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Overview

* What is Machine Learning?

* Why Agricultural Trade Patterns?

* Gravity Model and Data

e Results from Econometric and ML Approaches
* So What?
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So, What is Machine Learning?

* A set of algorithms for advanced statistical analysis
and intelligent problem-solving

e Offers a novel and flexible approach to model
relationships, i.e. quantify Y’s response with or
without a set X of possible predictors (supervised
or unsupervised)



Four Paradigms of ML
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Econometrics versus Machine Learning in
the Predictive Context

* Least Squares or any other model for prediction:
~ A\ _ : N
- (a,8) = argmin XL (Y —a = BTX)?.

* Goal of ML, most often, is to predict Yy, from Xy, 1.
Recast that goal into a Loss function:

* (Y41 — ?N+1)2-

* Does not invoke a specific relationship between Y and X

* Least squares is indeed an approach to minimize the loss
function, but other estimators exist that dominate least

sgquares



What Other Approaches?
Machine Learning?

Regression, auto-regressive moving average, and other
forecasting models

» for predictions and time series analysis

Decision trees, random forests, and multiple classification
algorithms

 for decision making and categorizations

Bagging, boosting and stacking
e for improving weak learners, and tuning the outputs

Clustering, associations, and correlation analysis
e unsupervised outputs and pattern recognition models

Neural networks, deep learning and other ensemble ML methods
e advanced bio inspired models

New techniques emerge every month!



Decision Trees: An Example

Baseball Salaries by Experience and Performance
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Decision Tree — The Math

* Total-sample sum of squared errors for outcome Y is given
by: N N
Q=) (-7 P=>"
i=1 =1

* After a split based on one of the predictors (X}, ) using the
threshold Xj < ¢, the sum of total-sample squared errors
is:

Q(k,c) = z (Y; = Vi) + z (Y; = Yeer)?

I=Xk<C 1=X>cC

* where /and r denote left and right of X}, using the cut-off c and

— Z:l:=XikSC Yi

Li=xy>c Vi
— _ Hi=Xjp>c
* Yic1 =

’ Yl,c,r —

Zi=XikSC 1 ZI:=Xik>C 1



Why Agricultural Trade?

The recent trade wars have challenged economists in
predicting trade flows (patterns) across countries.

* Agricultural trade has been caught in the recent tariff crossfire.
» Agricultural trade reforms have been a sensitive issue (e.g. Doha, TPP)

* Trade policy uncertainty opens up the possibility that alternative
approaches may be needed to make better forecasts.

We rely on the popular gravity model, but employ ML tools to
answer three questions:

* Which economic variables (such as GDP and population) are likely
associated with a country’s exports?

e Can ML algorithms ensure learning and explain predictions from
country-commodity-year cubical trade data?

e Can ML techniques qualitatively improve the forecast relative to that
from traditional econometrics or applied/computable GE models?



Gravity Model

* Applied to the standard gravity specification
*Yiiie = 9(Xit, Xj1, 1, ], t)

* Y;;¢ is bilateral trade between country i and country j at
timet

* Xit(jt) is the set of possible predictors from both
countries

* Set {i, ], t} refers to a variety of controls on all three
dimensions



* Wheat
* Beef

* Corn

* Soy

* Sugar
* Milk

* Rice

Why Primary

Commodities?
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Data

* Bilateral trade data - Global Agricultural Trade
System (GATS)

e U.S. ITC’s Gravity Portal (2019) for gravity variables

e Over 70 variables, but 35 chosen based on correlation
(cardinality in ML)

* MacMap — Tariffs (since 1988 only)

 Data available for 1960-2017/18, but vary across
commodities



Traditional Approach

* Poisson Pseudo-Maximum Likelihood Approach

e Recent method with all the bells and whistles
e Zero trade
* Heteroskedasticity

* Exporter-time or importer-time dummies for multilateral
resistance

* PPML rarely used for prediction

* Has been challenged in quantifying economic
significance



* Neural Networks ‘

* Boosting

ML Technologies used

R

kaggle %@
') Google Cloud Platform gdéolitg;rver
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Regression and ARIMA Predictions (included in

the ML Toolbox) , g
o = Y,

g Forecasts from ARIMA(1,0,12) with non-zero mean
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Supervised and Unsupervised Methods
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Boosting and Bagging in
Supervised Methods

Similarities

Differences

Both are ensemble methods to get N
learners from 1 learner...

... but, while they are built independently
for Bagging, Boosting tries to add new
models that do well where previous
models fail.

Both generate several training data sets by
random sampling...

... but only Boosting determines weights
for the data to tip the scales in favor of the
most difficult cases.

Both make the final decision by averaging
the N learners (or taking the majority of
them)...

... but it is an equally weighted average for
Bagging and a weighted average for
Boosting, more weight to those with
better performance on training data.

Both are good at reducing variance and
provide higher stability...

... but only Boosting tries to reduce bias.
On the other hand, Bagging may solve the
over-fitting problem, while Boosting can

increase it.
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Supervised ML Model Results

Commodity Observations LightGBM XGBoost Random Extra Trees
Forest Regression

Beef Training — 27153 0.538 0.598 0.560 0.601
Test — 7290

Corn Training — 29500 0.680 0.624 0.723 0.678
Test — 10583

Milk Powder Training — 58434 0.782 0.772 0.787 0.828
Test — 15594

Rice Training - 47697 0.426 0.416 0.451 0.423
Test — 12750

Soybean Training — 22448 0.593 0.616 0.649 0.581
Test — 6018

Sugar Training — 28660 0.448 0.347 0.439 0.447
Test — 7644

Wheat Training — 26520 0.670 0.498 0.643 0.665

Test — 7212



SUPERVISED

Total Trade Projections — Extra-trees
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Bilateral Trade — Extra-trees
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Economic Significance — Supervised Model

Variables Beef Corn Milk Rice  Soybean Sugar  Wheat
Powder

Population_Origin 100 100 100 100 67 43 100
Population_Destination 78 9 48 80 84 100 30
Distance 9 8 61 69 89 70 33
GDP Per Capita_Origin 55 90 34 63 30 18 40
Longitude_Destination 66 15 20 26 100 39 44
Latitude Destination 53 16 54 41 14 92 17
Longitude_Origin 34 12 81 35 39 9 48
Latitude_Origin 92 39 34 49 5 17 72
GDP Per 27 6 36 31 30 29 27
Capita_Destination

Time 10 5 53 33 95 19 17
Tariffs 15 2 13 52 6 24 9




Unsupervised Model Predictions

Australia - Beef Exports
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Unsupervised Model Predictions
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* Neural Networks

* Boosting

So what?

 Existing forecasts: by WTO, OECD and USDA - model-
based analyses and expert judgement with high
variability
* Farmers likely consider the potential demand from alternative

foreign sources before deciding to plant crops, especially in
large exporters!

* Countries setting budgets for farm programs need better
predictions of prices and trade flows for assessing domestic
production and consumption needs

e Offer an alternative to complex trade models and
expert judgment analyses by relying on data-driven and
deep learning a]pproaches that allow for robust
specifications of complex economic relationships

»~



Ongoing work on

(substitutes and
complements in
international

trade) and

(G20
versus WTO Policy
making)




