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techniques were trained on data until 2010 (2014), and projections were made for 2011-2016 

(2014-2020). Results show the high relevance of ML models to predicting trade patterns in near- 

and long-term relative to traditional approaches, which are often subjective assessments or time-

series projections.  While supervised ML techniques quantified key economic factors underlying 

agricultural trade flows, unsupervised approaches provide better fits over the long-term. 
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Machine Learning in Gravity Models: An Application to Agricultural Trade 

 

Over the past decade, the availability of big data and advances in software systems have 

challenged conventional statistical and econometric techniques in modeling complex economic 

relationships (Varian 2014).  The challenges include dealing with the sheer volume of data 

(evolving from spreadsheets and SQL databases towards Hadoop clusters and distributed data), 

the lengthy list of variables available to explain such relationships (and associated collinearity 

issues), and the need to move beyond simple linear models.  Machine learning (ML) has been 

offered as an alternative to address many of these challenges (Bajari et al. 2015; Mullainathan 

and Spiess 2017; Batarseh and Yang 2017; Athey and Imbens 2019).  Several authors including 

Chief Economists of Google and Amazon have strongly advocated the use of big data and ML to 

uncover increasingly complex relationships even in an analysis as simple as fitting a supply or 

demand function.  The economics community is catching on, but the speed of ML advances, i.e. 

new techniques emerge every month, can make an academic study stale by the time peer reviews 

are completed. Nonetheless, the academic community facing seismic shocks from advances in 

data and ML has been called on to revisit time-tested theories and relationships (Mullainathan 

and Spiess 2017).  This study takes on this challenge in the context of international trade and 

offers a ML application using agricultural trade data spanning several decades. 

 Many international institutions and government agencies project economic variables 

including trade flows to inform decisions in national and multilateral contexts (World Economic 

Outlook – International Monetary Fund 2019; Trade in Goods and Services Forecast, 

Organization for Economic Cooperation and Development 2019; World Trade Organization 

2019; U.S. Department of Agriculture 2019).  Since these projections are based on a combination 
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of model-based analyses and expert judgment, several sources have pointed to their limitations, 

e.g. forecast accuracy under 35% (U.S. Department of Agriculture 2019) and quantifying the 

contribution of underlying economic factors (Chapter 4, World Economic Outlook – 

International Monetary Fund 2019).  With recent trade disruptions such as Brexit, U.S.-

China/Japan-South Korea tariffs, the need for alternative approaches to understanding and 

predicting (modeling) trade flows is greater now than ever before.  The initial and retaliatory 

tariffs between/among major trading economies, especially in the context of agricultural trade, 

have created a level of uncertainty and complexity unknown over the past several decades.  

Compounding the situation is the static nature of most trade models, which often conduct 

comparative static analysis of trade outcomes from deterministic trade policy changes.  Little 

guidance exists on theoretical modeling of trade policy uncertainty and its implications for 

producer and consumer preferences or behavior.   

In this study, ML techniques are applied to the gravity model of bilateral (aggregate or 

industry) trade flows.  The gravity model is often referred to as the workhorse in international 

trade due to its popularity and success in quantifying the effects of various determinants of 

international trade.  Originally due to Anderson (1979) and applied to data in Anderson and van 

Wincoop (2003), the gravity model provides the causal association needed to implement ML 

algorithms in the predictive domain (Athey and Imbens 2019, Yotov et al. 2016, Santos Silva 

and Tenreyro 2006).  In doing so, this study offers an alternative to time-series projections and 

expert judgment analyses by relying on data-driven and deep learning approaches that allow for 

alternative and robust specifications of complex economic relationships (Baxter and Hersh 2017; 

Storm, Baylis and Heckelei 2019).  ML models can also provide accurate predictions, a priority 
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of many economists in recent months given the trade disruptions among the major economies of 

the world.   

 

MACHINE LEARNING METHODS 

Machine learning, a set of algorithms for advanced statistical analysis and intelligent problem 

solving, offers a novel and flexible approach (driven by big data sets) to model relationships, i.e. 

quantify Y’s response with or without a set X of possible predictors, either supervised or 

unsupervised, respectively (James et al. 2013). Supervised learning, which includes regression 

and classification approaches, relate the response of Y to X for either better understanding of their 

relationship or predicting the response of Y to a potential/future set of X.  In contrast, 

unsupervised learning usually does not have a pre-defined response variable (Y) and aims to 

understand the relationships between/among X or observations.  In both settings, often 

relationships are derived from one or more “training” data sample and applied to a “test” data 

sample to compute prediction accuracy.  The sheer volume of data available in recent times 

allows such a partition of data for cross-validation, i.e. training and testing.  However, a major 

trade-off arises between prediction accuracy and model interpretability between conventional 

(econometric) analysis and machine learning.  As applicable techniques become non-linear or 

multi-layered with the repeated feedbacks between training and test data, machine learning 

techniques often leave interpretability and inference behind to focus more on prediction 

accuracy.  This study applies a variety of supervised and unsupervised ML techniques to the 

trade setting noted earlier and also presents the inner working and challenges of ML in these 

settings. 
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A comprehensive review of all ML techniques available at this time is beyond the scope 

of this study. Excellent sources for that information include James et al. (2013), Batarseh and 

Yang (2017) and Athey and Imbens (2019). In the following, the generic optimization problem 

as in Athey and Imbens (2019) is presented along with an outline of techniques employed in this 

study.  Consider a simple example where the outcome Y depends on a set of features X.  Assume: 

𝑌𝑖|𝑋𝑖~𝑁(𝛼 + 𝛽𝑇𝑋𝑖, 𝜎2)                                                (1)  

where 𝜃 = (𝛼, 𝛽) are parameters of interest, 𝑌𝑖 has a conditional normal distribution with 

variance 𝜎2. Conventional econometric estimation, i.e. least squares, would suggest: 

(�̂�, �̂�) = arg min
𝛼,𝛽

∑ (𝑌𝑖 − 𝛼 − 𝛽𝑇𝑋𝑖)
2.𝑁

𝑖=1                         (2) 

In the ML setting, the goal is usually to make a prediction for the outcome from a new set 

of values for X i.e. predicting 𝑌𝑁+1 from  𝑋𝑁+1.  Let that prediction, regardless of the actual 

specification of the relationship between Y and X be �̂�𝑁+1.  Then, the squared loss associated 

with this prediction would be: 

(𝑌𝑁+1 − �̂�𝑁+1)2.                                                        (3) 

While least squares is an approach to minimize the loss function, other estimators exist that 

dominate least squares (Athey and Imbens 2019).  However, ML-based estimators for equation 

(3) have a tendency to over or under-fit, which can be corrected by regularization, sampling, or 

tuning parameters through out-of-sample cross-validation.1 The following provides a brief 

overview of ML techniques considered in this study: 

 Ridge regression and elastic nets are some basic extensions to the least squares 

minimization problem in equation (2) to impose a penalty for increasing the 

dimensionality of X (i.e. regularization).  A major concern with these approaches is the 
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subjective choice on the penalty, often referred to as 𝜆, but big data allows for its 

potential out-of-sample cross validation. 

 Decision trees and their extensions have become extremely popular in recent years.  They 

are referred to as trees since data are stratified or segmented into branches (splits) and 

leaves (nodes).  The stratification is based on the number of predictors and cut-off values 

for predictors.  For instance, if X contains two column vectors, then stratification will be 

based on both constituents, sequentially or in random, for all possible cut-off values for 

each of these 2 predictors, e.g. 𝑋1 < 𝑐1.  To make a prediction for new values of X, trees 

typically use the mode or median of the outcome Y in the region to which the new X 

belongs.  To illustrate, as in Athey and Imbens (2019), the total-sample sum of squared 

errors for outcome Y is given by: 

𝑄 = ∑(𝑌𝑖 − �̅�)2

𝑁

𝑖=1

                     �̅� = ∑ 𝑌𝑖.

𝑁

𝑖=1

                                                   (4) 

After a split based on one of the predictors (𝑋𝑘) using the threshold  𝑋𝑘 < 𝑐, the sum of 

total-sample squared errors is: 

𝑄(𝑘, 𝑐) = ∑ (𝑌𝑖 − �̅�𝑘,𝑐,𝑙

𝑖=𝑋𝑖𝑘≤𝑐

)2 + ∑ (𝑌𝑖 − �̅�𝑘,𝑐,𝑟

𝑖=𝑋𝑖𝑘>𝑐

)2,                                        (5) 

where l and r denote left and right of 𝑋𝑘 using the cut-off c and  

�̅�𝑘,𝑐,𝑙 =
∑ 𝑌𝑖𝑖=𝑋𝑖𝑘≤𝑐

∑ 1𝑖=𝑋𝑖𝑘≤𝑐
,       �̅�1,𝑐,𝑟 =

∑ 𝑌𝑖𝑖=𝑋𝑖𝑘>𝑐

∑ 1𝑖=𝑋𝑖𝑘>𝑐
 .       

The objective of decision-tree based learning is to minimize 𝑄(𝑘, 𝑐) for every 𝑘 and 

every 𝑐 ∈ (−∞, +∞), and the process is repeated for subsamples or leaves.  As noted 

earlier, there is a tendency in this approach to over-fit, which can be corrected by adding 

a penalty for the number of leaves or by pruning the tree using cross-validation.  A single 
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tree is often the preferred outcome from this approach for its interpretability.  However, 

prediction accuracy has been significantly improved (at the expense of interpretation) by 

procedures such as bagging, random forests and boosting:  

o Bagging involves repeated sampling of the (single) training data to fit a tree each.  

Then, averaging across trees chosen independently (like in bootstrapping) 

improves its prediction by lowering the variance.  

o The random forests approach is similar to bagging in the sense that bootstrapped 

training samples are used to generate decision trees to average out.  However, at 

each split of the decision tree the choice on predictors (or a subset) is random.  

o Boosting is also similar to bagging, but the decision tree for each training sample 

is not independent of previous trees, instead they are chosen sequentially. Each 

tree is grown using information from previously grown trees and thus, boosting 

does not involve bootstrap sampling.  Unlike bagging and random forests which 

are applicable to decision trees only, boosting can be employed for any base 

learner. 

o Extra trees regression: this method deploys several trees for the same problem, 

and generates a mean of all the trees that reflects inclusion of all observations, 

and maximizes quality of the predictive outputs. That is, this method implements 

a meta-estimator that fits and averages a number of randomized trees to control 

over-fitting.  

In the ML literature, the boosting algorithms are popular as they convert a weak base 

learner (often a single decision tree) into a strong learner (by re-training weak sub-

samples as well as tuning of hyper-parameters to provide optimized predictions).   
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 Neural networks and other deep learning methods are often employed in situations with 

large volumes of unexplored data to predict an outcome or analyze a pattern (especially 

used in image recognition and computer vision). These techniques emulate the human 

brain’s neural system by building layers of functions between the outcome and 

predictors.  These layers include predictors in linear form, but then translate them into 

latent variables and use non-linear functional forms to relate to the outcome.   To 

illustrate a single-layer network learning, consider the latent variables 𝑍 defined as 

follows:  

𝑍𝑖𝑘
(1)

= ∑ 𝛽𝑘𝑗
(1)

𝑋𝑖𝑗,     𝑘 = 1, … , 𝐾1.𝑘
𝑗=1                                   (6a) 

Then, a non-linear function 𝑔(. ) relates the outcome 𝑌 to 𝑍: 

𝑌𝑖 = ∑ 𝛽𝑘
(2)

𝑔(𝑍𝑖𝑘
(1)

) + 𝜀
𝐾1
𝑘=1 ,                                                (6b) 

The objective of the estimation again is minimizing squared errors, but the layering 

allows for millions of functional possibilities and parameters. Note that such 

unsupervised ML techniques often do not have both outcome 𝑌 to 𝑋.  In the context of 

equations 6(a) and 6(b), the 𝑋 can be thought of some transformation of 𝑌, e.g. lagged 

values.   

In this study, ML methods are considered for the standard specification of the gravity model:  

𝑌𝑖𝑗𝑡 = 𝑔(𝑋𝑖𝑡, 𝑋𝑗𝑡, 𝑖, 𝑗, 𝑡),                          (7) 

where 𝑌𝑖𝑗𝑡 is bilateral trade between country 𝑖 and country 𝑗 at time 𝑡, (response variable) and 

𝑋𝑖𝑡(𝑗𝑡) is the set of possible predictors from both countries and the set {𝑖, 𝑗, 𝑡} refer to a variety of 

controls on all three dimensions (Anderson and van Wincoop 2003; Yotov et al. 2016).  The 

major ML techniques applied include decision trees such as random forests, extra tree regression, 

boosting, and neural networks. While it is tempting to compare ML models with econometric 



9 
 

approaches, e.g. the popular Poisson Pseudo-Maximum Likelihood (PPML) method commonly 

used to estimate trade flows, a word of caution is in order.  ML techniques often encompass three 

paradigms – descriptive, predictive and prescriptive – and the focus of this study is in the 

predictive domain.  Nonetheless, we do present results from applying PPML estimates of the 

gravity model in the Appendix. 

 

THE AGRICULTURAL TRADE SETTING AND DATA 

References to agricultural trade abundantly appear in literature dating back to 1000 BCE.  One of 

the earliest pathways connecting Mediterranean to Arabia, Indian sub-continent and Far East was 

the Incense Route.  As the name suggests, incense made of aromatic plants and oils was a major 

traded commodity, but spices, silk and precious stones were also major transactions along this 

route.  Then came Spice and Silk Routes and numerous other inter- and intra-continental routes 

facilitating trade in agricultural products and other goods.  The industrial revolution of 18th 

century favored agricultural industries, but that in late 19th and early 20th century expanded 

rapidly into transport and energy sectors.  Fast forward to the later parts of the 20th century, 

agriculture still accounted for at least a quarter of exports (or imports) of major trading nations.  

For instance, the 1960 edition of the State of Food and Agriculture from United Nations’ Food 

and Agriculture Organization noted the significant share of agriculture in merchandise exports 

from the new world (North America and Oceania) to the rest of the world. 

Anderson (2016), reviewing the evolution of food trade patterns over the past six 

decades, notes that agriculture’s share of global merchandise trade was about 27 percent in 1960.  

While that share has fallen to 11 percent in 2014 (due in part to lower prices of agricultural 

goods relative to industrial goods) the volume of agricultural exports has continued the strong 
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upward trend of the early 20th century.   More importantly, Anderson (2016) notes the 

concentration in both country and commodity shares of global exports of farm products.  In 

particular, less than 10 items made up half of the value of global agricultural trade and two-thirds 

of the world’s exports of farm products (value) are accounted by just a dozen trading economies.  

Despite that concentration, the set of commodities that stand out for having most countries 

involved in world trade are shown in Table 1. The seven commodities – wheat, corn, rice, sugar, 

beef, milk powder and soybean – have not only been traded for long but also have the most 

countries engaged on the export or import side.  Hence, this study chose to apply ML techniques 

to understand the patterns of agricultural trade where the longest time series and most country 

pairings exist, i.e. the seven commodities in table 1.   

In terms of sources of data for the gravity model application, this study employs bilateral 

trade (import data) from United Nations (UN) Comtrade for the seven commodities noted 

above.2 UN Comtrade provides data using several nomenclatures, we use the Standard 

International Trade Classification (SITC) Revision 1 classification as this classification features 

data with the longest possible time-frame, i.e. from 1962 for some commodities. Specific codes 

are: 0111 for beef, 0221 and 0222 for milk powder, 041 for wheat, 042 for rice, 044 for corn, 

0611 for sugar, and 2214 for soybean. Tariff data are obtained from the UNCTAD Trade 

Analysis Information System (TRAINS) database. For our purposes, we use the simple average 

for each bilateral trade pair across each of the seven commodities. To account for missing tariff 

data (countries often only report a single year across a decade or so), the approach of Jayasinghe 

et al. (2010) is employed to derive implied average tariffs for missing observations. Note that 

tariff data are only available from 1988. 
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Data for (35) gravity variables such as GDP, population, contiguity, distance, common 

language, WTO membership, preferential trade agreements, and colonial ties are from the 

dynamic gravity dataset constructed by Gurevich and Herman (2018). Their work built a new 

gravity dataset that improves upon existing resources (e.g. CEPII data) in several ways: first, it 

was constructed to reflect the dynamic nature of the globe by closely following the ways in 

which countries and borders have changed between 1948 and 2016. Second, they increased the 

time and magnitude of variation within several types of variables. All three sources of data are 

merged to arrive at a data set featuring imports, tariffs, and economic variables from 1988-2016.3 

ML models were trained on various cuts of the data as noted in the next section.  The data are in 

cubical form: country pairs, commodity and time. 

 

SUPERVISED MACHINE LEARNING MODEL SELECTION AND VALIDATION 

Recall that multiple ML approaches are employed to predict bilateral trade for each of the seven 

agricultural commodities.  Within decision trees, in addition to random forests and extra tree 

regression, two types of boosting – LightGBM, XGBoost – are considered (Ke et al. 2017):  

 LightGBM scans all data instances to estimate the Gain, measured in terms of the 

reduction in the sum of squared errors, from all the possible Split points. Instead of 

changing the weights for every incorrectly predicted observation at every iteration like 

other boosting methods, e.g. GBoost, LightGBM tries to fit the new predictor to the 

errors made by the previous predictor.  

 LightGBM splits the tree level-wise with the best fit, whereas XGBoost algorithms split 

the tree leaf-wise. The leaf-wise algorithm can reduce more loss than the level-wise 

algorithm, and hence can lead to better accuracy.  
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Each of these models employed all 35 gravity variables noted earlier along with tariffs in the 

bilateral trade context.  Gurevich and Herman (2018) provided 70 gravity variables, but we chose 

to employ the 35 variables based on a correlation analysis. The first step here was to avoid near 

perfect collinearity among the 70 variables.  Then, the data had alternative representations for the 

size of the economies, e.g. GDP total and per capita, and in current and constant dollars.  For this 

second step, measures of feature importance for each of the seven models under alternative 

variables representing the same phenomenon, e.g. size, were obtained.  The splits and gains then 

determined the variables to be included in the model. That is, the high cardinality (correlation) of 

𝑋 and alternative representations of 𝑋  led variable selection by way of information gains from 

splits (using out-of-the-box python libraries). After selecting variables, ML algorithms were 

deployed. Main parameters tuned for all three boosting methods are: maximum depth of the tree, 

learning rate, number of leaves, and feature fraction. The choice among these supervised models 

was also dictated by the adjusted R-square, the most commonly used statistical measure, as 

shown below (Ke et al. 2017). Both supervised and unsupervised ML methods allow for cross-

validation, where predictions can be compared to actuals.  

 Since data spanned 1962-2016, the training data cut-off point was set at 2010 leaving 

enough room to compare predictions with actuals starting in 2011.4 This partitioning of data 

allowed for a longer time series to learn as well as have enough data to compare predictions to 

actuals (2011-2016). Major challenges for many of these algorithms was a large number of zeros 

in bilateral trade matrices, tariffs as well as time invariant variables in the gravity context such as 

distance, language and contiguity.  To test the sensitivity of predictions to alternative sets of data, 

three variations of data were considered to implement ML models: without tariffs (1962-2016), 

with actual tariffs (1988-2016) and with missing tariffs filled in as per Jayasinghe et al. (2010).  
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Thus, each commodity’s trade was subjected to 4 supervised and a non-supervised model for 

three different data sets for learning and obtaining predictions for 2011-2016.  

 Table 2 presents the four best fitting models among the supervised ML approaches and 

the training and test sample sizes for each of these models.5 The results presented here are from 

the data set with missing tariffs filled in (1988-2016).  While the fit and predictions including 

validation statistics were similar for the two data sets with tariffs and with missing tariffs filled 

in, the models using data from 1962-2016 yielded lower adjusted R-squares.  Some differences 

in feature importance between these three variations in data were observed, which are detailed in 

the next section. Note that milk powder had the most observations for training as well as testing 

among the seven commodities.  As can be seen in table 2, the extra tree regressor had the best 

performance for beef and milk powder, while Random Forest yielded highest R-square for corn, 

rice and soybean.  For sugar, LightGBM provided the best fit.  Note, however, adjusted R-

squares were similar across the models. The adjusted R-square in the best-fitting models ranged 

between 45 and 83% (boldfaced numbers in table 2).  Lower adjusted R-square values for rice 

and sugar are likely due to high variance in the inputs used for the models and incomplete data 

from older years.  The staple rice, in particular, is often considered a thinly traded commodity 

with a low share of trade in production for a large number of countries.  Both products (rice and 

sugar) tend to be highly protected by large Asian countries.  Under-fitting was not found for any 

of the seven commodities and therefore, adjusted R2 metric appears to represent the model’s 

quality. Moreover, each of the commodity models were deployed on a global scale, which places 

all countries on the same level of abstraction when using the response variable.6 An additional 

cut of the data set was also considered: focus on large trading pairs only.  While the fit improved 
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considerably when considering large traders only, those results are not reported here given the 

arbitrary cut to the sample data. 

 

UNSUPERVISED MACHINE LEARNING MODEL 

Neural networks, a form of deep learning, can take several paradigms: recurrent and 

convolutional neural networks, hybrids and multilayer perceptron (MLP). This study employs 

MLP given the tabular data context (along with its cardinality) and the goal of obtaining better 

predictions.  MLP is a feed forward algorithm with the following steps: 

 #1, Forward pass: here, the values of the chosen variable are multiplied with weights and 

bias is added at every layer to find the calculated output of the model.  

 #2: Calculate the error or the loss: the data instance is passed, the output is called the 

predicted output; and that is compared with real data called the expected output. Based 

upon these two outputs, the loss is calculated (using Back-propagation algorithm).  

 #3: Backward pass: the weights of the perceptrons are updated according to the loss.  

In Python, the MLP algorithm uses Stochastic Gradient Descent (SGD) for the loss function 

(Scikit 2020). SGD is an iterative method for optimizing an objective function with smoothness 

properties.7 As noted earlier, neural networks do not have obvious validation statistics, unlike 

supervised models. 

In addition to employing ML techniques, this study considered traditional approaches to 

estimating the gravity equation (7).  As noted by Disdier and Head (2008), many econometric 

techniques have been used in estimating equation (7), but the more recent approach that accounts 

for zeros in 𝑌𝑖𝑗𝑡, heteroscedasticity in additive errors to equation (7) and other issues is Poisson 

Pseudo-Maximum Likelihood estimation (Santos Silva and Tenreyro 2006).   The PPML 
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approach and its variations in the high-dimension context, posed several specification and 

estimation challenges.  In particular, the pair-wise fixed effects, e.g. origin-time and destination 

time, as in Yotov at al. (2016) as well as Correia, Guimaraes and Zylkin (2019), created 

significant collinearity issues and convergence problems.  Nonetheless, results from estimating 

equation (7) using basic PPML methods and the chosen 35 gravity variables (plus tariffs) for the 

seven commodities of this study are reported in the Appendix.  Given the limited ability of 

PPML-based methods to identify the relative importance of explanatory variables (in the 

presence of thousands of fixed effects) as noted in the World Economic Outlook, IMF (2019), 

the following section presents results from ML methods only.8 

 

RESULTS AND DISCUSSION 

Figures 1-3 and tables 3-4 present the results from the supervised learning models, while figure 4 

details those from the neural networks application to capturing the gravity trade relationship in 

equation (7).   

Supervised ML Model Results 

Recall that the cut-off year for the training data was 2010 and so, projections from the supervised 

models are made through 2016.  The seven panels of figure 1 show the 2011-16 aggregate (total) 

trade values, actual and predicted, for each of the chosen commodities.  We present the predicted 

values from the best-fitting model (bold-faced R-square in table 2) in figures 1-3.9 Multiple 

factors contribute to the fit, but chief among them are the pruning of the decision trees, data 

incompleteness across commodities (training versus test data size), cardinality of the predictors 

and boosting to improve the successive fit of decision trees.   
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 For corn, milk powder, rice, sugar and wheat, the predictions in figure 1 track the general 

pattern of actual trade values from 2011 to 2014.  Note from table 2 that corn, milk powder and 

wheat have some of the highest adjusted R squares, while milk powder and rice have the highest 

number of observations for training and testing.  While the gap between the actual and predicted 

can be attributed to the fit, the model fit itself is likely influenced by the number and quality of 

underlying data as noted above.  Predictions of aggregate trade values for soybeans and beef 

deviate from the pattern of actuals during 2011-14.  Note that the soybean models have the 

fewest observations available for training, partly due to the delayed expansion in the number of 

countries trading soybeans as shown in table 1.10  

 Note, however, all models’ predictive ability considerably deteriorates for 2015-2016.  A 

closer examination of actuals and predicted values for each bilateral pair indicates that the zero 

values, prevalent in the gravity models, are at the core of the falling predictive abilities of 

supervised ML in 2015-16 (figure 1).  For instance, the zero values of trade data are often 

initially augmented by boosting or extra trees to be a small positive or negative number, which 

upon iteration expands further to widen the gap between actuals and predictions. Thus, the above 

results suggest that boosting techniques might be better at near- to medium-term projections 

relative to those over a longer horizon.  The patterns seen in figure 1 are unlike the straight-line 

projections commonly observed in aggregate trade projections by WTO (2019) and OECD 

(2019), and agricultural trade projections of USDA (2019).  Current projections by major 

international and national agencies are a combination of expert-judgment and time-series 

analysis.  As noted earlier, such projections have low forecast accuracy, e.g. USDA (2019) at 

35%, or have limited explanatory power (World Economic Outlook IMF, 2019). 
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   Figures 2 and 3 present predictions for the two major bilateral pairs, in terms of trade 

value, for each of the seven commodities.  Seven out of the twelve pairs shown in figures 2 and 3 

have predictions closely tracking actuals: corn (U.S.- Japan; U.S. - Mexico), rice (India-Saudi 

Arabia; U.S. - Mexico), wheat (U.S. - Japan) and beef (Australia - Japan; U.S. - Mexico) also 

have bilateral predictions that closely track actuals for 2011-14.  As noted earlier, the soybean 

model had data quality issues, and both sugar and soybean projections improved when estimated 

with a sample containing large countries only.  Recall that each of the models are deployed on a 

global scale, but as observed in the data and noted by Anderson (2016), agricultural commodity 

trade is concentrated in few countries in the early years of the sample.  Grouping or categorizing 

countries and hyper-tuning variables yielded better model fits, but valuable observations are lost 

by employing arbitrary cut-offs.  As with figure 1, for all commodities, the deterioration of 

predictive ability during 2015-16 is attributable to zero trade values and the associated extra trees 

or boosting. 

 We compare supervised with unsupervised (neural networks) models later, but an 

advantage of the former is its ability to identify from among the set of predictors the features that 

have the greatest importance.  Decision tree methods, particularly in the context of boosting, 

randomize among predictors for splitting the tree into nodes (or leafs) and the repetitive process 

searches for predictors and cut-off values that offer the greatest decline in the total-sample sum 

of squared errors (equation 5).  In doing so, these methods identify the information gain, i.e. the 

reduction in total-sample sum of squared residuals, from each of the predictors.  Recall that the 

gravity model, equation 7, in this study employed 35 variables plus tariffs as predictors.  Tables 

3 and 4 show both the ranking of predictors by information gain and their relative importance, 

respectively. 
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Economic Significance in Supervised ML Models 

Table 3 presents the top 11 variables which provided the largest information gains from the 36 

predictors included in these models.  Alternatively termed as feature importance, they point to 

which of the variables are most indicative of the response variable (bilateral trade) in the model.  

Note that removing any of these top predictors would drastically change the model results.  

Across commodities, the top 11 predictors remained the same, but their ranking and relative 

importance were different.  As a review of gravity models predict, the size of the two economies 

engaged in trade has the largest influence in reducing the total-sample sum of squared errors.  So, 

the population of origin and destination are, on average, the top 2 information providers in the 

learning of agricultural trade flows.  This result is largely consistent with commodity trade, 

which is significantly determined by the importing country’s size.  Note that the origin country’s 

size also matters for all the reasons noted in gravity models, i.e. large countries tend to trade 

more with other large countries (Yotov et al. 2016; Chapter 4, World Economic Outlook – 

International Monetary Fund 2019).  Distance is the next predictor offering substantial 

information gains in the learning and prediction of trade flows.  There is some variation in the 

ranking of distance among commodities, as with the population of destination, ranging from 2 in 

soybean to 9 in the case of beef.  In gravity models, latitude and longitude are often employed to 

represent the remoteness of a country (spatially and temporally).11 The supervised models 

indicate the high relevance of both latitude and longitude of both origin and destination to predict 

commodity trade flows.  Time-specific effects and tariffs were respectively 10th and 11th 

indicators of information gain.  Note that tariffs are relatively more important in the case of rice 

and sugar, two of the highly protected agricultural commodities across countries. 
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 The rankings in table 3 confirm the significance of commonly used gravity predictors but 

do not completely capture the relative importance of these variables.  Table 4 normalizes the 

information gain of each variable with that of the top predictor (ranked #1 in table 3) for each 

commodity.  Similar to table 3, most information gains in the supervised learning models arise 

from the size of the two economies.  The variation in the gain associated with the distance, 

latitude/longitude and time predictors across commodities likely capture not only policy-induced 

differences but also influences of extreme events associated with specific time periods (e.g. 

droughts or floods affecting particular growing regions).  As in table 3, tariffs are relatively more 

important providers of information in the case of rice and sugar.  An interesting aspect of these 

gains is the likelihood that they vary by the size of the training sample, which indicates that the 

impact of distance or any other feature can vary over sub-samples, offering a potential solution to 

some puzzles, e.g. the distance puzzle, commonly observed in econometric estimation of gravity 

models (Yotov et al. 2016). Together, the remaining 25 variables accounted for 84 to 126 percent 

of information gains relative to the top predictor for each commodity.  Factors such as common 

language or border, FTA or WTO membership and others matter collectively, but each of their 

effects is not large relative to the economies’ size or distance between trade partners.  

Unsupervised ML Model Results  

Turning now to unsupervised models (i.e. neural networks), figure 4 presents predictions for the 

top exporter for each of the seven commodities.  Recall from the discussion of equation 6(a) and 

6(b) that these models do not necessarily have a response variable.  In that sense, learning here 

happens primarily with the bilateral trade data. The training sample cut-off is set at 2014 and 

projections are made until 2020.  Figure 4 shows that all commodities’ predictions, with the 

exception of Netherlands’ milk powder exports, closely track respective actuals for 2014-2017.  
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In fact, there is at least one projection that almost mimics actual in all projections except in the 

case of milk powder. 

 It is not straightforward to compare supervised and unsupervised models, but each has its 

advantages and disadvantages (Storm, Baylis and Heckelei 2019).  Likewise, comparisons to 

traditional/econometric approaches are tenuous given causality issues noted earlier.  Nonetheless, 

an attempt is made here to explore the merits of each approach and relevance in specific 

contexts.  The supervised machine learning models, primarily of the decision-tree kind with 

bagging, random forests or boosting, have a structure relating a response variable to set of 

predictors.  The estimated structure is often heterogeneous, non-linear and based on repeated 

learning, i.e. minimizing the total-sample sum of squared errors.  The supervised techniques are 

straight forward to implement particularly in uncovering complex relationships and can be 

compared among themselves in terms of validation statistics such as error sum of squares. They 

also provide information on the most relevant predictors including the relative strength of 

alternative predictors.  However, this technique cannot provide standard errors on predictors’ 

contribution or a coefficient capturing the relationship between Y and X, due in part to the non-

linear and repeated learning process noted above. These models are a great fit for problems 

primarily focused on near- to medium-term predictions, e.g. prices, trade flows, especially when 

a large volume of data are available.  Unsupervised models such as neural networks carry similar 

advantages in prediction problems, but do not have predictors or validation statistics.  As 

demonstrated using bilateral trade data predictions, they appear most suited to longer-term 

projections, e.g. climate change, but supervised techniques with rolling training samples can also 

generate a sequence of medium-term projections that can be integrated for longer-term 

projections.12  The pruning and regularization involved in supervised methods may limit the 
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amount of data used in learning (as shown in table 2 on training and test data), whereas 

unsupervised approaches attempt to use all data. In contrast, econometric approaches offer 

structure and inference with carefully chosen causal relationships, often linear and homogeneous.  

The later are seldom cross-validated and also suffers also from specification or variable selection 

bias like (unlike) supervised (unsupervised) models. 

 

SUMMARY AND CONCLUSIONS 

This study introduced ML models to the international trade setting and posed questions on their 

applicability and prediction quality. The basic specification of the popular gravity model of trade 

flows was subjected to data driven and deep learning processes in the form of supervised and 

unsupervised ML techniques using data from 1962-2016. A loss function that summed the 

squared error between actual and predicted bilateral trade flows for all available country pairs 

was minimized with supervised ML models including decision tress such as random forests, 

bagging and alternative types of boosting. Supervised ML models employed a set of predictors, 

commonly used gravity variables such as size of economies, the distance between them, and 

associated frictions. The validation statistics along with the data properties (distribution, 

cardinality and completeness) helped explain predictions and the relative importance of gravity 

variables from supervised ML models. Unsupervised models, also known as neural networks, are 

also employed in this study to uncover relationships of a single variable (trade) without the need 

for predictors (gravity variables). Both models are cross-validated, i.e. in supervised models the 

training data was set to 1962-2010 and the testing data to 2011-16, while unsupervised model’s 

training and test data were set to 1962-2014 and 2015-2020, respectively. 
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  Results from supervised ML show that the models fit well in the near- to medium-term 

(2011-2014), i.e. predictions closely track actuals, when the models have a high adjusted R-

square and trade data encompass a large number of countries and years. However, the large 

presence of zero trade values and the use of extra trees or boosting to transform weak supervised 

learners into strong ones cause predictive quality to fall 3-4 years from the training data cut-off. 

A major advantage of the supervised ML model is the ability to identify which variables among 

the set of predictors provides more information to understanding bilateral trade flows. A ranking 

of top 11 variables by information gain, i.e. reduction in the total-sample sum of squared errors 

of the loss function attributable to a predictor, and their relative importance show that economies 

size, distance between them, location of countries, time and tariffs are more important than other 

gravity variables in explaining trade flows. While these results are consistent with the trade and 

gravity model literature, ML’s strengths are in variable selection, prediction and economic 

significance.  In addition, the supervised ML models have opened up an opportunity to address 

time- and space-varying effects, e.g. the distance puzzle. Varying the training sample size likely 

yields different contributions by features, but other model criteria need to be carefully considered 

to fully unlock such puzzles. Unsupervised models appear to be better suited for long-term 

forecasting with predictions closely tracking actuals across commodities. However, they are 

known to be black boxes and are often difficult to validate.  

  Predicting agricultural trade patterns is critical to decision making in the public and 

private domains, especially in the current context of trade wars with tit-for-tat tariffs. For 

instance, farmers likely consider the potential demand from alternative foreign sources before 

deciding to plant crops, especially in large exporters. Similarly, countries setting budgets for 

farm programs need better predictions of prices and trade flows for assessing domestic 
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production and consumption needs and instruments employed to achieve those outcomes. This 

study demonstrates the high relevance of ML models to predicting trade patterns with a greater 

accuracy than traditional approaches for a range of time periods. Existing forecasts of trade such 

as those by WTO, OECD and USDA are a combination of model-based analyses and expert 

judgement and tend to have high variability.  A comparison of ML to PPML-based methods is 

hindered by the later’s specification, convergence and collinearity challenges, and limited ability 

to identify the relative importance of explanatory variables.  The ML models, by relying on data 

and deep learning, allow for alternative and robust specifications of complex economic 

relationships. Moreover, the ML models are cross-validated and provide ways to simulate trade 

outcomes under alternative policy scenarios including their uncertainty in recent times. Future 

work focusing on data/matrix completeness (a major issue when dealing with zeros in trade and 

tariffs), multi-variate response variables and prescriptive ML techniques to compare with current 

causal models would greatly aid in public and private decision making.   
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Footnotes 

1For qualitative data, a similar contrast exists between conventional logistic regression and 

approaches such as discriminant analysis and K-Nearest Neighbors.  This study does not discuss 

qualitative data techniques in the following since the application employs quantitative data. 

2As pointed out in World Bank (2010), imports are usually recorded with more accuracy than 

exports because imports generally generate tariff revenues while exports do not.  

3The economic and commodity data are merged into a SQL database. An R code is used to 

merge on country-to-country trade transactions, as well as year of economic variables. The data 

is merged using an Inner Join. 

4Gurevich and Herman’s (2018) gravity data are not available for 2017 and beyond. 

5Results from other data set variations (1962-2016 or 1988-2016 without filling in missing 

tariffs) are not reported in Table 2, but available from authors upon request. 

6Zeros were used to fill missing bilateral trade data for all commodities. This can lead to the 

oversampling of zeros in these datasets. Oversampling increases the count of minority class 

instances to match it with the count of majority class instances, i.e. “upsizing” the minority class. 

Additional exploration of undersampling or correlation imputations for example could improve 

the models results, a topic for further research. 

7For the MLP method, the MLPClassifier function is used along with the following parameters: 

early_stopping, epsilon, hidden_layer_sizes, learning_rate, learning_rate_init, max_iter, 

momentum, power_t, validation_fraction. 

8 As noted earlier, a direct comparison of gravity results can only be made with prescriptive ML 

models, which are under further development. 
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9Figures 1-3 for each of the ML models (LightGBM, XGBoost, Random Forests and Extra Tree 

Regression) showed variations depending on the fit, but the general pattern described here fits all 

of them.  

10Note that for other commodities more hyper parameters can be tuned further to achieve high 

predictive accuracy, but results are presented as such to highlight the advantages and 

disadvantages of alternative ML approaches. 

11As Anderson (2014) notes, longitude matters for trade by capturing time and communication 

differences.  In other instances, remoteness has often been used to capture multilateral resistance 

in gravity models (Yotov et al., 2016). 

12For example, changing the training data cut-off to 2009 or 2011 would likely generate better 

projections for 2010-13 and 2012-15, respectively. 
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Figure 1: Supervised Model Predictions of Aggregate Trade Values, 2011-16 
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Figure 2: Supervised Model Predictions of Top Partners’ Trade Values, 2011-16 
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Figure 3: Supervised Model Predictions of 2nd Top Partners’ Trade Values, 2011-16 
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Figure 4: Neural Networks Prediction of Top Country’s Aggregate Exports, 2014-2020 
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Table 1: Number of Exporting and Importing Countries 

of Major Agricultural Products, 1970-2009 

 1970s 1980s 1990s 2000s 

 Exp Imp Exp Imp Exp Imp Exp Imp 

Wheat 36 136 40 146 61 162 91 177 

Corn 58 142 55 149 80 169 102 196 

Rice 63 175 61 175 90 202 114 219 

Sugar 60 165 56 174 81 207 111 222 

Beef 62 159 64 175 82 202 109 216 

Milk 48 184 49 186 81 206 116 219 

Soybean 30 71 38 91 63 118 87 161 

Source: Liapis (2012) 

Exp: Number of Exporters 

Imp: Number of Importers 
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Table 2: Supervised Models’ Validation Measures 

Commodity  Observations LightGBM XGBoost Random 

Forest 

Extra Trees 

Regression 

           

Beef Training – 27153 0.538 0.598 0.560 0.601 

  Test – 7290     

Corn Training – 29500 0.680 0.624 0.723 0.678 

  Test – 10583     

Milk Powder Training – 58434 0.782 0.772 0.787 0.828 

  Test – 15594     

Rice Training - 47697 0.426 0.416 0.451 0.423 

  Test – 12750     

Soybean Training – 22448 0.593 0.616 0.649 0.581 

  Test – 6018     

Sugar Training – 28660 0.448 0.347 0.439 0.447 

  Test – 7644     

Wheat Training – 26520 0.670 0.498 0.643 0.665 

  Test – 7212        
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Table 3: Ranking Variables by Information Gain (normalized values) 

Variables Beef Corn Milk 

Powder 

Rice Soybean Sugar Wheat 

        

Population_Origin 

 

1 1 1 1 4 4 1 

Population_Destination 

 

3 7 6 2 3 1 7 

Distance 

 

9 8 3 3 2 3 6 

GDP Per Capita_Origin 

 

5 2 8 4 8 9 5 

Longitude_Destination 

 

4 5 10 11 1 5 4 

Latitude_Destination 

 

6 4 4 7 9 2 9 

Longitude_Origin 

 

7 6 2 8 6 11 3 

Latitude_Origin 

 

2 3 9 6 11 10 2 

GDP Per 

Capita_Destination 

 

8 9 7 10 7 6 8 

Time 

 

11 10 5 9 5 8 10 

Tariffs 

 

10 11 11 5 10 7 11 
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Table 4: Relative Importance of Variables based on Information Gain (percent) 

Variables Beef Corn Milk 

Powder 

Rice Soybean Sugar Wheat 

        

Population_Origin 

 

100 100 100 100 67 43 100 

Population_Destination 

 

78 9 48 80 84 100 30 

Distance 

 

9 8 61 69 89 70 33 

GDP Per Capita_Origin 

 

55 90 34 63 30 18 40 

Longitude_Destination 

 

66 15 20 26 100 39 44 

Latitude_Destination 

 

53 16 54 41 14 92 17 

Longitude_Origin 

 

34 12 81 35 39 9 48 

Latitude_Origin 

 

92 39 34 49 5 17 72 

GDP Per 

Capita_Destination 

 

27 6 36 31 30 29 27 

Time 

 

10 5 53 33 55 19 17 

Tariffs 

 

15 2 13 52 6 24 9 

 *100 indicates the variable with the highest information gain 

**All other variables together accounted for another 84 to 126 % of information gains across the 

seven commodities 
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Appendix: PPML Estimation of the Gravity model 

Examining factors that determine trade patterns has largely been accomplished through the use 

of the gravity model—described as the workhorse of international trade and one of the most 

successful empirical models in economics (Yotov et al., 2016; Anderson and van Wincoop, 

2003). The gravity model has been developed over the years to incorporate different explanatory 

variables depending on the questions to be answered, and to address some of the empirical issues 

such as the large amount of zeros in trade flows. In particular, the Poisson Pseudo Maximum 

Likelihood (PPML) laid out in Santos Silva and Tenreyro (2006) allows for the inclusion of zero 

trade flows and corrects for heteroscedasticity which often plague estimation of the gravity 

model. Additionally, the importance of accounting for observable and unobservable country-

level heterogeneity and multilateral resistance terms through the use individual and pair-wise 

fixed effects (Feenstra, 2004).      

To complement the ML application, the PPML regression considered below included 

imports in levels as the dependent variable, while the non-dummy independent variables are 

specified in log terms. Given problems in variable selection, the ML application was used as the 

basis for the following specification (Yotov et al., 2016): 

(A.1) 𝑣𝑖𝑗
𝑘 = 𝑒𝑥𝑝 [𝛼𝑖 + 𝑏𝑗 + 𝐺𝐷𝑃𝑖 + 𝐺𝐷𝑃𝑗 +  𝑃𝑜𝑝𝑖 + 𝑃𝑜𝑝𝑗 + 𝛽1distance𝑖𝑗 +

 𝛽2time   + 𝛽3longitude𝑗 + 𝛽4latitude𝑗 + 𝛽5poltical𝑗   

where 𝑣𝑖𝑗
𝑘  is the value of imports from country i to country j. 𝛼𝑖 and 𝑏𝑗 are importer and exporter 

fixed effects, GDP and population (Pop) are defined for importers and exporters, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗  is 

the logged distance between countries, time is a time trend variable, longitude is the longitude for 

the exporting country, latitude is the latitude for the exporting country, and political represents 
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the political stability of the exporting country (except for sugar, which has political stability for 

the importing country as in the ML application).  These variables come from the same source as 

the ML application, i.e., Gurevich and Herman (2018). 

 The econometric results from using the variables suggested by ML indicate high R-

square for most commodities (Appendix table 1). Most of the variables in the econometric model 

are statistically significant, and at the 0.01 percent level, but similarities and differences are 

visible from the R-square (e.g. rice versus soybean). Distance and the year trend are statistically 

significant at the 0.01 percent level for every model. The coefficient on the distance variable is 

negative as expected since longer distance involves more costs, and thus, decreasing the amount 

of trade that occurs. The magnitude of the distance coefficient is largest for corn, indicating that 

commodity is most affected by distance; while the -1.06 coefficient on sugar is the smallest. The 

time trend variable is positive and is between 0.04 and 0.06, indicating that trade in these 

commodities is increasing over time. GDP is positive and statistically significant for many of the 

commodity exporting countries, but the coefficient on GDP importer is mixed. Similarly, the 

coefficients on population (both the exporter and importer) are mixed.  The political stability 

coefficient is positive and statistically significant for most commodities i.e. countries that are 

more political stable are more likely to be exporters. The coefficients on latitude and longitude 

(exporters) are also mixed. The largest beef, milk, and soy (beef) exporters tend to be in lower 

latitudes (longitudes).   

As noted earlier, specifying gravity models remains a major challenge.  Attempts were 

made to introduce pair-wise fixed effects, e.g. origin-time and destination time, as in Yotov at al. 

(2016) as well as Correia, Guimaraes and Zylkin (2019).  With several thousand such effects, 

convergence and multicollinearity, added to the above specification challenge.  Compounding 
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these issues, is the limited ability of gravity models to identify relative importance of explanatory 

variables (in the presence of fixed effects) as noted in the World Economic Outlook, IMF (2019).  

A deeper comparison of prescriptive ML models with high-dimension fixed effects 

specifications of PPML should be considered in future work. 

Appendix table 1. Results from PPML Estimation of the Gravity Model 

 

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

Beef Corn Milk Rice Soy Sugar Wheat

gdpx 0.43
***

0.36
***

0.71
*** 0.01 1.33

***
0.36

***
-0.15

**

(0.09) (0.12) (0.15) (0.09) (0.11) (0.10) (0.08)

gdpm 0.35
***

-0.21
**

-0.23
*

0.14
* -0.31 0.99

***
-0.19

*

(0.12) (0.10) (0.13) (0.08) (0.19) (0.23) (0.10)

popx -0.14 0.43
***

0.32
* -0.11 0.23 -0.41

***
0.52

***

(0.10) (0.15) (0.17) (0.08) (0.30) (0.14) (0.13)

popm -0.46
*** -0.13 -0.23

** -0.08 -0.61
***

-0.27
**

0.17
**

(0.10) (0.20) (0.09) (0.12) (0.12) (0.11) (0.07)

distance -1.68
***

-1.93
***

-1.28
***

-1.61
***

-1.51
***

-1.06
***

-1.85
***

(0.03) (0.05) (0.02) (0.03) (0.08) (0.04) (0.03)

political* 0.04
***

0.07
***

0.06
*** 0.00 0.12

***
0.06

***
0.08

***

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

latitudex -0.57
*** -0.03 -0.11

***
0.09

***
-0.05

* 0.01 0.12
***

(0.04) (0.02) (0.02) (0.01) (0.03) (0.01) (0.03)

longitudex -0.11
***

-0.01
*** 0.00 -0.01

***
0.03

***
-0.03

***
-0.02

***

(0.01) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)

year 0.05
***

0.05
***

0.06
***

0.05
***

0.05
***

0.05
***

0.04
***

(0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00)

R
2 0.60 0.78 0.57 0.42 0.88 0.35 0.60

N 213,330 205,353 316,140 284,745 132,633 199,250 172,764


