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Abstract
Climate change is projected to sharply reduce agricultural productivity in hot developing
countries and raise it in temperate regions. Reallocation of labor across sectors could
temper the aggregate impacts of these changes if hotter regions shift toward importing
food and specializing in manufacturing or exacerbate them if subsistence food require-
ments push labor toward agriculture where its productivity suffers most. I quantify these
effects in two steps. First, I project changes in global comparative advantage by using
firm-level micro-data from 17 countries covering over half the world’s population to esti-
mate the heterogeneous effect of temperature on output per worker in manufacturing and
services. I find large effects of extremely hot and cold temperatures on non-agricultural
output per worker, but treatment effects diminish with income and expectations of tem-
perature such that the projected impact of climate change is larger in agriculture than
non-agriculture. Second, I embed my estimates in an open-economy model of structural
transformation that matches moments on output-per-worker, sectoral specialization, and
trade for 158 countries. Simulations suggest that subsistence food requirements dominate
labor reallocation in response to climate change on average and the global decline in GDP
is 12.0% larger, and 52.1% larger for the poorest quartile of the world, when accounting for
sectoral reallocation than in the counterfactual with fixed sectoral shares. The aggregate
willingness-to-pay to avoid climate change is 1.5-2.7% of annual GDP and 6.2-10.0% for the
poorest quartile. Trade reduces the welfare costs of climate change relative to autarky by
only 7.4% under existing policy, but by 30.7% overall and by 68.2% for the poorest quartile
in an alternative scenario with reduced trade costs.
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1 Introduction
Existing evidence suggests that climate change will cause large and heterogeneous
changes in agricultural productivity across the world during the 21st century. Fig-
ure 1 shows estimates of the country-level impact of climate change on agricul-
tural productivity from Cline (2007), which synthesizes evidence from economics,
agronomy, and climate science.1

Figure 1: Cline (2007) Projected Impact of Climate Change on
Agricultural Productivity, 2080-2099

Notes: Figure shows the projected change in revenue per acre from producing grains, vegetables,
fruits, and livestock according to analysis by Cline (2007).

The projections in Figure 1 show large declines in agricultural productivity of
30-60% in hot regions such as Sub-Saharan Africa and South Asia, with neutral or
positive effects in cold regions such as Canada and northern Europe. This pattern
suggests large potential gains from shifting the geography of agricultural produc-
tion. If productivity suffers greatly in some places and improves in others, perhaps
market forces will temper the damage by pushing agriculture toward temperate
climates while tropical regions reallocate production to other sectors? This paper
investigates the conditions necessary for this hypothesis to hold true, and quanti-
fies the aggregate productivity consequences of climate change in the presence of
the changes in sectoral specialization likely to occur in practice.2

1I explain the methods used in Cline (2007) more in Section 7.1. The findings are broadly
consistent with a large body of economics research on the impacts of climate change on agriculture,
which includes Mendelsohn, Nordhaus and Shaw (1994), Deschenes and Greenstone (2007),
Schlenker and Roberts (2009), and Schlenker and Lobell (2010), among many others. I use Cline
(2007) in this paper because it is the best available source for country-level impact estimates that
use globally representative data and account for adaptation.

2I use the phrase climate change to refer to shifting distributions of temperature in this paper.
Other consequences of climate change, such as sea-level rise or intensified hurricanes, are beyond
the scope of the analysis.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 3

Two key elements of sectoral allocation complicate the idea that the changes in
Figure 1 will push agriculture away from the equator. First, these estimates show
the change in the absolute advantage of agricultural production, whereas compar-
ative advantage across sectors drives international trade. Ricardian models of trade
will only predict that Canada will export more food and India will import more food
if the relative productivity of agriculture rises in Canada and falls in India.3 Given
existing evidence that temperature also affects non-agricultural productivity, the
change in comparative advantage is not immediately clear.4

Second, comparative advantage does not exclusively, or even primarily, deter-
mine sectoral specialization. Figure 2 shows that poor countries have much higher
agricultural labor shares despite lower relative value-added per worker in agricul-
ture compared to non-agriculture. Lagakos and Waugh (2013) calculate that, ad-
justing for prices, the gap in aggregate output per worker between the 90th to 10th
percentile of the world’s income distribution is 45 to 1 in agriculture, but just 4 to
1 in non-agriculture. Yet agriculture’s share of employment averages 65% in 10th
percentile countries and only 3% in 90th percentile countries. Trade in agriculture
plays only a small role in developing countries. The average person in the poorest
quartile of the world consumes 91.3% domestically produced food, compared with
45.1% in the richest quartile. In these relatively closed economies, high agricultural
production and labor shares follow from the high consumption shares necessary
for people with low incomes to meet subsistence requirements for food. Projecting
the effects of climate change on sectoral reallocation requires accounting for the

Figure 2: Comparative Advantage and Specialization in Agriculture

Notes: Figure shows data from Tombe (2015) that adjusts for prices
for the global cross-section in 2005. Poor countries specialize heavily
in agriculture despite low productivity relative to other sectors.

3I use the word food interchangeably with agricultural production in this paper because
subsistence requirements for food drive the key features of consumer preferences in my analysis.

4This evidence includes work by Zhang, Deschenes, Meng and Zhang (2018) and Somanathan,
Somanathan, Sudarshan, Tewari et al. (2015).
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forces driving this existing global equilibrium in which poor countries specialize in
agriculture despite low absolute and relative productivity, a fact which the litera-
ture on the general equilibrium effects of climate change has not yet confronted.

I address both these challenges in my analysis. First, to project changes in
agricultural comparative advantage, I provide the first global micro estimates of
the impact of climate change on productivity in manufacturing and services using
a dataset of nationally representative firm-level panel data from 17 countries cov-
ering over half the world’s population, and representing nearly the full range of cur-
rent temperatures and income levels. Using methods developed by Carleton et al.
(2018), I use my data to estimate plausibly causal treatment effects of extreme tem-
peratures on output-per-worker, and account for firm-level adaptation by allowing
these treatment effects to vary with income and expectations of temperature.

I find that extreme heat and extreme cold can both have important effects on
non-agricultural productivity, but with strong evidence of adaptation in rich coun-
tries and to temperatures with which agents are accustomed. In poor countries
with moderate climates, an extreme day with daily maximum temperature of 40◦C
or -5◦C reduces annual output-per-worker by up to 0.4%, approximately the equiv-
alent of one full working day.5 Effects are about half as large in middle-income
countries, and smaller still in those places that experience given extremes more
frequently. The effects of extreme days in rich countries are negligible, with some
evidence of mild effects from unexpected extremes caused by hot days in cold
places and cold days in hot places. I combine these estimates of predicted tem-
perature sensitivity with global climate model predictions of future temperatures
to project the country-level effects of climate change on manufacturing and ser-
vices productivity. The effects of climate change on non-agricultural productivity
are non-trivial in some poor countries, but generally small relative to productivity
losses in agriculture. Thus, the change in the global relative productivity in agricul-
ture is qualitatively similar to the change in absolute productivity.

Second, I construct a global open economy model of structural transforma-
tion that explains the existing distribution of sectoral specialization as a function
of sector-level productivities. The model incorporates two key features of con-
sumer preferences - nonhomothetic preferences and low substitutability across
sectors - that explain the high agricultural share of consumption in poor coun-
tries with high relative prices for food. Gollin, Parente and Rogerson (2007) re-
fer to the macro-development effects of these subsistence requirements as “the
food problem,” which drives developing countries to specialize in a relatively low-
productivity sector because people need food to survive. My model also includes
Ricardian comparative advantage within and across sectors, which tends to force
countries with low relative productivity in agriculture toward specializing produc-
tion in other sectors, but only to the extent that they are open to trade.6

5I find similar effects for manufacturing and services firms, though I lack data coverage for
services firms in poor countries where the effects of temperature are most detectable.

6While rural-urban migration within countries plays a key implicit role in the sectoral
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Thus, my model shows that two competing effects govern the response of sec-
toral specialization to climate change, and that their net effect could either tem-
per or exacerbate the aggregate consequences of the sector-level changes. If the
trade effect dominates, then countries can dampen the effect of falling agricultural
productivity by shifting production to other sectors; exporting more manufactured
goods and importing more food. To the extent that climate change exacerbates
‘the food problem’ by reducing agricultural productivity, however, the general equi-
librium response could drive labor toward the sector suffering large declines in
productivity and worsen the aggregate impact.

To quantify the relative strengths of these mechanisms, I estimate my model
to match data on income levels, trade flows, and sectoral specialization for 158
countries covering over 99.9% of global GDP. I embed the empirically estimated
projected impacts of climate change on productivity in agriculture, manufacturing,
and services into the estimated model, and conduct counterfactual simulations
that calculate the effects of climate change on sectoral specialization, trade, prices,
GDP, and welfare.7 I disentangle the effects of ‘the food problem’ and trade by
running separate counterfactuals with no reallocation, in autarky, with estimated
trade costs, and in an alternative policy scenario with reduced barriers to trade.

I find that the net effect of sectoral reallocation exacerbates the effects of cli-
mate change on aggregate productivity. Climate change raises the agriculture share
of GDP by 2.8 percentage points in the poorest quartile of the world, which suf-
fers large falls in relative agricultural productivity, as ‘the food problem’ outweighs
the trade response on average. Comparative advantage predominantly shifts away
from the equator and net exports in agriculture increase in colder countries, such
as those in northern Europe, and in a few hot countries that suffer declines in
agricultural productivity that are small relative to those of their close trading part-
ners or to their decline in manufacturing productivity. Net imports of food rise
in most hot countries in the developing world, but only some countries are suf-
ficiently open to trade for this effect to substantially alter sectoral specialization.
Overall, climate change reduces global GDP by 12.0% more, and by 52.1% more for
the poorest quartile of the world, when accounting for the full effects of sectoral
reallocation than in the naive counterfactual with fixed sectoral shares.

The equivalent variation willingness-to-pay (WTP) to avoid each year of climate

reallocation captured by my model, I hold the global distribution of population fixed across
countries rather than allowing for international migration. To justify this assumption, I note
that some combination of home-bias and barriers to migration are sufficient to maintain welfare
differences of two orders of magnitude between the poorest and richest countries in the existing
global equilibrium. While climate change is likely to exacerbate global income differences, it seems
plausible that the strength of these forces will continue to keep most people confined to the places
where they already live. To the extent that climate change does cause substantial international
migration, my analysis captures the welfare consequences for those people left behind in the
countries suffering major impacts.

7My simulations use Cline (2007) for the effects of climate change on agriculture, and my own
estimates for manufacturing and services.



6 NATH 2020

change is between 1.5% and 2.7% of contemporaneous global GDP, depending on
assumptions about economic growth. The worst effects are concentrated in poor
countries that comprise a small share of global GDP, but a substantial portion of
the population. The average person in the poorest quartile of the global income
distribution suffers losses of 6.2%-10.0% of their income. Trade reduces the aggre-
gate global willingness-to-pay to avoid climate change by 7.4% relative to autarky
under existing policy, and by 30.7% under the alternative low trade barrier counter-
factual. Reducing trade barriers has heterogeneous effects, increasing the costs of
climate change in some regions as greater interdependence makes countries less
vulnerable to local shocks but more vulnerable to global shocks.8 Reducing trade
barriers is particularly valuable for climate change adaptation in poor countries.
Trade reduces WTP for the poorest quartile of the global population by only 4.5%
relative to autarky under existing policy, largely because many poor countries are
mostly closed to trade, but by 68.2% in the low trade cost counterfactual.

This paper relates to several literatures on climate change and macroeconomic
development. The two most similar papers are Costinot, Donaldson and Smith
(2016), who examine reallocation across crops but do not consider income effects
or cross-sector reallocation, and Desmet and Rossi-Hansberg (2015), who primar-
ily focus on the important role for international migration in climate change adap-
tation. The latter paper includes changes in the global distribution of sectoral
specialization in the model, but does not attempt to incorporate realistic trade
costs or the importance of ‘the food problem’ in the analysis. My paper is the first
to consider the effects of climate change on structural transformation.

My empirical work on temperature and productivity builds on country-level
estimates produced by Somanathan, Somanathan, Sudarshan, Tewari et al. (2015)
and Zhang, Deschenes, Meng and Zhang (2018) in India and China. The model
builds on several papers that consider structural transformation in an open-economy
setting, including Tombe (2015), Uy, Yi and Zhang (2013), and Teignier (2018). I also
use a nonhomothetic CES specification for consumer preferences from Comin,
Lashkari and Mestieri (2015). Finally, some of my counterfactual predictions about
the role of trade and the spatial correlation of shocks relate to the work of Dingel,
Meng and Hsiang (2019).

The paper is structured as follows. Sections 2, 3, and 4 describe the data, em-
pirical strategy, and results for the estimation of the relationship between temper-
ature and non-agricultural productivity. Section 5 lays out the model. Section 6
explains the model estimation and describes the model’s success in fitting the data.
Section 7 contains the counterfactual model simulations. Section 8 provides addi-
tional country-level panel regression evidence on the impact of agriculture-biased
productivity shocks on sectoral reallocation. Section 9 discusses implications for
policy and Section 10 concludes.

8Note that this nets out gains from trade that are unrelated to climate change adaptation. Thus,
these results do not imply that these countries are worse off overall from reducing trade barriers.
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2 Data
Firm Data
I assemble a globally representative panel of firm-level microdata to estimate the
relationship between temperature and productivity in manufacturing and services.
Table 1 lists the countries and years included in the dataset as well as the data
source for each country. The data combines surveys administered by national gov-
ernments with data acquired from the Amadeus database maintained by Bureau
van Dijk (BVD). BVD is a private company owned by Moody’s Analytics that col-
lects and distributes firm-level financial information from around the world. They
collect data both by acquiring administrative data directly from national business
registers and by conducting their own surveys.

Table 1: Global Firm-Level Panel Microdata

Country Data Source Dataset Years

Austria Bureau Van Dijk Amadeus 1995-2014

Belgium Bureau Van Dijk Amadeus 1995-2014

China National Bureau of Statistics Chinese Industrial Survey 2003-2012

Colombia
National Administrative

Department of Statistics (DANE) Annual Manufacturing Survey 1977-1991

Finland Bureau Van Dijk Amadeus 1995-2014

France Bureau Van Dijk Amadeus 1995-2014

Germany Bureau Van Dijk Amadeus 1995-2014

Greece Bureau Van Dijk Amadeus 1995-2014

India Central Statistical Office Annual Survey of Industries 1985-2007

Indonesia Badan Pusat Statistik Annual Manufacturing Survey 1975-1995

Italy Bureau Van Dijk Amadeus 1995-2014

Norway Bureau Van Dijk Amadeus 1995-2014

Spain Bureau Van Dijk Amadeus 1995-2014

Sweden Bureau Van Dijk Amadeus 1995-2014

Switzerland Bureau Van Dijk Amadeus 1995-2014

United Kingdom Bureau Van Dijk Amadeus 1995-2014

United States Census Bureau
Annual Survey of Manufacturers,

Census of Manufacturers 1976-2014

Notes: Data includes revenue and number of employees, with varying coverage of capital
stock (tangible fixed assets) and wage-bill. Amadeus data includes both manufacturing
and services firms.

I restrict my analysis to those countries with nationally representative panels.
This includes government-level surveys from India, Colombia, Indonesia, China,
and the United States, and Amadeus data from twelve European countries with
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mandatory filing requirements according to BVD documentation.9 Bloom, Draca
and Van Reenen (2016) report that the data in most of these European countries
contains nearly the full population of public and private firms.10 Gopinath, Kalemli-
Özcan, Karabarbounis and Villegas-Sanchez (2017) also use data from Amadeus
and Alfaro and Chen (2018) use data from Orbis, a related firm dataset produced
by BVD.

My sample covers both manufacturing and services firms in developed and de-
veloping countries. While the government surveys cover only manufacturing firms,
the BVD data covers the entire spectrum of 2-digit industries. I report results for
the pooled sample of all firms, separately for manufacturing firms, and separately
for services firms, though the latter subset lacks developing country coverage.11

BVD also reports additional branch locations and subsidiary ownership for many
firms. I drop all firms that list subsidiaries or additional branches so that reported
firm output aligns as closely as possible to my measure of temperature exposure at
the main location. I also drop firms containing fewer than three observations and
those with missing data for revenue or number of employees.

In total, the sample includes 17 countries that cover 59.4% of the world’s man-
ufacturing output and 51.1% of the global population.12 The dataset also meets
the globally representative criterion by spanning virtually the full range of climate
and income levels in the global cross-section. According to the Penn World Tables,
PPP-adjusted GDP per capita in my sample ranges from $1,137 in India in 1985 to
$64,274 in Norway in 2014, which covers the 3rd to the 99th percentile of the global
population in 2014. Similarly, country-level average daily maximum temperature
in my sample ranges from 8.5 C◦in Norway to 31.5 C◦in India, covering the 1st to
the 90th percentile of global population-weighted long-run temperature. Thus,
to the extent that income and average temperature predict adaptation to extreme
temperatures, my data is informative about the full range of heterogeneity in the
global temperature-productivity relationship.
Climate Data
I use temperature data from Version 3 of the Global Meteorological Forcing Dataset
(GMFD) produced at Princeton University. The data covers the entire world at a
0.25◦by 0.25◦grid for the years 1948-2016. GMFD is a reanalysis dataset that re-

9Importantly, the online version of the Amadeus database does not maintain accurate historical
records. Thus, I download the data directly from the 2005, 2010, and 2015 vintages (CDs). Each
Amadeus vintage contains 10 years of historical data for each firm. I match firms across years using
BVD’s unique firm identification number, and drop a small subset of observations with inconsistent
data across vintages for the same firm-year.

10Denmark, Ireland, and Portugal also have mandatory reporting requirements, but were
unavailable to me due to data licensing restrictions and missing or outdated geographic identifiers.

11I drop firms marked mining, construction, utilities, and agriculture, though results are very
similar when including these firms in the pooled sample.

12I cannot include the United States in my main pooled specification because I can only access
the data at a secure government facility. I also exclude the data from China from my main
specification for data quality reasons explained in Section 4.
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constructs historical temperature using a combination of observational data and
local climate models. Following Graff Zivin and Neidell (2014) and other work
on temperature and labor productivity, I use daily maximum temperature as my
variable of interest to best approximate the temperature people experience during
working hours.

I match firm and climate data at the county level. The government surveys pro-
vide county location for each firm directly. The BVD data provides city name and
zip code, which I match to the county-level using GeoPostcodes, a global geocod-
ing dataset provided by GeoData Limited.13 I apply nonlinear transformations to
the GMFD temperature variable at the pixel level, and then average across pixels to
the county level weighting by population.14

Other Data
I use purchasing power parity adjusted GDP per capita data from the Penn World
Tables as a measure of the income level of each country-year in my sample.

3 Empirical Strategy
In order to quantify the effects of climate change on sectoral reallocation and ag-
gregate productivity, my empirical results must execute three objectives. First, I
need to estimate the causal effect of temperature on productivity in manufacturing
and services. Second, I need to estimate the heterogeneity in that relationship such
that I can predict the response to temperature for every country in the world. The
model counterfactuals in Section 7 require an estimate of the response of man-
ufacturing productivity to temperature in Algeria without having data from Alge-
ria. Third, my estimates should incorporate the benefits and costs of adaptation.
Future projections should reflect the fact that the effects of a given temperature
realization will likely diminish as countries grow richer, firms improve technology,
and agents adjust expectations to the shifting distribution of temperatures. To
quantify the effects of climate change in Section 7, I need to make projections not
just for Algeria today, but for future Algerian firms experiencing climate change in
2080.

3.1 Conceptual Framework
To motivate my estimation strategy I start with a version of the production function
from Burnside, Eichenbaum and Rebelo (1993) with variable labor effort:

Y = AKα(e ∗ L)1−α with 0 ≤ e ≤ 1 (1)

13GeoData Limited estimates that their latitude and longitude coordinates for the center of each
zip code are precise to within 100 meters. I independently verify a subset of observations in each
country to ensure accuracy. I also hand-code a small number (under 1%) of unmerged observations
using city name, and drop those unmerged observations for which the city name is non-unique
within a country.

14For some countries, the administrative unit to which I aggregate is more comparable to a town
than a county.
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The parameter e governs effective units of labor input. Intuitively, temperature
could affect e through several channels. Extreme temperatures could cause illness
or physical fatigue, impair cognitive function, or increase the disutility of labor
such that workers reduce effort or minutes spent working.15

Rearranging the production function in terms of output per worker and taking
logs gives:

ln

(
Y

L

)
= ln(e) +

(
1

1− α

)
ln(A) +

(
α

1− α

)
ln

(
K

Y

)
(2)

Equation 2 provides the basis for using output per worker as the dependent vari-
able in my main specification. The change in output per worker equals the change
in e when the firm’s technology and capital-to-output ratio stay constant.16 To
gain further insight into the firm’s optimal response to climate conditions, I model
worker effort as a function of exposure to extreme heat (cooling degree days), ex-
treme cold (heating degree days), and adaptation investments bh and bc:17

e∗ = 1− CDD ∗ gh(bh)−HDD ∗ gc(bc) (3)

g ≥ 0, g′ < 0, g′′ > 0

In this framework, the firm has access to separate technologies that mitigate the
impact of extreme heat and extreme cold on worker effort with diminishing returns
in each.18 The first order conditions for a profit-maximizing firm yield the following
expression for the firm’s optimal investment in hot weather adaptation bh:

−g′(bh) =
ch ∗ e

p ∗MPL ∗ L ∗ CDD
(4)

Since g is convex in bh, Equation 4 predicts that firm adaptation investments will
be increasing in the firm’s exposure to extreme heat (CDD), the marginal product
of labor, the firm’s labor input, and the price of output, and decreasing in the cost of

15The health effects of extreme temperatures have been widely documented, including in
Deschênes and Greenstone (2011). Several laboratory experiments, including Seppanen, Fisk and
Lei (2006) find evidence of reduced worker cognitive functioning. Graff Zivin and Neidell (2014)
use time-use survey to show that people allocate less time to working in the presence of extreme
temperatures.

16If capital is not adjustable in the short-run then short-run changes in Y
L will slightly understate

the change in e as K
Y will also increase due to the fall in Y. In the long-run when the firm readjusts

capital to its optimal level, the change in output per worker exactly equals the change in e.
17I define cooling degree days and heating degree days in Equation 6.
18Zhang, Deschenes, Meng and Zhang (2018) mention that capital equipment could also

perform poorly in extreme temperature conditions. If so, augmenting the production function
with variable effective capital utilization, u, as in Burnside and Eichenbaum (1996), would capture
this effect. In that case, the interpretation in Equation 2 would be that the reduction in Y

L was
attributable to a combination of declines in e and u.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 11

the adaptive technology, ch, and the level of worker effort.19 Thus, the firm’s optimal
condition predicts that worker effort will be less sensitive to temperature at more
productive firms with more expected exposure to extreme temperatures, but that
this reduced sensitivity comes at a cost.

To capture this heterogeneity, my empirical strategy focuses on modeling out-
put per worker, and consequently e, as a function of temperature realizations, ac-
cess to technology, and expectations over the distribution of temperature. By mea-
suring the effects of climate change on e, I can use my estimates to project the
change in the sector-by-country aggregate productivity parameters, Zjk, that gov-
ern average output per worker in the model introduced in Section 5.

3.2 Causal Effect of Temperature
Following the framework outlined in Deryugina and Hsiang (2014), I start by noting
that workers experience daily realizations of weather. San Francisco and Washing-
ton D.C. have similar annual temperatures, but very different exposure to extremes.
To capture this logic, I treat daily output as a function of temperature on day d,
Yd = f(Td). To aggregate to annual output, the level of my data, I sum daily outputs
along with functions of daily temperature, f(Td), across all days experienced by
firm i in year t:

Yit =
365∑
d=1

Yid =
365∑
d=1

f(Tid) = F (T )it (5)

Thus, I treat nonlinear transformations of daily temperature summed over the
year as my primary independent variable of interest. Using annual data also has
the important advantage of allowing for intertemporal substitution of labor. If
workers produce less due to extreme temperatures on Tuesday but produce extra
on Saturday instead, annual data captures the effects of temperature net of this
reallocation.

For parsimony, my main specification uses a piecewise linear functional form
for temperature, where output is allowed to vary linearly with daily maximum tem-
perature above 30◦C (CDD) and below 5◦C (HDD):

f(T ) =


β1(5− Tmax) if Tmax < 5

0 if 0 ≤ Tmax ≤ 30

β2(Tmax − 30) if Tmax > 30

(6)

This formulation allows cold and hot temperatures to have separately estimated
effects, β1 and β2, on productivity. I also conduct robustness checks with more
flexible functional forms such as a polynomial of degree four and bins of daily

19Optimal adaptation investment is decreasing in the level of worker effort because there are
concave returns to effort.
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maximum temperature.
Following other work in the climate impacts literature, I isolate the causal im-

pact of temperature by exploiting interannual variation in weather. In line with the
framework outlined in Section 3.1 my main specification models log output per
worker at firm i in year t as a function of the vector of temperature effects, β:

ln

(
Yit
Lit

)
= βF (T )it + δi + κrt + εit (7)

I control for permanent firm-specific features such as technology and manage-
ment with firm fixed effects δi and for unobserved aggregate shocks such as techno-
logical progress and recessions with region (country or state) by year fixed effects
κrt. I cluster my standard errors at the firm and county-by-year level to account
for both serial and spatial correlation. Equation 7 allows for estimating the average
treatment effect of temperature realizations, which fulfills part of the purpose of
this section.

3.3 Heterogeneity and Adaptation
Following the strategy of Carleton et al. (2018), I allow for heterogeneity in the
effect of temperature on output per worker by interacting the vector of temperature
coefficients with income and long-run average temperature. This setup follows
from the prediction in 3.1 that more productive firms in high-income countries and
those that expect to experience extremes more frequently will be better adapted. I
specify the interacted regression as follows:

ln

(
Yit
Lit

)
= βF (T )it + γ1ln(GDPpc)rt × F (T )it

+γ2TMEANi × F (T )it + δi + κrt + εit (8)

The interaction variables in Equation 8 are country-level annual GDP per capita
and long-run average daily maximum temperature in the county containing firm
i.20

Estimating Equation 8 allows me to predict the treatment effects of extreme
cold, β1, and extreme heat, β2, as a function of two factors - income and average cli-
mate. While there are certainly other variables that affect temperature sensitivity,
this parsimonious specification makes it feasible to predict the treatment effects
in any country for which I have data on GDP per capita and average temperature.
Given the existence of this data for the full range of countries in the global cross-
section, as well as of readily available plausible future projections of temperature
change and economic growth, this approach allows me to project the effects of

20I use country-level income because reliable data on subnational income is difficult to acquire.
Average temperature is calculated as a 40-year average in the county of firm i, which is the same
geographic scale at which contemporaneous temperature is measured.
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temperature both across space and over time. In line with the goals for this section,
the interacted model allows me to predict the effects of temperature in Algeria
today and in Algeria in 2080.

The coefficients on the interaction terms in Equation 8 are identified using cross-
sectional, rather than panel, variation, but the identification assumption is also
weaker. Estimating the main causal effect of temperature relies on the standard
identification assumption - that the independent variable of interest is uncorre-
lated with omitted variables that affect output per worker conditional on the set of
controls. For the interaction variables, however, I am interested in how income and
climate predict temperature sensitivity, rather than in isolating their specific causal
effect. Thus, the identification assumption is not that income and climate are
uncorrelated with omitted variables affecting temperature sensitivity, but rather
that this correlation remains constant across space and over time. Indeed, the aim
is to use income and average climate as a proxy for the full suite of underlying
mechanisms, and omitted variables, that govern adaptation. The cross-sectional
approach will produce valid predictions if the effects of temperature realizations
on output per worker in parts of the world with income levels and average temper-
atures similar to India are similar to the effects measured in India.21

Allowing the treatment effects of temperature to vary with long-run conditions
also bridges the gap between weather and climate. A primary concern with using
weather variation to inform estimates of the costs of climate change is that the
estimated treatment effects may change as agents adjust their expectations in the
long-run. I address this concern by explicitly modeling the treatment effects as a
function of those expectations, as represented by long-run average temperature.
In my formulation, climate is a distribution of temperatures and weather is a draw
from that distribution. By allowing the treatment effect of a draw to depend on the
distribution, my estimates for the effects of each draw remain valid as the distribu-
tion shifts. Intuitively, a hot day in Toronto could be more harmful than a hot day
in Texas because it is more unexpected, but becomes less so as Toronto warms and
its agents adapt. I capture this effect by assigning Toronto the estimated treatment
effect of Texas once it has heated up to that long-run temperature in the future.

4 Empirical Results

4.1 Main Regression Results
Table 2 contains the main results from estimating Equations 7 and 8. Column 1
displays the treatment effect of extreme temperatures for the average unit of output
in the countries in my sample by weighting observations by country-level GDP
and the inverse of each country dataset’s sample size. While the estimated aver-
age treatment effects show that the effects of temperature are statistically different

21Empirical estimation of adaptation in the climate impacts literature broadly relies heavily on
cross-sectional variation because of the inherent difficulty in finding quasi-experimental variation
in long-run conditions.



14 NATH 2020

from zero, the magnitude of these coefficients is far too small to be economically
significant. The estimates in Column 1 imply that a day with maximum tempera-
ture of either -5◦C or 40◦C would reduce annual output per worker by just 0.03%
relative to a day in the moderate range of 5◦C to 30◦C.

Table 2: Effects of Daily Temperature on Annual Revenue per Worker

(1) (2) (3) (4) (5)

Revenue/Worker Revenue/Worker Revenue Employment Revenue/Worker

TMax-30 -0.0000311 -0.00119 -0.00250 -0.00131 -0.00100

(-2.29) (-4.73) (-6.80) (-5.25) (-4.03)

5-TMax -0.0000315 -0.000956 -0.00180 -0.000842 -0.000452

(-2.15) (-2.15) (-2.91) (-1.92) (-2.07)

(TMax-30) X log(GDPpc) 0.0000715 0.000178 0.000107 0.0000595

(4.07) (6.79) (6.06) (3.65)

(TMax-30) X TMax 0.0000186 0.0000334 0.0000148 0.0000160

(4.85) (6.24) (3.93) (3.96)

(5-TMax) X log(GDPpc) 0.0000898 0.000167 0.0000769 0.0000416

(2.14) (2.85) (1.85) (2.02)

(5-TMax) X TMax -0.00000292 0.00000212 0.00000504 0.000000703

(-1.54) (0.93) (2.85) (0.59)

N 4125776 4125776 4125776 4125776 17938084

Manufacturing X X X X X

Services X

Firm FE X X X X X

Country X Year FE X X X X X

Inverse Sample Size Weights X

GDP Weights X

Countries Included 15 15 15 15 15

Notes: t-statistics in parentheses. Dependent variables all in logs. Standard errors are two-way
clustered at the firm and county-by-year level. Column 1 shows the coefficients from estimating
Equation 7 and Columns 2-5 show the results from Equation 8. Outcome variables come from
the data sources listed in Table 1 and temperature data is from GMFD. Countries included are
Austria, Belgium, Colombia, Finland, France, Germany, Greece, India, Indonesia, Italy, Norway,
Spain, Sweden, Switzerland, and the United Kingdom. Section 4.3 shows results for the United
States and Appendix C shows results for China.

Column 2 in Table 2 shows substantial heterogeneity in the effects of tempera-
ture on annual output per worker. Consistent with the approach taken in Carleton
et al. (2018), I do not weight the regressions in which I model heterogeneity ex-
plicitly because the aim is to understand how the treatment effect varies across
the full observed range of the interaction variables. The unweighted regression
with differential sample sizes in different places also effectively allows areas with
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more data, and consequently more precise estimates of the effect of temperature,
to contribute more to estimating the interaction terms.

The main effects of temperature in the unweighted interacted regression in Col-
umn 2 are large, negative, and precisely estimated, though the magnitudes cannot
be interpreted without considering the interaction terms. The coefficients on both
interaction terms for log GDP per capita are large and positive, indicating that
richer countries are insulated from the effects of both extreme heat and cold. Con-
sistent with intuition about adaptation to long-run conditions, the coefficient on
the interaction term for average long run temperature is positive for hot extremes
and negative for cold extremes, indicating that places are less susceptible to tem-
peratures which they experience more frequently. All four interaction coefficients
on income and average temperature are consistent with the predictions from Equa-
tion 4 - more productive firms with more exposure to given extremes invest more
in adaptation.

Figure 3 shows the predicted effects of temperature from Column 2 of Table 2 at
points across the distribution of observed income and climate levels in the world.
Consistent with the results of the GDP-weighted regression in Column 1, the graphs
show that temperature has little effect on productivity in rich countries (top row),
with some effects from hot days in cold, rich places (top left cell) and mild effects
from cold days in hot, rich places (top right cell).

Conversely, extreme temperatures have very large effects on productivity in poor
countries (bottom row). Experiencing one day at -5◦C or 40◦C in a poor country
with moderate long-run temperatures (bottom middle cell) reduces annual output
per worker by about 0.4%. In a working year consisting of 50 work weeks of 5 days
each, this is equivalent to each worker reducing production on that day to zero
with no compensating substitution to other days. These effects in poor countries
imply potentially large productivity costs from climate change in hot parts of the
world in the absence of adaptation. In parts of Sub-Saharan Africa, climate change
projections imply an increase in extreme heat on the order of moving 100 days
per year from 30◦C to 40◦C by 2080, which would suggest substantial declines in
manufacturing productivity in poor countries.

Columns 3 and 4 of Table 2 separately estimate the effects of temperature on
revenue and employment. The effects of both hot days and cold days on revenue
are substantially larger than those on revenue per worker because firms adjust em-
ployment in response to extreme temperatures. As shown in Appendix Figures A-1
and A-2, which again evaluate the predicted coefficients throughout the covariate
space, these effects also primarily manifest only in poor countries. This finding is
consistent with the firm’s first order condition in the framework laid out in Section
3.1 - firms should be expected to reduce labor input in response to the fall in the
marginal product of labor driven by a decline in e. However, it is perhaps surprising
that firms in my sample do not face adjustment costs large enough to dissuade this
adjustment in response to the short-run variation used to identify these effects.

Column 5 of Table 2 shows the effects of temperature on a pooled sample of
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Figure 3: Predicted Heterogeneous Response of Annual Manufacturing Revenue
per Worker to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on revenue per worker at varying levels of
income and long-run average temperature by evaluating the interacted regression from Column 2
of Table 2.

manufacturing and services firms. The effects are very similar to the sample of
only manufacturing firms in both magnitude and patterns of adaptation, with the
exception of the finding that colder countries are less vulnerable to extremely cold
temperatures. The sample size increases substantially in this specification because
many of the firms in my data are services firms, though I do not have any services
coverage in low-income countries.

4.2 Robustness
I conduct robustness checks with different ways to specify the functional forms of
temperature. Appendix Figures A-3 and A-4 show the predicted effects from the
main specification in Column 2 of Table 2 using bins and a polynomial of degree
four in daily maximum temperature, respectively. The results are qualitatively very
similar to the main specification.

I also show robustness to including more stringent state-by-year, rather than
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country-by-year, fixed effects. The results are very similar for specifications that
use all the data (pooling manufacturing and services firms) with more flexible func-
tional forms such as bins or a polynomial of degree four. These two specifications
are shown in Appendix Figures A-6 and A-7. These results are sensitive to func-
tional form, however. The more parsimonious functional forms with a single pa-
rameter each governing the response to cold days and hot days show muted effects,
particularly in the specification with manufacturing firms only. This is consistent
with the fact that considerably less variation in temperature realizations remains
within states in a given year, so more data and flexible estimation is necessary to
recover the underlying pattern.

Figure A-8 shows robustness to including controls for capital. While the stan-
dard errors for this specification are somewhat larger because I lack data on capital
for approximately a quarter of the observations in the main specification, the pat-
tern of predicted effects is very similar.

4.3 U.S. Results
In this section, I use separate estimates of the effect of extreme temperatures on
manufacturing in the United States to externally validate the results in Section
4.1.22 Predictions using the global interacted regression suggest that temperature
has a negligible effect on annual manufacturing revenues in rich, temperate coun-
tries such as the U.S. (see the top middle cell of Figure 3). Figure 4 shows the
treatment effect of temperature on annual manufacturing revenue per worker es-
timated on data from the U.S. Census Bureau:

Consistent with predictions from global data in Figure 3, I find a precisely es-
timated null effect of temperature on output-per-worker in the U.S.23 The U.S.
data also includes information on other inputs that I lack in my global sample,
allowing me to directly observe some of the adaptation costs incurred by U.S. firms.
Appendix Figure A-13 shows that the average U.S. plant increases expenditures on
electricity and other fuels by several thousand dollars for each extremely hot and
cold day, presumably for cooling and heating expenses.24 These expenditures are
small in the context of U.S. plant size, however, such that temperature still has a
null effect on revenue total factor productivity, which accounts for expenditures
on energy and materials, as shown in Figure A-12.

22The results in Section 4.1 do not include data from the United States due to physical constraints
on data access. Plant-level manufacturing data from the United States Census Bureau must be
analyzed at restricted access Federal Statistical Research Data Centers (RDC).

23The result displayed in Figure 4 uses a polynomial of degree four in daily maximum
temperature, but the null result is robust to choice of functional form. Appendix Table A-1 shows a
range of specifications, all of which are consistent with a null effect on output and employment.

24Total energy expenditures are defined as the sum of electricity expenditures and the cost of
other fuels. Full results for this outcome variable are shown in Appendix Table A-2.
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Figure 4: Estimated Response of U.S. Annual Manufacturing Revenue per Worker
to Daily Maximum Temperature

Notes: Figure shows the response of annual revenue per worker to a
polynomial of degree four in daily maximum temperature estimated
using Equation 7. Outcome variable data comes from the Annual
Survey of Manufacturers and Census of Manufacturers from the U.S.
Census Bureau. Temperature data is from GMFD. Standard errors are
two-way clustered at the firm and county-by-year level.

4.4 Projected Global Sensitivity to Extreme Temperatures
To connect the regression results from this section with the model presented in
Section 5, I predict the effects of temperature in all 158 countries for which I will
estimate the model. Figure 5 shows the predicted effects of a day with maximum
temperature of 40◦C on annual manufacturing revenue per worker and Figure 6
shows the effect of a -5◦C day. Consistent with intuition about adaptation and
the results displayed in Figure 3, poor countries and those which experience given
temperatures less frequently are more susceptible to extreme realizations.25

Projecting the impacts of climate change also requires accounting for adapta-
tion by adjusting the temperature sensitivities shown in Figures 5 and 6 to pro-
jected changes in long-run average temperature. The firm’s optimal adaptation
decision in Equation 4 implies that firms will increase investment in protection
from extreme heat as the climate warms. I account for the benefits of these in-
vestments by reevaluating predicted heat sensitivity at projected end-of-century
temperatures in Appendix Figure A-17.26 The results show noticeably muted effects

25Note that following Carleton et al. (2018), these predictions define full adaptation as
productivity that is invariant to temperature, and thus do not allow the effect of extreme
temperatures to go above zero. The effects of extreme temperatures are weakly negative in the range
of incomes and climates in the sample used for estimation, and I maintain this pattern as incomes
and temperatures go out of sample.

26End-of-century temperature projections are the 30-year average of annual average maximum
temperature from the climate model predictions used in Section 7.1. In Section 7.6 I also allow
for economic growth to make countries richer in the future, further reducing their temperature
sensitivity.
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Figure 5: Predicted Effect of a 40◦C Day on Annual Manufacturing
Revenue per Worker

Notes: Map shows the predicted annual percentage point loss in revenue per worker from a 40◦C
day obtained by evaluating the interaction regression in Column 2 of Table 2 at each country’s level
of income and long-run average temperature.

Figure 6: Predicted Effect of a -5◦C Day on Annual Manufacturing
Revenue per Worker

Notes: Map shows the predicted annual percentage point loss in revenue per worker from a -5◦C
day obtained by evaluating the interaction regression in Column 2 of Table 2 at each country’s level
of income and long-run average temperature.

when allowing for expectations to adjust to future temperatures. The mean global
damage from a 40◦C day is about 34% lower when evaluated at future tempera-
tures (0.067% of annual revenues versus 0.1%) and firms in 67 countries become
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invariant to hot days compared with 39 countries at current temperatures.
The adaptation benefits of adjusting to extreme heat come at a cost. If it were

costless to protect production from extreme heat, no firms would show effects of
temperature on productivity. Instead, my results show that firms which experience
given extremes infrequently find it optimal to invest less in adaptation, implying
that the costs they would incur to achieve a marginal reduction in temperature
sensitivity exceed the benefits. I leverage this intuition combined with the firm’s
first order conditions in Section 3.1 to infer a revealed preference measure of these
adaptation costs following methods developed in Carleton et al. (2018). Appendix
D covers the details of this calculation.

Quantifying the aggregate productivity consequences of climate change also
requires projecting temperature sensitivity in services. I make projections for ser-
vices using the pooled sample of manufacturing and services firms due to my lack
of services data coverage in poor countries.27 This choice follows from the esti-
mated strong gradient of temperature sensitivity with respect to income but very
similar coefficients between the manufacturing only and manufacturing/services
pooled specifications in Columns 2 and 5 of Table 2.28 Intuitively, my results sug-
gest that manufacturing firms in India are a better proxy for services firms in India
than services firms in Germany would be. Appendix Figures A-20 and A-21 show
predicted current global sensitivity to hot and cold days in services using results
from the pooled regression. I follow the same procedure to account for future
adaptation benefits and costs as in manufacturing.

Overall, the results in this section allow me to predict the sensitivity of non-
agricultural firm output per worker to extreme temperatures in every country in the
world in the present and future. I use these results to project the impact of climate
change on global comparative advantage between agriculture and manufacturing
in Section 7.1, and to simulate the corresponding changes in sectoral allocation
and aggregate productivity.

5 Model
This section lays out a static general equilibrium model of global production, con-
sumption, and trade in agriculture, manufacturing, and services to analyze how
changes in sectoral productivity affect sectoral specialization, trade flows, aggre-
gate productivity, and welfare. I show that the model makes ambiguous predic-

27I show prediction results for regressions using only services firms in Appendix Figures A-9, A-
10, and A-11. The results for extreme heat with more flexible functional forms such as a fourth
degree polynomial are qualitatively similar to those of the pooled manufacturing and services
regression, but these specifications are sensitive to functional form. Furthermore, the predictions
in poor countries are extrapolating far out of the sample, which only includes European firms in a
narrow range of high income levels.

28A formal test shows that coefficients for manufacturing and services firms in the pooled
regression have statistically indistinguishable responses to extreme heat and marginally significant
evidence that services firms are less susceptible than manufacturing firms to extreme cold.
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tions about how reductions in agricultural productivity affect the labor share of
agriculture, and that openness to trade is a key determinant of the aggregate con-
sequences of asymmetric sectoral productivity shocks.

The ingredients of the model are as follows:

5.1 Model Ingredients
Consumption Following the demand system specified in Comin, Lashkari and Mestieri
(2015), consumers in each country gain utility from final goods in each of the three
sectors - agriculture, manufacturing, and services - according to the following im-
plicitly defined utility function:
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Here, {εa, εm, εs} are utility elasticities for each sector that allow for nonhomothetic
preferences, {Ωa,Ωm,Ωs} are fixed sectoral taste parameters, and σ is the cross-
sector elasticity of substitution. I choose this nonhomothetic CES preference spec-
ification because it can closely match the observed pattern of smooth structural
transformation out of agriculture.29

Households consume their full wage, w, which varies at the level of country k.
The aggregate budget constraint, summed across the country-level population Lk,
equates income to total expenditures across the three sectors:

PakCak + PmkCmk + PskCsk = wkLk (10)

Demand for the final good in sector j in country k is given by:

Cjk = Ωj

(Pjk
wk

)−σ
U εj (11)

Production
The final good in sector j in country k is a CES composite of intermediate varieties
indexed by i:

Yjk =

(∫ 1

0

y
η−1
η

ijk di

) η
η−1

(12)

Intermediate goods producers each receive a productivity draw, zijk, drawn from
a Frechet distribution with sector-specific shape parameter θj and sector-country
specific start value Zjk. The production function for intermediate goods is linear in

29Nonhomothetic CES preferences improve model fit substantially compared to using general-
ized Stone-Geary preferences, another common specification used to represent nonhomotheticity
in the structural transformation literature, particularly in middle income countries. I show
robustness to using Stone-Geary preferences in Appendix G.
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labor:30

yijk = zijk ∗ lijk (13)

zijk ∼ Fjk where Fjk(zi) = exp(−Zjkz−θ)
and Zjk = f(µjk, Tjk, E(Tjk)) (14)

The sector-country specific aggregate productivity parameters, Zjk, connect the
model to my empirical results in Section 4. In particular, I allow Zjk to be a func-
tion of temperature realizations, Tjk, expectations over temperature, E(Tjk), and a
vector, µjk, of country-sector specific features such as technology, institutions, and
human capital. In making future projections in Section 7, climate change enters
the model by perturbing the vector of Zjk with empirically estimated productivity
impacts that vary at the country-sector level.
Trade
The trade portion of my model follows Eaton and Kortum (2002). When selling
to foreign countries, intermediate goods producers face an iceberg trade cost, τijk,
that varies at the exporter-importer-sector level. So, intuitively, shipping food from
Canada to Malawi incurs a different trade cost than shipping food from Malawi to
Canada, and manufactured goods shipped between Canada and Malawi have two
separate trade costs of their own. Services are nontradable.

Intermediate goods producers price at marginal cost. Since labor is the only
input, the price of a domestically produced good in country k is given by pijk = wk

zijk
.

When selling to foreign country n and incurring the cost of trade, the intermediate
goods producer in country k prices as follows:

pijk =
τjknwk
zijk

(15)

This representation of trade incorporates Ricardian comparative advantage both
within and across sectors. A producer’s ability to sell competitively priced exports
depends both on their productivity and on the domestic wage. Low productivity
countries will have low wages in equilibrium, so their relatively productive produc-
ers will be able to export their products even if their absolute productivity is low.
Thus, relative productivity between sectors is the key determinant of net imports
and exports.

The final goods producer sources each variety from the lowest-priced producer.
The sectoral final goods prices are given by the CES price index of all intermediate

30Excluding capital from the model is implicitly equivalent to assuming freely mobile and
undistorted capital markets around the world. In future drafts, I plan to conduct a robustness check
with land included as an input.
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varieties used in that sector:

Pjk =

(∫ 1

0

p1−ηijk di

) 1
1−η

(16)

Intuitively, the price of the final good in agriculture, Pak, can be thought of as a
price index for the complete basket of food items while the price of each individual
variety, piak, is the price of one particular food, such as apples. η is the elasticity of
substitution between varieties.
Equilibrium
The model has two equilibrium conditions. First, total income in country k is the
sum of all domestic and foreign sales in all three sectors.

wkLk =
3∑
j=1

(
πjkkPjkCjk +

N∑
n6=k

πjknPjnCjn

)
(17)

Here, πjkn is the share of varieties from sector j consumed in country n that coun-
try k produces. So country k receives income both from its production share of
domestic consumption in sector j, and from the share of consumption in every
foreign country comprised of its exports. Since consumption equals income in
each country, this condition also ensures that trade balances.

The second equilibrium condition concerns the labor market. The total labor
force is allocated across the three sectors:

Lk = Lka + Lkm + Lks (18)

In autarky, market-clearing requires that income equals expenditures in each sec-
tor, PjkCjk = wkLjk, which means that the labor share, ljk, equals the expenditure
share, Xjk. In the open-economy case, the labor share equals the production share
of revenues in each sector, incorporating net exports. This gives the following equa-
tion from Uy, Yi and Zhang (2013):

ljk = πjkkXjk +
N∑
n=1

πjknXjn
wnLn
wkLk

(19)

This condition illustrates the importance of both domestic consumer preferences
and international trade in determining the sectoral allocation of labor. Intuitively,
Equation 19 says that if country k has agricultural consumption worth 30% of spend-
ing and agricultural net exports worth 10% of GDP, then 40% of its labor force will
be in agriculture.
Aggregate GDP Losses and Willingness-To-Pay
I calculate the willingness-to-pay to avoid climate change productivity impacts as
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equivalent variation using the nonhomothetic measure of utility from the Comin,
Lashkari and Mestieri (2015) preference specification.

I also quantify the aggregate GDP effects of sectoral productivity changes by
using a Törnqvist (1936) price index that uses sectoral expenditure shares from
before and after the shock, (Xjk0 and Xjk1), to construct an aggregate price index
with which to deflate nominal income:

P T
k =

∏
P

(Xjk0+Xjk1)/2
jk −→ GDPk =

wkLk
P T
k

(20)

This captures the logic of Baqaee and Farhi (2017), who extend Hulten (1978) to
show that the aggregate productivity impact of a sectoral shock is given by the
weighted average of the pre and post-shock sectoral shares. The intuition here is
simple. If productivity falls markedly in agriculture, the aggregate impact is accen-
tuated if more of the economy moves into agriculture and tempered by realloca-
tion to other sectors. Thus, quantifying the magnitude and direction of sectoral
reallocation is a key part of estimating the aggregate productivity consequences of
climate change.

5.2 Comparative Statics
I now use the model to characterize the factors that influence sectoral reallocation
in response to climate change. Consider a country that suffers an agriculture-
biased reduction in aggregate productivity, consistent with projections for hot parts
of the world made in Section 7. To see how the labor share in agriculture changes in
Equation 19, I first consider the impact on the agricultural expenditure share, Xak.
The expression for Xak from solving the consumer’s problem is as follows:

Xak = Ωa

(
pak
Pk

)1−σ(
wk
Pk

)εa−(1−σ)
(21)

Taking logs gives:

logXak = log(Ωa) + (1− σ)log

(
pak
Pk

)
︸ ︷︷ ︸

Substitution Effect

+ (εa − (1− σ))log

(
wk
Pk

)
︸ ︷︷ ︸

Income Effect

(22)

The agriculture-biased reduction in productivity has two effects that appear in
Equation 22.31 First, the reduction in productivity drives down the equilibrium real
wage (wk

Pk
), making consumers poorer. If (εa − (1 − σ)) < 0, as is the case with the

parameter estimates presented in Section 6, then the reduction in real wage drives
up the expenditure share on food,Xak. This is the effect of nonhomotheticity. Food

31This equation also appears in Comin, Lashkari and Mestieri (2015). They estimate that
nonhomotheticities (the income effect) account for about 75% of observed historical structural
transformation, with changes in relative prices (the substitution effect) accounting for the rest.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 25

is a larger share of consumption for poorer people, so climate change tends to drive
up the share of agricultural consumption by making people poorer.

Second, the relative decline in agricultural productivity will increase the domes-
tic price of agricultural goods relative to the aggregate price index (pak

Pk
).32 If σ < 1,

as is also the case in Section 6, then the rising relative price of agricultural goods
raises the expenditure share on agriculture. Intuitively, if food is not substitutable
with other consumption, then its relative quantity falls less than the relative price
rises, and the share of spending on food goes up. This is the same logic that un-
derlies Baumol’s cost disease (Baumol and Bowen, 1966), a theory that endeavors
to explain why low-substitutability service sectors with relatively low productivity
growth, such as health care and education, tend to rise as a share of expenditures
over time.

Together, nonhomotheticity and low substitutability at the sector level combine
to push up the expenditure share on agriculture in response to declines in agricul-
tural productivity. The macro-development literature on structural transformation
(see, for instance, Gollin, Parente and Rogerson (2007)) refers to these features of
consumer preferences as ‘the food problem’ - the explanation given to the large
share of the labor force in agriculture in most developing countries despite very
low absolute and relative productivity.

These features of the model also explain why my model’s predictions about the
protective effects of reallocation diverge from those of Costinot, Donaldson and
Smith (2016). Their paper finds that reallocating production across crops reduces
the aggregate damages from climate change by two-thirds. To capture reallocation
at the crop level, their model has no income effects and high substitutability across
products.33 This specification makes sense for capturing reallocation across crops,
but does not generalize to the cross-sector case where income effects become im-
portant and the elasticity of substitution is very low. Intuitively, if the productivity
of corn falls markedly relative to the productivity of wheat, consumers can respond
by eating more wheat. If the productivity of producing food falls relative to the
productivity of manufacturing, however, consumers cannot subsist by eating more
manufactured goods.

In contrast to the food problem, the Ricardian comparative advantage effects of
falling relative productivity in agriculture will tend to push labor into other sectors.
Returning to Equation 19, shifting comparative advantage away from agriculture
will tend to push up food imports (πakk falls for country k) and push down food
exports (πakn falls). Equation 23 captures the horserace between the food problem
and international trade that drives general equilibrium sectoral reallocation in re-

32In a closed economy, relative sectoral prices are exactly proportional to sectoral productivities.
In an open economy, the domestic relative price of agriculture responds to domestic agricultural
productivity in proportion to the domestic share of consumption.

33They estimate an elasticity of substitution of 5.4 across varieties of the same crop and 2.82
across crops. I estimate an elasticity of 0.29 between sectors.
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sponse to climate change.34

lak = πakk︸︷︷︸
↓

Xak︸︷︷︸
↑

+
N∑
n6=k

πaknXan
wnLn
wkLk︸ ︷︷ ︸

↓

(23)

In autarky, falling relative agricultural productivity would drive up the labor share
in agriculture, exacerbating the aggregate productivity costs. In an economy with
costless trade, climate change would dramatically shift the global geography of
agricultural production and trade flows, substantially limiting the aggregate costs.
To quantify the relative strength of these effects in practice, I need to estimate
the parameters of the model and simulate the general equilibrium response to the
estimated impacts of climate change on productivity at the country-sector level.

6 Model Estimation

6.1 Parameter Estimates
I estimate the model presented in Section 5 to match data from 158 countries on
sectoral GDP shares, bilateral trade flows in agriculture and manufacturing, and
value-added per worker. Table 3 shows a list of the target moments and data sources
corresponding to each model parameter. For the trade data obtained from UN
Comtrade, I classify HS 1988/92 codes 1-24 as agriculture and 28-97 as manufac-
turing to best approximate food and non-food imports.35

I estimate consumption parameters and trade costs using simulated method of
moments.36 To assign values to Zjk, I choose country level relative sectoral produc-
tivities to match the ratio of value-added per worker in agriculture, manufactur-
ing, and services, and adjust the overall level of {Zak, Zmk, Zsk} to match country-
level nominal GDP.37 I calibrate the trade elasticities using the values estimated by

34The importance of trade for promoting structural transformation out of agriculture has been
previously emphasized by Tombe (2015), Teignier (2018), and Uy, Yi and Zhang (2013).

35Since trade data is reported in gross output terms but GDP is in value-added, I deflate
the trade data by country-sector-level value-added to output ratios obtained from the United
Nations Statistical Division. Following recommendations from UN Comtrade documentation, I
use importer-reported trade data where possible, but default to exporter-reported data for smaller
developing countries with large discrepancies between importer and exporter reported data.

36To simulate the model, I directly draw productivities from the Frechet distributions for 20,000
varieties for each sector for each country. I assign the production of each variety in each country
to the lowest cost producer based on wages, trade costs, and productivity. I then find the vector of
wages under which the equilibrium condition holds and national income equals national spending
for every country. I estimate the consumption parameters to match sectoral share data using the
patternsearch algorithm in Matlab, and choose bilateral trade costs to match the data on bilateral
trade flows by sector.

37Since trade flows are in nominal terms, I match nominal GDP in the model for consistency. The
nonhomothetic price index deflates nominal income to a measure of welfare.
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Table 3: Model Parameters and Target Moments

Parameters Data Moment Data Source

σ Sectoral GDP Shares World Bank

Ωa, Ωm, Ωs Sectoral GDP Shares World Bank

εa, εm, εs Sectoral GDP Shares World Bank

θa, θm Calibrated from Tombe (2015)

τjkn Trade Flows UN Comtrade

Zjk Sectoral Value-Added per Worker World Bank

Lk Population World Bank

Notes: Table shows the data sources for moments targeted in my
simulated method of moments procedure to estimate parameters for the
model presented in Section 5. Data is for the global cross-sectoin in 2011,
accessed from the World Bank Databank.

Tombe (2015); θa = 4.06, and θm = 4.63.
Table 4 displays my estimates of the preference parameters for the nonhomo-

thetic CES utility specification. Two points about these estimates are worth noting.
First, I estimate a cross-sector elasticity of substitution, σ = 0.27, of substantially
less than one, indicating that the expenditure share in a sector sharply increases
with its relative price. My estimate of σ to target the global cross-section of sectoral
shares matches up well with that of Comin, Lashkari and Mestieri (2015), who
use various historical panel datasets to estimate σ between 0.2 and 0.6. Second,
I estimate that εa − (1 − σ) = −0.44, which implies from Equation 22 that the
consumption share of agriculture is strongly diminishing in real income. Thus, my
parameter estimates imply clearly that a decline in aggregate productivity concen-
trated in agriculture will raise the expenditure share of agriculture through both the
income and substitution effect.

6.2 Model Fit
The model closely matches the features of the data most relevant to the counter-
factual simulations of the impacts of climate change. Table 5 summarizes the cor-
relation between key simulated moments in the model and their empirical coun-
terparts.38 I match the income level of each country almost exactly by scaling the
country-level aggregate productivity parameters. Similarly, my simulations closely

38A coefficient of 1 with R2 = 1 would constitute a perfect fit. The fit for other moments in the
model is displayed in Appendix Figures A-27 to A-32.
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Table 4: Parameter Estimates

Parameter Description Estimate

σ Cross-Sector Elasticity of Substitution 0.27

εa Agriculture Utility Elasticity 0.29

εm Manufacturing Utility Elasticity 1

εs Services Utility Elasticity 1.15

Ωa Agriculture Taste Parameter 11.73

Ωm Manufacturing Taste Parameter 3.70

Ωs Services Taste Parameter 10

Notes: Parameters estimated using simulated method of moments.
Ωs is normalized to 10 as only relative values of Ωj affect consumer
choices. Since the focus is on cross-sector reallocation, I set the
elasticity of substitution across varieties, η, equal to 1 for tractability
so that varieties have equal revenue shares.

match the domestic production share of agricultural consumption since I choose
exporter-importer-sector-specific trade costs, τjkn, to match all observed bilateral
trade flows.39 As shown in Appendix Figure A-33, most developing countries import
little of their food. In the data, the average person in the poorest quartile of the
world consumes 91.3% domestically produced food (89.4% in the simulation) com-
pared to 45.1% in the richest quartile (52.4% in the simulation). I present suggestive
evidence on some of the underlying causes of these high barriers to trade in poor
countries in Section 9.

My model also explains most of the variation in the global agriculture share of
GDP. I slightly under-predict agricultural shares on average, but overall the model
explains 60.3% of the variation in the data. This is a relatively strong fit considering
that only the seven free parameters in Table 4 were chosen to match 316 indepen-
dent target moments consisting of GDP shares for agriculture, manufacturing, and
services in 158 countries. As shown in Figure 7, the nonhomothetic CES demand
specification enables the simulation to closely mirror the smooth decline of agri-
cultural GDP with log income per capita.40

The model also reproduces the general pattern of high relative prices for agri-
cultural consumption in poor countries - a moment I do not target in my esti-
nation. In Figure 8, I compare the simulated pattern of the relative price of agri-

39The simulated domestic production shares of expenditures have no systematic bias, but
explain only 81% of the variation in the data because some countries have imbalanced trade.

40For comparison, the best fit using a Stone-Geary utility specification has an R2 of 0.43 and
predominantly underpredicts the agriculture share as shown in Appendix Figure A-34.
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Table 5: Summary of Model Fit

(1) (2) (3)

Data log(GDP per capita) Data Ag Share of GDP Data πakk

(Ag Domestic Production Share)

Simulated log(GDP per capita) 1.006

(0.00251)

Simulated Ag Share of GDP 0.866

(0.0563)

Simulated πakk 1.009

(Ag Domestic Production Share) (0.0392)

Observations 158 158 158

R2 0.999 0.603 0.809

Notes: Table shows the results from regressing empirical moments in the data on their simulated
counterparts. Data on nominal income levels and the agriculture share of GDP are from the World
Bank. Data on the domestically produced share of expenditures in agriculture is constructed using
Comtrade data.

Figure 7: Agriculture Share of GDP - Data vs. Simulation

Notes: Graph shows the fit of simulated agriculture share of GDP in the model to data
from the World Bank. The simulation explains over 60% of the variation in the data,
and reproduces the smooth pattern of non-homotheticity observed in the empirical
relationship between agriculture shares and income.
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cultural and manufacturing consumption, Pak and Pmk, to an empirical analogue
constructed using aggregate sectoral price indices from the World Bank’s Inter-
national Comparison Program. While the simulated and empirical price indices
have different units that prevent direct comparison, they share the same pattern of
high relative prices for food in developing countries with low relative agricultural
productivity.

Figure 8: Relative Price of Food - Data vs. Simulation

The graph on the left shows the ratio of a country-level food price index to an
aggregate price index using data from the International Comparison Program.
The graph on the right shows an analogous moment in the model - the ratio
of the aggregate agricultural and manufacturing price indices, Pa and Pm. The
model reproduces the empirical relationship that poor countries tend to have
higher relative prices for food - a moment I do not target in my estimation.

Overall, the model matches the existing global pattern of sectoral specializa-
tion through a combination of consumer preferences and barriers to trade. Low
incomes and the high relative price of food drive up agriculture’s share of expendi-
tures in poor countries through the nonhomotheticity and low elasticity of sub-
stitution in the preference specification. High estimated trade costs chosen to
rationalize observed trade flows tightly link domestic consumption to domestic
production, causing many developing countries to specialize in agriculture despite
its low relative productivity.41 In the next section, I use the model to investigate
projected sectoral reallocation and its welfare consequences in response to climate
change.

41As discussed in Section 5, this explanation is consistent with the work of Tombe (2015), Gollin,
Parente and Rogerson (2007), and the broader literature on structural transformation.
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7 Model Counterfactuals
This section uses the estimated model to project the impacts of climate change on
trade flows, sectoral specialization, prices, GDP, and welfare.

7.1 Estimated Productivity Impacts
I start by projecting the impacts of climate change on country-sector level produc-
tivity. For agricultural productivity effects, I use the estimates from Cline (2007) dis-
played in Figure 1. This analysis uses micro-data from 18 countries in Africa, North
and South America, and Asia representing over 35% of the world’s agricultural pro-
duction to estimate Ricardian cross-sectional regressions of agricultural output (in
dollars) from grains, fruits, vegetables, and livestock as a function of temperature,
precipitation, and irrigation. Because we expect farmers to have optimized crop
choice and land use decisions in response to local long-run climate conditions, I
interpret the estimated effects of temperature and precipitation from these cross-
sectional regressions as net of adaptation through choice of crops and livestock.
Projections using the empirical estimates are averaged with projections from lead-
ing crop models from agronomy, which also account for adaptation through crop-
switching and adjusted farming techniques.42 I use Cline (2007) in my analysis
because it uses globally representative data to produce results broadly consistent
with the literature on climate and agricultural production, and represents the most
comprehensive available source of global impact estimates that account carefully
for adaptation within the agricultural sector.

To project the impact of climate change on productivity in manufacturing and
services, I combine the country-sector specific temperature sensitivities estimated
in Section 4.4 with projections of the future distribution of temperature in 2080-
2099.43 I obtain future temperature predictions from the CSIRO-MK-3.6.0 model
produced by Jeffrey et al. (2013), one of the climate models used by Cline (2007),
for consistency with the projected changes in agricultural productivity.44 The pro-
jected changes in manufacturing and services productivity are shown in Figure 9
and Appendix Figure A-24 respectively. Figure 10 brings together the estimated
impacts on agricultural productivity from Cline (2007) with my estimates of the
change in manufacturing productivity to show the change in the relative produc-

42The crop model projections in Cline (2007) account for reallocation across crop types within
country, shifting planting dates, and increased irrigation and fertilizer use. None of the estimates in
the analysis account for any response of international trade.

43I use the estimates that allow for firms to adjust adaptation investments to their end-of-century
temperatures. I account for the costs of this adaptation in Section 7.6.

44My estimates from the interacted model in Section 4 give me an estimate of the reduction in
annual manufacturing and services output per worker for each degree-day above 30◦C and below
5◦C. The CSIRO model projections give me population-weighted change in degree-days above 30◦C
and below 5◦C for every country in the world in 2080-2099, which are shown in Appendix Figures
A-22 and A-23. I multiply the country-level coefficients by the projected changes in hot and cold
temperatures to get the impacts shown here.
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Figure 9: Projected Impact of Climate Change on Manufacturing Productivity

Notes: Map shows the projected impact of climate change on manufacturing productivity in 2080-
2099 obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities are
calculated by evaluating the interaction regression from Column 2 of Table 2 at each country’s
income and end-of-century long-run average temperature.

Figure 10: Projected Impact of Climate Change on
Agricultural Relative Productivity

Notes: Map shows the change in agricultural productivity from Cline (2007) minus my estimate of
the change in manufacturing productivity, shown above, in percentage points.

tivity of agriculture among the tradable sectors for each country in the world.
The pattern in Figure 10 shows clearly that climate change shifts comparative

advantage in agriculture toward colder countries far from the equator on average.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 33

While the negative effects of climate change on manufacturing productivity are
concentrated in similar parts of the world to agricultural productivity, they are
generally smaller in magnitude. Every country in Africa, South Asia, and Latin
America (with the exception of Egypt) has larger estimated productivity losses in
agriculture than manufacturing. Thus, to the extent that specialization follows
Ricardian comparative advantage, we would expect to see agricultural production
move toward colder places away from the equator in response to climate change.

I integrate these empirically estimated into the model by applying them to the
sector-country specific aggregate productivity Zjk and recalculating equilibrium
wages, prices, and trade flows.

7.2 Comparative Advantage and Trade
Figure 11 shows the projected equilibrium change in agricultural net exports in
response to climate change. Consistent with the estimated change in comparative
advantage, the predominant pattern is that hotter countries experiencing large
declines in agricultural productivity import more food, while cooler countries with
neutral or improving agricultural productivity export more food. For instance, Den-
mark and Canada roughly double agricultural net exports, from 1.9% to 3.8% and
0.5% to 1.2% of GDP respectively. Conversely, most of Sub-Saharan Africa and
South Asia increase imports of food. The few exceptions to this finding are those
hot countries for whom the change in agricultural productivity is not large relative
to the change in manufacturing productivity, particularly in relation to their close
trading partners.

Figure 11: Projected Impact of Climate Change on Agricultural Net Exports

Notes: Map shows model simulations of the change in agricultural net exports as a share of GDP
driven by the effects of climate change on sector-level productivity and comparative advantage
shown in Figure 10. The full set of country-level results shown in this map are listed in Appendix
Tables A-3 to A-20.
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The magnitudes of the projected change in trade flows are generally modest
as a share of the economy. No country increases agricultural net exports by more
than 6% of GDP, and only 12 out of 158 countries decrease agricultural net exports
by more than 10% of GDP. The full set of country-level changes in net exports and
the domestically produced share of agricultural consumption, (πakk), are shown in
Appendix Tables A-3 to A-20.

7.3 Sectoral Reallocation
As shown in Section 5.2, the change in trade flows is only a partial summary of the
change in sectoral specialization. Agriculture’s share of GDP (and consequently the
labor force) depends on both the change in net exports and the change in the ex-
penditure share on food. I reproduce Equation 23 summarizing labor reallocation
in response to an agriculture-biased decline in productivity here for convenience:

lak = πakk︸︷︷︸
↓

Xak︸︷︷︸
↑

+
N∑
n=1

πaknXan
wnLn
wkLk︸ ︷︷ ︸

↓

The change in net exports shown in Figure 11 captures the first and third effects in
the above equation. Given the strong nonhomotheticity and low cross-sector elas-
ticity implied by the estimates of εa and σ in Section 6, the change in the agriculture
expenditure share, Xak, is also likely to be substantial.

The horserace between these two competing effects - comparative advantage
and ‘the food problem’ - that govern sectoral reallocation in response to climate
change plays a critical role in the aggregate productivity and welfare consequences.
As discussed in Section 5, the simple logic formalized by Baqaee and Farhi (2017) is
that production moving toward the sector suffering a larger decline in productivity
exacerbates the aggregate consequences of a given shock.

I decompose the competing effects of climate change on the agriculture share of
GDP by running separate counterfactuals with and without trade. In autarky, the
change in a sector’s relative price equals the change in that sector’s productivity.
Thus, I start by applying country-sector level price changes equal to the inverse
of the projected change in productivity and calculating the change in expenditure
shares. This gives me the change in Xak, which in autarky equals the change in
agriculture’s share of GDP. In contrast, the standard counterfactual incorporating
trade gives me the full effect of both types of reallocation. Table 6 displays the base-
line, autarky counterfactual, and trade-inclusive counterfactual agriculture shares
of GDP for a selection of countries, and Appendix Tables A-21 to A-29 contain these
results for all 158 countries.

The results in Table 6 show that the consumption response and trade response
both have substantial effects on specialization in agriculture, with significant het-
erogeneity across countries. In Ethiopia, India, and Zambia, the ‘food problem’ ef-
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Table 6: Counterfactual Ag GDP Shares - Selected Countries

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Argentina -.111 0 .065 .067 .07

Brazil -.169 0 .063 .071 .068

Canada -.022 -.007 .019 .019 .026

China -.072 -.036 .064 .068 .074

Denmark .109 .006 .033 .032 .051

Ethiopia -.313 -.102 .359 .437 .409

India -.381 0 .161 .224 .194

Kenya -.054 -.044 .156 .16 .185

Mozambique -.217 -.104 .367 .426 .451

Rwanda -.601 -.058 .409 .678 .351

United States -.059 .003 .023 .024 .028

Zambia -.396 0 .36 .496 .41

Poorest Quartile -.319 -.02 .199 .256 .227

World -.101 -.01 .038 .044 .043

Notes: Table shows model simulations of the change in agriculture share of GDP driven by the
effects of climate change. The full set of country-level results shown in this map are listed in
Appendix Tables A-21 to A-29.

fect dominates and the agriculture share of GDP rises in response to climate change
despite large relative declines in agricultural productivity. In contrast, the trade
effect dominates in Rwanda, where the domestic share of agricultural expenditures
falls from 85% to 54%. Other countries, such as Canada, Denmark, and Kenya
see an increase in agricultural specialization because of increased exports driven
by improvements in relative agricultural productivity compared to their trading
partners.

Figure 12 shows the full worldwide change in agriculture’s share of GDP. On
average, the global agriculture share of GDP rises from 3.8% to 4.3% because agri-
cultural productivity falls in more places than it rises, raising Xak, and net exports
for the world are zero. More specifically, the ‘food problem’ effect particularly dom-
inates on average in those countries suffering large relative declines in agricultural
productivity. The average change in the agriculture share of GDP for countries
facing a 10% or larger decline in relative agricultural productivity, weighting by
their share of agricultural workers, is +2.1 percentage points from an initial share
of 17.3%.



36 NATH 2020

Figure 12: Projected Impact of Climate Change on Agricultural GDP Share

Notes: Map shows the model simulations of the change in the agriculture share of GDP driven by
climate change. Appendix Tables A-21 to A-29 contain the full set of country-level results pictured
here.

7.4 Aggregate Productivity and Willingness-to-Pay

The estimated sectoral productivity effects combined with the changes in sectoral
specialization map directly into changes in aggregate productivity. Table 7 shows
the change in real GDP for each counterfactual in select countries, deflating nom-
inal income at the country level using the Tornqvist price index from Equation 20.
The results for the full set of countries are shown in Appendix Tables A-30 to A-38.

The results make clear that projected reallocation exacerbates the impact of
climate change on aggregate productivity in most countries, as well as globally
on average. Global GDP declines 1.9% in the counterfactual that holds sectoral
shares fixed, but 2.1% when allowing for reallocation. GDP in the poorest quartile
of countries falls by 8.3% in the no reallocation counterfactual, and 12.6% with real-
location. This happens for two reasons. First, as discussed in Section 7.3, the ‘food
problem’ pushes up the labor share of agriculture in many countries while agri-
cultural productivity declines dramatically. Second, as Dingel, Meng and Hsiang
(2019) have shown, the spatial correlation of the productivity impacts heighten
their importance. Since food prices in Rwanda are a function of agricultural pro-
ductivity in Rwanda and its closest trading partners, the losses to Rwanda intensify
when accounting for the full general equilibrium effects, including those of shocks
that hit their neighbors.

How can reallocation that worsens aggregate productivity and measured GDP
be consistent with optimizing behavior? In Table 8, I calculate the willingness-to-
pay (WTP) to avoid climate damages under each counterfactual as the equivalent
variation loss in income at the baseline equilibrium set of wages and prices. The
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Table 7: Counterfactual GDP Losses (Share of GDP) - Selected Countries

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Argentina -.111 0 -.002 0 .001

Brazil -.169 0 -.01 -.015 -.013

Canada -.022 -.007 -.018 -.018 -.016

China -.072 -.036 -.043 -.045 -.045

Denmark .109 .006 0 0 .005

Ethiopia -.313 -.102 -.163 -.218 -.217

India -.381 0 -.074 -.131 -.127

Kenya -.054 -.044 -.037 -.038 -.034

Mozambique -.217 -.104 -.14 -.192 -.199

Rwanda -.601 -.058 -.334 -.557 -.508

United States -.059 .003 0 0 .001

Zambia -.396 0 -.175 -.328 -.314

Poorest Quartile -.319 -.02 -.083 -.132 -.126

World -.101 -.01 -.019 -.023 -.021

Notes: Table shows model simulations of the change in GDP driven by the effects of climate change.
The full set of country-level results are shown in Appendix Tables A-30 to A-38.

results show that the full reallocation counterfactual mitigates the welfare con-
sequences of climate change, as captured by willingness-to-pay, even while in-
creasing the impact on GDP. The WTP under the no reallocation counterfactual
is particularly dramatic because it forces agents to deviate from optimal consumer
behavior. This highlights that the no reallocation counterfactual is, in some sense,
an unrealistic straw man. In the presence of very large projected increases in food
prices, keeping fixed the expenditure share on food would require declines in the
quantity of food consumed that are strongly inconsistent with the observed low
substitutability between food and non-food. To summarize the intuition, people
are willing to sacrifice income (GDP) to reallocate expenditures toward food when
food prices rise because they need food to survive.

Figures 13 and 14 show the global distribution of willingness-to-pay to avoid
climate change, and the change in food prices, Pak, which comprise a key driver
of the welfare losses. Food prices rise in 156 of the 158 countries, and rise by at
least 25% in 41 countries containing over 32% of the world’s population.45 Climate
change does net damage as measured by WTP in 150 countries, and causes welfare
losses exceeding 8% of GDP in 32 countries covering 27% of the world’s population.

45The large changes in food prices also imply that the incidence of these losses may fall on urban
consumers as much or even more than on farmers suffering lost productivity.
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Table 8: Equivalent Variation Willingness-to-Pay (Share of GDP) - Selected
Countries

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Argentina -.111 0 -.008 -.002 0

Brazil -.169 0 -.041 -.01 -.008

Canada -.022 -.007 -.018 -.016 -.014

China -.072 -.036 -.057 -.04 -.04

Denmark .109 .006 .003 0 .005

Ethiopia -.313 -.102 -.364 -.171 -.169

India -.381 0 -.311 -.085 -.082

Kenya -.054 -.044 -.052 -.035 -.031

Mozambique -.217 -.104 -.279 -.143 -.147

Rwanda -.601 -.058 -.725 -.434 -.387

United States -.059 .003 -.002 0 .001

Zambia -.396 0 -.481 -.208 -.199

Poorest Quartile -.319 -.02 -.277 -.092 -.088

World -.101 -.01 -.04 -.018 -.017

Notes: Table shows model simulations of the willingness-to-pay to avoid the effects of climate
change. The full set of country-level results are shown in Appendix Tables A-39 to A-47.

Figure 13: Willingness-to-Pay to Avoid Climate Change

Notes: Map shows model simulations of the willingness-to-pay to avoid the effects of climate
change as a share of GDP. The full set of country-level results shown in this map are listed in
Appendix Tables A-39 to A-47.
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Figure 14: Projected Percentage Change in Food Prices

Notes: Map shows model simulations of the change in food prices driven by climate change. The
full set of country-level results shown in this map are listed in Appendix Tables A-48 to A-56.

Because the losses are concentrated in poor countries, global willingness-to-pay
is only 1.7% of GDP. However, the population-weighted average global losses are
4.7% of GDP, and the population-weighted average for countries in the bottom
quartile of income is 8.8% of GDP. The interpretation of this number is that climate
change will cost the average person in the poorest quartile of the world nearly 9%
of their income. Note that these results account neither for the costs of firm-level
adaptation investments nor for the benefits of anticipated economic growth, both
of which will be included in Section 7.6.

7.5 Low Trade Cost Counterfactual
The analysis of sectoral reallocation and aggregate productivity in Sections 7.3 and
7.4 demonstrates that openness to trade mitigates the harm from climate change
by counteracting ‘the food problem.’ To further investigate the magnitude to which
facilitating trade could contribute to climate change adaptation, I run an addi-
tional counterfactual exercise in which I replace the estimated matrix of bilateral
trade costs, τjkn, with a uniform low value representing increased openness to trade.
In particular, I set the cost of all bilateral trade for both manufacturing and agricul-
ture at 100%. I choose this number rather than 0% to acknowledge the fact that
some level of shipping costs, regulatory discrepancies, and language barriers are
inherent to cross-country trade, so no amount of policy intervention could make
trade perfectly costless. A 100% tariff-equivalent trade cost is toward the low end of
the estimated distribution - approximately equal to the cost I estimate for shipping
food from Belgium to Australia. I choose this value to represent an ambitious, yet
realistically feasible, change in global trade policy.

To disentangle the benefits of trade for climate change adaptation from the
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more general gains from trade, I rescale each country’s vector of sectoral produc-
tivity parameters, Zjk, such that I continue to match the baseline levels of GDP
per capita in the initial equilibrium. Note, however, that without the estimated
high barriers to trade in developing countries the model can no longer match the
observed global pattern of the agriculture share of GDP. In this hypothetical world
of increased openness, developing countries import substantially more food from
richer countries with high relative productivity in agriculture even in the absence
of climate change.

Table 9: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Rwanda -.434 -.387 -.086

Central African Republic -.428 -.356 -.037

Chad -.25 -.226 -.032

Malawi -.225 -.225 -.119

Zimbabwe -.223 -.212 -.074

Zambia -.208 -.199 -.001

Ethiopia -.171 -.169 -.091

Sierra Leone -.13 -.164 -.105

India -.085 -.082 -.013

World -.018 -.017 -.013

Poorest Quartile -.092 -.088 -.029

Notes: Table shows model simulations of the willingness-to-pay to avoid the effects of climate
change under different scenarios - autarky, estimated global barriers to trade, and an alternative
scenario at which all bilateral trade costs are set at a low level typical of OECD countries. The full
set of country-level results are shown in Appendix Tables A-57 to A-65.

Table 9 shows the WTP to avoid climate change under different trade cost sce-
narios for a select subset of countries especially vulnerable to climate change. Ap-
pendix Tables A-57 to A-65 show these counterfactuals for the full range of coun-
tries. Two things about these results are worth noting. First, as shown in Table
9, reducing trade barriers dramatically reduces the costs of climate change in the
hardest-hit countries. Overall, the WTP for the average person in the lowest quar-
tile of global income is only 2.9%, relative to 8.8% in the estimated trade cost case.

Second, the effects of openness to trade vary substantially across countries. For
40 countries representing 15.1% of the global population, WTP to avoid climate
change as a share of GDP is higher in the low trade cost scenario.46 The intuition

46To be clear, these countries still experience overall gains from trade. But once those general
gains are netted out, they suffer larger climate change damages in this scenario.



CLIMATE CHANGE & AGGREGATE PRODUCTIVITY 41

for this result is as follows. When trade barriers are high and local consumption
depends mostly on local production, the effects of deteriorating productivity are
also concentrated locally. Conversely, more trade makes the world more interde-
pendent and dilutes the effects of a local shock across many countries. If consump-
tion in Austria is more linked to production in Zimbabwe, then Austrian consumers
suffer more from shocks that hit Zimbabwe. Conversely, Zimbabwean consumers
insulate themselves from the local shock by consuming a more diversified global
portfolio of products.

Overall, trade reduces the aggregate global willingness-to-pay to avoid climate
change by 7.4% relative to autarky under existing global trade policy, and by 30.7%
under the specified alternative assumption of freer trade. This pattern holds much
more starkly in poor countries. For the average person in the poorest quartile of
the world, trade reduces WTP by 4.5% relative to autarky under existing policy, but
by 68.2% under freer trade. I discuss possible policy mechanisms to realize these
gains in Section 9.

7.6 Future Projections
The results in Sections 7.1 to 7.5 use projections for future temperature change, but
hold the baseline global economy fixed at the present day equilibrium. In this sec-
tion, I endeavor to better represent the future baseline in 2080 by allowing global
income levels to evolve according to projections from the Shared Socioeconomic
Pathway (Scenario Three) developed by Cuaresma (2017) of the International In-
stitute for Applied Systems Analysis.47

Allowing for economic growth to take place has two important effects on the
aggregate consequences of climate change. First, the agriculture share of GDP
declines as countries grow richer due to nonhomothetic preferences for food, re-
ducing the aggregate consequences of agriculture-specific productivity shocks. I
capture this effect in the model by applying projected income growth to 2080 as
sector-neutral increases in the baseline values of Zjk. Second, my results from Sec-
tion 4 imply that sensitivity to temperature for manufacturing and services firms
declines markedly as countries become richer. I capture this by re-evaluating the
sensitivity to temperature shown in Figures 5 and 6 at 2080 levels of log GDP per
capita. Appendix Figures A-25 and A-26 show that the effects of temperature on
non-agricultural productivity accounting for adaptation are substantially muted,
even in this relatively low growth scenario that projects only slightly more than a
doubling of global income between 2015 and 2080.

Table 10 shows the impact of expected economic growth on the agriculture
share of GDP and expected willingness-to-pay. Appendix Tables A-66 to A-74 show
the results for all countries. The willingness-to-pay numbers in Columns 5 and
6 of Table 10 also incorporate the firm-level adaptation costs shown in Appendix
Figure A-18, thus accounting more comprehensively for the anticipated costs as

47Use of the Shared Socioeconomic Pathways in future projections of climate change damages
follows from the work of Carleton et al. (2018).
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Table 10: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP
Share

Baseline

Ag GDP
Share 2080

Baseline

Ag GDP
Share 2080

Counterfac-
tual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080
Baseline

Central African Republic 1.47 .299 .287 .094 -.436 -.316

Rwanda 1.14 .409 .39 .322 -.394 -.366

Zimbabwe 4.17 .302 .122 .14 -.248 -.111

Malawi 2.84 .436 .309 .357 -.244 -.167

Zambia 1.52 .36 .28 .318 -.233 -.181

Chad 1.13 .257 .213 .243 -.226 -.221

Sierra Leone 1.49 .139 .177 .173 -.204 -.146

Ethiopia 1.23 .359 .333 .376 -.19 -.182

India 3.24 .161 .087 .106 -.082 -.045

Poorest Quartile 3.05 .199 .126 .144 -.1 -.062

World 2.2 .038 .025 .028 -.027 -.015

Notes: Table shows model simulations of the effects of projected economic growth on the
agriculture share of GDP and the willingness-to-pay to avoid climate change in select countries.
Economic growth projections come from Cuaresma (2017). The full set of country-level results are
listed in Appendix Tables A-66 to A-74.

well as benefits of adaptation.48 This particular future scenario includes little to
no projected growth for many currently poor countries, allowing for contrast with
those that grow faster. This comparison shows the importance of economic growth
in mitigating the harm from climate change. Table 10 shows that Zimbabwe and
Malawi get substantially richer in this projection, and their agriculture share of
GDP and climate change damages decline markedly. In contrast, climate change
continues to be very harmful to countries that grow slowly, such as Rwanda and
Chad.

The results in Table 10 show that the aggregate global WTP for climate change
is 2.7% of GDP at current global income levels and 1.5% at future projected in-
comes. The average WTP for a person in the bottom quartile of the world is 10.0%
from the present baseline and 6.2% from the future baseline. To summarize the
importance of the distributional consequences of climate change, I follow Jones
and Klenow (2016) to calculate the willingness-to-pay of a Rawlsian social plan-

48I exclude this revealed preference measure of firm-level adaptation costs from Tables 8 and
9 because they are calculated as a share of manufacturing and services output, which vary
dramatically as a share of baseline total output in the low trade cost scenario, thus complicating the
comparison of climate change damages between the estimated and low trade cost counterfactuals.
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ner taking the certainty equivalent of being any person in the world with random
probability.49 The Rawlsian welfare losses from climate change are 6.2% of global
GDP from the present income baseline and 3.6% of global GDP from the future
baseline, more than twice as high as the aggregate willingness-to-pay calculated
by summing across agents.

7.7 Model Robustness
I consider robustness to three alternative model assumptions in Appendix G. In Ap-
pendix G.1 I represent subsistence requirements for food using generalized Stone-
Geary preferences instead of the nonhomothetic CES specification in the base-
line model. In Appendix G.2 I use lognormal, rather than Frechet, distributions
to represent sector-country productivities across varieties. In Appendix G.3 I lay
out a version of the model with heterogeneous workers by skill type in each coun-
try. Appendix Table A-76 shows that the main counterfactual simulation results
are very similar under the first two alternative modeling assumptions. The third
extension with heterogeneous workers is not amenable to quantification, but I
demonstrate the qualitative robustness of the main results and use the model ex-
tension to explore additional dimensions of the implications of climate change for
comparative advantage across sectors and the distributional impact on low and
high skill workers.

8 Supporting Empirical Evidence
In this section, I present country-level panel regression evidence consistent with
the model counterfactuals. In particular, my results in Section 7 suggest that the
‘food problem’ outweighs the trade response, on average, in driving sectoral reallo-
cation due to climate change. This finding is supported by the simulated method of
moments inference that underlies my parameter estimates, is consistent with both
cross-sectional and historical patterns of sectoral specialization in the world, and
is further bolstered by existing empirical evidence that aims to isolate the causal ef-
fect of agricultural productivity on structural transformation. In particular, Gollin,
Hansen and Wingender (2018) proxy for improvements in agricultural productivity
using variation in the development, diffusion, and climatic suitability for high-
yielding crop varieties and Bustos, Caprettini and Ponticelli (2016) study the intro-
duction of genetically engineered soybean seeds in Brazil. Both papers find that
rising agricultural productivity drove labor out of agriculture and into industry.
Here, I present evidence suggestive of the converse more representative of climate
change - that declines in agricultural productivity increase the agriculture share of
GDP and labor on average relative to the counterfactual.

Table 11 summarizes the data sources used in this part of my analysis.50 Fol-

49Following Jones and Klenow (2016) I use log utility in this calculation.
50I use BEST temperature data with a 1◦global grid in this specification because aggregating

GMFD temperature data from a 0.25◦grid for every country worldwide exceeds my available
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Table 11: Country-Level Panel Data

Variable Data Source

Temperature Berkeley Earth Surface Temperature Dataset

Ag Share of GDP World Bank

Ag Share of Labor Force International Labour Organization

Food Share of Imports UN Comtrade

GDP World Bank

Notes: Data covers 164 countries from 1960-2012 with varying coverage by
country and dataset. Economic data from all sources above are retrieved from
the World Bank Databank.

lowing Schlenker and Roberts (2009), I use “growing degree days” (GDD) between
0◦C and 29◦C and “killing degree days” (KDD) above 29◦C as temperature trans-
formations representing positive and negative shocks to agricultural productivity.
I aggregate GDD and KDD to the country level for each year weighting by each
pixel’s share of cropland.51

I estimate the following panel regression with observations at the country-year
level for four separate outcome variables - log GDP, food share of imports, agricul-
tural share of GDP, and agricultural share of labor:

Yit = β1GDDit + β2KDDit + δi + κt + εit (24)

The regression exploits idiosyncratic variation in weather controlling for country
fixed effects, δi, and year fixed effects, κt to estimate the plausibly causal effect
of shocks to agricultural productivity. I weight observations by their share of the
global agricultural labor force to recover expected reallocation for the average farm
worker in the world.

The results in Table 12 are broadly consistent with my model simulations in
Section 7. The composition of imports shifts toward food in response to negative
agricultural productivity shocks (KDD), and away from food in response to positive
shocks (GDD), but the magnitudes of these changes are small. Consistent with
an important role for ‘the food problem,’ the agriculture share of GDP and labor
rise with KDD and fall with GDD, with magnitudes roughly similar to those in the

computational resources.
51Following standard procedure in estimating temperature effects on agricultural productivity,

degree days are calculated by fitting a sinuisoidal curve through daily minimum and maximum
temperature, and then integrating the proportion of each day above a certain threshold.
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Table 12: Country-Level Panel Regression

(1) (2) (3) (4)

log(GDP) Food Share of Imports Ag Share of GDP Ag Labor Share

KDD X 100 -0.121 0.00258 0.00875 0.00991

(-2.31) (0.64) (1.08) (1.55)

GDD X 100 0.0505 -0.00429 -0.00140 -0.00138

(1.64) (-2.45) (-1.54) (-0.38)

Observations 3602 2916 3171 3715

Country FE X X X X

Year FE X X X X

Ag Labor Weights X X X X

Notes: t-statistics in parentheses. Reported Driscoll and Kraay (1998) standard errors are robust
to heteroskedasticity, spatial correlation, and autocorrelation of up to 5 lags. Results come from
estimating Equation 24 with crop-area weighted growing and killing degree days. Data covers 164
countries from 1960-2012 with varying coverage by country and outcome variable. Economic data
from all sources above are retrieved from the World Bank Databank.

model. Here, the agriculture share of GDP rises by slightly under 1 percentage
point for an agriculture-biased shock that reduces GDP by 12%. To construct a
corresponding level of reallocation in my model simulations, I calculate that the
agricultural population-weighted average change in the agricultural share of GDP
for those countries suffering large declines in agricultural productivity (<10 per-
centage points) is +2.1 percentage points from an average agricultural productivity
fall of 29.5%.52

The results from the country-level regressions are imprecise and insufficient
in isolation to make full general equilibrium projections or welfare calculations
relating to sectoral reallocation in response to climate change.53 Taken together
with the analysis in Sections 6 and 7 and the existing body of evidence, however,
these results reinforce the important role of the ‘food problem’ in mediating the

52An additional feature of the regression that supports the approach taken in the model is the
very similar coefficients estimated for the agriculture share of GDP and the labor force. These
two shares are equivalent in my model because I allow wages to equalize across sectors, but the
agriculture share of labor is generally higher in the data since agricultural wages tend to be lower.
The similar coefficients in Table 12 suggest that projecting reallocation in ag GDP is informative for
understanding labor reallocation even if the levels of these two variables differ.

53I show results for the unweighted regressions in Appendix Table A-75. I gain precision in the
unweighted specification because the agriculture labor share weights are missing for a nontrivial
share of the observations, but have a less interesting interpretation of the coefficients as effects on
the average country in the world rather than on the average unit of agricultural labor.
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aggregate consequences of climate-driven agricultural productivity shocks.

9 Policy Implications
This paper has three sets of implications relevant to policy on climate change and
development. First, the results inform cost-benefit analysis on policies to reduce
greenhouse gas emissions and avoid damage from climate change. These results
are not a comprehensive evaluation of the costs of climate change - I omit inter-
national migration, uncertainty, health effects, and non-temperature effects such
as storms and sea-level rise, among other topics, from my analysis. I do, however,
address an existing challenge in the literature by estimating global reductions in
aggregate productivity and calculating their welfare consequences in a framework
that accounts for reallocation of economic activity between agriculture and non-
agriculture.

Second, my results inform decisions about the best way to channel efforts to
adapt directly to the consequences of climate change. If it were true that agri-
cultural activity is likely to shift substantially away from hot developing countries,
optimal investments in adaptation might focus on retraining farm workers to tran-
sition to non-agricultural occupations. Instead, my finding that climate change is
more likely to increase specialization in agriculture in hot countries underscores
the urgent need to reduce the temperature-sensitivity of production through tech-
nology, irrigation, heat-resistant crop varieties, or other means. The agricultural
productivity consequences projected by Cline (2007) will take place gradually and
worsen far into the future, and need not be invariant to efforts to reduce them.

Third, and perhaps most importantly, my results speak to the importance of re-
ducing barriers to trade in developing countries as a mechanism for climate change
adaptation. The results in Section 7.4 suggest that the costs of climate change to
the average person in the poorest quartile of the world could be reduced by more
than half in a world with a plausible increase in openness to trade. Reducing tariffs
would be one place to start, but tariffs account for a relatively small proportion
of estimated trade costs. As Tombe (2015) documents at length, red tape barriers
appear to be a far more important deterrent in many places. Figures 15 and 16 show
data from the World Bank Ease of Doing Business Indicators on fees and delays
associated with importing a container.

The average country in Sub-Saharan Africa requires 9 documents and over $2700
in fees for customs clearance, document processing, customs brokerage, terminal
handling, and inland transport to import a 20-foot container of goods, exclusive of
tariffs and unofficial payments. Importing a shipment to Sub-Saharan Africa also
requires waiting an average of 37 days upon arrival at the border for compliance
with customs clearance, inspection procedures, and document preparation, likely
a prohibitive length of time for many food imports. These types of trade barriers
do not involve international negotiations or physical constraints to shipping over
long distances, and thus could be a relatively tractable place to target reforms that
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Figure 15: Direct Costs to Import a 20-Foot Long Container (USD)

Notes: Figure shows the direct cost to import one container of goods. Costs include documents,
administrative fees for customs clearance, terminal handling charges, and inland transport, but
not tariffs or taxes. Data comes from the World Bank Ease of Doing Business index.

Figure 16: Days to Import a Container

Notes: Figure shows the average number of days required to import a container. Delays
include customs clearance, government inspection procedures, and documentary compliance
requirements. Data comes from the World Bank Ease of Doing Business Index.

could make a substantial impact on climate change adaptation.

10 Conclusion
The standard intuition in economics is that reallocation improves outcomes. Falling
productivity raises prices and encourages substitution to other products. But this
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logic does not hold for broad categories of necessary consumption, such as food.
If a fall in productivity causes the price of corn to rise sharply, people can adapt by
eating more rice. But when people become poorer and the relative price of food
rises, they cannot compensate by substituting away from food.

This paper investigates the importance of subsistence requirements for food
for the general equilibrium and aggregate productivity effects of climate change. I
show that climate change predominantly shifts comparative advantage in agricul-
ture away from the equator as the effects of extreme temperatures on non-agricultural
productivity are generally smaller than those on agriculture. On average, how-
ever, the effect of a large decline in productivity concentrated in agriculture moves
specialization toward, rather than away from, agriculture because of the special
properties of consumer preferences for food. Countries with large climate change
productivity impacts in agriculture that are more open to trade suffer less because
they are more able to increase imports of food and shift production toward other
sectors. Overall, reducing barriers to trade could reduce the losses from climate
change by more than half for the poorest quarter of the world’s population.

I conclude with several suggestions for future research. First, while my work
is informative about the cost-benefit analysis of climate change mitigation, addi-
tional effort is required to integrate these general equilibrium effects directly into
calculations of the social cost of carbon. Second, while my analysis shows that
reducing barriers to trade is a necessary condition to induce sectoral reallocation
to curtail the costs of climate change, I cannot conclude that it is sufficient. A low
trade cost counterfactual in which specialization in agriculture shifts away from
the equator still relies on uncertain assumptions about diminishing returns to ex-
panding production of tradable manufactured goods in developing countries, as
well as on the availability of complementary inputs such as soil quality and arable
land in cold countries experiencing improved temperature suitability for agricul-
ture. A final topic concerns the political economy of trade policy regarding food.
Policymakers often prioritize “food security” as a stated aim, implying a preference
for domestic food production secure from interference by foreign countries. To the
extent that this goal conflicts with adaptation to climate change in light of large
declines in agricultural productivity in certain regions, it may be worth examining
this tradeoff more closely, both in practice and in perception.
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Appendix A: Additional Regression Results

Figure A-1: Predicted Heterogeneous Response of Annual Manufacturing Revenue
to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on the log of manufacturing revenues at
varying levels of income and long-run average temperature by evaluating the interacted regression
from Column 3 of Table 2. Outcome variables come from data sources listed in Table 1 and
temperature data is from GMFD.
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Figure A-2: Predicted Heterogeneous Response of Annual Manufacturing
Employment to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on the log of manufacturing employment at
varying levels of income and long-run average temperature by evaluating the interacted regression
from Column 4 of Table 2. Outcome variables come from data sources listed in Table 1 and
temperature data is from GMFD.
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Figure A-3: Predicted Heterogeneous Response of Annual Manufacturing Revenue
Per Worker to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker
at varying levels of income and long-run average temperature using bins of daily maximum
temperature in the specification from Equation 8.Days are divided into 5◦C bins. Outcome variables
come from data sources listed in Table 1 and temperature data is from GMFD.
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Figure A-4: Predicted Heterogeneous Response of Annual Manufacturing Revenue
Per Worker to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker at
varying levels of income and long-run average temperature using a polynomial of degree four in
daily average temperature in the specification from Equation 8.Outcome variables come from data
sources listed in Table 1 and temperature data is from GMFD.
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Figure A-5: Predicted Heterogeneous Response of Annual Manufacturing
Revenue Per Worker to Daily Maximum Temperature - State-by-Year FE

Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker at
varying levels of income and long-run average temperature using the specification from Equation
8 with state-by-year fixed effects and a polynomial of degree four in daily maximum temperature.
Outcome variables come from data sources listed in Table 1 and temperature data is from GMFD.
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Figure A-6: Predicted Heterogeneous Response of Annual Manufacturing/Services
Revenue Per Worker to Daily Maximum Temperature - State-by-Year FE

Notes: Figure shows the predicted effect of temperature on revenue per worker at varying levels of
income and long-run average temperature for a pooled sample of manufacturing and services firms
using the specification from Equation 8 with state-by-year fixed effects and a polynomial of degree
four in daily maximum temperature. Outcome variables come from data sources listed in Table 1
and temperature data is from GMFD.
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Figure A-7: Predicted Heterogeneous Response of Annual Manufacturing/Services
Revenue Per Worker to Daily Maximum Temperature - State-by-Year FE

Notes: Figure shows the predicted effect of temperature on revenue per worker at varying levels of
income and long-run average temperature for a pooled sample of manufacturing and services firms
using the specification from Equation 8 with state-by-year fixed effects and bins of daily maximum
temperature. Outcome variables come from data sources listed in Table 1 and temperature data is
from GMFD.
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Figure A-8: Predicted Heterogeneous Response of Annual Manufacturing Revenue
Per Worker to Daily Maximum Temperature - Controls for Capital

Notes: Figure shows the predicted effect of temperature on manufacturing revenue per worker at
varying levels of income and long-run average temperature using the specification from Equation
8 with controls for capital. Outcome variables come from data sources listed in Table 1 and
temperature data is from GMFD.
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Figure A-9: Predicted Heterogeneous Response of Annual Services Revenue Per
Worker to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on services revenue per worker at varying
levels of income and long-run average temperature using the specification from Equation 8 with
a polynomial of degree four in daily maximum temperature. Outcome variables come from data
sources listed in Table 1 and temperature data is from GMFD.
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Figure A-10: Predicted Heterogeneous Response of Annual Services Revenue Per
Worker to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on services revenue per worker at varying
levels of income and long-run average temperature using the specification from Equation 8 with
bins of daily maximum temperature. Outcome variables come from data sources listed in Table 1
and temperature data is from GMFD.
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Figure A-11: Predicted Heterogeneous Response of Annual Services Revenue Per
Worker to Daily Maximum Temperature

Notes: Figure shows the predicted effect of temperature on services revenue per worker at varying
levels of income and long-run average temperature using the specification from Equation 8.
Outcome variables come from data sources listed in Table 1 and temperature data is from GMFD.
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Appendix B: U.S. Results

Figure A-12: Estimated Response of U.S. Annual Manufacturing TFPR to Daily
Maximum Temperature

Notes: Figure shows the estimated effect of temperature on manufacturing TFPR using the
specification from Equation 7 with a polynomial of degree four in daily maximum temperature.
Outcome data comes from the Annual Survey of Manufacturers and Census of Manufacturers from
the U.S. Census Bureau. Temperature data is from GMFD.

Table A-1: U.S. Results

Revenue/Worker Revenue Employment TFPR Revenue/Worker Revenue/Worker

TMax-30 -0.0000109 0.0000220 0.0000330 0.00000134 -0.0000422 0.0000110

(-2.21) (2.01) (3.49) (0.33) (-2.97) (0.46)

5-TMax 0.0000365 0.0000338 -0.00000269 -0.00000685 -0.0000226 0.000154

(5.65) (2.65 ) (-0.26) (-1.30) (-1.71) (3.56)

Observations 2852000 2852000 2852000 2852000 2852000 2852000

Firm FE X X X X X X

Country X Year FE X X X X X X

State X Year FE X

Sales Weighting X

Notes t-statistics in parentheses. Dependent variables all in logs. Standard errors two-way clustered
at the firm and county-by-year level. Estimates use the regression model from Equation 7 with
outcome variable data from 1976-2014 from the Annual Survey of Manufacturers and Census of
Manufacturers from the U.S. Census Bureau and temperature data from the Global Meteorological
Forcing Dataset.
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Figure A-13: Estimated Response of U.S. Annual Manufacturing
Plant-Level Energy Expenditures to Daily Maximum Temperature

Notes: Figure shows the estimated effect of temperature on manufacturing energy expenditures
using the specification from Equation 7 with a polynomial of degree four in daily maximum
temperature. Energy expenditures are the sum of cost of fuels and electricity expenditures in
the Annual Survey of Manufacturers and Census of Manufacturers from the U.S. Census Bureau.
Temperature data is from GMFD.

Table A-2: U.S. Energy Results

log(Energy Expenditure) Energy Expenditures log(Energy Expenditures) Energy Expenditures

TMax-30 0.0000822 0.0000890 251.1 6056

(6.03) (3.24) (4.45) (1.32)

5-TMax 0.0000108 0.00000184 490.8 13840

(0.78) (0.04) (3.57) (1.69)

Observations 2852000 2852000 2852000 2852000

Firm FE X X X X

Country X Year FE X X X X

Sales Weighting X X

Notes: t-statistics in parentheses. Standard errors two-way clustered at the firm and county-by-year
level. Estimates use the regression model from Equation 7 with outcome variable data from 1976-
2014 from the Annual Survey of Manufacturers and Census of Manufacturers from the U.S. Census
Bureau and temperature data from the Global Meteorological Forcing Dataset. Dependent variable
is the sum of electricity expenditures and cost of fuels, in logs or levels.
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Appendix C: China Results
This section explains the data quality issues that lead me to estimate the results in Sec-
tion 4.1 excluding data from China. At a high level, I find evidence consistent with the
conclusions of Chen, Chen, Hsieh and Song (2019) that Chinese micro-data after 2007 are
unreliable due to systematic manipulation by local officials. The details are as follows.

To start with, Zhang, Deschenes, Meng and Zhang (2018) analyze data from China
for the years 1998-2007 and find that both cold and hot temperatures harm output and
productivity, consistent with my findings. Using the overlapping subset of years from my
data, which goes from 2003-2012, I am able to replicate their findings fairly closely, as
shown in Appendix Figure A-14. Notably, I am also able to use my main results from the
rest of my global data in Figure 3 to predict the response of output to temperature in China
based on their income level and average climate. My prediction and the estimates from
Zhang, Deschenes, Meng and Zhang (2018) are shown in Figure A-15. While I slightly
overpredict sensitivity to cold and underpredict sensitivity to heat, my results are broadly
consistent with their findings, lending external validity to my work.

However, when I estimate the response to temperature in my full sample of Chinese
firms from 2003-2012, I produce the highly anomalous results shown in Figure A-16. This
estimate using my full sample of Chinese data implies that extreme temperatures sharply
and statistically significantly increase output, a finding inconsistent with my results from
any other country in the world. Notably, this anomalous result begins to appear by in-
cluding later years starting with 2008 in the regression, the same year Chen, Chen, Hsieh
and Song (2019) start to find discrepancies in the data. They state that “local statistics
increasingly misrepresent the true numbers after 2008” and “the micro-data of the ASIF
[have] overstated aggregate output.”

A somewhat puzzling fact is that my results suggest that this documented manipulation
of data in China is systematically correlated with temperature. One plausible hypothesis
is that Chinese provincial officials inflate reported manufacturing output to meet GDP
targets in response to declines in other sectors more susceptible to temperature, such as
agriculture. These targets have historically played a central role in the evaluation and
promotion of government officials, and Lyu, Wang, Zhang and Zhang (2018) demonstrate
that reported provincial GDP just barely hits target thresholds with implausible frequency.
I cannot provide further evidence on the particular sources and methods of manipulation,
but given the widespread external documentation of problems with this subset of the Chi-
nese firm data and my very short panel that would remain when excluding these years in
China, I exclude this dataset entirely from my main analysis. Still, I view the consistency
of both my replication and predictions with the results of Zhang, Deschenes, Meng and
Zhang (2018) as validating my central analysis.
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Figure A-14: China Replication - Overlapping Years

Notes: Left panel of the figure shows the effect of temperature on annual manufacturing output
in China estimated by Zhang, Deschenes, Meng and Zhang (2018) using data from the Chinese
Industrial Survey of the National Bureau of Statistics from 1998-2007. Right panel shows my
replication of their result using data from the same dataset for 2003-2007 - the overlapping years
of my data coverage. Temperature data is from GMFD.

Figure A-15: China Manufacturing Temperature Sensitivity
- Estimated and Predicted

Notes: Left panel of the figure shows the effect of temperature on annual manufacturing output
in China estimated by Zhang, Deschenes, Meng and Zhang (2018) using data from the Chinese
Industrial Survey of the National Bureau of Statistics from 1998-2007. Right panel shows the
predicted effect of temperature in China from evaluating my global interacted specification from
Column 2 of Table 2 at China’s income and average long-run temperature from 1998-2007. I do not
use any data from China in my estimation or prediction.
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Figure A-16: China Replication - Different Years

Notes: Left panel of the figure shows the effect of temperature on annual manufacturing output
in China estimated by Zhang, Deschenes, Meng and Zhang (2018) using data from the Chinese
Industrial Survey of the National Bureau of Statistics from 1998-2007. Right panel shows my
replication of their result using data from the same dataset for 2003-2012 - the years of my data
coverage. Temperature data is from GMFD.
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Appendix D: Adaptation Benefits and Costs
In this section I explain how I use revealed preference methods developed by Carleton et
al. (2018) to infer the costs firms incur from reducing the sensitivity of their production to
extreme temperatures. To build intuition start by considering a simple example of other-
wise identical firms in two cities, Seattle and Houston. Houston is hotter than Seattle, but
Seattle heats up over the course of the century such that its exposure to CDD in 2100 is that
of Houston in 2020. Let β represent lost annual revenues from exposure to a cooling degree
day, a function of the adaptation investments the firm chooses to make. The annual costs
of extreme heat to a firm in Seattle are given by CDDSeattle ∗ βSeattle. Since Seattle suffers
little exposure to extreme heat, its firms choose a lower (more negative) β than firms in
Houston, as I find in my empirical estimates. If Seattle firms had chosen the Houston β
associated with greater expected exposure to heat, the marginal benefits they would obtain
are as follows:

MB = CDDSeattle ∗ (βHouston − βSeattle)

Given that Seattle firms do not choose βHouston, we know that the marginal costs of
this incremental reduction in temperature sensitivity must exceed the marginal benefits.
By repeating this logic for the firm’s estimated temperature sensitivity for every year of
warming from Seattle2020 to Seattle2100, we can construct the full marginal cost curve for
the Seattle firm’s projected change in chosen β from 2020 to 2100:

TC =
2099∑
t=2020

MCt =
2099∑
t=2020

CDDt ∗ (βt+1 − βt) (25)

Note that the continuous version of Equation 25 also follows straight from the firm’s
first-order condition in the framework in Section 3.1. The firm’s lost revenues from extreme
heat are CDD ∗ β so the marginal benefit the firm receives from a reduction in β is given
by CDD. Since the firm’s optimal choice of β equates marginal benefit to marginal cost, we
have marginal cost cβ = CDD for the full range of CDDs.

The total benefits of future adaptation for firms in Seattle are given by the change in
damages from choosing their optimal level of adaptation for expected heat exposure in
2100 rather than remaining at the adaptation level they choose in 2020:

TB = CDD2100 ∗ (β2100 − β2020) (26)

Because CDDs are increasing as countries become hotter, the benefits of adaptation in
Equation 26 exceed the costs in Equation 25. Figure A-17 shows predicted manufacturing
sensitivity to a hot day at end-of-century temperatures, which is substantially muted rel-
ative to the sensitivities at current temperatures shown in Figure 5. Figure A-18 show the
costs of achieving this reduced sensitivity, as calculated using Equation 25, and Figure A-19
show the net benefits of firms adapting to changes in expected exposure to extreme heat.
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Figure A-17: Predicted Effect of a 40◦C Day on
Annual Manufacturing Revenue per Worker

At 2080 Average Temperatures

Notes: Map shows the predicted annual percentage point loss in revenue per worker from a 40◦C
day obtained by evaluating the interaction regression in Column 2 of Table 2 at each country’s level
of income and end-of-century long-run average temperature. Temperature sensitivities are lower
in this figure than in Figure 5 because my results predict that firms will adapt to hot temperatures
as the world warms.

Figure A-18: Firm-Level Adaptation Costs
(Share of Manufacturing Output)

Notes: Map shows my calculations of the costs firms pay to achieve the lower temperature
sensitivity shown in Appendix Figure A-17 compared to Figure 5. I infer these costs using a revealed
preference approach developed by Carleton et al. (2018) that infers adaptation costs from the
foregone benefits firms would have attained by reducing their heat sensitivity. The procedure is
detailed in Appendix D.
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Figure A-19: Firm-Level Adaptation Net Benefits
(Share of Manufacturing Output)

Notes: Map shows my calculations of the net benefits firms receive by investing to reduce their
heat sensitivity as the climate warms. The benefits come from reducing heat sensitivity to the level
shown in Appendix Figure A-17 compared to the original level in Figure 5. The inferred costs are
shown in Appendix Figure A-18. The procedure to calculate these costs and benefits is detailed in
Appendix D.

Figure A-20: Predicted Effect of a 40◦C Day on Annual Services
Revenue per Worker

Notes: Map shows the predicted annual percentage point loss in revenue per worker from a 40◦C
day obtained by evaluating the interaction regression for a pooled sample of manufacturing and
services firms in Column 5 of Table 2 at each country’s level of income and long-run average
temperature.
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Figure A-21: Predicted Effect of a -5◦C Day on Annual Services
Revenue per Worker

Notes: Map shows the predicted annual percentage point loss in revenue per worker from a -
5◦C day obtained by evaluating the interaction regression for a pooled sample of manufacturing
and services firms in Column 5 of Table 2 at each country’s level of income and long-run average
temperature.

Figure A-22: Projected Change in Exposure to Extreme Heat

Notes: Map shows projections from the CSIRO-MK-3.6.0 global climate model of changes in
exposure to extreme heat as measured by cooling degree days above 30◦C between 2015 and the
two decade average from 2080 to 2099.
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Figure A-23: Projected Change in Exposure to Extreme Cold

Notes: Map shows projections from the CSIRO-MK-3.6.0 global climate model of changes in
exposure to extreme cold as measured by heating degree days below 5◦C between 2015 and the
two decade average from 2080 to 2099.

Figure A-24: Projected Impact of Climate Change on Services Productivity

Notes: Map shows the projected impact of climate change on services productivity in 2080-2099
obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities
are calculated by evaluating the interaction regression from Column 5 of Table 2 at each country’s
income and end-of-century long-run average temperature.
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Figure A-25: Projected Impact of Climate Change on Manufacturing Productivity
Accounting for Economic Growth and Adaptation

Notes: Map shows the projected impact of climate change on manufacturing productivity in 2080-
2099 obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities are
calculated by evaluating the interaction regression from Column 2 of Table 2 at each country’s
end-of-century long-run average temperature and 2080 income as projected by Cuaresma (2017).
These estimates that account for economic growth show reduced losses relative to those in Figure
9 because my empirical results suggest that firms in richer countries have reduced exposure to
extreme temperatures.
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Figure A-26: Projected Impact of Climate Change on Services Productivity
Accounting for Economic Growth and Adaptation

Notes: Map shows the projected impact of climate change on services productivity in 2080-2099
obtained by multiplying predicted temperature sensitivities by CSIRO-MK-3.6.0 global climate
model predictions of changes in exposure to extreme heat and cold. Temperature sensitivities are
calculated by evaluating the interaction regression from Column 5 of Table 2 at each country’s end-
of-century long-run average temperature and 2080 income as projected by Cuaresma (2017). These
estimates that account for economic growth show reduced losses relative to those in Appendix
Figure A-24 because my empirical estimates suggest that firms in richer countries have reduced
exposure to extreme temperatures.
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Appendix E: Additional Model Fit Figures

Figure A-27: Manufacturing Share of GDP - Data vs. Simulation

Notes: Graph shows the fit of simulated manufacturing share of GDP in the
model to data from the World Bank.

Figure A-28: Services Share of GDP - Data vs. Simulation

Notes: Graph shows the fit of simulated services share of GDP in the model to
data from the World Bank.
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Figure A-29: Agriculture Share of GDP - Data vs. Simulation

Notes: Graph shows another view of the fit of simulated agriculture share of
GDP in the model to data from the World Bank also shown in Figure 7. A
perfect fit would have all data points be on the 45◦line where the simulated and
actual values are equal. The simulation explains over 60% of the variation in the
agriculture share of GDP.

Figure A-30: Domestic Production Share of Agriculture Expenditures
- Data vs. Simulation

Notes: Graph shows the fit of simulated domestic production share of
agricultural consumption in the model to data from Comtrade. As shown in
Section 5.2, openness to food imports is a crucial parameter governing the
response of labor reallocation to climate change. The simulation explains over
80% of the variation in the data for this moment.
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Figure A-31: Manufacturing Domestic Production Share of Expenditures
- Data vs. Simulation

Notes: Graph shows the fit of simulated domestic production share of
manufacturing consumption in the model to data from Comtrade.

Figure A-32: Log GDP Per Capita - Data vs. Simulation

Notes: Graph shows the fit of simulated domestic production share of
manufacturing consumption in the model to data from the World Bank.
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Figure A-33: Domestic Production Share of Expenditures in Agriculture - Model
Simulation

Notes: Figure shows that the share of expenditures on domestically produced goods in agriculture
is very high in many developing countries with high barriers to trade. Table 5 shows that these
simulated values track closely to the data.
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Appendix F: Country-by-Country Model Counterfactual
Results

Table A-3: Counterfactual Ag Net Export Share of GDP - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

Baseline Counterfactual

Angola -.258 0 -.01 -.019

Benin -.327 0 -.028 -.074

Botswana -.469 0 -.096 -.176

Burkina Faso -.243 0 -.003 -.055

Cameroon -.2 -.005 -.026 -.052

Cape Verde -.327 -.012 -.107 -.222

Central African Republic -.601 -.076 -.097 -.385

Chad -.601 0 .038 -.121

Comoros -.217 -.075 -.156 -.204

Congo -.601 0 -.104 -.241

Cote d’Ivoire -.143 0 .005 0

Democratic Republic of Congo -.147 -.142 -.045 .002

Ethiopia -.313 -.102 .052 .026

Gabon -.601 0 -.056 -.162

Gambia -.327 0 -.161 -.216

Ghana -.14 0 .059 .057

Kenya -.054 -.044 .027 .051

Lesotho -.469 -.055 -.05 -.172

Madagascar -.262 -.067 .006 -.034
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Table A-4: Counterfactual Ag Net Export Share of GDP - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Malawi -.313 -.111 -.052 -.041

Mali -.356 0 -.043 -.106

Mauritania -.327 0 -.05 -.144

Mauritius -.262 0 -.002 -.03

Mozambique -.217 -.104 -.037 -.015

Namibia -.469 0 -.005 -.097

Niger -.341 0 -.041 -.174

Nigeria -.185 0 .006 .005

Rwanda -.601 -.058 0 -.289

Senegal -.519 0 -.025 -.182

Seychelles -.262 0 -.029 -.03

Sierra Leone -.327 -.071 -.086 -.053

Somalia -.166 -.125 -.048 -.04

South Africa -.334 0 .006 -.011

Sudan -.561 0 .022 -.066

Swaziland -.469 -.006 -.132 -.258

Tanzania -.242 -.057 .001 -.03

Togo -.327 -.042 .13 .075

Uganda -.168 -.057 .032 .009

Zambia -.396 0 -.023 -.101

Zimbabwe -.379 -.099 -.06 -.15
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Table A-5: Counterfactual Ag Net Export Share of GDP - Middle East and North
Africa

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Algeria -.36 -.019 -.004 -.024

Bahrain -.219 0 -.015 -.014

Egypt .113 0 -.002 .024

Iran -.289 .002 -.001 -.009

Iraq -.411 0 -.018 -.057

Jordan -.27 -.019 -.009 -.009

Kuwait -.219 0 -.022 -.028

Lebanon -.27 -.012 .061 .047

Libya -.124 0 .006 -.001

Morocco -.39 -.038 0 -.054

Oman -.219 0 -.005 -.012

Qatar -.219 0 -.003 -.004

Saudi Arabia -.219 0 -.008 -.013

Syria -.27 -.049 -.013 -.038

Tunisia -.36 -.019 -.003 -.038

United Arab Emirates -.219 0 .003 .005

Yemen -.282 -.031 -.019 -.037
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Table A-6: Counterfactual Ag Net Export Share of GDP - Asia

Country Ag Productivity Change Manufacturing
Productivity Change

Baseline Counterfactual

Afghanistan -.247 -.086 -.001 -.011

Azerbaijan -.226 -.044 -.021 -.032

Bangladesh -.217 -.016 -.03 -.044

Bhutan -.381 -.034 -.112 -.243

Brunei -.179 0 .006 -.002

Cambodia -.271 0 -.022 -.066

China -.072 -.036 -.021 -.017

Hong Kong -.072 0 -.002 0

India -.381 0 0 -.026

Japan -.057 -.01 -.01 -.01

Kazakhstan .114 -.031 -.005 .005

Kyrgyzstan -.059 -.039 -.019 -.025

Maldives -.201 0 -.033 -.024

Myanmar -.393 0 .012 -.007

Nepal -.173 -.07 0 .01

Pakistan -.304 .001 .016 0

Philippines -.234 0 -.033 -.059

South Korea -.093 -.015 -.024 -.025

Sri Lanka -.201 0 -.01 -.002

Tajikistan -.059 -.097 -.053 -.06

Thailand -.262 0 -.041 -.071

Uzbekistan -.121 -.065 .028 .053

Vietnam -.151 0 -.014 -.037
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Table A-7: Counterfactual Ag Net Export Share of GDP - South America

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Argentina -.111 0 .05 .053

Barbados -.237 0 .013 .026

Bolivia -.43 -.042 -.006 -.064

Brazil -.169 0 .011 .009

Chile -.244 -.009 .005 -.012

Colombia -.232 0 .009 .002

Ecuador -.288 0 .019 -.001

Honduras -.237 -.006 -.062 -.1

Paraguay -.43 0 .061 -.049

Peru -.306 -.005 .006 -.024

Suriname -.43 0 -.009 -.036

Trinidad and Tobago -.237 0 -.042 -.039

Uruguay -.43 -.008 .046 -.012

Venezuela -.319 0 -.005 -.014

Table A-8: Counterfactual Ag Net Export Share of GDP - North and Central
America

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Bahamas -.237 0 -.008 -.022

Belize -.237 0 .027 .014

Canada -.022 -.007 .005 .012

Costa Rica -.237 0 -.02 -.028

Dominican Republic -.237 0 -.016 -.03

El Salvador -.237 0 .027 -.019

Guatemala -.237 -.017 .045 .021

Haiti -.237 -.045 -.089 -.091

Jamaica -.237 0 -.011 -.029

Mexico -.354 0 -.029 -.055

Nicaragua -.237 0 -.032 -.081

Panama -.237 0 -.003 -.017

United States -.059 .003 .012 .016
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Table A-9: Counterfactual Ag Net Export Share of GDP - Europe

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Albania -.086 -.053 .039 .033

Armenia -.226 -.089 -.015 -.033

Austria -.05 -.029 -.009 -.006

Belarus .031 .012 0 .006

Belgium -.067 -.015 .005 .005

Bosnia and Herzegovina -.086 -.052 -.02 -.013

Bulgaria -.086 -.054 .022 .028

Croatia -.05 -.044 .001 .014

Cyprus -.078 0 .045 .038

Czech Republic -.05 -.021 -.009 -.009

Denmark .109 .006 .019 .038

Estonia .031 .033 .008 .028

Finland .109 .02 -.006 -.001

France -.067 -.027 .014 .02

Georgia -.226 -.091 -.065 -.108

Germany -.029 -.021 -.005 -.002

Greece -.078 -.012 .011 .015

Hungary -.05 -.05 -.002 .005

Iceland .109 .009 .049 .073

Ireland -.039 0 -.017 -.015

Israel -.27 0 .002 -.005

Italy -.074 -.018 .003 .005
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Table A-10: Counterfactual Ag Net Export Share of GDP - Europe

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Latvia .031 .032 .002 .031

Lithuania .031 .018 -.001 .016

Luxembourg -.05 -.018 .001 .006

Macedonia -.086 -.061 .042 .046

Malta -.074 0 -.011 .003

Moldova -.086 -.07 .057 -.012

Montenegro -.086 -.03 .018 .026

Netherlands -.07 -.007 .013 .015

Norway .109 -.006 .009 .018

Poland -.047 -.01 -.019 -.018

Portugal -.096 -.009 -.006 -.005

Romania -.066 -.056 -.03 -.022

Russia -.077 -.006 0 .001

Serbia -.086 -.075 .004 .011

Slovakia -.05 -.032 -.005 -.005

Slovenia -.05 -.039 -.025 -.024

Spain -.089 -.012 .006 .006

Sweden .109 .011 -.005 .001

Switzerland -.05 -.031 -.013 -.012

Turkey -.162 -.038 .004 .007

Ukraine -.052 -.038 .012 .035

United Kingdom -.039 -.002 .002 .007

Table A-11: Counterfactual Ag Net Export Share of GDP - Western Pacific and
Oceania

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Australia -.266 0 .024 .013

Fiji .022 -.004 -.01 .044

Indonesia -.179 0 -.007 -.009

Malaysia -.225 0 -.005 -.009

New Zealand .022 0 .062 .077

Singapore -.225 0 -.014 -.016
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Table A-12: Counterfactual Ag Domestic Expenditure Shares - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

Baseline Counterfactual

Angola -.258 0 .777 .684

Benin -.327 0 .636 .462

Botswana -.469 0 .338 .178

Burkina Faso -.243 0 .825 .754

Cameroon -.2 -.005 .815 .753

Cape Verde -.327 -.012 .542 .197

Central African Republic -.601 -.076 .709 .323

Chad -.601 0 .978 .681

Comoros -.217 -.075 .299 .236

Congo -.601 0 .408 .041

Cote d’Ivoire -.143 0 .308 .297

Democratic Republic of Congo -.147 -.142 .866 .887

Ethiopia -.313 -.102 .958 .929

Gabon -.601 0 .567 .098

Gambia -.327 0 .046 .074

Ghana -.14 0 .814 .787

Kenya -.054 -.044 .867 .906

Lesotho -.469 -.055 .271 .084

Madagascar -.262 -.067 .786 .738
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Table A-13: Counterfactual Ag Domestic Expenditure Shares - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Malawi -.313 -.111 .791 .779

Mali -.356 0 .797 .654

Mauritania -.327 0 .527 .376

Mauritius -.262 0 .129 .074

Mozambique -.217 -.104 .758 .792

Namibia -.469 0 .259 .1

Niger -.341 0 .843 .598

Nigeria -.185 0 .944 .925

Rwanda -.601 -.058 .848 .538

Senegal -.519 0 .571 .139

Seychelles -.262 0 .001 .001

Sierra Leone -.327 -.071 .598 .733

Somalia -.166 -.125 .673 .695

South Africa -.334 0 .67 .472

Sudan -.561 0 .914 .573

Swaziland -.469 -.006 .336 .172

Tanzania -.242 -.057 .867 .827

Togo -.327 -.042 .522 .521

Uganda -.168 -.057 .918 .885

Zambia -.396 0 .838 .756

Zimbabwe -.379 -.099 .563 .498
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Table A-14: Counterfactual Ag Domestic Expenditure Shares - Middle East and
North Africa

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Algeria -.36 -.019 .713 .444

Bahrain -.219 0 .104 .084

Egypt .113 0 .735 .821

Iran -.289 .002 .864 .794

Iraq -.411 0 .545 .332

Jordan -.27 -.019 .402 .286

Kuwait -.219 0 .141 .117

Lebanon -.27 -.012 .8 .655

Libya -.124 0 .601 .615

Morocco -.39 -.038 .689 .452

Oman -.219 0 .098 .071

Qatar -.219 0 .581 .501

Saudi Arabia -.219 0 .521 .43

Syria -.27 -.049 .715 .598

Tunisia -.36 -.019 .604 .324

United Arab Emirates -.219 0 .287 .22

Yemen -.282 -.031 .664 .589
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Table A-15: Counterfactual Ag Domestic Expenditure Shares - Asia

Country Ag Productivity Change Manufacturing
Productivity Change

Baseline Counterfactual

Afghanistan -.247 -.086 .742 .77

Azerbaijan -.226 -.044 .748 .68

Bangladesh -.217 -.016 .832 .802

Bhutan -.381 -.034 .61 .439

Brunei -.179 0 .407 .413

Cambodia -.271 0 .795 .664

China -.072 -.036 .711 .757

Hong Kong -.072 0 .345 .366

India -.381 0 .943 .862

Japan -.057 -.01 .506 .553

Kazakhstan .114 -.031 .892 .942

Kyrgyzstan -.059 -.039 .694 .622

Maldives -.201 0 .112 .11

Myanmar -.393 0 .937 .887

Nepal -.173 -.07 .937 .948

Pakistan -.304 .001 .946 .89

Philippines -.234 0 .636 .558

South Korea -.093 -.015 .254 .268

Sri Lanka -.201 0 .65 .68

Tajikistan -.059 -.097 .799 .782

Thailand -.262 0 .373 .264

Uzbekistan -.121 -.065 .956 .95

Vietnam -.151 0 .482 .483
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Table A-16: Counterfactual Ag Domestic Expenditure Shares - South America

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Argentina -.111 0 .919 .925

Barbados -.237 0 .058 .068

Bolivia -.43 -.042 .758 .512

Brazil -.169 0 .896 .883

Chile -.244 -.009 .506 .4

Colombia -.232 0 .837 .806

Ecuador -.288 0 .539 .503

Honduras -.237 -.006 .219 .163

Paraguay -.43 0 .485 .195

Peru -.306 -.005 .717 .628

Suriname -.43 0 .413 .074

Trinidad and Tobago -.237 0 .016 .01

Uruguay -.43 -.008 .592 .288

Venezuela -.319 0 .793 .63

Table A-17: Counterfactual Ag Domestic Expenditure Shares - North and Central
America

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Bahamas -.237 0 .245 .122

Belize -.237 0 .077 .061

Canada -.022 -.007 .268 .32

Costa Rica -.237 0 .01 .005

Dominican Republic -.237 0 .547 .455

El Salvador -.237 0 .546 .41

Guatemala -.237 -.017 .487 .425

Haiti -.237 -.045 .628 .593

Jamaica -.237 0 .57 .541

Mexico -.354 0 .442 .182

Nicaragua -.237 0 .255 .194

Panama -.237 0 .477 .359

United States -.059 .003 .835 .853
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Table A-18: Counterfactual Ag Domestic Expenditure Shares - Europe

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Albania -.086 -.053 .84 .814

Armenia -.226 -.089 .79 .662

Austria -.05 -.029 .088 .094

Belarus .031 .012 .846 .862

Belgium -.067 -.015 .099 .093

Bosnia and Herzegovina -.086 -.052 .53 .526

Bulgaria -.086 -.054 .382 .383

Croatia -.05 -.044 .576 .639

Cyprus -.078 0 .644 .611

Czech Republic -.05 -.021 .141 .148

Denmark .109 .006 .163 .214

Estonia .031 .033 .372 .405

Finland .109 .02 .545 .678

France -.067 -.027 .549 .581

Georgia -.226 -.091 .39 .294

Germany -.029 -.021 .147 .178

Greece -.078 -.012 .588 .585

Hungary -.05 -.05 .225 .236

Iceland .109 .009 .057 .069

Ireland -.039 0 .002 .002

Israel -.27 0 .664 .457

Italy -.074 -.018 .571 .592
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Table A-19: Counterfactual Ag Domestic Expenditure Shares - Europe

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Latvia .031 .032 .284 .29

Lithuania .031 .018 .081 .089

Luxembourg -.05 -.018 .065 .085

Macedonia -.086 -.061 .598 .611

Malta -.074 0 .067 .073

Moldova -.086 -.07 .452 .392

Montenegro -.086 -.03 .646 .659

Netherlands -.07 -.007 .088 .091

Norway .109 -.006 .285 .354

Poland -.047 -.01 .308 .302

Portugal -.096 -.009 .196 .185

Romania -.066 -.056 .572 .625

Russia -.077 -.006 .753 .764

Serbia -.086 -.075 .726 .745

Slovakia -.05 -.032 .288 .289

Slovenia -.05 -.039 .186 .195

Spain -.089 -.012 .418 .422

Sweden .109 .011 .298 .421

Switzerland -.05 -.031 .021 .025

Turkey -.162 -.038 .894 .88

Ukraine -.052 -.038 .681 .689

United Kingdom -.039 -.002 .478 .531

Table A-20: Counterfactual Ag Domestic Expenditure Shares - Western Pacific and
Oceania

Country Ag Productivity
Change

Manufacturing
Productivity Change

Baseline Counterfactual

Australia -.266 0 .766 .617

Fiji .022 -.004 .388 .528

Indonesia -.179 0 .77 .732

Malaysia -.225 0 .208 .175

New Zealand .022 0 .606 .69

Singapore -.225 0 .01 .008
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Table A-21: Counterfactual Ag GDP Shares - Sub-Saharan Africa

Country Ag
Productivity

Change

Manufacturing
Productivity

Change

No
Reallocation

Autarky With Trade

Angola -.258 0 .05 .065 .055

Benin -.327 0 .156 .213 .154

Botswana -.469 0 .062 .149 .044

Burkina Faso -.243 0 .24 .289 .233

Cameroon -.2 -.005 .216 .254 .226

Cape Verde -.327 -.012 .163 .242 .076

Central African Republic -.601 -.076 .299 .562 .21

Chad -.601 0 .257 .438 .258

Comoros -.217 -.075 .083 .123 .067

Congo -.601 0 .092 .257 .011

Cote d’Ivoire -.143 0 .17 .188 .183

Democratic Republic of Congo -.147 -.142 .421 .457 .506

Ethiopia -.313 -.102 .359 .437 .409

Gabon -.601 0 .073 .187 .018

Gambia -.327 0 .008 .06 .021

Ghana -.14 0 .181 .195 .193

Kenya -.054 -.044 .156 .16 .185

Lesotho -.469 -.055 .107 .191 .028

Madagascar -.262 -.067 .404 .481 .436
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Table A-22: Counterfactual Ag GDP Shares - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Malawi -.313 -.111 .436 .54 .55

Mali -.356 0 .197 .278 .205

Mauritania -.327 0 .249 .336 .224

Mauritius -.262 0 .038 .048 .016

Mozambique -.217 -.104 .367 .426 .451

Namibia -.469 0 .099 .157 .04

Niger -.341 0 .325 .432 .277

Nigeria -.185 0 .068 .078 .077

Rwanda -.601 -.058 .409 .678 .351

Senegal -.519 0 .153 .267 .05

Seychelles -.262 0 .016 .026 .025

Sierra Leone -.327 -.071 .139 .204 .246

Somalia -.166 -.125 .334 .373 .382

South Africa -.334 0 .056 .073 .052

Sudan -.561 0 .12 .197 .095

Swaziland -.469 -.006 .102 .224 .062

Tanzania -.242 -.057 .298 .354 .321

Togo -.327 -.042 .316 .372 .316

Uganda -.168 -.057 .416 .459 .433

Zambia -.396 0 .36 .496 .41

Zimbabwe -.379 -.099 .302 .419 .322
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Table A-23: Counterfactual Ag GDP Shares - Middle East and North Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Algeria -.36 -.019 .034 .049 .025

Bahrain -.219 0 .015 .021 .02

Egypt .113 0 .077 .071 .098

Iran -.289 .002 .051 .065 .057

Iraq -.411 0 .05 .081 .034

Jordan -.27 -.019 .038 .05 .046

Kuwait -.219 0 .005 .011 .005

Lebanon -.27 -.012 .079 .083 .068

Libya -.124 0 .067 .073 .066

Morocco -.39 -.038 .1 .141 .077

Oman -.219 0 .023 .029 .02

Qatar -.219 0 .008 .011 .009

Saudi Arabia -.219 0 .016 .021 .016

Syria -.27 -.049 .09 .114 .084

Tunisia -.36 -.019 .055 .076 .033

United Arab Emirates -.219 0 .016 .018 .019

Yemen -.282 -.031 .11 .142 .121
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Table A-24: Counterfactual Ag GDP Shares - Asia

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Afghanistan -.247 -.086 .278 .33 .321

Azerbaijan -.226 -.044 .088 .108 .095

Bangladesh -.217 -.016 .189 .228 .212

Bhutan -.381 -.034 .267 .392 .239

Brunei -.179 0 .027 .03 .022

Cambodia -.271 0 .19 .24 .189

China -.072 -.036 .064 .068 .074

Hong Kong -.072 0 .018 .019 .021

India -.381 0 .161 .224 .194

Japan -.057 -.01 .012 .013 .014

Kazakhstan .114 -.031 .088 .08 .091

Kyrgyzstan -.059 -.039 .156 .162 .152

Maldives -.201 0 .021 .03 .039

Myanmar -.393 0 .209 .288 .266

Nepal -.173 -.07 .283 .317 .328

Pakistan -.304 .001 .133 .167 .148

Philippines -.234 0 .105 .133 .104

South Korea -.093 -.015 .012 .014 .013

Sri Lanka -.201 0 .109 .129 .137

Tajikistan -.059 -.097 .232 .239 .233

Thailand -.262 0 .072 .099 .061

Uzbekistan -.121 -.065 .108 .115 .14

Vietnam -.151 0 .158 .178 .155
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Table A-25: Counterfactual Ag GDP Shares - South America

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Argentina -.111 0 .065 .067 .07

Barbados -.237 0 .035 .04 .054

Bolivia -.43 -.042 .125 .186 .115

Brazil -.169 0 .063 .071 .068

Chile -.244 -.009 .053 .063 .045

Colombia -.232 0 .066 .077 .07

Ecuador -.288 0 .098 .12 .098

Honduras -.237 -.006 .082 .111 .064

Paraguay -.43 0 .151 .194 .065

Peru -.306 -.005 .104 .133 .099

Suriname -.43 0 .028 .046 .005

Trinidad and Tobago -.237 0 .004 .014 .011

Uruguay -.43 -.008 .091 .113 .048

Venezuela -.319 0 .027 .037 .026

Table A-26: Counterfactual Ag GDP Shares - North and Central America

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Bahamas -.237 0 .02 .025 .007

Belize -.237 0 .104 .12 .104

Canada -.022 -.007 .019 .019 .026

Costa Rica -.237 0 .021 .03 .017

Dominican Republic -.237 0 .046 .059 .043

El Salvador -.237 0 .108 .126 .075

Guatemala -.237 -.017 .151 .173 .146

Haiti -.237 -.045 .161 .208 .203

Jamaica -.237 0 .074 .092 .073

Mexico -.354 0 .031 .052 .014

Nicaragua -.237 0 .11 .139 .082

Panama -.237 0 .06 .074 .056

United States -.059 .003 .023 .024 .028
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Table A-27: Counterfactual Ag GDP Shares - Europe

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No
Reallocation

Autarky With Trade

Albania -.086 -.053 .129 .134 .127

Armenia -.226 -.089 .104 .126 .104

Austria -.05 -.029 .012 .012 .015

Belarus .031 .012 .05 .049 .056

Belgium -.067 -.015 .02 .021 .02

Bosnia and Herzegovina -.086 -.052 .047 .051 .057

Bulgaria -.086 -.054 .06 .062 .068

Croatia -.05 -.044 .042 .043 .058

Cyprus -.078 0 .06 .061 .054

Czech Republic -.05 -.021 .018 .019 .018

Denmark .109 .006 .033 .032 .051

Estonia .031 .033 .036 .036 .056

Finland .109 .02 .013 .012 .017

France -.067 -.027 .026 .027 .033

Georgia -.226 -.091 .086 .113 .062

Germany -.029 -.021 .011 .011 .015

Greece -.078 -.012 .037 .038 .043

Hungary -.05 -.05 .028 .029 .037

Iceland .109 .009 .063 .062 .086

Ireland -.039 0 .002 .003 .006

Israel -.27 0 .016 .019 .011

Italy -.074 -.018 .019 .019 .021
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Table A-28: Counterfactual Ag GDP Shares - Europe

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Latvia .031 .032 .037 .036 .064

Lithuania .031 .018 .035 .034 .052

Luxembourg -.05 -.018 .013 .014 .019

Macedonia -.086 -.061 .104 .108 .112

Malta -.074 0 .006 .007 .022

Moldova -.086 -.07 .169 .175 .104

Montenegro -.086 -.03 .054 .057 .065

Netherlands -.07 -.007 .027 .028 .029

Norway .109 -.006 .02 .019 .027

Poland -.047 -.01 .031 .033 .034

Portugal -.096 -.009 .026 .028 .029

Romania -.066 -.056 .06 .063 .073

Russia -.077 -.006 .03 .032 .033

Serbia -.086 -.075 .069 .073 .08

Slovakia -.05 -.032 .022 .023 .022

Slovenia -.05 -.039 .017 .018 .019

Spain -.089 -.012 .023 .024 .024

Sweden .109 .011 .009 .008 .015

Switzerland -.05 -.031 .003 .004 .005

Turkey -.162 -.038 .047 .053 .055

Ukraine -.052 -.038 .105 .108 .132

United Kingdom -.039 -.002 .015 .015 .02

Table A-29: Counterfactual Ag GDP Shares - Western Pacific and Oceania

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Australia -.266 0 .036 .039 .027

Fiji .022 -.004 .126 .124 .185

Indonesia -.179 0 .112 .129 .126

Malaysia -.225 0 .042 .051 .045

New Zealand .022 0 .078 .077 .093

Singapore -.225 0 .007 .011 .007
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Table A-30: Counterfactual GDP Losses (Share of GDP) - Sub-Saharan Africa

Country Ag
Productivity

Change

Manufacturing
Productivity

Change

No
Reallocation

Autarky With Trade

Angola -.258 0 -.018 -.027 -.025

Benin -.327 0 -.07 -.101 -.084

Botswana -.469 0 -.096 -.196 -.147

Burkina Faso -.243 0 -.065 -.091 -.082

Cameroon -.2 -.005 -.053 -.097 -.091

Cape Verde -.327 -.012 -.108 -.216 -.077

Central African Republic -.601 -.076 -.331 -.527 -.45

Chad -.601 0 -.182 -.363 -.332

Comoros -.217 -.075 -.102 -.112 -.047

Congo -.601 0 -.165 -.323 -.121

Cote d’Ivoire -.143 0 -.025 -.032 -.033

Democratic Republic of Congo -.147 -.142 -.132 -.174 -.174

Ethiopia -.313 -.102 -.163 -.218 -.217

Gabon -.601 0 -.111 -.247 -.117

Gambia -.327 0 -.065 -.063 -.096

Ghana -.14 0 -.018 -.023 -.018

Kenya -.054 -.044 -.037 -.038 -.034

Lesotho -.469 -.055 -.131 -.18 -.109

Madagascar -.262 -.067 -.144 -.209 -.2
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Table A-31: Counterfactual GDP Losses (Share of GDP) - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Malawi -.313 -.111 -.209 -.317 -.318

Mali -.356 0 -.1 -.144 -.127

Mauritania -.327 0 -.112 -.203 -.167

Mauritius -.262 0 -.012 -.015 -.008

Mozambique -.217 -.104 -.14 -.192 -.199

Namibia -.469 0 -.064 -.11 -.063

Niger -.341 0 -.142 -.231 -.177

Nigeria -.185 0 -.013 -.015 -.015

Rwanda -.601 -.058 -.334 -.557 -.508

Senegal -.519 0 -.122 -.233 -.123

Seychelles -.262 0 -.013 -.011 -.005

Sierra Leone -.327 -.071 -.123 -.142 -.168

Somalia -.166 -.125 -.126 -.151 -.15

South Africa -.334 0 -.02 -.028 -.023

Sudan -.561 0 -.078 -.144 -.125

Swaziland -.469 -.006 -.14 -.293 -.215

Tanzania -.242 -.057 -.108 -.152 -.149

Togo -.327 -.042 -.093 -.109 -.132

Uganda -.168 -.057 -.094 -.131 -.118

Zambia -.396 0 -.175 -.328 -.314

Zimbabwe -.379 -.099 -.202 -.328 -.312
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Table A-32: Counterfactual GDP Losses (Share of GDP) - Middle East and North
Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Algeria -.36 -.019 -.031 -.037 -.033

Bahrain -.219 0 -.007 -.01 -.01

Egypt .113 0 .008 .01 .011

Iran -.289 .002 -.017 -.027 -.026

Iraq -.411 0 -.035 -.058 -.042

Jordan -.27 -.019 -.028 -.029 -.027

Kuwait -.219 0 -.007 -.01 -.012

Lebanon -.27 -.012 -.015 -.014 -.016

Libya -.124 0 -.008 -.011 -.008

Morocco -.39 -.038 -.076 -.11 -.099

Oman -.219 0 -.007 -.009 -.009

Qatar -.219 0 -.003 -.003 -.003

Saudi Arabia -.219 0 -.006 -.006 -.005

Syria -.27 -.049 -.066 -.082 -.077

Tunisia -.36 -.019 -.039 -.054 -.045

United Arab Emirates -.219 0 -.003 -.002 -.003

Yemen -.282 -.031 -.062 -.072 -.064
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Table A-33: Counterfactual GDP Losses (Share of GDP) - Asia

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Afghanistan -.247 -.086 -.131 -.167 -.169

Azerbaijan -.226 -.044 -.058 -.073 -.066

Bangladesh -.217 -.016 -.059 -.09 -.086

Bhutan -.381 -.034 -.181 -.277 -.233

Brunei -.179 0 -.004 -.003 0

Cambodia -.271 0 -.065 -.085 -.068

China -.072 -.036 -.043 -.045 -.045

Hong Kong -.072 0 -.001 -.002 -.002

India -.381 0 -.074 -.131 -.127

Japan -.057 -.01 -.011 -.012 -.009

Kazakhstan .114 -.031 -.036 -.03 -.031

Kyrgyzstan -.059 -.039 -.061 -.063 -.049

Maldives -.201 0 -.012 -.016 -.037

Myanmar -.393 0 -.094 -.144 -.14

Nepal -.173 -.07 -.093 -.12 -.114

Pakistan -.304 .001 -.041 -.062 -.061

Philippines -.234 0 -.036 -.053 -.051

South Korea -.093 -.015 -.023 -.024 -.028

Sri Lanka -.201 0 -.026 -.044 -.048

Tajikistan -.059 -.097 -.081 -.085 -.08

Thailand -.262 0 -.034 -.055 -.041

Uzbekistan -.121 -.065 -.064 -.066 -.063

Vietnam -.151 0 -.028 -.04 -.042
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Table A-34: Counterfactual GDP Losses (Share of GDP) - South America

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Argentina -.111 0 -.002 0 .001

Barbados -.237 0 -.006 -.007 -.032

Bolivia -.43 -.042 -.098 -.135 -.116

Brazil -.169 0 -.01 -.015 -.013

Chile -.244 -.009 -.02 -.026 -.024

Colombia -.232 0 -.015 -.022 -.02

Ecuador -.288 0 -.027 -.04 -.043

Honduras -.237 -.006 -.039 -.058 -.039

Paraguay -.43 0 -.049 -.058 -.036

Peru -.306 -.005 -.037 -.06 -.058

Suriname -.43 0 -.021 -.014 -.012

Trinidad and Tobago -.237 0 -.012 -.016 -.016

Uruguay -.43 -.008 -.031 -.039 -.031

Venezuela -.319 0 -.012 -.014 -.014

Table A-35: Counterfactual GDP Losses (Share of GDP) - North and Central
America

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Bahamas -.237 0 -.007 -.008 -.002

Belize -.237 0 -.021 -.021 -.026

Canada -.022 -.007 -.018 -.018 -.016

Costa Rica -.237 0 -.011 -.011 -.004

Dominican Republic -.237 0 -.017 -.023 -.026

El Salvador -.237 0 -.022 -.028 -.018

Guatemala -.237 -.017 -.039 -.056 -.05

Haiti -.237 -.045 -.09 -.123 -.121

Jamaica -.237 0 -.023 -.035 -.033

Mexico -.354 0 -.026 -.043 -.022

Nicaragua -.237 0 -.038 -.047 -.036

Panama -.237 0 -.017 -.029 -.027

United States -.059 .003 0 0 .001
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Table A-36: Counterfactual GDP Losses (Share of GDP) - Europe

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No
Reallocation

Autarky With Trade

Albania -.086 -.053 -.05 -.052 -.046

Armenia -.226 -.089 -.099 -.106 -.103

Austria -.05 -.029 -.032 -.032 -.029

Belarus .031 .012 -.011 -.012 -.012

Belgium -.067 -.015 -.018 -.018 -.017

Bosnia and Herzegovina -.086 -.052 -.052 -.054 -.054

Bulgaria -.086 -.054 -.051 -.051 -.049

Croatia -.05 -.044 -.041 -.042 -.046

Cyprus -.078 0 -.001 -.001 .002

Czech Republic -.05 -.021 -.031 -.032 -.026

Denmark .109 .006 0 0 .005

Estonia .031 .033 .009 .008 .002

Finland .109 .02 .003 .003 -.001

France -.067 -.027 -.027 -.028 -.027

Georgia -.226 -.091 -.1 -.127 -.107

Germany -.029 -.021 -.025 -.025 -.025

Greece -.078 -.012 -.012 -.013 -.017

Hungary -.05 -.05 -.048 -.048 -.049

Iceland .109 .009 .005 .005 .014

Ireland -.039 0 -.001 -.001 -.001

Israel -.27 0 -.004 -.005 -.009

Italy -.074 -.018 -.017 -.017 -.018
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Table A-37: Counterfactual GDP Losses (Share of GDP) - Europe

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Latvia .031 .032 .006 .006 .009

Lithuania .031 .018 -.005 -.005 -.004

Luxembourg -.05 -.018 -.016 -.016 -.018

Macedonia -.086 -.061 -.059 -.059 -.054

Malta -.074 0 -.001 -.001 -.004

Moldova -.086 -.07 -.071 -.073 -.051

Montenegro -.086 -.03 -.032 -.031 -.035

Netherlands -.07 -.007 -.01 -.01 -.014

Norway .109 -.006 -.004 -.004 -.002

Poland -.047 -.01 -.024 -.025 -.023

Portugal -.096 -.009 -.011 -.013 -.013

Romania -.066 -.056 -.054 -.057 -.061

Russia -.077 -.006 -.026 -.027 -.026

Serbia -.086 -.075 -.069 -.07 -.063

Slovakia -.05 -.032 -.039 -.039 -.038

Slovenia -.05 -.039 -.039 -.04 -.036

Spain -.089 -.012 -.011 -.012 -.009

Sweden .109 .011 -.002 -.002 -.005

Switzerland -.05 -.031 -.031 -.031 -.035

Turkey -.162 -.038 -.039 -.042 -.041

Ukraine -.052 -.038 -.045 -.046 -.042

United Kingdom -.039 -.002 -.004 -.004 -.003

Table A-38: Counterfactual GDP Losses (Share of GDP) - Western Pacific and
Oceania

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Australia -.266 0 -.004 -.005 -.006

Fiji .022 -.004 .001 .003 -.013

Indonesia -.179 0 -.023 -.034 -.027

Malaysia -.225 0 -.012 -.013 -.012

New Zealand .022 0 0 0 .009

Singapore -.225 0 -.005 -.006 -.01
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Table A-39: Equivalent Variation Willingness-to-Pay (Share of GDP) - Sub-Saharan
Africa

Country Ag
Productivity

Change

Manufacturing
Productivity

Change

No
Reallocation

Autarky With Trade

Angola -.258 0 -.083 -.019 -.018

Benin -.327 0 -.276 -.078 -.069

Botswana -.469 0 -.423 -.116 -.087

Burkina Faso -.243 0 -.226 -.07 -.063

Cameroon -.2 -.005 -.18 -.055 -.052

Cape Verde -.327 -.012 -.344 -.12 -.046

Central African Republic -.601 -.076 -.723 -.428 -.356

Chad -.601 0 -.67 -.25 -.226

Comoros -.217 -.075 -.222 -.102 -.065

Congo -.601 0 -.66 -.225 -.079

Cote d’Ivoire -.143 0 -.093 -.025 -.025

Democratic Republic of Congo -.147 -.142 -.209 -.131 -.129

Ethiopia -.313 -.102 -.364 -.171 -.169

Gabon -.601 0 -.572 -.15 -.069

Gambia -.327 0 -.261 -.072 -.133

Ghana -.14 0 -.07 -.018 -.014

Kenya -.054 -.044 -.052 -.035 -.031

Lesotho -.469 -.055 -.432 -.147 -.072

Madagascar -.262 -.067 -.324 -.153 -.146
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Table A-40: Equivalent Variation Willingness-to-Pay (Share of GDP) - Sub-Saharan
Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Malawi -.313 -.111 -.4 -.225 -.225

Mali -.356 0 -.359 -.115 -.106

Mauritania -.327 0 -.36 -.126 -.101

Mauritius -.262 0 -.057 -.013 -.007

Mozambique -.217 -.104 -.279 -.143 -.147

Namibia -.469 0 -.328 -.076 -.044

Niger -.341 0 -.402 -.163 -.121

Nigeria -.185 0 -.054 -.013 -.012

Rwanda -.601 -.058 -.725 -.434 -.387

Senegal -.519 0 -.513 -.155 -.08

Seychelles -.262 0 -.064 -.014 -.023

Sierra Leone -.327 -.071 -.33 -.13 -.164

Somalia -.166 -.125 -.22 -.126 -.123

South Africa -.334 0 -.103 -.022 -.019

Sudan -.561 0 -.436 -.101 -.087

Swaziland -.469 -.006 -.504 -.172 -.121

Tanzania -.242 -.057 -.268 -.112 -.109

Togo -.327 -.042 -.289 -.099 -.125

Uganda -.168 -.057 -.205 -.096 -.085

Zambia -.396 0 -.481 -.208 -.199

Zimbabwe -.379 -.099 -.464 -.223 -.212
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Table A-41: Equivalent Variation Willingness-to-Pay (Share of GDP) - Middle East
and North Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Algeria -.36 -.019 -.104 -.031 -.028

Bahrain -.219 0 -.034 -.007 -.008

Egypt .113 0 .028 .008 .009

Iran -.289 .002 -.085 -.018 -.016

Iraq -.411 0 -.192 -.04 -.031

Jordan -.27 -.019 -.082 -.028 -.026

Kuwait -.219 0 -.032 -.007 -.01

Lebanon -.27 -.012 -.037 -.014 -.015

Libya -.124 0 -.033 -.008 -.005

Morocco -.39 -.038 -.252 -.08 -.076

Oman -.219 0 -.033 -.007 -.007

Qatar -.219 0 -.013 -.003 -.003

Saudi Arabia -.219 0 -.029 -.006 -.005

Syria -.27 -.049 -.164 -.065 -.063

Tunisia -.36 -.019 -.141 -.041 -.035

United Arab Emirates -.219 0 -.014 -.003 -.002

Yemen -.282 -.031 -.191 -.063 -.056
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Table A-42: Equivalent Variation Willingness-to-Pay (Share of GDP) - Asia

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Afghanistan -.247 -.086 -.28 -.133 -.134

Azerbaijan -.226 -.044 -.139 -.057 -.053

Bangladesh -.217 -.016 -.189 -.062 -.058

Bhutan -.381 -.034 -.466 -.208 -.173

Brunei -.179 0 -.019 -.004 -.004

Cambodia -.271 0 -.237 -.07 -.057

China -.072 -.036 -.057 -.04 -.04

Hong Kong -.072 0 -.006 -.001 -.001

India -.381 0 -.311 -.085 -.082

Japan -.057 -.01 -.015 -.011 -.008

Kazakhstan .114 -.031 -.01 -.034 -.035

Kyrgyzstan -.059 -.039 -.078 -.058 -.047

Maldives -.201 0 -.052 -.012 -.017

Myanmar -.393 0 -.367 -.109 -.105

Nepal -.173 -.07 -.192 -.092 -.084

Pakistan -.304 .001 -.179 -.045 -.044

Philippines -.234 0 -.145 -.038 -.038

South Korea -.093 -.015 -.032 -.021 -.024

Sri Lanka -.201 0 -.105 -.027 -.03

Tajikistan -.059 -.097 -.1 -.078 -.074

Thailand -.262 0 -.144 -.036 -.028

Uzbekistan -.121 -.065 -.088 -.061 -.057

Vietnam -.151 0 -.101 -.028 -.029
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Table A-43: Equivalent Variation Willingness-to-Pay (Share of GDP) - South
America

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Argentina -.111 0 -.008 -.002 0

Barbados -.237 0 -.029 -.006 -.029

Bolivia -.43 -.042 -.343 -.108 -.095

Brazil -.169 0 -.041 -.01 -.008

Chile -.244 -.009 -.068 -.02 -.019

Colombia -.232 0 -.067 -.015 -.013

Ecuador -.288 0 -.123 -.028 -.031

Honduras -.237 -.006 -.153 -.041 -.032

Paraguay -.43 0 -.255 -.057 -.037

Peru -.306 -.005 -.162 -.04 -.04

Suriname -.43 0 -.125 -.024 -.008

Trinidad and Tobago -.237 0 -.057 -.013 -.012

Uruguay -.43 -.008 -.151 -.034 -.028

Venezuela -.319 0 -.064 -.013 -.012

Table A-44: Equivalent Variation Willingness-to-Pay (Share of GDP) - North and
Central America

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Bahamas -.237 0 -.035 -.008 -.002

Belize -.237 0 -.091 -.021 -.024

Canada -.022 -.007 -.018 -.016 -.014

Costa Rica -.237 0 -.052 -.011 -.004

Dominican Republic -.237 0 -.075 -.017 -.022

El Salvador -.237 0 -.095 -.023 -.015

Guatemala -.237 -.017 -.128 -.04 -.036

Haiti -.237 -.045 -.237 -.093 -.091

Jamaica -.237 0 -.099 -.024 -.024

Mexico -.354 0 -.132 -.028 -.015

Nicaragua -.237 0 -.151 -.039 -.031

Panama -.237 0 -.076 -.017 -.018

United States -.059 .003 -.002 0 .001
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Table A-45: Equivalent Variation Willingness-to-Pay (Share of GDP) - Europe

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No
Reallocation

Autarky With Trade

Albania -.086 -.053 -.067 -.047 -.04

Armenia -.226 -.089 -.176 -.095 -.087

Austria -.05 -.029 -.033 -.029 -.026

Belarus .031 .012 -.006 -.011 -.011

Belgium -.067 -.015 -.02 -.017 -.016

Bosnia and Herzegovina -.086 -.052 -.065 -.049 -.049

Bulgaria -.086 -.054 -.058 -.047 -.045

Croatia -.05 -.044 -.045 -.038 -.041

Cyprus -.078 0 -.005 -.001 .002

Czech Republic -.05 -.021 -.034 -.029 -.024

Denmark .109 .006 .003 0 .005

Estonia .031 .033 .011 .008 .002

Finland .109 .02 .008 .003 -.001

France -.067 -.027 -.029 -.025 -.024

Georgia -.226 -.091 -.193 -.098 -.084

Germany -.029 -.021 -.025 -.023 -.023

Greece -.078 -.012 -.018 -.011 -.015

Hungary -.05 -.05 -.05 -.045 -.045

Iceland .109 .009 .009 .005 .014

Ireland -.039 0 -.003 -.001 -.002

Israel -.27 0 -.022 -.005 -.009

Italy -.074 -.018 -.02 -.016 -.016
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Table A-46: Equivalent Variation Willingness-to-Pay (Share of GDP) - Europe

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Latvia .031 .032 .009 .006 .008

Lithuania .031 .018 -.001 -.004 -.003

Luxembourg -.05 -.018 -.017 -.015 -.017

Macedonia -.086 -.061 -.07 -.055 -.049

Malta -.074 0 -.006 -.001 -.005

Moldova -.086 -.07 -.09 -.067 -.048

Montenegro -.086 -.03 -.04 -.03 -.032

Netherlands -.07 -.007 -.012 -.009 -.012

Norway .109 -.006 -.001 -.003 -.002

Poland -.047 -.01 -.029 -.022 -.02

Portugal -.096 -.009 -.02 -.01 -.011

Romania -.066 -.056 -.065 -.051 -.053

Russia -.077 -.006 -.031 -.024 -.023

Serbia -.086 -.075 -.08 -.064 -.057

Slovakia -.05 -.032 -.041 -.036 -.035

Slovenia -.05 -.039 -.043 -.036 -.033

Spain -.089 -.012 -.016 -.011 -.008

Sweden .109 .011 .002 -.002 -.005

Switzerland -.05 -.031 -.032 -.028 -.032

Turkey -.162 -.038 -.06 -.036 -.036

Ukraine -.052 -.038 -.054 -.042 -.037

United Kingdom -.039 -.002 -.005 -.004 -.003

Table A-47: Equivalent Variation Willingness-to-Pay (Share of GDP) - Western
Pacific and Oceania

Country Ag Productivity
Change

Manufacturing
Productivity

Change

No Reallocation Autarky With Trade

Australia -.266 0 -.019 -.004 -.005

Fiji .022 -.004 .008 .001 -.007

Indonesia -.179 0 -.092 -.023 -.018

Malaysia -.225 0 -.054 -.012 -.012

New Zealand .022 0 .001 0 .009

Singapore -.225 0 -.025 -.005 -.009
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Table A-48: Counterfactual Change in Food Prices - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity

Change

Autarky With Trade

Angola -.258 0 34.771 25.884

Benin -.327 0 48.593 28.345

Botswana -.469 0 88.326 46.253

Burkina Faso -.243 0 32.099 27.752

Cameroon -.2 -.005 25 23.809

Cape Verde -.327 -.012 48.589 30.641

Central African Republic -.601 -.076 150.624 36.303

Chad -.601 0 150.634 117.717

Comoros -.217 -.075 27.717 22.011

Congo -.601 0 150.629 32.426

Cote d’Ivoire -.143 0 16.691 18.443

Democratic Republic of Congo -.147 -.142 17.231 10.576

Ethiopia -.313 -.102 45.554 30.082

Gabon -.601 0 150.632 34.985

Gambia -.327 0 48.586 16.877

Ghana -.14 0 16.282 20.566

Kenya -.054 -.044 5.708 9.776

Lesotho -.469 -.055 88.331 48.302

Madagascar -.262 -.067 35.499 21.645
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Table A-49: Counterfactual Change in Food Prices - Sub-Saharan Africa

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Malawi -.313 -.111 45.559 21.76

Mali -.356 0 55.278 34.724

Mauritania -.327 0 48.587 23.488

Mauritius -.262 0 35.502 18.92

Mozambique -.217 -.104 27.716 21.893

Namibia -.469 0 88.323 38.591

Niger -.341 0 51.744 50.943

Nigeria -.185 0 22.699 22.24

Rwanda -.601 -.058 150.628 51.389

Senegal -.519 0 107.898 37.364

Seychelles -.262 0 35.505 13.96

Sierra Leone -.327 -.071 48.58 8.697

Somalia -.166 -.125 19.904 17.825

South Africa -.334 0 50.144 28.951

Sudan -.561 0 127.79 69.284

Swaziland -.469 -.006 88.323 46.552

Tanzania -.242 -.057 31.926 23.751

Togo -.327 -.042 48.589 15.661

Uganda -.168 -.057 20.191 21.826

Zambia -.396 0 65.563 45.63

Zimbabwe -.379 -.099 61.035 35.921
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Table A-50: Counterfactual Change in Food Prices - Middle East and North Africa

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Algeria -.36 -.019 56.251 32.033

Bahrain -.219 0 28.033 19.754

Egypt .113 0 -10.152 2.943

Iran -.289 .002 40.648 33.444

Iraq -.411 0 69.775 32.181

Jordan -.27 -.019 36.986 18.564

Kuwait -.219 0 28.04 19.881

Lebanon -.27 -.012 36.987 28.029

Libya -.124 0 14.156 11.629

Morocco -.39 -.038 63.943 27.302

Oman -.219 0 28.039 17.587

Qatar -.219 0 28.04 25.392

Saudi Arabia -.219 0 28.041 20.696

Syria -.27 -.049 36.986 23.632

Tunisia -.36 -.019 56.25 28.447

United Arab Emirates -.219 0 28.041 17.641

Yemen -.282 -.031 39.278 25.125
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Table A-51: Counterfactual Change in Food Prices - Asia

Country Ag Productivity Change Manufacturing
Productivity Change

Autarky With Trade

Afghanistan -.247 -.086 32.806 21.242

Azerbaijan -.226 -.044 29.197 16.818

Bangladesh -.217 -.016 27.714 25.683

Bhutan -.381 -.034 61.553 40.819

Brunei -.179 0 21.806 21.636

Cambodia -.271 0 37.173 35.462

China -.072 -.036 7.765 7.913

Hong Kong -.072 0 7.758 10.497

India -.381 0 61.556 47.244

Japan -.057 -.01 6.041 9.157

Kazakhstan .114 -.031 -10.235 -5.317

Kyrgyzstan -.059 -.039 6.268 10.307

Maldives -.201 0 25.163 20.722

Myanmar -.393 0 64.742 41.112

Nepal -.173 -.07 20.924 19.834

Pakistan -.304 .001 43.678 40.005

Philippines -.234 0 30.548 19.969

South Korea -.093 -.015 10.254 12.046

Sri Lanka -.201 0 25.158 17.877

Tajikistan -.059 -.097 6.269 6.705

Thailand -.262 0 35.503 17.386

Uzbekistan -.121 -.065 13.766 12.432

Vietnam -.151 0 17.786 17.872
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Table A-52: Counterfactual Change in Food Prices - South America

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Argentina -.111 0 12.486 14.87

Barbados -.237 0 31.062 17.803

Bolivia -.43 -.042 75.439 38.358

Brazil -.169 0 20.34 18.347

Chile -.244 -.009 32.277 22.685

Colombia -.232 0 30.204 22.204

Ecuador -.288 0 40.448 19.993

Honduras -.237 -.006 31.063 16.769

Paraguay -.43 0 75.435 27.023

Peru -.306 -.005 44.091 23.927

Suriname -.43 0 75.436 24.519

Trinidad and Tobago -.237 0 31.057 12.666

Uruguay -.43 -.008 75.436 31.877

Venezuela -.319 0 46.837 34.644

Table A-53: Counterfactual Change in Food Prices - North and Central America

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Bahamas -.237 0 31.065 13.332

Belize -.237 0 31.065 16.946

Canada -.022 -.007 2.25 9.276

Costa Rica -.237 0 31.057 14.191

Dominican Republic -.237 0 31.058 16.654

El Salvador -.237 0 31.067 23.574

Guatemala -.237 -.017 31.069 19.503

Haiti -.237 -.045 31.062 17.404

Jamaica -.237 0 31.056 13.549

Mexico -.354 0 54.8 20.538

Nicaragua -.237 0 31.06 16.92

Panama -.237 0 31.06 18.066

United States -.059 .003 6.27 9.093
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Table A-54: Counterfactual Change in Food Prices - Europe

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Albania -.086 -.053 9.409 13.132

Armenia -.226 -.089 29.201 23.965

Austria -.05 -.029 5.271 6.526

Belarus .031 .012 -3.007 4.566

Belgium -.067 -.015 7.18 9.457

Bosnia and Herzegovina -.086 -.052 9.409 7.077

Bulgaria -.086 -.054 9.408 9.092

Croatia -.05 -.044 5.262 4.027

Cyprus -.078 0 8.46 11.172

Czech Republic -.05 -.021 5.263 7.433

Denmark .109 .006 -9.829 4.623

Estonia .031 .033 -3.007 4.376

Finland .109 .02 -9.828 -2.956

France -.067 -.027 7.181 8.486

Georgia -.226 -.091 29.198 14.232

Germany -.029 -.021 2.986 9.173

Greece -.078 -.012 8.461 8.65

Hungary -.05 -.05 5.263 6.162

Iceland .109 .009 -9.829 5.09

Ireland -.039 0 4.056 6.307

Israel -.27 0 36.987 23.532

Italy -.074 -.018 7.99 8.789
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Table A-55: Counterfactual Change in Food Prices - Europe

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Latvia .031 .032 -3.007 6.174

Lithuania .031 .018 -3.002 5.743

Luxembourg -.05 -.018 5.263 7.257

Macedonia -.086 -.061 9.405 7.019

Malta -.074 0 7.991 7.718

Moldova -.086 -.07 9.416 11.68

Montenegro -.086 -.03 9.41 7.236

Netherlands -.07 -.007 7.527 10.548

Norway .109 -.006 -9.83 3.725

Poland -.047 -.01 4.931 7.639

Portugal -.096 -.009 10.619 10.082

Romania -.066 -.056 7.067 6.077

Russia -.077 -.006 8.343 10.246

Serbia -.086 -.075 9.41 6.876

Slovakia -.05 -.032 5.263 6.094

Slovenia -.05 -.039 5.268 7.708

Spain -.089 -.012 9.768 10.424

Sweden .109 .011 -9.828 .349

Switzerland -.05 -.031 5.259 8.984

Turkey -.162 -.038 19.33 14.43

Ukraine -.052 -.038 5.492 9.617

United Kingdom -.039 -.002 4.057 7.879

Table A-56: Counterfactual Change in Food Prices - Western Pacific and Oceania

Country Ag Productivity
Change

Manufacturing
Productivity Change

Autarky With Trade

Australia -.266 0 36.24 24.799

Fiji .022 -.004 -2.152 12.003

Indonesia -.179 0 21.805 20.004

Malaysia -.225 0 29.027 18.33

New Zealand .022 0 -2.152 11.207

Singapore -.225 0 29.03 15.615
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Table A-57: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Sub-Saharan Africa

Country Autarky Estimated Trade Cost
Case

Low Trade Cost Case

Angola -.019 -.018 .003

Benin -.078 -.069 .009

Botswana -.116 -.087 .003

Burkina Faso -.07 -.063 -.038

Cameroon -.055 -.052 .011

Cape Verde -.12 -.046 -.023

Central African Republic -.428 -.356 -.037

Chad -.25 -.226 -.032

Comoros -.102 -.065 -.03

Congo -.225 -.079 .009

Cote d’Ivoire -.025 -.025 -.016

Democratic Republic of Congo -.131 -.129 -.12

Ethiopia -.171 -.169 -.091

Gabon -.15 -.069 .001

Gambia -.072 -.133 -.091

Ghana -.018 -.014 -.017

Kenya -.035 -.031 -.045

Lesotho -.147 -.072 -.085

Madagascar -.153 -.146 -.073
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Table A-58: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Sub-Saharan Africa

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Malawi -.225 -.225 -.119

Mali -.115 -.106 -.005

Mauritania -.126 -.101 .003

Mauritius -.013 -.007 -.01

Mozambique -.143 -.147 -.074

Namibia -.076 -.044 -.003

Niger -.163 -.121 -.056

Nigeria -.013 -.012 -.006

Rwanda -.434 -.387 -.086

Senegal -.155 -.08 -.046

Seychelles -.014 -.023 .038

Sierra Leone -.13 -.164 -.105

Somalia -.126 -.123 -.103

South Africa -.022 -.019 -.008

Sudan -.101 -.087 -.024

Swaziland -.172 -.121 -.013

Tanzania -.112 -.109 -.061

Togo -.099 -.125 -.066

Uganda -.096 -.085 -.049

Zambia -.208 -.199 -.001

Zimbabwe -.223 -.212 -.074
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Table A-59: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Middle East and North Africa

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Algeria -.031 -.028 -.019

Bahrain -.007 -.008 -.001

Egypt .008 .009 0

Iran -.018 -.016 -.004

Iraq -.04 -.031 -.004

Jordan -.028 -.026 -.026

Kuwait -.007 -.01 0

Lebanon -.014 -.015 -.022

Libya -.008 -.005 -.009

Morocco -.08 -.076 -.029

Oman -.007 -.007 -.009

Qatar -.003 -.003 -.002

Saudi Arabia -.006 -.005 -.001

Syria -.065 -.063 -.047

Tunisia -.041 -.035 -.048

United Arab Emirates -.003 -.002 -.002

Yemen -.063 -.056 -.028
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Table A-60: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Asia

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Afghanistan -.133 -.134 -.075

Azerbaijan -.057 -.053 -.035

Bangladesh -.062 -.058 -.022

Bhutan -.208 -.173 .013

Brunei -.004 -.004 .005

Cambodia -.07 -.057 .002

China -.04 -.04 -.04

Hong Kong -.001 -.001 -.004

India -.085 -.082 -.013

Japan -.011 -.008 -.01

Kazakhstan -.034 -.035 -.038

Kyrgyzstan -.058 -.047 -.052

Maldives -.012 -.017 -.035

Myanmar -.109 -.105 .002

Nepal -.092 -.084 -.064

Pakistan -.045 -.044 -.034

Philippines -.038 -.038 -.006

South Korea -.021 -.024 -.017

Sri Lanka -.027 -.03 0

Tajikistan -.078 -.074 -.119

Thailand -.036 -.028 -.002

Uzbekistan -.061 -.057 -.049

Vietnam -.028 -.029 -.01
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Table A-61: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - South America

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Argentina -.002 0 -.006

Barbados -.006 -.029 -.01

Bolivia -.108 -.095 -.036

Brazil -.01 -.008 -.006

Chile -.02 -.019 -.01

Colombia -.015 -.013 -.006

Ecuador -.028 -.031 -.003

Honduras -.041 -.032 -.011

Paraguay -.057 -.037 -.03

Peru -.04 -.04 -.008

Suriname -.024 -.008 -.015

Trinidad and Tobago -.013 -.012 .004

Uruguay -.034 -.028 -.014

Venezuela -.013 -.012 -.001

Table A-62: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - North and Central America

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Bahamas -.008 -.002 -.029

Belize -.021 -.024 -.001

Canada -.016 -.014 -.016

Costa Rica -.011 -.004 -.021

Dominican Republic -.017 -.022 .004

El Salvador -.023 -.015 -.021

Guatemala -.04 -.036 -.019

Haiti -.093 -.091 -.048

Jamaica -.024 -.024 .02

Mexico -.028 -.015 -.003

Nicaragua -.039 -.031 -.021

Panama -.017 -.018 -.002

United States 0 .001 0
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Table A-63: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Europe

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Albania -.047 -.04 -.047

Armenia -.095 -.087 -.077

Austria -.029 -.026 -.031

Belarus -.011 -.011 -.007

Belgium -.017 -.016 -.015

Bosnia and Herzegovina -.049 -.049 -.065

Bulgaria -.047 -.045 -.033

Croatia -.038 -.041 -.03

Cyprus -.001 .002 .003

Czech Republic -.029 -.024 -.027

Denmark 0 .005 .005

Estonia .008 .002 .02

Finland .003 -.001 .006

France -.025 -.024 -.021

Georgia -.098 -.084 -.075

Germany -.023 -.023 -.021

Greece -.011 -.015 -.007

Hungary -.045 -.045 -.035

Iceland .005 .014 .009

Ireland -.001 -.002 -.003

Israel -.005 -.009 -.012

Italy -.016 -.016 -.015
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Table A-64: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Europe

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Latvia .006 .008 .005

Lithuania -.004 -.003 -.015

Luxembourg -.015 -.017 -.008

Macedonia -.055 -.049 -.053

Malta -.001 -.005 .006

Moldova -.067 -.048 -.05

Montenegro -.03 -.032 -.016

Netherlands -.009 -.012 -.006

Norway -.003 -.002 -.004

Poland -.022 -.02 -.025

Portugal -.01 -.011 -.007

Romania -.051 -.053 -.042

Russia -.024 -.023 -.025

Serbia -.064 -.057 -.071

Slovakia -.036 -.035 -.031

Slovenia -.036 -.033 -.044

Spain -.011 -.008 -.007

Sweden -.002 -.005 .004

Switzerland -.028 -.032 -.022

Turkey -.036 -.036 -.03

Ukraine -.042 -.037 -.046

United Kingdom -.004 -.003 0

Table A-65: Equivalent Variation Willingness-to-Pay (Share of GDP)
Alternative Trade Cost Cases - Western Pacific and Oceania

Country Autarky Estimated Trade Cost Case Low Trade Cost Case

Australia -.004 -.005 -.003

Fiji .001 -.007 .008

Indonesia -.023 -.018 -.006

Malaysia -.012 -.012 -.001

New Zealand 0 .009 .002

Singapore -.005 -.009 0
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Table A-66: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits -

Sub-Saharan Africa

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP
Share

Baseline

Ag GDP
Share 2080

Baseline

Ag GDP
Share 2080
Counter-

factual

EV WTP
Losses
from

Present
Baseline

EV WTP
Losses

from 2080
Baseline

Angola 2.09 .05 .034 .033 -.029 -.008

Benin 1.63 .156 .121 .074 -.131 -.033

Botswana 3.28 .062 .034 .019 -.087 -.035

Burkina Faso 1.2 .24 .187 .23 -.09 -.075

Cameroon 1.68 .216 .145 .166 -.106 -.051

Cape Verde 1.43 .163 .083 .06 -.05 -.084

Central African Republic 1.47 .299 .287 .094 -.436 -.316

Chad 1.13 .257 .213 .243 -.226 -.221

Comoros 1.34 .083 .053 .006 -.081 .088

Congo 2.73 .092 .046 .005 -.093 -.046

Cote d’Ivoire 1.39 .17 .132 .14 -.064 -.033

Democratic Republic of Congo 10.19 .421 .151 .169 -.159 -.027

Ethiopia 1.23 .359 .333 .376 -.19 -.182

Gabon 1.23 .073 .065 .006 -.069 -.04

Gambia 1.24 .008 .074 .027 -.206 -.133

Ghana 1.65 .181 .143 .164 -.024 -.011

Kenya 2.59 .156 .102 .109 -.049 -.017

Lesotho 1.56 .107 .045 .03 -.081 -.121

Madagascar 1.8 .404 .299 .275 -.154 -.127
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Table A-67: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits -

Sub-Saharan Africa

Country Projected
GDP

Per-Capita
2080 / Present

Ag GDP Share
Baseline

Ag GDP Share
2080 Baseline

Ag GDP Share
2080 Counter-

factual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080 Baseline

Malawi 2.84 .436 .309 .357 -.244 -.167

Mali 1.81 .197 .147 .146 -.126 -.067

Mauritania 1.98 .249 .157 .149 -.101 -.074

Mauritius 1.69 .038 .017 .028 -.009 -.008

Mozambique 1.92 .367 .267 .305 -.169 -.13

Namibia 2.29 .099 .06 .027 -.044 -.035

Niger 1.97 .325 .196 .248 -.193 -.125

Nigeria 2.16 .068 .045 .049 -.012 -.008

Rwanda 1.14 .409 .39 .322 -.394 -.366

Senegal 1.24 .153 .1 .047 -.105 -.101

Seychelles 2.03 .016 .031 .004 -.023 .038

Sierra Leone 1.49 .139 .177 .173 -.204 -.146

Somalia 2.27 .334 .201 .219 -.176 -.152

South Africa 2.7 .056 .036 .03 -.033 -.012

Sudan 1.67 .12 .092 .068 -.087 -.065

Swaziland 1.92 .102 .058 .034 -.135 -.091

Tanzania 1.19 .298 .239 .318 -.131 -.123

Togo 1.26 .316 .277 .302 -.183 -.149

Uganda 1.25 .416 .338 .404 -.109 -.115

Zambia 1.52 .36 .28 .318 -.233 -.181

Zimbabwe 4.17 .302 .122 .14 -.248 -.111
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Table A-68: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - Middle

East and North Africa

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP
Share

Baseline

Ag GDP
Share 2080

Baseline

Ag GDP
Share 2080

Counterfac-
tual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080
Baseline

Algeria 1.96 .034 .022 .015 -.068 -.029

Bahrain 2 .015 .013 .006 -.008 -.008

Egypt 2.08 .077 .049 .07 .009 .006

Iran 1.62 .051 .038 .042 -.067 -.019

Iraq 2.9 .05 .023 .019 -.031 -.018

Jordan 2.53 .038 .032 .025 -.055 -.007

Kuwait 1.19 .005 .003 .004 -.01 -.005

Lebanon 1.91 .079 .058 .056 -.034 -.007

Libya 2.07 .067 .043 .048 -.026 -.01

Morocco 1.44 .1 .086 .048 -.093 -.071

Oman 1.14 .023 .018 .015 -.007 -.01

Qatar 1.92 .008 .007 .005 -.003 0

Saudi Arabia 1.43 .016 .011 .011 -.005 -.004

Syria 1.54 .09 .058 .058 -.106 -.094

Tunisia 2.77 .055 .037 .021 -.068 -.016

United Arab Emirates 1.97 .016 .011 .013 -.002 -.001

Yemen 7.17 .11 .04 .04 -.086 -.018
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Table A-69: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - Asia

Country Projected
GDP

Per-Capita
2080 / Present

Ag GDP Share
Baseline

Ag GDP Share
2080 Baseline

Ag GDP Share
2080 Counter-

factual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080 Baseline

Afghanistan 2.19 .278 .186 .218 -.158 -.134

Azerbaijan 2.23 .088 .055 .054 -.075 -.054

Bangladesh 1.52 .189 .144 .165 -.093 -.058

Bhutan 3.4 .267 .134 .075 -.179 -.076

Brunei .71 .027 .006 .023 -.004 -.007

Cambodia 4.62 .19 .092 .085 -.064 -.019

China 3.48 .064 .034 .038 -.065 -.03

Hong Kong 1.92 .018 .012 .013 -.001 -.002

India 3.24 .161 .087 .106 -.082 -.045

Japan 1.72 .012 .008 .009 -.017 -.007

Kazakhstan 2.23 .088 .056 .06 -.05 -.044

Kyrgyzstan 10.26 .156 .041 .062 -.062 -.069

Maldives 1.77 .021 .03 .073 -.023 -.04

Myanmar 2.13 .209 .144 .179 -.111 -.071

Nepal 1.52 .283 .223 .277 -.109 -.103

Pakistan 1.69 .133 .103 .111 -.06 -.031

Philippines 1.99 .105 .07 .064 -.038 -.022

South Korea 1.54 .012 .007 .009 -.035 -.022

Sri Lanka 1.28 .109 .105 .099 -.03 -.02

Tajikistan 10.58 .232 .075 .081 -.101 -.06

Thailand 2.61 .072 .045 .033 -.028 -.014

Uzbekistan 9.37 .108 .04 .044 -.092 -.005

Vietnam 4.55 .158 .078 .082 -.049 -.014
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Table A-70: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - South

America

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP
Share

Baseline

Ag GDP
Share 2080

Baseline

Ag GDP
Share 2080

Counterfac-
tual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080
Baseline

Argentina 2.1 .065 .051 .058 -.009 -.002

Barbados 1.19 .035 .055 .047 -.029 -.008

Bolivia 1.79 .125 .096 .071 -.132 -.105

Brazil 2.46 .063 .041 .043 -.008 -.009

Chile 1.89 .053 .035 .029 -.022 -.014

Colombia 1.92 .066 .047 .051 -.031 -.011

Ecuador 1.79 .098 .075 .067 -.043 -.021

Honduras 1.52 .082 .061 .045 -.072 -.04

Paraguay 2 .151 .079 .062 -.048 -.046

Peru 1.91 .104 .073 .063 -.064 -.029

Suriname 2.35 .028 .019 .006 -.008 -.019

Trinidad and Tobago 1.85 .004 .009 .002 -.012 -.004

Uruguay 2.25 .091 .062 .018 -.031 -.014

Venezuela 2.33 .027 .017 .016 -.012 -.005
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Table A-71: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - North and

Central America

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP
Share

Baseline

Ag GDP
Share 2080

Baseline

Ag GDP
Share 2080

Counterfac-
tual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080
Baseline

Bahamas 1.84 .02 .006 .011 -.002 -.024

Belize 1.8 .104 .083 .097 -.024 .009

Canada 1.63 .019 .014 .02 -.02 -.02

Costa Rica 1.38 .021 .015 .015 -.004 -.017

Dominican Republic 1.74 .046 .035 .027 -.022 -.008

El Salvador 1.92 .108 .059 .064 -.015 -.02

Guatemala 1.69 .151 .118 .116 -.057 -.035

Haiti 2.45 .161 .12 .134 -.123 -.067

Jamaica 3.38 .074 .041 .033 -.024 -.006

Mexico 2.62 .031 .019 .009 -.015 -.009

Nicaragua 1.9 .11 .061 .079 -.061 -.028

Panama 1.74 .06 .048 .035 -.018 -.009

United States 1.96 .023 .017 .022 -.011 0
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Table A-72: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - Europe

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP
Share

Baseline

Ag GDP
Share 2080

Baseline

Ag GDP
Share 2080

Counterfac-
tual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080
Baseline

Albania 2.08 .129 .077 .058 -.056 -.049

Armenia 4.46 .104 .047 .05 -.106 -.074

Austria 1.6 .012 .008 .01 -.039 -.039

Belarus 2.2 .05 .033 .039 -.016 -.023

Belgium 1.69 .02 .012 .015 -.02 -.019

Bosnia and Herzegovina 3.79 .047 .025 .039 -.061 -.05

Bulgaria 1.86 .06 .041 .046 -.06 -.045

Croatia 2.16 .042 .029 .037 -.06 -.038

Cyprus 2.66 .06 .033 .046 .002 0

Czech Republic 1.61 .018 .011 .013 -.036 -.038

Denmark 1.76 .033 .025 .039 .005 .001

Estonia 1.95 .036 .036 .029 .001 .01

Finland 1.81 .013 .009 .014 -.002 -.002

France 1.81 .026 .019 .025 -.035 -.024

Georgia 4.68 .086 .032 .031 -.1 -.06

Germany 1.75 .011 .007 .01 -.032 -.026

Greece 1.89 .037 .028 .028 -.033 -.008

Hungary 2.4 .028 .02 .023 -.07 -.045

Iceland 2.2 .063 .059 .075 .015 .008

Ireland 1.7 .002 .003 .003 -.002 -.002

Israel 2.19 .016 .01 .006 -.009 .003

Italy 2.21 .019 .012 .014 -.035 -.014
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Table A-73: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - Europe

Country Projected
GDP

Per-Capita
2080 /

Present

Ag GDP Share
Baseline

Ag GDP Share
2080 Baseline

Ag GDP Share
2080 Coun-
terfactual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080 Baseline

Latvia 2.37 .037 .034 .045 .006 -.008

Lithuania 2.04 .035 .029 .031 -.006 -.021

Luxembourg 2.18 .013 .01 .011 -.026 -.008

Macedonia 3.82 .104 .056 .064 -.064 -.046

Malta 2.56 .006 .009 .015 -.013 .003

Moldova 8.94 .169 .036 .062 -.06 -.052

Montenegro 2.06 .054 .041 .046 -.041 -.032

Netherlands 2.1 .027 .019 .022 -.014 -.005

Norway 1.71 .02 .012 .026 -.002 -.002

Poland 2.3 .031 .019 .024 -.028 -.029

Portugal 2.73 .026 .015 .018 -.014 .001

Romania 2.81 .06 .036 .041 -.072 -.045

Russia 2.16 .03 .02 .023 -.028 -.034

Serbia 3.55 .069 .037 .045 -.081 -.06

Slovakia 1.71 .022 .014 .015 -.05 -.047

Slovenia 1.5 .017 .01 .014 -.048 -.054

Spain 1.88 .023 .016 .018 -.023 -.003

Sweden 1.7 .009 .007 .011 -.005 -.002

Switzerland 2.02 .003 .002 .004 -.043 -.024

Turkey 1.98 .047 .034 .038 -.053 -.038

Ukraine 4.38 .105 .054 .069 -.045 -.038

United Kingdom 2.12 .015 .01 .014 -.003 -.001
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Table A-74: Equivalent Variation Willingness-to-Pay (Share of GDP)
Accounting for Economic Growth and Adaptation Costs and Benefits - Western

Pacific and Oceania

Country Projected
GDP

Per-Capita
2080 / Present

Ag GDP Share
Baseline

Ag GDP Share
2080 Baseline

Ag GDP Share
2080 Counter-

factual

EV WTP
Losses from

Present
Baseline

EV WTP
Losses from

2080 Baseline

Australia 1.5 .036 .03 .022 -.005 0

Fiji 3.79 .126 .08 .101 -.012 -.003

Indonesia 4.84 .112 .05 .057 -.018 -.012

Malaysia 2 .042 .031 .028 -.012 -.002

New Zealand 2 .078 .057 .08 .009 .003

Singapore 1.6 .007 .006 .005 -.009 -.003
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Table A-75: Country-Level Panel Regression

(1) (2) (3) (4)

log(GDP) Food Share of Imports Ag Share of GDP Ag Labor Share

KDD X 100 -0.0223 0.00638 0.0165 0.00483

(-0.55) (1.80) (3.92) (3.14)

GDD X 100 0.00251 -0.00191 -0.00165 -0.00113

(0.44) (-2.87) (-1.53) (-1.74)

Observations 7561 5775 5522 3718

Country FE X X X X

Year FE X X X X

Ag Labor Weights

Notes: t-statistics in parentheses. Reported Driscoll and Kraay (1998) standard errors are robust
to heteroskedasticity, spatial correlation, and autocorrelation of up to 5 lags. Results come from
estimating Equation 24 with crop-area weighted growing and killing degree days. Data covers 164
countries from 1960-2012 with varying coverage by country and outcome variable. Economic data
from all sources above are retrieved from the World Bank Databank.
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Appendix G: Model Robustness
In this section, I evaluate the robustness of the counterfactual model simulations pre-
sented in Section 7 to three sets of different assumptions - an alternative specification for
nonhomothetic consumer preferences, an alternative functional form to represent sector-
country level productivity distributions, and a version of the model that allows for hetero-
geneous workers in each country.

Appendix G.1: Stone-Geary Preferences
I test that the model predictions are robust to the way nonhomothetic consumer prefer-
ences are specified by estimating a version of the model in which the representative agent
in country k has the following generalized Stone-Geary preferences over the sectoral final
goods in agriculture, manufacturing, and services:54

U(Cka, Ckm, Cks) =

(
ω

1
σ
a (Cka − Cka)

σ−1
σ + ω

1
σ
m(Ckm − Ckm)

σ−1
σ

+ω
1
σ
s (Cks − Cks)

σ−1
σ

) σ
σ−1

(27)

This specification is ubiquitous in the literature on structural transformation and has
the advantage of intuitively capturing subsistence requirements for food by specifying a
level of consumption below which people cannot survive. However, the model fit to the
data is much weaker with Stone-Geary preferences than with the primary nonhomothetic
CES specification, as shown in Figure A-34.

Table A-76 shows that the results in this version of the model are very similar to the
baseline specification. For the poorest quartile of the global population, climate change
increases agriculture’s share of the labor force by 2.8 percentage points, reduces GDP by
10.7 percentage points, reduces welfare (as captured by willingness-to-pay) by 7 percent-
age points, and raises food prices by 37%. These results are very similar to the results in the
baseline specification.

Appendix G.2: Lognormal Productivity Distributions
I estimate a version of the model with lognormal rather than Frechet sector-country pro-
ductivity distributions to test robustness to functional form. In this specification the pro-
ductivity draw, zijk, received by each intermediate goods producer is drawn from a log-
normal distribution with sector-specific variance parameterϕj and sector-country specific
mean parameter Zjk:

zijk ∼ Fjk where Fjk(zi) = Φ

(
(ln(x)− Z

ϕ

)
I estimate ϕj to match the standard deviation of the productivity distributions in the

54The consumption parameter estimates for this version of the model are σ = 0.89, ωa = 0.020,
ωm = 0.141, ωs = 0.839, Ca = 75.5.
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Figure A-34: Agriculture Share of GDP - Data vs. Simulation
Stone-Geary Specification

Notes: Graph shows the fit of simulated agriculture share of GDP to data from the World Bank with
an alternative model specification using Stone-Geary preferences over sectoral consumption. The
best fit with Stone-Geary preferences has an R2 of only 0.43 and dramatically underpredicts the
agriculture share in middle-income countries especially. In contrast, the chosen nonhomothetic
CES preferences from Comin, Lashkari and Mestieri (2015) explain over 60% of the variation.

Table A-76: Climate Change Counterfactual Summary
Alternative Model Assumptions

Country ∆ Ag Labor
Share

∆ GDP Willingness to
Pay

∆ Food Prices

Baseline

World .005 -.021 -.017 .223

Poorest Quartile .028 -.126 -.088 .377

Lognormal Productivity

World .005 -.023 -.018 .209

Poorest Quartile .022 -.131 -.09 .338

Stone-Geary Preferences

World .003 -.018 -.015 .219

Poorest Quartile .028 -.107 -.07 .371
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Frechet case, which yields estimates of ϕa = 0.337 and ϕm = 0.398. I estimate Zjk to match
both the ratio of value-added per worker across sectors and the overall level of value-added
per worker in each country, as in the Frechet case.

Table A-76 shows that the results with lognormal productivity distributions are very
similar to the baseline specification, with slightly larger declines in GDP and welfare, and
slightly rises changes in food prices and agricultural labor shares in low-income countries.

Appendix G.3: Heterogeneous Workers
The baseline model makes the limiting assumption that each country contains a popu-
lation of representative agents that each receive the same wage. In practice, we observe
that wages differ substantially across sectors. Agricultural workers have lower wages than
non-agricultural workers in most parts of the world, and especially so in poor countries.

In this section, I specify a version of the model with heterogeneous worker skill levels
and explore how this extension affects the primary comparative statics of interest in the pa-
per.55 While an alternative model specification with adjustment costs that impede moving
across sectors could also replicate the pattern in the macro data, recent empirical evidence
points to worker heterogeneity as the central force underlying sectoral wage differences.
In particular, Hicks, Kleemans, Li and Miguel (2017) find that workers experience only
small gains in wages by moving from agriculture to non-agriculture when controlling for
individual-level fixed effects. This suggests that low wages in agriculture stem from the
different characteristics of the people working in that sector, rather than from barriers that
prevent them from realizing large productivity and wage gains from a potential move into
non-agricultural sectors.

In the version of the model with worker heterogeneity I start by assuming that each
country has a fixed endowment of high-skill and low-skill workers, LH and LL. Inter-
mediate goods producers in each of the three sectors employ workers of both types and
have sector-specific CRS production functions with varying skill-intensity (for simplicity I
assume that manufacturing and services have the same skill-intensity):

Yia = zial
β
Hial

1−β
Lia

Yim = ziml
α
Himl

1−α
Lim (28)

Yis = zisl
α
Hisl

1−α
Lis

α > β

Manufacturing and services are more high-skill intensive than agriculture, as reflected
by the high-skill labor production elasticities α > β. Solving the firm’s problem gives the
following optimal ratio of high-skill and low-skill workers employed in each sector as a
function of the production elasticities and relative wages:

55Note that I do not estimate this version of the model because the simplified framework with
two types of workers does not straightforwardly correspond to the data. In addition, it is not obvious
how to estimate production elasticities by sector even if high-skill and low-skill workers were well-
defined in practice.
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LHm
LLm

=
α

1− α

(
wL
wH

)
LHa
LLa

=
β

1− β

(
wL
wH

)
With α > β, these conditions imply that manufacturing and services firms will employ

a higher share of high-skill workers than agricultural firms for any set of relative wages.
The relative wage will adjust to satisfy both these conditions as well as the labor market
clearing conditions in both sectors (total employment by skill type across the three sectors
must add up to the country-level endowment by skill type) such that wages respond both
to productivity and to the relative scarcity of each type of worker.

This version of the model leaves several predictions of the baseline specification un-
changed, and makes two distinct predictions worth highlighting. The predictions of the
baseline model that carry through in this extension concern the basic dynamics of sectoral
reallocation in response to a productivity shock. As in the baseline model, a decline in
agricultural productivity (Za falls) will raise the marginal cost of production for firms in
agriculture, forcing them to raise prices in a competitive market. The variety-level increases
in pa will raise the corresponding aggregate price index for the final good in agriculture,
Pa. The nonhomothetic consumer preferences remain as in the baseline specification, so
Equation 22 governing the expenditure share in agriculture will continue to dictate that
Xak rises in response to the rise in Pa and the decline in real wages associated with the
productivity shock. As in the baseline model, Equation 23 shows that agriculture’s share
of employment will rise with the expenditure share if the response of net exports to the
change in comparative advantage is not sufficiently large. Thus, the competing forces of
subsistence food requirements and international trade that govern the primary sectoral
reallocation comparative statics are qualitatively robust to the extension with worker het-
erogeneity.

The model extension adds two dimensions of richness to our understanding of sec-
toral reallocation following a productivity shock in agriculture - more information about
the distributional consequences of climate change and a more nuanced representation of
comparative advantage. Incorporating heterogeneous workers into the model allows me to
examine the distributional consequences of climate change within, in addition to across,
countries. On this point, the model predicts that the relative wage of low-skill workers to
high-skill workers rises with the revenue share of agriculture.56 Thus, the ‘food problem’

56The outline of the proof of this statement is as follows. In a perfectly competitive market with
low-skill and high-skill workers as the only inputs to production, each sector’s revenues are split
between their workers according to their Cobb-Douglas production elasticities. So total income for
each category is given by:

wLLL = (1− β)Ra + (1− α)Rm + (1− α)Rs

wHLH = βRa + αRm + αRs

Consider a 1% increase in the revenue share of agriculture, ra, and a 1% decline in the revenue share
of manufacturing, rm. The change in low-skill share of total income is given by α−β and the change
in the high-skill share of total income is given by β−α. Withα > β the low-skill share of total income
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actually works to partially insulate farmers from the welfare costs of declining agricultural
productivity. Intuitively, inelastic demand for the sectoral output good causes a strong
response of the output price that raises the relative wages of the low-skill workers dispro-
portionately employed in that sector. So while the relationship between greater openness
to international trade, sectoral reallocation, and aggregate productivity remains similar in
the case of heterogeneous workers, the extended model suggests that the adaptation gains
from trade will likely be smaller for agricultural and other low-skill workers if trade moves
domestic production away from that sector.

The second insight of the model with heterogeneous workers is that comparative ad-
vantage depends not only on the relative aggregate productivities in each sector, but also
on the relative scarcity of high-skill and low-skill workers. Burstein and Vogel (2017) use
a very similar model to specify a generalized definition of comparative advantage that
incorporates both these Ricardian and Heckscher-Ohlin forces. In this framework, com-
parative advantage evolves endogenously with sectoral reallocation as relative wages shift
with labor demand. Movement into (away from) agriculture raises (lowers) the relative
wage of low-skill workers and shifts comparative advantage further toward (away from)
manufacturing. For the primary climate change counterfactuals of interest in the paper,
this additional channel would have the effect of attenuating the degree of sectoral reallo-
cation in both directions. If the ‘food problem’ shifts production toward agriculture when
its productivity falls, the resulting increase in the relative wage of low-skill workers pushes
comparative advantage further toward manufacturing and endogenously strengthens the
importance of the trade response pulling labor away from agriculture. Similarly, in the case
of relatively free trade, production moving away from agriculture would reduce the relative
wage of low-skill workers and endogenously dampen the movement of comparative ad-
vantage away from agriculture.

Overall, extending the model to represent workers of heterogeneous skill type leaves
the fundamental predictions about climate change and sectoral reallocation unchanged,
but sheds additional light on the forces underlying comparative advantage and the distri-
butional consequences of climate change.

rises. Since the total number of low-skill and high-skill workers is fixed, wL

wH
also rises.
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