of our main results and several extensions.

6.1 Robustness

This section contains key robustness tests for the main results. Additional robustness tests can
be found in the Online Appendix. One question that may arise is whether the uncertainty caused
by hurricanes varies substantially across industries. To get at this question, we test whether our
baseline post-landfall results are driven by a particular industry. We choose the post-landfall
analysis for this purpose because the larger number of hit firms provides a more representative
sample of firms for each industry. Building on equation (10), an industry-specific interaction term
is added as follows
log (%) =Ar,r,rLandfall Region Exposure; r T,

+ WL,R,TLandfallRegionExposurei,R,Th X IiEIndustryg + 7+ Yrng + €i,h,T5

(11)
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where licrndustry, indicates whether firm ¢ is in Industry,, the industry being examined. We
estimate this regression separately for each the industry, varying the interacted industry dummy.
The analyzed industries are construction, manufacturing, mining, retail, services, transportation,
and wholesale industries based on a firm’s two-digit SIC number.?6 If our baseline effects were
driven primarily by one industry, then we would expect A\r, g, to be statistically indistinguishable
from zero in the regression where we include an interaction dummy variable for that industry.

In Table 5, we present our results for the 200 mile radius?” The parameter 7 is set to five
trading days. The estimates of Az g are positive and significant in every industry specification,
suggesting that our baseline results are not driven primarily by one sector. Also, the magnitude of
the estimate is similar to the magnitude of the coefficients for the 200 mile radius around the eye
of the hurricane shown in Table 4. The estimate of wg -, the coefficient on the interaction term,
is insignificant for most specifications, suggesting limited industry-specific heterogeneity. The only
industry for which the estimates of wg ; are strongly significant is construction. The negative sum
AL,r + wr, for the construction industry suggests that investors believe that hurricanes reduce
uncertainty for construction firms. This result could be prompted by the expected boost from
rebuilding activity.

A second robustness test estimates the regression in equation (10) but excludes hurricane Kat-
rina (2005), Sandy (2012), and Harvey (2017) from the analysis. These three hurricanes were the
most devastating hurricanes in our sample in terms of total damage estimated by NOAA, as shown
in Table 1. We want to test if our results are solely driven by these hurricanes. The results when
these three hurricanes are excluded are presented in Table 6. The magnitude and significance of
the coefficient estimates are similar to the estimates shown in Table 4. A higher exposure to the
landfall region increases the implied volatilities of the firms, and this effect gets weaker as the radius
around the eye of the hurricane used to define the landfall region is increased.

We present additional robustness tests in the Online Appendix. In particular, we show that our
baseline results on uncertainty before and after landfall are robust to measuring firm exposure to
hurricanes based on county-level sales rather than locations of establishments. Further, we show

the baseline results when excluding individual hurricanes other than Katrina (2005), Sandy (2012),

26We exclude the agriculture and non-classified categories because of the small number of firms.
2"This ensures that we have a reasonable number of firms in each industry with a large exposure to hurricane
landfall regions. However, the results are qualitatively similar when using smaller radii.
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and Harvey (2017).

6.2 The returns to trading options at landfall

A natural question arising from our results showing how option markets react to a firm’s exposure
to hurricanes is whether these price effects indicate investor overreaction or underreaction. If an
investor trades a portfolio of options on hurricane-treated firms at landfall, would such a portfo-
lio generate significant returns compared to a contemporaneous portfolio of options on a set of
control firms with no exposure to the hurricane event? In this section, we present the difference-
in-differences results to answer this question.

In principle, this is an event study with multiple observations (multiple hurricane landfalls)
similar in spirit to studies that examine post-earnings announcement stock returns. However, the
current setting has several distinctive features and challenges we address through our research
design. Unlike stocks or even index options, most single-stock options do not necessarily have
quoted prices daily. Options that are closer to at-the-money and nearer to maturity have greater
open interest, are relatively more liquid and therefore have more reliable prices. We take this
into account by trading the available options that are closest to at-the-money and maturity and
holding them until expiration (similar to Hu and Jacobs (2019); Goyal and Saretto (2009)). This
buy-and-hold strategy ensures that if, after trading, an option becomes deeper in-the-money or
out-of-the-money due to price changes in the underlying stock, we are still able to measure the
returns to such options in our portfolios without having to drop such observations due to a lack of
quoted prices. We address the concern that option moneyness and time to maturity affect options
returns (see, for example, Coval and Shumway (2001)) by comparing option returns within the
same moneyness and time-to-maturity ranges in our difference-in-differences analysis. We address
concerns regarding similar sources of potential noise or bias in option price and return data by
estimating the difference between the returns of a treated and a control set of options. As long as
a particular feature of option returns does not differentially affect options in the treated set versus
those that are in the control set, i.e., as long as that data feature is not correlated with treatment
selection, that data feature should not drive our results. Finally, we minimize the impact of noise
(and thus attenuation bias) by filtering the option data inline with existing literature as described

in section 4.3.
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We calculate the returns to trading portfolios of delta-neutral straddles in the nearest-to-

28

maturity expiry for each firm. A delta-neutral straddle is commonly used to obtain a long

position on the implied volatility of the underlying stock, with little directional exposure to un-

29 The straddles are formed by trading the call that is nearest to

derlying price movements.
at-the-money and the number of puts with the same maturity that make the portfolio delta
neutral. As in Muravyev (2016), the number of puts in a straddle portfolio is dcqu/abs(dput)-
Trades are made at the mid prices available from OptionMetrics at the first market close af-
ter hurricane landfall.?® The straddle payoff at expiration (Payoff) is calculated using the clos-
ing price of the underlying stock obtained from OptionMetrics. Options that expire out-of-the
money have a payoff of 0.3! We compute the returns to each straddle position using mid prices
as StraddleReturn = (Payoff — StraddlePrice)/StraddlePrice. We estimate the difference be-

tween hit and control portfolio returns by estimating the regression jointly over all hurricanes in

the sample,

Straddle Return; , = kIsHit; j, + T 4 Y1nd + €i s (12)

where IsHit;p is 1 if a firm is exposed to the hurricane, 0 otherwise. IsHit;j is specified as
a dummy variable in this regression rather than a continuous variable, so that the regression
captures the return difference between buying option straddles on the treated versus control firms.
We show results with different thresholds to including a firm in the hit set, varying both the
radius around hurricane landfall and the exposed establishment share. A negative (positive) and
significant £ would generally correspond to investors overreacting (underreacting) at hurricane
landfall by overpricing (underpricing) stock options, yielding significantly lower (higher) returns
compared to options on the control firms. In contrast, if  is zero (insignificant) this would indicate
that the treated option prices adjust to a level immediately following landfall such that the expected

option returns between the treated and control firms are not significantly different and there is no

28The calendar days to expiry when an option is traded is greater than 7 and at most 45.

298ee, for example, Coval and Shumway (2001); Goyal and Saretto (2009); Muravyev (2016); Hu and Jacobs (2019);
Muravyev and Pearson (2019).

30We separately analyze the returns to a long (short) straddle position if one were to trade at the best ask (best bid),
since the bid-ask spread can be significant for options. However, these return measures do not obtain significantly
different results. For brevity, we show the regression results using bid-ask prices in the Online Appendix.

31As in Hu and Jacobs (2019), if the market is closed on the Friday of the expiration date, we use the closing price
of the most recent prior trading date.
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opportunity for investors to profit in expectation on a hurricane option trading strategy. As before,
7y, is a hurricane fixed effect which is equivalent to a time fixed effect as there is at most one
buy-and-hold return observation per firm per hurricane.

Table 7 shows the x estimate for regressions with different thresholds at which a firm is con-
sidered “hit”. We do not find any evidence of overreaction in option prices. The k estimates show
evidence of correct option price adjustments to the hurricane event and if anything, a slight un-
derreaction in a few cases, as the coefficients are positive though mostly insignificant. The size of
the coefficients generally increase as the conditions for inclusion in the treated set tighten: as the
radius around hurricane landfall decreases and as the firms’ exposed establishment share threshold

increases.

6.3 Insurance firms

The analysis and discussion so far have focused on the universe of firms excluding financial firms,
as common in the asset pricing literature. Omne contribution of this paper is to show that the
uncertainty around extreme weather events affects a wide range of firms and not only insurance
firms which are often thought of in the context of natural disasters. In this section, we also
investigate if extreme weather uncertainty is indeed reflected in the asset prices of insurance firms.
The challenge that we face is that the number of publicly traded insurance firms with liquid options
is relatively limited and we only have data on the exposure of an insurance firm by state and not
by county.3?

We use data on insurance statutory financials from S&P Global Market Intelligence, which pro-
vides us with the share of total premiums in each state written by property and casualty insurance
firms in the US. We estimate the regression in equation (10) for these property and casualty in-
surance firms, with Landfall RegionExposure; g, replaced by a variable that measures the share
of total premiums, lagged by one year, written in states that experienced landfall by hurricane h.
The results are reported in Table 8. A state is considered to have experienced a hurricane landfall
in Panel A (B), if at least 10% (25%) of the counties of that state were within a given radius of

that hurricane’s eye. For smaller radii, fewer hurricanes are included in the sample, because certain

32For insurance firms, the establishment-level data from NETS is likely not a precise measure of their exposure to
a certain region because an insurance firm that, for example, insures a homeowner in Louisiana does not need an
establishment close by.
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hurricanes do not reach the required threshold of hit counties (10% or 25%) in any state.

The coefficient estimates are positive for all specifications implying that the impact uncertainty
for property and casualty insurance firms is substantial in the aftermath of a hurricane. The
magnitude of the coefficient estimates are economically significant, with the implied volatility being
up to 70 percent higher for insurance firms with a 100 percent exposure to the landfall region of
the hurricane. The magnitude of the coefficient tends to decrease for larger radii around the eye
of the hurricane. The statistical significance is weaker than for the non-financial firms in Table 4
as the number of insurance firms in our sample is relatively small and the economic exposure of

insurance firms is observed at a lower state-level granularity, as opposed to county-level.

6.4 Hurricane season effects

Hurricanes off the US Atlantic and Gulf coasts occur during the hurricane season which starts
in June and ends in November. Because the timing of the hurricane season does not vary from
year-to-year, it is challenging to disentangle hurricane season effects from other season effects that
are unrelated to hurricanes but also affect firms with establishments in coastal locations. To obtain
an additional source of variation, we rely on hurricane season outlooks issued by NOAA.

In addition to forecasts for individual hurricanes as they form and develop, NOAA also releases
hurricane season outlooks in May of each year. Dating back to 2001, each seasonal outlook reports
the probability that the season will be above-normal, near-normal, or below-normal.®? Figure 8(a)
shows that there is significant variation in the probabilities reported in these pre-season outlooks.

We test if the options with a longer time to expiration, 120 to 210 calendar days to expiry,
of firms that have establishments located in counties historically affected by hurricanes exhibit
higher implied volatilities after NOAA issues a forecast of a hurricane season with above average
activity. Options with a longer expiry are chosen because they cover the majority of the hurri-
cane season. We use two methods to the determine counties that could be hit by a hurricane
during the hurricane season and construct firm-level variables capturing exposure to a hurricane
season. The first method simply uses coastal counties from the Atlantic and Gulf coasts as the

set of counties that could reasonably be exposed to a hurricane in any given hurricane season

338ee National Weather Service “NOAA 2012 Atlantic Hurricane Season Outlook” https://www.cpc.ncep.noaa.
gov/products/outlooks/hurricane2012/May /hurricane.shtml.
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(Coastal Exposure; T,). The second method relies on historical landfall regions over the preceding
30 years and computes the annual probability with which a county ends up in the landfall region
of a hurricane (Historical HurricaneExposure; r,). In the Online Appendix, we provide further

detail on the counties included in each method.

For the first method, the regression specification is given by

IV, 7. .
log —iTats =M\g 1Coastal Exposure; r. + AgoCoastal Exposure; 7. X AboveNormalSeasonProbr
IV ) 148 ’ 4 s s

i, Ts—1

+ 71, + Yrnd + €1 (13)

where T,_1 is the last trading day before NOAA’s hurricane season outlook is announced in

May, and Ty, 5 occurs 5 trading days later.3* The regression jointly estimates the effect of the
seasonal outlooks for the years 2001 to 2017. Following the methodology in equations (7) and
(8), Coastal Exposure; s is a variable that ranges from 0 to 1 and measures the share of estab-
lishments of firm ¢ located in counties along the Atlantic and Gulf coast. Under the second
method of measuring seasonal exposure, we replace Coastal Exposure;s in equation (13) with
Historical HurricaneExposure; s, which measures the share of a firm’s establishments located
in counties with an elevated probability of being hit during a hurricane season. The variable
AboveNormalSeasonProbs is the probability NOAA issues in May of a given year for an above
average hurricane season. A positive estimate of A\g2 would be consistent with investor attention
to medium-term seasonal forecasts and imply heightened uncertainty if the probability of an above
average season is high.3?

Table 9 presents the estimates of equation (13). Panel A shows the results for the specification
using Coastal Exposure; s, and Panel B uses Historical HurricaneExposure; s. In both panels,
none of the estimates of A\go are statistically significant, and all of the point estimates have a
negative sign. Thus, we find no support for the hypothesis that implied volatility increases for
exposed firms when NOAA’s hurricane season outlook reports a high probability of an above normal
season. The coefficient estimate of Ag; is positive and significant for some specifications. A

possible explanation is that the saliency of the upcoming hurricane season leads to a general increase

34Varying the window length leads to qualitatively similar results.

35The expected sign of As,; is unclear. Firms with exposure to coastal counties are at risk of being hit by a
hurricane during the hurricane season, but firms with exposure to coastal counties are likely also subject to other
unobservable risks that are unrelated to hurricanes.
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in uncertainty in May for firms with establishments located along the Atlantic and Gulf coasts.
However, the significance of the Ag; estimate is weak and not robust to alternative specifications.

Our main results in Section 5.1 established that investors pay close attention to NOAA’s forecast
of hurricane paths. Then, what might explain investors not paying attention to seasonal forecasts?
Potentially, this is because NOAA’s seasonal forecasts are not as accurate. The scatter plots
in Figure 8(b) show only a weakly positive relationship between the seasonal outlooks and the
number of hurricanes making landfall in a given year. Another reason that we cannot rule out is
that investors pay no attention to seasonal forecasts because they are medium term and lack the
immediacy of the hurricane path forecasts. Investors being inattentive to medium term forecasts

would question their ability to correctly price in other climate related long-term risks.

6.5 Long-run impact on firm value

The large uncertainty estimates surrounding a hurricane imply that firms in the landfall region face
uncertain outcomes. The resolution of this uncertainty should be reflected in the firms’ stock prices
in the months following a hurricane landfall. In particular, the higher expected volatility of the hit
firms’ returns should lead to a large cross-sectional dispersion of cumulative abnormal returns in
the long-run when this volatility is realized.

We first estimate daily abnormal returns relative to the Fama-French five-factor model (see
Fama and French (1993) and Fama and French (2015)). For each firm and each hurricane in our

sample, the following model is estimated:

Tid = @ + B1iTm,d + B2,iTsmb,d + B3,i"hmi,d + Ba,iTrmw,d + B5,iTema,d + €i,d; (14)

where 1, 4 is the daily market return on day d minus the risk-free rate, rsmp.as "hmids Trmw,ds
and 7eme,q are the daily returns of the small-minus-big, high-minus-low, robust-minus-weak, and
conservative-minus-aggressive portfolios, respectively. We estimate this model using 250 trading
days (roughly one calendar year) before the inception day of the hurricane. The coefficient estimates

from this first stage regression are then used to compute abnormal returns for each firm and
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hurricane as follows:

TZd =Tid— (dz + Bl,irm,d + BQ,iTsmb,d + ﬁB,irhml,d + B4,i7nrmw,d + ﬁ5,ircma,d)' (15)

We next aggregate the abnormal simple returns to a cumulative abnormal return, denoted T’Z%;ZT}L -
for each firm and hurricane over the time period T} to T} + 7, where again T} is the inception day,
Ty, is the day of the landfall, and 7 is the number of trading days post landfall. The time period
starts in 1996 and ends in 2017 to correspond to the option sample used previously. To ensure that
stocks with stale prices are excluded from our analysis, a stock is required to have return data for
at least half of all trading days for a given period. Further, we exclude stocks with share prices
below $5 from our analysis (see Amihud (2002)).

We take the cumulative abnormal return from inception up to 120 trading days (6 months) after
landfall for all the firms and a given hurricane and subtract the contemporaneous mean cumulative
abnormal return across all stocks to account for correlated shocks that are independent of the
hurricane. We choose a horizon of 120 trading days as that corresponds to half a calendar year.
The hurricane season lasts half a calendar year (from June to November), and thus, we avoid
overlaps with the subsequent year’s hurricane season.

All the firm-hurricane observations are split into two groups. One group contains the cumulative
abnormal returns of the hit firms, that is, the firms with at least 25% of their establishments in
the hurricane landfall region. The other group contains the cumulative abnormal returns of the
control firms, that is, the firms with less than 25% of their establishments in the hurricane landfall
region. Then, we compute the differences in the mean and nine percentiles between the cumulative
abnormal return distributions of the hit and the control firms.

The results are reported in Table 10 along with the corresponding t-stats.?¢ For the landfall
region based on the 50 mile radius around the eye of the hurricane, the bottom two percentiles
of the hit firms underperform the control firms by 21 to 26 percent. However, it is also notable
that significant differences are only found for the bottom percentiles. The top percentiles show
differences between the hit and control firms that while mostly negative are generally insignificant.

This result holds also for wider radii and imply that in the aftermath of a hurricane, there are some

36For the differences between the percentiles, the standard errors are cluster bootstrapped.
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firms with exposure to the landfall region that severely underperform, but other firms appear to be
unaffected in the long-run. Interestingly, the differences in mean effects are insignificant regardless
of the radii.

Figure 9 illustrates these results at 120 trading days graphically, and also shows the same
difference in cumulative abnormal returns between firms hit by a hurricane and control firms at
shorter post landfall horizons of 5, 10 and 60 trading days (1 week, 2 weeks and 3 months).3” These
plots show that as time passes, the cross-sectional dispersion increases for the hit firms compared
to the control firms. The lower percentiles of the hit firms underperform more in the longer term,
after 60 or 120 trading days, than in the near term, after 5 and 10 trading days.

These results are consistent with the substantial estimates of impact uncertainty presented in
our baseline results. Investors appear to be uncertain about the impact of a hurricane on firms in
the landfall region and this manifests itself in large increases in implied volatilities. In the long-run,
the implied volatilities come back down as the effect on the firms becomes clearer, with some firms

being severely negatively affected and others largely unaffected.

7 Conclusion

Little is currently known about extreme weather uncertainty. This paper isolates and estimates ex-
treme weather uncertainty around hurricanes through the lens of financial markets. Our framework
distinguishes between landfall uncertainty (on where the hurricane will hit, if at all) and impact
uncertainty (on the consequences to the local firms and economy following landfall).

Using daily hurricane forecasts from NOAA, we find that landfall uncertainty combined with
potential impact uncertainty are both priced before a hurricane makes landfall, consistent with our
framework and with investors paying attention to the unfolding of a hurricane. We find that options
of firms operating in regions affected by hurricanes have considerably higher implied volatility after
hurricanes hit. The higher implied volatilities are in line with investors being concerned about
substantial impact uncertainty. The impact uncertainty resolves slowly, and the implied volatilities
return back to pre-hurricane levels several months after landfall. These increases in the implied

volatility of option prices reflect large costs to hedging the uncertainty associated with hurricanes.

3"The Online Appendix contains tables that are structured as Table 10 and presents the regression estimates for
post landfall time horizons shorter than 120 trading days.

30



Our novel analysis and framework contribute to a burgeoning climate finance and uncertainty
literatures by showing that extreme weather uncertainty is significant and reflected in the prices of
options and stock markets. Future research could apply our framework and methodology to further
examine extreme weather uncertainty and build on the findings in this paper by, for example, linking
extreme weather uncertainty to real economic activity. Extreme weather uncertainty potentially
affects firm production networks, commodity and agricultural markets, and decisions by various

economic agents.
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Figure 1: Expected variance as a function of the probability of hurricane landfall

This figure shows the total variance prior to landfall, Vars(r;++1) derived in equation (6), as the probability of
landfall, ¢, varies from 0 to 1. In this figure, 0 = 0.4 and o4 = 0.05. The four dashed lines have absolute values of
0.1, 0.07, 0.05, and O for pug4, respectively. The solid line shows the level of variance conditional on the firm being in
the hurricane landfall region, Vary(ri4+1]0 = 1) = 0 + o2, as defined in equation (3).
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Figure 2: Stylized example of firm exposure to hurricanes

Panel A shows the stylized example of firm exposure to a hurricane forecast based on the share of establishments
located in counties in the forecast path. The firm exposures reflect the variable ForecastExposure in our analysis.
Panel B shows the stylized example of firm exposure to a hurricane landfall region based on the share of establishments
located in counties in the landfall region. The firm exposures reflect the variable Landfall Region Exposure in our

analysis.

39



@ Hurricane Force Wind Speed Probabilities @

For the 120 hours (5 days) from 8 AM EDT Sat Oct 27 to 8 AM EDT Thu Nov 1

Probability of hurricane force surface winds (1-minute average >= 74 mph) from all tropical cyclones
< indicates HURRICANE SANDY center location at 8 AM EDT Sat Oct 27 2012 (Forecast/Advisory #21)
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Figure 3: Example of a hurricane forecast

This figure from NOAA illustrates the five-day forecast for Hurricane Sandy on October 27, 2012. We obtain the raw
data underpinning such hurricane forecast visualizations for our analysis.
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Figure 4: Hurricane forecasts at different time frames and wind speed probability thresholds

Each map shows the counties indicated as being in the forecast path for Hurricane Sandy given the number of days
before landfall in each row and the wind speed probability threshold in each column. For each day, the last available
forecast before 4pm (market close) is shown.
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Figure 5: Counties in a hurricane landfall region
This figure highlights the counties that are within 50, 100, 150, and 200 miles of the eye of the hurricane at landfall

for four hurricanes in our sample.
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Figure 6: Firm establishments by county

This figure plots counties based on the number of establishments located in that county for the years 2010 (Panel A)
and 2014 (Panel B). Data are from the National Establishment Time Series and only firms in our sample included.
The counties are sorted into deciles based on the number of establishments.
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Figure 7: Changes in implied volatilities post hurricane landfall

This figure plots coefficient estimates from the regression model given in equation (10). Changes in implied volatilities
from inception of the hurricane up to 90 trading days (4.5 months) post hurricane landfall are regressed on the
landfall region establishment share of firms. A coefficient estimate of, for example, 30 means that a firm with all
of its establishments in the landfall region is estimated to experience a 30% increase in the implied volatility. The
landfall region is based on a 50 mile radius around the eye of the hurricane in Panel A and 200 mile radius around
the eye of the hurricane in Panel B. Confidence bands of 95 percent are shown.
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Figure 8: NOAA’s Atlantic and Gulf Hurricane Season Outlook

Panel A shows the probability of an above average hurricane season that NOAA issues each year in the May Outlook
for the Atlantic and Gulf hurricane season. Whether a season is above average is based on the number of hurricanes
that are predicted to form in the Atlantic Ocean and the Gulf. Panel B depicts the relationship between the season
outlook and the number of hurricanes that make landfall for that season.
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Figure 9: Differences in cumulative abnormal returns between hit and control firms

This chart plots the difference in cumulative abnormal returns between firms with at least 25% of their establishments
in the landfall region of a hurricane (the hit firms) and firms with less than 25% of their establishments in the landfall
region (the control firms). The difference between control and hit firms is shown for nine percentiles of the return
distributions. The cumulative abnormal returns are computed since hurricane inception up to 5, 10, 60, and 120
trading days post landfall. The landfall region is based on 50 miles around the eye of the hurricane. The data are
from 1996 to 2017. Confidence bands of 95 percent are shown.
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Table 1: Hurricane sample

This table shows the hurricanes included in our analyses. Panel A, reporting the sample for the forecast analyses,
includes storms that were at least once forecast to make landfall with hurricane force winds with a 1 percent probability
or more. Because the forecasts include storms that never make landfall in the U.S., we indicate storms that make

landfall with asterisks (*).

The sample is from 2007 to 2017. Panel B shows the landfall and inception dates for

storms that are included in the post-landfall analyses. The damage estimates shown come from the National Hurricane
Center’s Tropical Cyclone Reports and have been inflated to 2017 values using the consumer price index from the
U.S. Census Bureau. Landfall dates come from the Tropical Cyclone Reports. The sample is from 1996 to 2017.

Panel A: Hurricanes included in forecast analyses

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Dean Dolly* Ana Alex Don Debby  Andrea Arthur* Ana Colin Harvey*
Humb.* Edouard Bill Bonnie Emily Isaac*  Karen Erika Herm.*  Irma*
Noel Fay Danny Earl Irene*  Leslie Joaquin  Matt.*  Jose
Gustav* Ida Paula Nate Sandy* Maria,
Hanna Nate*
Tke*
Kyle
Paloma

Panel B: Hurricanes included in post-landfall analyses

Post-landfall analysis only

Forecast and post-landfall analyses

Damages Damages
Hurricane Landfall Inception 2017 $mn  Hurricane Landfall Inception 2017 $mn
Bertha Jul. 12, 96 Jul. 5, 96 421  Humberto Sep. 13, 07 Sep. 12, 07 N/A
Fran Sep. 6, 96 Aug. 23, 96 4,994 Dolly Jul. 23, 08 Jul. 20, 08 1,198
Danny Jul. 18, 97 Jul. 16, 97 153  Gustav Sep. 1,08  Aug. 25, 08 5,271
Bonnie Aug. 27,98 Aug. 19, 98 1,085 Ike Sep. 13, 08 Sep. 1, 08 33,692
Earl Sep. 3, 98 Aug. 31, 98 119 Irene Aug. 27, 11 Aug. 21, 11 17,258
Georges Sep. 28, 98 Sep. 15, 98 9,594 Isaac Aug. 29, 12 Aug. 21, 12 2,514
Bret Aug. 23, 99 Aug. 18, 99 89  Sandy Oct. 30, 12 Oct. 22, 12 53,481
Floyd Sep. 16, 99 Sep. 7, 99 10,184  Arthur Jul. 4, 14 Jul. 1, 14 2
Irene Oct. 15, 99 Oct. 13, 99 1,181 Hermine Sep. 2, 16 Aug. 28, 16 562
Lili Oct. 3,02  Sep. 21, 02 1,264 Matthew Oct. 8,16  Sep. 28, 16 10,215
Claudette Jul. 15, 03 Jul. 8, 03 240 Harvey Aug. 26, 17 Aug. 17, 17 125,000
Isabel Sep. 18, 03 Sep. 6, 03 7,175 Irma Sep. 10, 17 Aug. 30, 17 50,000
Charley Aug. 13, 04 Aug. 9, 04 19,661 Nate Oct. 8, 17 Oct. 4, 17 225
Frances Sep. 5, 04 Aug. 25, 04 12,368
Ivan Sep. 16, 04 Sep. 2, 04 24,483
Jeanne Sep. 26, 04 Sep. 13, 04 9,965
Dennis Jul. 10, 05 Jul. 4, 05 3,202
Katrina Aug. 29,05  Aug. 23, 05 135,894
Rita Sep. 24, 05 Sep. 18, 05 15,146
Wilma Oct. 24, 05 Oct. 15, 05 26,433
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Table 4: Hurricane effects on implied volatility post landfall

This table reports the coefficients and test statistics when estimating the panel model in equation (10). The dependent
variable is the change (in percent) in the implied volatility of firm ¢ from the day before the inception day of the
hurricane T} until 5 trading days (1 week) and 30 trading days (1.5 months) after the landfall T} in Panel A and
B, respectively. The independent variable measures how much (from 0 to 1) of the geographic footprint of a firm, in
terms of fraction of establishments, is in counties located in the landfall region of a hurricane. To identify counties
that lie in the landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50,
100, 150, and 200 miles surrounding the eye. For each regression, the total number of firm observations with an
establishment share in the landfall region of greater than 0%, at least 20%, and at least 50%, are reported. The data
are from 1996 to 2017. The values in parentheses are the t-stats. The standard errors are clustered by county based
on a firm’s largest exposure. Industry and time fixed effects are used. The time fixed effect can be interpreted as a
hurricane fixed effect as we include a separate time period in the panel for each hurricane as shown in equation (10).

The significance of the coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (I‘/i,Th+5/IW,T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure;, r 1), 16.833***  11.946™*  8.741"**  7.191"**  5.185™*  4.251*"  5.444™**  4.074***

(3.629) (2.549) (4.206) (3.355) (3.639) (2.901) (5.258) (3.683)
Adjusted R? (%) 12.077 12.587 12.214 12.715 12.173 12.701 12.238 12.779
Total firm obs. 20,240 20,240 19,987 19,987 20,052 20,052 20,184 20,184
Total firm obs. with exposure > 0% 4,634 4,634 7,285 7,285 8,974 8,974 10,249 10,249
Total firm obs. with exposure > 20% 157 157 633 633 1,302 1,302 2,133 2,133
Total firm obs. with exposure > 50% 44 44 212 212 435 435 685 685
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
Panel B: Inception to 30 trading days (1.5 months) after landfall
Dependent variable: Change in IV (in %), log (IVi,T,L+30/IVi,T;)

Radius around eye of the hurricane
50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure; r ), 31.049"**  21.539™**  8.302*" 4.778 6.369""*  4.368"  8.515"**  6.575""

(3.483) (2.827)  (2.380)  (1.552)  (2.710)  (1.884)  (3.661)  (2.925)
Adjusted R? (%) 35.642 35.922 36.309 36.625 36.294 36.589 36.404 36.693
Total firm obs. 20,298 20,298 20,049 20,049 20,109 20,109 20,237 20,237
Total firm obs. with exposure > 0% 4,629 4,629 7,291 7,291 8,990 8,990 10,263 10,263
Total firm obs. with exposure > 20% 158 158 640 640 1,309 1,309 2,141 2,141
Total firm obs. with exposure > 50% 44 44 215 215 441 441 691 691
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
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Table 6: Hurricane effects on implied volatility post landfall (excluding Katrina, Sandy,
and Harvey)

This table reports the coefficients and test statistics when estimating the panel model in equation (10) but when
excluding hurricanes Katrina (2005), Sandy (2012), and Harvey (2017), which are the hurricanes in our sample that
caused most damage based on NOAA estimates. The dependent variable is the change (in percent) in the implied
volatility of firm ¢ from the day before the inception day of the hurricane 7 until 5 (1 week) and 30 (1.5 months)
trading days after the landfall 7}, in Panel A and B, respectively. The independent variable measures how much
(from 0 to 1) of the geographic footprint of a firm, in terms of fraction of establishments, is in counties located in the
landfall region of a hurricane. To identify counties that lie in the landfall region of a hurricane we rely on the location
of the eye of the hurricane and a radius of 50, 100, 150, and 200 miles surrounding the eye. For each regression,
the total number of firm observations with an establishment share in the landfall region of greater than 0%, at least
20%, and at least 50%, are reported. The data are from 1996 to 2017. The values in parentheses are the t-stats. The
standard errors are clustered by county based on a firm’s largest exposure. Industry and time fixed effects are used.
The time fixed effect can be interpreted as a hurricane fixed effect as we include a separate time period in the panel
for each hurricane as shown in equation (10). The significance of the coefficient estimate is indicated by * for p <
0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (I‘/i,T}L+5/IVi,T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegionExposure; g1, 18.924***  12.709**  9.231***  7.150***  5.500***  3.909**  5.701***  3.835"**

(4.020) (2.510) (4.033) (3.084) (3.054)  (2.220)  (4.504) (2.998)
Adjusted R? (%) 13.192 13.749 13.250 13.791 13.239 13.806 13.343 13.914
Total firm obs. 18,072 18,072 17,862 17,862 17,959 17,959 18,062 18,062
Firm obs. with exposure > 0% 4,057 4,057 6,405 6,405 7,847 7,847 9,076 9,076
Firm obs. with exposure > 20% 129 129 538 538 1,053 1,053 1,841 1,841
Firm obs. with exposure > 50% 37 37 182 182 345 345 587 587
Hurricanes 30 30 30 30 30 30 30 30
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry X Time (Hurricane) FE No Yes No Yes No Yes No Yes
Panel B: Inception to 30 trading days (1.5 months) after landfall
Dependent variable: Change in IV (in %), log (IVi,Th+30 /IVI,T,;)

Radius around eye of the hurricane
50 miles 100 miles 150 miles 200 miles

LandfallRegionExposure; g1, 37.679""*  26.806™*"  9.694™" 5.154 8.532"* 5613  9.943"**  7.415"**

(4.150) (3.215) (2.416) (1.436) (2.534)  (1.875)  (3.197) (2.631)
Adjusted R? (%) 37.355 37.628 37.923 38.245 37.900 38.191 38.038 38.323
Total firm obs. 18,129 18,129 17,924 17,924 18,019 18,019 18,123 18,123
Firm obs. with exposure > 0% 4,059 4,059 6,418 6,418 7,867 7,867 9,097 9,097
Firm obs. with exposure > 20% 130 130 542 542 1,056 1,056 1,847 1,847
Firm obs. with exposure > 50% 37 37 182 182 347 347 589 589
Hurricanes 30 30 30 30 30 30 30 30
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry X Time (Hurricane) FE No Yes No Yes No Yes No Yes
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Table 7: Option return difference between hit and control firms

This table reports the coeflicients and test statistics when estimating the panel model in equation (12). The dependent
variable is the return (in percent) on a delta-neutral straddle formed the day of the landfall and computed for each
firm in the sample as described in Section 6.2. The independent variable is a dummy variable that takes a value
of 1 for hit firms and a value of 0 for control firms, which estimates the difference between holding a straddle on a
hit firm versus a control firm. In Panel A, a hit firm has at least 10% of its establishments in counties located in
the landfall region of a hurricane, and in Panel B the threshold is 25%. Control firms have no establishments in the
counties located in the landfall region. To identify counties that lie in the landfall region of a hurricane we rely on
the location of the eye of the hurricane and a radius of 50, 100, 150, and 200 miles surrounding the eye. For each
regression, the total number of firm observations and the number of hit and control firms are reported. The data are
from 1996 to 2017. Hurricanes with no firms in the landfall region for a given radius, that is, hurricanes without hit
firms, are excluded from the analysis. The values in parentheses are the t-stats. The standard errors are clustered
by county based on a firm’s largest exposure. Industry and time fixed effects are included. The time fixed effect is
equivalent to a hurricane fixed effect as there is at most one buy-and-hold return observation per firm per hurricane
in a particular regression. The significance of the coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05,
and *** for p < 0.01.

Panel A: Firm considered hit if establishment share in landfall region > 10%

Dependent variable: Option return (in %)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

IsHit; n 36.848"*  36.046"  11.447 11.691*  6.261 6.037 5.370 4.912

(2.016) (1.949) (1.596) (1.678) (1.303) (1.267) (1.225) (1.113)
Adjusted R? (%) 15.830 16.333  15.120  15.080  13.368  13.288  11.838  11.792
Total firm obs. 1,451 1,451 2,494 2,494 3,751 3,751 4,554 4,554
Firm obs. hit 130 130 508 508 1,042 1,042 1,669 1,669
Firm obs. control 1,321 1,321 1,986 1,986 2,709 2,709 2,885 2,885
Hurricanes 14 14 22 22 30 30 32 32
Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes

Panel B: Firm considered hit if establishment share in landfall region > 25%

Dependent variable: Option return (in %)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

IsHit; 32.413 21.067 13.241 10.747 14.644  14.656 8.845 8.012

(1.006) (0.670)  (0.863) (0.732) (1.510) (1.535) (1.342) (1.227)
Adjusted R2 (%) 13.690 15.833 13.371 13.529 12.738 12.721 12.938 12.981
Total firm obs. 366 366 1,792 1,792 2,673 2,673 2,962 2,962
Firm obs. hit 31 31 178 178 374 374 598 598
Firm obs. control 335 335 1,614 1,614 2,299 2,299 2,364 2,364
Hurricanes 4 4 17 17 24 24 25 25
Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes
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Table 8: Hurricane effects on implied volatility of insurance firms post landfall

This table reports the coefficients and test statistics when estimating the panel model in equation (10) for insurance
firms. The dependent variable is the change (in percent) in the implied volatility of insurance firm ¢ from the day
before the inception day of the hurricane T} until 5 trading days after the landfall 7. The independent variable
measures the share of total premiums written by an insurance firm in states that were in the landfall region of a
hurricane. For Panel A, if at least 10% of a state’s counties lie in the hurricane landfall region, the state is considered
to be hit by the hurricane. For Panel B, the threshold is 25% of the counties. Hurricanes that do not reach this
threshold for any state are excluded. To identify counties that lie in the landfall region of a hurricane we rely on
the location of the eye of the hurricane and a radius of 50, 100, 150, and 200 miles surrounding the eye. For each
regression, the total number of firm observations with an exposure to the states in the landfall region of greater than
0%, at least 20%, and at least 50%, are reported. The data are from 1996 to 2017. The values in parentheses are
the t-stats. The standard errors are clustered by the state to which the insurance firm has the largest exposure. The
time fixed effect can be interpreted as a hurricane fixed effect as we include a separate time period in the panel for
each hurricane as shown in equation (10). The significance of the coefficient estimate is indicated by * for p < 0.10,
** for p < 0.05, and *** for p < 0.01.

Panel A: State considered hit if at least 10% of its counties were in landfall region

Dependent variable: Change in IV (in %), log (I‘/i,Th+5/]‘/i,T}’;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure; r,T), 38.615*** 20.978% 18.232 6.779
(6.882)  (1.902)  (1.571) (1.060)
Adjusted R? (%) 22.625 18.391 18.958 18.525
Total firm obs. 557 693 731 731
Firm obs. with exposure > 0% 518 660 707 711
Firm obs. with exposure > 20% 17 50 107 149
Firm obs. with exposure > 50% 7 12 24 34
Hurricanes 25 31 33 33
Time (Hurricane) FE Yes Yes Yes Yes

Panel B: State considered hit if at least 25% of its counties were in landfall region

Dependent variable: Change in IV (in %), log (IVi,TH5/IVi,T;:)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegionExposure; r,1,,  70.207""  41.892*** 19.887* 23.934"*
(4.332)  (6.850)  (1.757) (2.266)

Adjusted R? (%) 8.407 19.700 18.341 18.699
Total firm obs. 301 601 693 693
Firm obs. with exposure > 0% 277 561 662 672
Firm obs. with exposure > 20% 6 22 55 93
Firm obs. with exposure > 50% 3 7 13 21
Hurricanes 13 27 31 31
Time (Hurricane) FE Yes Yes Yes Yes

o4



Table 9: Hurricane season outlook effects on implied volatility

This table reports the coeflicients and test statistics when estimating the panel model in equation (13). The dependent
variable is the change (in percent) in the implied volatility of firm 4 from the last trading day before NOAA’s outlook
for the hurricane season is released (Ts—1) to 5 trading days thereafter. Options that cover the majority of the
hurricane season (120 to 210 days to expiry) are used. The independent variable AboveNormalSeasonProbabilityr,
is the probability which NOAA assigns to an above average hurricane season in terms of number of storms. In Panel
A, the independent variable Coastal Exposure; r, measures the share of a firm’s establishments that are located in
Atlantic and Gulf coastal counties. For columns 4 and 5, the counties on the Atlantic coast north of Florida are
excluded. In Panel B, the independent variable Historical Hurricane Exposure; t, measures the share of a firm’s
establishments (0 to 1) that are located in counties that over the previous 30 years had a probability of being hit
by a hurricane in a given season of at least 0.05 and 0.1, respectively. For each regression, the total number of
firm observations with an establishment share in the coastal counties (or the counties with an elevated historical
probability of getting hit) of greater than 0%, at least 20%, and at least 50%, are reported. The data range from
2001 to 2017. The values in parentheses are the t-stats. The standard errors are clustered by county based on a
firm’s largest exposure. Industry and time fixed effects are used separately and interacted. The significance of the
coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Atlantic and Gulf coast counties

IV; 1,

Dependent variable: Change in IV (in %), log (IV, P )

i, Tg_1

All coastal counties Excl. counties north of FL

Coastal Exposure; T, 1.315* 1.364* 0.998 0.956
(1.850) (1.857) (1.309) (1.194)

Coastal Exposure; T, -1.335 -1.415 -0.998 -0.799
x Above N ormalSeason Probr, (-1.028) (-1.067)  (-0.752) (-0.560)
Adjusted R? (%) 3.463 3.853 3.411 3.799
Total firm obs. 11,531 11,531 11,531 11,531
Total firm obs. with exposure > 0% 9,393 9,393 7,589 7,589
Total firm obs. with exposure > 20% 7,583 7,583 2,441 2,441
Total firm obs. with exposure > 50% 2,663 2,663 759 759
Industry FE Yes No Yes No
Time FE Yes No Yes No
Industry X Time FE No Yes No Yes

Panel B: Counties selected based on historical probability of being hit

Counties with prob. > 0.05  Counties with prob. > 0.1

Historical Hurricane Exposure; 1, 1.533** 1.457** 1.138 1.097

(2.105) (2.021)  (1.436) (1.294)
Historical Hurricane Exposure; 1, -1.988 -1.843 -1.143 -0.931
x Above N ormalSeason Probr, (-1.464) (-1.346)  (-0.798) (-0.595)
Adjusted R? (%) 3.440 3.822 3.415 3.803
Total firm obs. 11,531 11,531 11,531 11,531
Total firm obs. with exposure > 0% 8,179 8,179 7,186 7,186
Total firm obs. with exposure > 20% 3,997 3,997 2,073 2,073
Total firm obs. with exposure > 50% 1,131 1,131 706 706
Industry FE Yes No Yes No
Time FE Yes No Yes No
Industry X Time FE No Yes No Yes
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1 Hurricane data

Our paper uses data on the forecast path and landfall regions of hurricanes. This section describes
how we gather the data from the National Oceanic and Atmospheric Administration (NOAA) and

process them.

1.1 Details on hurricane forecast data

In the paper, we use the wind speed forecasts from NOAA. This wind speed forecasts can be found
in NOAA’s hurricane archives here https://www.nhc.noaa.gov/archive. For each tropical storm,
NOAA issues text files in real-time that contain wind speed forecasts for five days out for selected
locations along the coast. Figure Al provides an example of such a text file. The file shows
the coastal locations in the first column, and then provides for each location and three different
wind speeds (34 knots (KT), 50 KT, and 64 KT) a probability and a cumulative probability (in
parentheses) for the location reaching these wind thresholds 12 to a 120 hours out.

We translate these wind speed forecasts into counties that are located in the forecast path of a
hurricane in two steps. First, we apply a series of probability thresholds — a minimum reported
cumulative probability 5 days (120 hours) out for a 64 KT wind speed — ranging from 1 to 50
percent to select locations in the text files. For example, when we apply a probability threshold of

1 percent for 64 KT wind, Surf City, NC, is the only location on this list that is selected. We then

*Kruttli: The Board of Governors of the Federal Reserve System. Email: mathias.s.kruttli@frb.gov. Roth Tran:
The Board of Governors of the Federal Reserve System. Email: brigitte.rothtran@frb.gov. Watugala: Cornell
University. Email: sumudu@cornell.edu.
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map these selected locations to specific counties. In a second step, we add counties that are within
a 75 mile radius of the counties from the first step.! We only focus on the 64 KT wind speed,
because this is the minimum hurricane level wind speed.

Table Al reports summary statistics on the hurricane forecast data. The number of storms for
which we observe forecasts decreases as probability threshold or days to event resolution (hurricane
landfall or dissipation) increases. Panel A reports the mean, median, and standard deviation of the
number of county-date observations for which we have hurricane forecasts for each storm at a given
probability threshold. When using a probability threshold of 1 percent, we include 49 storms, with
the average storm having 306 county-day observations. At a probability threshold of 50 percent,
our sample includes only nine storms with an average of just 7 county-day observations. Panel B

presents the observation count by days to resolution at a given probability threshold.

1.2 Details on hurricane landfall region data

We use hurricane track data collated from forecast advisory files from the NOAA hurricane archives
to determine which counties were located in the hurricane landfall regions. For each hurricane,
NOAA publishes forecast advisory text files from the inception of the storm until the storm dissolves.
Every six hours a new file is published with information on the location, that is the coordinates,
of the storm eye. The file also contains information on the storm category, for example, was the
storm a tropical depression or a hurricane at a given point in time. A lot of storms in NOAA’s
hurricane archive never get close to landfall. We select all the storms for which the eye gets within
50 miles of at least one county while being of hurricane level strength.

To determine the landfall region of each of the selected hurricanes, we first hand collect the
landfall time of the hurricanes from NOAA’s tropical cyclone reports, which can also be found in
the hurricane archives. Then we include all counties in the landfall region that were at one point
within a radius R of the storm eye 24 hours before or after the landfall time.? Having this time
window around the landfall time ensures that we capture counties that lie more inland and counties

that were close to the eye of the hurricane before the actual landfall for hurricanes that move along

!We use Census county centroids for this purpose, which can be found here https://www2.census.gov/geo/tiger/
TIGER2017/COUNTY/.

*We use Census county centroids that can be found here https://www2.census.gov/geo/tiger/ TIGER2017/
COUNTY/.
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the coast. Also, because we only require the storm to be of hurricane level strength at landfall, as
described previously, this methodology captures counties that are affected by strong rainfall even
when the storm windspeeds fall below hurricane level after landfall. While 24 hours is our baseline
time window, we try additional time windows, namely 12, 36, and 48 hours, and the results are
qualitatively similar. The values used for the radius R around the storm eye are 50, 100, 150, and

200 miles.



- - - - WIND SPEED PRCBABILITIES FCR SELECTED LOCATICNS - - - -

FROM FROM FRCM FROM FROM FRCM FRCM

TIME 18Z THU OeZ FRI 18Z FRI 0OeZ SAT 182 SAT 18Z S5UN 18Z MON
PERICDS TC TC TC TC TC TC TC

06Z FRI 182 FRI 06Z S5AT 18Z S5SAT 182 SUN 18Z MON 18Z TUE

FORECAST HOUR (12) (24) (38) (48) (72) (98) (120)
LOCATION KT
DANVILLE VA 34 X X( X) 1( 1) 21 3) 21 5) 1( &) X({ &)

NORFOLK NA&S 34 X X(X) X(X  X(X) 3(3 1(4) X({4)

NORFOLE VA 34 X X(X) X(X) 1(1) 2{3) 1(4) X(4)
OCELNE NAS VA 34 X X(X) X({X) 1{1) 3(4) 1( 35 X{ 5
ELIZREETH CTY 34 X X( X) X({X) 2{2) 4( & 2(8 X{ &)
GREENSBORD NC 34 X X( X) 1( 1) 3{ 4) 4( 8 X(=28) X[ &)
RALEIGH NC 34 X X(X) 1( 1) 4(5) S5{10) XK({10) X(10)

ROCKY MT NC 34 X X(X) 1( 1) 4( 5) 5{10)  X(10)  1(11)

CAPE HATTERAS 34 X X( X} X(X) 4( 4) 8(12) 2(14) X(14)
FAYETTEVILLE 34 X X( X} 5( 5) a(14)  T{21) 1(22) X(22)
CHARLOTTE NC 3¢ X X( X} 5( 5) 4( 9 3(12) 1(13) X(13)
CHERRY BT NC 3¢ X X( X} 2( 2) 8(10) 10(20) 3(23) X(23)
CHERRY BT NC 50 X X( X) X(X) 1( 1) 2(3) X(3) X{3)
NEW RIVER NC 34 ¥ X( X} 2( 2) 7{ 9) 12(21) 4(25) X(25)
NEW RIVER NC 50 X X( X} X({ X} 1( 1) 2(3) 1( 4) X{ 4)
MOREHEAD CITY 34 X X( X) 2( 2} 8(10) 12(22) 4(26) X(28)
MOREHEAD CITY 50 X X( X) X({ ¥X) 1( 1) 2(3) 1( 4) X( 4)
SURF CITY NC 34 X 1( 1) &( &) 11(17) 15(32) 3(35) X (35)
SURF CITY NC 50 X X( X} X(X) 2(2) 4( & X( & X &
SURF CITY NC &4 X X(X) X(X X(X) 1(1) 1(2) X( 2)

Figure Al: Partial sample raw text file for windspeed forecast data

This figure shows a portion of a NOAA wind speed forecast text file for Hurricane Matthew on October 6, 2016.
The left column shows selected locations with wind speed probabilities of at least one percent at the speed of at
least 34 knots (KT) within the 120 hours following the time of the forecast. The next column shows which wind
speed the probabilities for a given row pertain to. When a location has probability of at least 1% of achieving 64
KT wind, then it will also show rows for 34 and 50 KT winds. In each of the following columns, the first number
is the probability of the wind speed within that time frame while the number in parentheses reflects the cumulative
probability of experiencing that wind speed at some point by the end of that period. For example, Surf City, NC,
has an 11 percent probability of experiencing 34 KT winds during the 12-hour window occurring 36-48 hours from
the time of the forecast. The cumulative probability that Surf City, NC will have experienced 34 KT winds within
the next 48 hours is 17 percent.



Table Al: Summary statistics of hurricane forecast data

This table reports summary statistics of NOAA wind speed forecasts from 2007 to 2017 for storms that are forecast
to make landfall within five days with wind speeds of at least 64KT with a given minimum probability. Panel A
reports the mean, median, and standard deviation of the number of county-date observations for which we have
hurricane forecasts for each storm at a given probability threshold. Panel B presents the observation count by days
to resolution (hurricane landfall or, in the case of “misses”, dissipation) at a given probability threshold.

Panel A: Summary statistics of county-days forecast observations per storm

Probability >

1 10 20 40 50
Storms 49 17 14 9 9
County-days observations 14,988 2,093 913 414 335
Mean 305.878 123.118 65.214 46.000 37.222
Std. Dev. 402.974 121.418 61.541 25.822 25.932
Median 124.000  91.000  56.000 41.000 34.000

Panel B: Number of county-days forecast observations

Days to dissipation or Probability >
landfall

1 10 20 40 50
1 2,251 536 371 239 199
2 3,131 678 320 149 122
3 3,198 545 159 14 14
4 2,431 187 37 12
5 1,929 101 21 0 0




Table A2: Summary statistics of hurricane landfall region data

This table reports summary statistics on the hurricane landfall regions derived from NOAA data as described in
Section 1.2 of this Online Appendix. Reported are statistics on the number of counties located in hurricane landfall
regions from 1996 to 2017. Landfall regions are based on a range of radii around the eye of the hurricane.

Across all hurricanes By hurricane

Radius around eye of the hurricane  Hurricanes Total counties Unique counties ~Avg. counties SD counties Median counties

50 miles 33.000 832.000 537.000 25.212 15.299 24.000
100 miles 33.000 2,431.000 973.000 73.667 44.020 64.000
150 miles 33.000 4,370.000 1,246.000 132.424 74.903 123.000
200 miles 33.000 6,705.000 1,471.000 203.182 108.634 194.000




2 Additional figures and tables

This section provides additional figures and tables. Figure A2 plots the counties used for the
seasonal outlook analysis in Section 4.2 of the paper. Tables A3 and A4 present the results of
our baseline regressions that estimate the uncertainty before and after hurricane landfall when
measuring the firms’ geographic footprint with county level sales instead of establishments. Tables
A5 and A6 report the option return analysis described in Section 6.2 of the paper, but accounting
for the bid-ask spread when computing option returns and using a short delta-neutral straddle.
Table A7 reports the baseline estimates when excluding one hurricane at a time. Tables A8 and A9
show long-run cumulative abnormal return differences between hit and control firms 5 trading days
(1 week) and 60 trading days (3 months) after landfall. The two tables are structured as Table 10
in the paper, which shows the cumulative abnormal return differences up to 120 trading days (6

months) after landfall.



Historical Probability
0%
<5.0%

. 5.0-10%

. 10-15%

15-20%
>20%

(a) Atlantic and Gulf counties (b) Historical probability of hurricane landfall

Figure A2: Coastal counties and hurricanes

This figure plots the coastal counties used for the analysis in Section 6.4 of the paper. Panel A shows all the counties
that are either directly bordering the Atlantic/Gulf coast or are within a 100 mile distance of a county that does.
Panel B shows the counties’ historical probabilities of being in the landfall region of a hurricane at least once in a
given year. The plotted probabilities are as of 2001 and computed based on a window of 30 years. The landfall
regions are based on a 100 mile radius around the eye of the hurricane.
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Table A4: Hurricane effects on implied volatility post landfall (firms’ geographic foot-
prints based on sales)

This table reports the coeflicients and test statistics when estimating the panel model in equation (10) of the paper.
The dependent variable is the change (in percent) in the implied volatility of firm ¢ from the day before the inception
day of the hurricane T}, until 5 trading days (1 week) and 30 trading days (1.5 months) after the landfall T} in Panel
A and B, respectively. The independent variable measures how much (from 0 to 1) of the geographic footprint of a
firm, that is sales, are in counties located in the landfall region of a hurricane. To identify counties that lie in the
landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and
200 miles surrounding the eye. For each regression, the total number of firm observations with a sales share in the
landfall region of greater than 0%, at least 20%, and at least 50%, are reported. The data are from 1996 to 2017. The
values in parentheses are the t-stats. The standard errors are clustered by county based on a firm’s largest exposure.
Industry and time fixed effects are used. The time fixed effect can be interpreted as a hurricane fixed effect as we
include a separate time period in the panel for each hurricane as shown in equation (10). The significance of the
coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (IVi,T;#5/IVi,T;>

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

Landfall Region Exposure; T, 11.647* 8.067"" 7.133***  5.986™**  3.096""  2.263"  4.133***  3.101"**

(3.413) (2.438) (3.753) (3.159)  (2.255) (1.694)  (4.005) (3.128)
Adjusted R? (%) 12.073 12.59 12.188 12.722 12.166  12.706 12.238 12.792
Total firm obs. 20,201 20,201 20,046 20,046 20,061 20,061 20,126 20,126
Total firm obs. with exposure > 0% 4,529 4,529 7,245 7,245 8,928 8,928 10,174 10,174
Total firm obs. with exposure > 20% 168 168 635 635 1,247 1,247 1,960 1,960
Total firm obs. with exposure > 50% 81 81 320 320 620 620 979 979
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
Panel B: Inception to 30 trading days (1.5 months) after landfall
Dependent variable: Change in IV (in %), log (IVi,Th,+30/IVi,T;)

Radius around eye of the hurricane
50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure; r,T, 24.591"**  16.827***  7.912*" 5.180* 5.403*"  3.783"  7.595™"*  6.141***

(3.107) (2.676) (2.234) (1.736)  (2.349) (1.845)  (3.266) (2.966)
Adjusted R? (%) 35.623 35.952 36.341 36.664 36.481  36.779 36.423 36.698
Total firm obs. 20,267 20,267 20,097 20,097 20,121 20,121 20,184 20,184
Total firm obs. with exposure > 0% 4,525 4,525 7,248 7,248 8,946 8,946 10,190 10,190
Total firm obs. with exposure > 20% 169 169 640 640 1,252 1,252 1,967 1,967
Total firm obs. with exposure > 50% 81 81 325 325 624 624 986 986
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
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Table A5: Option return difference between hit and control firms - going long at the
ask price

This table reports the coefficients and test statistics when estimating the panel model in equation (12) of the paper.
The dependent variable is the return (in percent) on a long delta-neutral straddle traded at the best ask price,
formed the day of the landfall and computed for each firm in the sample as described in Section 6.2. The independent
variable is a dummy variable that takes a value of 1 for hit firms and a value of O for control firms, which estimates
the difference between holding a straddle on a hit firm versus a control firm. In Panel A, a hit firm has at least 10%
of its establishments in counties located in the landfall region of a hurricane, and in Panel B the threshold is 25%.
Control firms have no establishments in the counties located in the landfall region. To identify counties that lie in
the landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and
200 miles surrounding the eye. For each regression, the total number of firm observations and the number of hit and
control firms are reported. The data are from 1996 to 2017. Hurricanes with no firms in the landfall region for a given
radius, that is hurricanes without hit firms, are excluded from the analysis. The values in parentheses are the t-stats.
The standard errors are clustered by county based on a firm’s largest exposure. Industry and time fixed effects are
included. The time fixed effect is equivalent to a hurricane fixed effect as there is at most one buy-and-hold return
observation per firm per hurricane in a particular regression. The significance of the coefficient estimate is indicated
by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Firm considered hit if establishment share in landfall region > 10%

Dependent variable: Option return (in %)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

IsHit; p, 34.354™*  33.327**  12.110"  12.208*" 6.670 6.337 5.906 5.436

(2.090) (2.020) (1.904) (2.006) (1.596)  (1.531) (1.540) (1.424)
Adjusted R? (%) 16.166 16.579 15.724 15.712 13.804 13.764  12.081  12.037
Total firm obs. 1,451 1,451 2,494 2,494 3,751 3,751 4,554 4,554
Firm obs. hit 130 130 508 508 1,042 1,042 1,669 1,669
Firm obs. control 1,321 1,321 1,986 1,986 2,709 2,709 2,885 2,885
Hurricanes 14 14 22 22 30 30 32 32
Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: Firm considered hit if establishment share in landfall region > 25%
Dependent variable: Option return (in %)

Radius around eye of the hurricane
50 miles 100 miles 150 miles 200 miles

IsHit; 34.225 23.636 14.661 11.948 14.931*  14.709* 8.997 8.083

(1.104) (0.794) (0.994) (0.866) (1.662)  (1.680) (1.535) (1.405)
Adjusted R? (%) 13.034 15.187 13.848 14.050 13.411 13.456  13.429  13.515
Total firm obs. 366 366 1,792 1,792 2,673 2,673 2,962 2,962
Firm obs. hit 31 31 178 178 374 374 598 598
Firm obs. control 335 335 1,614 1,614 2,299 2,299 2,364 2,364
Hurricanes 4 4 17 17 24 24 25 25
Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes
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Table A6: Option return difference between hit and control firms - going short at the
bid price

This table reports the coefficients and test statistics when estimating the panel model in equation (12) of the paper.
The dependent variable is the return (in percent) on a short delta-neutral straddle traded at the best bid price,
formed the day of the landfall and computed for each firm in the sample as described in Section 6.2. The independent
variable is a dummy variable that takes a value of 1 for hit firms and a value of O for control firms, which estimates
the difference between holding a straddle on a hit firm versus a control firm. In Panel A, a hit firm has at least 10%
of its establishments in counties located in the landfall region of a hurricane, and in Panel B the threshold is 25%.
Control firms have no establishments in the counties located in the landfall region. To identify counties that lie in
the landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and
200 miles surrounding the eye. For each regression, the total number of firm observations and the number of hit and
control firms are reported. The data are from 1996 to 2017. Hurricanes with no firms in the landfall region for a given
radius, that is hurricanes without hit firms, are excluded from the analysis. The values in parentheses are the t-stats.
The standard errors are clustered by county based on a firm’s largest exposure. Industry and time fixed effects are
included. The time fixed effect is equivalent to a hurricane fixed effect as there is at most one buy-and-hold return
observation per firm per hurricane in a particular regression. The significance of the coefficient estimate is indicated
by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Firm considered hit if establishment share in landfall region > 10%

Dependent variable: Option return (in %)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

IsHit; p, -41.833"  -42.106"  -9.025 -9.326 -7.959 -8.580 -3.727 -3.951

(-1.850)  (-1.834) (-1.004) (-1.039) (-1.142) (-1.223) (-0.639) (-0.667)
Adjusted R? (%) 13.804 15.008 12.946 12.983 10.324 10.225 9.488 9.450
Total firm obs. 1,451 1,451 2,494 2,494 3,751 3,751 4,554 4,554
Firm obs. hit 130 130 508 508 1,042 1,042 1,669 1,669
Firm obs. control 1,321 1,321 1,986 1,986 2,709 2,709 2,885 2,885
Hurricanes 14 14 22 22 30 30 32 32
Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes

Panel B: Firm considered hit if establishment share in landfall region > 25%

Dependent variable: Option return (in %)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

IsHit; p -23.670 -13.105 -7.700 -6.362 -20.750  -21.902 -11.774  -11.661

(-0.661)  (-0.363)  (-0.478) (-0.397) (-1.547) (-1.628) (-1.320) (-1.315)
Adjusted R? (%) 13.025 14.900 11.628 12.043 9.042 9.039 9.506 9.535
Total firm obs. 366 366 1792 1792 2673 2673 2962 2962
Firm obs. hit 31 31 178 178 374 374 598 598
Firm obs. control 335 335 1,614 1,614 2,299 2,299 2,364 2,364
Hurricanes 4 4 17 17 24 24 25 25
Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes
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Table A7: Hurricane effects on implied volatility post landfall (excluding individual
hurricanes)

This table reports the coefficients and test statistics when estimating the panel model in equation (10) of the paper
while excluding individual hurricanes from the regression. The dependent variable is the change (in percent) in the
implied volatility of firm ¢ from the day before the inception day of the hurricane 7}, until 5 trading days (1 week)
after the landfall T;,. The independent variable measures how much (from 0 to 1) of the geographic footprint of a
firm, that is establishments, are in counties located in the landfall region of a hurricane. To identify counties that
lie in the landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius of 200 miles
surrounding the eye. For each regression, the total number of firm observations with an establishment share in the
landfall region of greater than 0% and at least 20% are reported. The data are from 1996 to 2017. The standard
errors are clustered by county based on a firm’s largest exposure. Industry and time fixed effects are used. The time
fixed effect can be interpreted as a hurricane fixed effect as we include a separate time period in the panel for each
hurricane as shown in equation (10). The significance of the coefficient estimate is indicated by * for p < 0.10, ** for
p < 0.05, and *** for p < 0.01.

Excl. hurricane  Year Coeff. estimate T-stat Adjusted R? (%) Total firm obs. Firm obs. with expo. > 0%  Firm obs. with expo. > 20%  Hurricanes

Bertha 1996 5.522** 5.372 12.164 19,903 10,141 2,128 32
Fran 1996 5.486"** 5.324 12.328 19,888 10,071 2,080 32
Danny 1997 5.433"* 5.221 12.194 19,789 10,129 2,126 32
Bonnie 1998 5.480"** 5.311 11.121 19,716 10,058 2,123 32
Earl 1998 5.429*** 5.320 12.104 19,714 10,003 2,100 32
Georges 1998 5.426™* 5.138 12.362 19,713 10,107 2,123 32
Bret 1999 5.400"** 5.196 12.206 19,744 10,086 2,124 32
Floyd 1999 6.285"*  6.095 12.463 19,679 9,867 1,867 32
Irene 1999 5.549*** 5.379 12.260 19,735 10,040 2,108 32
Lili 2002 5.691°** 5.103 12.086 19,668 9,972 2,080 32
Claudette 2003 5.602***  5.354 12.380 19,693 9,976 2,091 32
Isabel 2003 5.618"** 5.335 12.434 19,677 9,899 2,010 32
Charley 2004 5.536*** 5.247 12.365 19,624 9,941 2,093 32
Frances 2004 5.539"**  5.440 11.937 19,623 9,968 2,108 32
Ivan 2004 5.508"** 5.362 12.096 19,616 9,910 2,099 32
Jeanne 2004 5.475*** 5.310 12.243 19,621 9,964 2,105 32
Dennis 2005 5.203"*  4.983 12.595 19,581 9,947 2,107 32
Katrina 2005 5481 5.301 12.504 19,582 9,952 2,097 32
Rita 2005 5177 4.837 12.392 19,584 9,868 2,048 32
Wilma 2005 5.559"**  5.358 12.501 19,584 9,972 2,112 32
Humberto 2007 6.134*** 5.006 11.913 19,446 9,873 2,047 32
Dolly 2008 5.443*** 5.236 12.199 19,465 10,019 2,130 32
Gustav 2008 4.626"  4.776 11.872 19,454 9,876 2,054 32
Ike 2008 3.762""  4.054 8.080 19,437 9,793 1,996 32
Irene 2011 5157 4.753 12.545 19,420 9,771 1,952 32
Isaac 2012 5.5117* 5.141 12.464 19,447 9,998 2,112 32
Sandy 2012 5.453"**  4.967 12.543 19,429 9,781 1,968 32
Arthur 2014 5.619"*  4.921 12.771 19,321 9,717 1,938 32
Hermine 2016 5.394"*  5.050 12.902 19,307 9,823 2,040 32
Matthew 2016 5167 4.791 13.054 19,320 9,854 2,074 32
Harvey 2017 5617 4.851 12.722 19,348 9,836 2,042 32
Irma 2017 5.379"**  5.106 12.678 19,394 9,904 2,095 32
Nate 2017 5.873"*" 5.407 12.670 19,366 9,852 2,079 32
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