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Abstract

We show a causal impact of immigration on innovation and dynamism in US counties.
In order to identify the causal impact of immigration, we use 130 years of detailed data on
migrations from foreign countries to US counties to isolate quasi-random variation in the
ancestry composition of US counties that results purely from the interaction of two his-
torical forces: (i) changes over time in the relative attractiveness of different destinations
within the US to the average migrant arriving at the time and (ii) the staggered timing of
arrival of migrants from different origin countries. We then use this plausibly exogenous
variation in ancestry composition to predict the total number of migrants flowing into
each US county in recent decades. We show four main results. First, immigration has a
positive impact on innovation, measured by patenting of local firms. Second, immigration
has a positive impact on measures of local economic dynamism. Third, the positive im-
pact of immigration on innovation percolates over space, but spatial spillovers quickly die
out with distance. Fourth, the impact of immigration on innovation is stronger for more
educated migrants.
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1 Introduction

Does immigration cause more or less innovation and economic dynamism? In this paper, we

answer this question in the context of international migration to the United States over the

last three decades. We find a positive causal impact of immigration on both innovation and

economic dynamism at the county level.

Canonical models of endogenous growth and firm dynamics suggest that immigration should

increase both innovation and economic dynamism. As population grows with the inflow of

migrants, more people can work towards more and possibly harder innovations (Jones, 1995;

Bloom et al., 2017). As innovation is embedded in creative destruction at the microeconomic

level, those new innovations facilitated by the inflow of migrants should also lead to more

creative destruction and a higher level of overall economic dynamism (Aghion and Howitt,

1992; Grossman and Helpman, 1991; Hopenhayn and Rogerson, 1993; Klette and Kortum,

2004). If local returns to scale are large enough, the arrival of migrants should therefore cause

innovation, economic dynamism, and economic growth within the receiving local communities. 1

Contrasting with these predictions of canonical theory, fierce political controversies surround

the economic contribution of migrants: are the new arrivals draining resources of their host

communities and stifling innovation and economic dynamism?

A rigorous quantification of the causal impact of immigration on innovation and dynamism

has proven elusive. The reason is that migrants do not allocate randomly across space, but

instead are likely to choose destinations that offer the best prospects for them and their families.

In particular, it is plausible that migrants arriving in the US will tend to select into regions that

are more innovative, economically dynamic, and fast-growing, creating a spurious correlation

between local immigration, local innovation, and local economic dynamism.

Our main contribution is to propose a formal identification strategy which allows us to

identify the causal impact of migration on local innovation and dynamism. To do so, we use 130

years of detailed data on immigration from foreign countries to US counties. Our identification

strategy combines a set of instruments for the pre-existing ethnic composition of US counties

(Burchardi et al., 2019) with a version of the canonical shift-share approach (Bartik, 1991;

Katz and Murphy, 1992; Card, 2001) to construct a valid instrument for immigration into each

US county in the last 30 years. In a first step, we isolate plausibly exogenous variation in the

number of residents of a US county with ancestry from each foreign country, following Burchardi

et al. (2019). In a second step, we use these exogenous components of pre-existing ancestry

1Peters (2017) shows evidence of such a link using a historical experiment in post-war Germany.
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shares to predict where recent migrants will settle within the US, using a shift-share instrument.

Doing so, we guard against the potential critique that where migrants settle within the United

States, both in recent decades (the distribution of immigrants) and in the more distant past (the

distribution of ancestry), may be correlated with unobserved factors that also affect measures

of local innovation and dynamism.

In our first step, we use the interaction of time-series variation in the relative attractiveness of

different destinations within the United States with the staggered timing of arrival of migrants

from different origins to isolate quasi-random variation in the ancestry composition of US

counties. Implicitly, we assume that historical migration patterns are in part driven by ( i)

a push factor, causing emigration from a given foreign country to the entire US, and ( ii) a

pull factor, causing immigration into a given US county from all origins. To further ensure

that our predicted historical migration is not contaminated by endogenous unobserved factors,

we carefully leave out large population groups when predicting ancestry. In particular, as

our focus is on immigration to the US after 1970, primarily originating from non-European

countries, we use the historical location choices of European migrants to predict where non-

European migrants settled. In other words, we predict that US counties that were attractive to

migrants from Europe in a period when a large number of migrants from a given non-European

origin country were arriving in the US will receive a large number of migrants from that origin

country. Iterating this procedure over 100 years, we are able to isolate quasi-random variation

in the distribution of ancestry across US counties in 1970.

In our second step, we use this predicted pre-existing distribution of ancestry to predict

where new migrants arriving in the US after 1970 will settle. Implicitly, we assume that new

migrants will tend to settle in locations with a large pre-existing community from the same

ethnic background. So, if a large community with ancestry from origin country o already

resides in destination county d, and many migrants from o arrive in the US, we will predict a

large inflow of migrants from o to d. Summing over all possible origin countries, we are then

able to predict the total number of migrants flowing into different US counties at each point in

time post 1970. This predicted immigration is plausibly orthogonal to any origin-destination-

specific factor which may make a destination US county more innovative and dynamic after

1970.

Finally, to further guard against any lingering concerns about identification, we estimate the

impact of plausibly exogenous variations in immigration on changes in innovation, dynamism,

and growth, not on levels. In many specifications, we are even able to control for county fixed
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effects, thus controlling for any county-specific trend in innovation.

This formal identification strategy allows us to reach four main conclusions.

First, we find a strong and significant causal impact of immigration on the number of patents

filed per person: the arrival of 10,000 additional immigrants increases the flow of patents over a

5-year period by 1 patent per 100,000 people. Put differently, a one standard deviation increase

in the number of migrants (about 12,000 migrants) increases the flow of patents by 27% relative

to its mean.

Second, we find a strong and significant causal impact of immigration on measures of eco-

nomic dynamism and growth at the local level. For our measures of economic dynamism, or

creative destruction, we use several variables, each shedding light on one aspect of economic

dynamism: a one standard deviation increase in local immigration increases the job creation

rate by 7%, the job destruction rate by 11%, the job growth skewness by 3%, and local wages by

5%, all expressed as changes relative to their mean. The significant rise in local wages suggests

that immigration does not only affect innovation and creative destruction, but also the overall

level of economic growth.

Third, we find evidence that the positive effect of immigration on innovation and growth

diffuses over space, but this spatial diffusion dies out quickly with distance. For instance, if more

migrants settle in the US state surrounding county d, innovation in d increases significantly.

However, this spillover effect of immigration in nearby counties decays rapidly with distance:

compared to the direct effect of immigration in a county, the indirect effect is 30% smaller

for immigration 100km away (60 miles), 80% smaller at 250km (150 miles), and statistically

indistinguishable from zero beyond 500km (300 miles).

Fourth, we find that the positive effect of immigration on innovation and growth is signifi-

cantly stronger for more educated migrants. We are able to reach this conclusion because our

identification strategy allows us to construct separate instruments for migrations from each ori-

gin to each destination at each point in time. This versatility is one of the strengths of our iden-

tification strategy. To separately identify the impact of the total number of incoming migrants

from that of their education level, we leverage the fact that the level of education of migrants

varies dramatically across countries of origin, and over time. For example, Japanese immigrants

on average have about twice the number of years of schooling as those from Guatemala, while

the education levels of Mexican arrivals increased by about 30% during our sample period. We

find large heterogeneity in the impact of immigration on innovation as we exogenously vary

the education level of migrants. For instance, relatively uneducated migrants (in the bottom
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third of the distribution of years of schooling among incoming migrants) have almost no effect

on local innovation, while the increase in innovation induced by highly educated migrants (in

the top third) is an order of magnitude larger than for the average migrant: it only takes 1,000

highly educated migrants to increase patenting by 1 patent per 100,000, the same marginal

effect as that of 10,000 migrants with the average education level in our sample.

Related Literature. Our paper relates to several strands of the theoretical and applied

literature. First, we contribute to the recent but growing literature on the link between im-

migration and innovation. Surveys by Hanson (2009, 2010) and Lewis (2013) emphasize the

potential importance of a link between immigration and innovation. Early contributions provid-

ing empirical evidence for a link between migration and innovation are Kerr and Lincoln (2010)

and Hunt and Gauthier-Loiselle (2010). Both papers present variants of a standard shift-share

instrument. The former uses regional variation in the use of the H-1B visa program interacted

with the national growth of the H-1B cap over time; the latter uses the baseline distribution of

immigrants from a number of source countries and time-variation in the aggregate number of

skilled immigrants arriving to the US over subsequent years. Peters (2017) investigates the link

between historical refugees in Germany and industrialization. Using data on the age of mass

migration and the expansion of railways at the time, Sequeira et al. (2020) show a long-run effect

of immigration on local economic development. Akcigit et al. (2017) show that many inventors

are immigrants. Bernstein et al. (2018) also show that many inventions originate in the work

of immigrants. Kerr and Kerr (2016) study the case of immigrant entrepreneurship. Moving

beyond impacts on narrowly measured patenting or innovation, Lewis (2011) and Lafortune

et al. (2019) emphasize that the economic impact of migration may be mediated through its

impact on production processes, skill mixes, and capital responses. Tabellini (2018) shows that

while historical immigration to the US has fostered development, it has also sparked a political

backlash, a contemporaneous environment further detailed in Kerr (2018).

Second, our empirical study is motivated by theories of endogenous growth. While the sem-

inal contribution of Romer (1990) predicts that a larger population, in levels, ought to increase

the rate of growth of the economy, subsequent refinements (Jones, 1995, 1999) in so-called semi

endogenous growth theory predict a positive link between the growth rate of population and

economic growth. This purposefully brief description does not do full justice to the rich debate

on scale effects in growth, with other important theoretical contributions including Peretto

(1998) and Young (1998). Empirical work by Laincz and Peretto (2006) further disentangles
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predictions of the varying classes of models. In these models, a larger population, or a higher

population growth rate, allow an economy to grow because increasing returns to scale in the

technology for innovating overcome decreasing returns to scale in production (Solow, 1956).

Another key insight from this literature is that a larger population of (potential) innovators

may be better able to achieve increasingly hard innovations. Bloom et al. (2017) show evidence

that new ideas are in fact becoming harder to produce over time, so that an increasing amount

of resources are needed to continue innovating. We contribute to this literature first by showing

a positive impact of immigration –one channel through which population grows - on innovation

and growth. We also show evidence that the scale effects necessary for endogenous growth in

Jones (1995) operate and are statistically identifiable at the local level. Finally, we show that

a key input in the technology to produce innovation is human capital, whereby more educated

migrants contribute more to innovation than less educated migrants.

Endogenous growth theory also ties the innovation and growth process to creative destruc-

tion, as in the seminal contributions of Aghion and Howitt (1992), Grossman and Helpman

(1991), and Klette and Kortum (2004). We confirm the predictions from those theories: an

increase in population, induced by immigration, which feeds the innovation process, also in-

creases measures of creative destruction. US counties receiving more migrants experience both

higher rates of job creation and destruction and also see more positively skewed growth, with

more “superstar” or right-tail growth of industries in their area.

Third, we contribute to the empirical literature which has investigated the decline in dy-

namism, in particular in the US. Using aggregate trend data and a structural approach, Kara-

han et al. (2016) show that the declining dynamism in the US may be due to lower population

growth. Khanna and Lee (2018) show a positive association between high-skilled migration and

detailed firm-level measures of dynamism and turnover. Using US census microdata, Decker

et al. (2014) document the declining dynamism in the US. Gordon (2012) contemplates the

idea that growth may have run out in the US. Alon et al. (2018) suggest that the decline in

US dynamism may be due to older firms. Using an endogenous growth theory, Akcigit and

Ates (2019) argue that the decline may be due to declining knowledge diffusion across firms.

Using data on aggregate trends, and guided by the theory, Hopenhayn et al. (2018) propose

that the decline in dynamism in the US is due to older firms and a lower population growth

rate. Hathaway and Litan (2014) also document declining measures of dynamism in the US.

We contribute to this literature by showing causal evidence that population growth, and in

particular population growth driven by immigration, may counteract the decline in dynamism
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in the US economy.

Important recent advances identify conditions for shift-share instruments to be valid, notably

the work by Borusyak, Hull, and Jaravel (2018) and Goldsmith-Pinkham, Sorkin, and Swift

(2018). The latter highlight that exogeneity of the shares is a sufficient condition for consistency

of shift-share instruments. Our approach precisely singles out plausibly exogenous variation in

the shares – the spatial distribution of ancestry – and uses that variation only in a shift-share

like approach. This distinguishes our approach from earlier papers which use raw baseline

shares.

The remainder of this paper is structured as follows. Section 2 introduces our data. Section

3 lays out our strategy for identification and isolates empirically quasi-random variation in

migrations to US counties. Section 4 formally estimates the causal effect of immigration on

innovation, economic dynamism, and income growth. Section 5 tests for geographic spill-overs

in the effect of immigration on innovation and disentangles the impact of high-skilled from that

of low-skilled migration. Section 6 concludes.

2 Data

We collect detailed data on migration, ancestry, the education level of migrants, patents issued,

and measures of dynamism of local firms and local labor markets. Below is a description of our

data sources, and the construction of our main variables. Further details on the construction

and sources of the data are given in Appendix A.

Immigration and Ancestry. Following Burchardi et al. (2019), our immigration and an-

cestry data are constructed from the individual files of the Integrated Public Use Microdata

Series (IPUMS) samples of the 1880, 1900, 1910, 1920, 1930, 1970, 1980, 1990, and 2000 waves

of the US census, and the 2006-2010 five-year sample of the American Community Survey. We

weigh observations using the personal weights provided by these data sources. Appendix A.1

gives details on specific samples and weights used.

Throughout the paper, we use t−1 and t to denote the end years of consecutive 5-year peri-

ods,2 o for the foreign country of origin, and d for the US destination county. We construct the

number of migrants from origin o to destination d at time t, I t
o,d, as the number of respondents

born in o who live in d in a given census year and emigrated to the United States between t− 1

2Due to data limitations in the reporting of year of immigration in the 1970-1990 censuses, the length of
periods vary slightly over this time frame.
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and t. The exception to this rule is the 1880 census (the first in our sample), which also did not

record the year of immigration. The variable I1880
o,d instead measures the number of residents

who were either born in o or whose parents were born in o, thus covering the two generations of

immigrants arriving prior to 1880.3 Since 1980, respondents have also been asked about their

primary ancestry in both the US Census and the American Community Survey, with the option

to provide multiple answers. Ancestry At
o,d corresponds to the number of individuals residing

in d at time t who report o as their first ancestry. Note that this measure captures self-reported

(recalled) ancestry.4

The respondents’ residence is recorded at the level of historic counties, and at the level of

historic county groups or PUMAs from 1970 onwards. Whenever necessary we use contempo-

raneous population weights to transition data from the historic county group or PUMA level

to the historic county, and then use area weights to transition data from the historic county

level to the 1990 US county level. The respondents’ stated ancestry (birthplace) often, but not

always, directly corresponds to foreign countries in their 1990 borders (for example, “Spanish”

or “Denmark”). When no direct mapping exists (for example, “Basque” or “Lapland”), we

construct transition matrices that map data from the answer level to the 1990 foreign coun-

try level, using approximate population weights where possible and approximate area weights

otherwise. In the few cases when answers are imprecisely specific or such a mapping cannot

be constructed (for example, “European” or “born at sea”), we omit the data. 5 The resulting

dyadic dataset covers 3,141 US counties, 195 foreign countries, and 10 census waves.

Innovation. We use patent data to measure innovation. Starting from the universe of patent

microdata provided by the US Patent and Trademark Office (USPTO) from 1975 until 2010, we

study corporate utility patents with US assignees, around 4.7 million observations. We convert

assignee locations provided by the USPTO in coordinate form to 2010 US counties, tabulating

the number of corporate utility patents granted to assignees in each county in each year of the

sample, and then use area weights to transition to 1990 US counties. In the earlier periods,

when there was more personalized US innovation, inventor location is the natural measure of

geography (Akcigit et al., 2017); however, in recent years the overwhelming majority of patents

are assigned to corporations, making assignees the natural baseline location measure for our

purposes. Nevertheless, in addition to this baseline choice we also explore alternative means of

3If the own birthplace is in the United States, imprecisely specific (e.g., a continent), or missing, we instead
use the parents’ birthplace, assigning equal weights to each parent’s birthplace.

4See Duncan and Trejo (2017) for recent evidence on recalled versus factual ancestry in CPS data.
5Appendix A.1 provides a detailed description of the data transformation.
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locating patents by inventors, and we also conduct various quality or citation weighting checks

following Hall et al. (2001). We sum patent flows over five-year periods, with the measure in t

corresponding to the sum of patents in a given county d over the five years between t− 1 and t.

We then scale this measure by the 1970 population of county d from the Census microdata to

yield a five-year patents per capita variable. The change in the flow of patents per capita from

period t − 1 to t is our primary outcome of interest.6 Appendix A.2 gives additional details.

Dynamism. A growing empirical literature emphasizes that measures of dynamism and cre-

ative destruction in the United States have declined in recent decades (Decker et al., 2014).

Our dynamism measures come from two sources, motivated by the prior work on this subject.

The first dataset - the US Business Dynamism Statistics (BDS) database from the US Census

- contains measures computed from the underlying Longitudinal Business Data microdata on

the employment levels of the universe of US business establishments. The BDS data include

job creation and job destruction rates (gross flows representing the ratio of the number of jobs

created or destroyed as a fraction of total employment) at the yearly level and spanning 1977–

2015. The sum of these measures is known as the job reallocation rate, and the difference

between them is the net employment growth rate. We apportion the native MSA geography to

1990 US counties by population. Our main dynamism outcomes of interest from the BDS data

in county d in period t correspond to the change in either job creation or job destruction rates

from t − 1 to t.

In addition to measures of gross employment flows, the dynamism literature also empha-

sizes a decline over time in the skewness of employment growth rates, i.e., a decline in the

relative importance of “superstar” growth performance in driving US employment dynamism.

In this spirit, we construct growth rate skewness measures starting from the US Census County

Business Patterns (CBP) dataset. The raw data contain county by year by 4-digit industry

employment levels from 1985 to 2010. For each county and year, we compute the Kelley Skew-

ness of employment growth rates across 4-digit sectors. This measure gives a sense of whether

certain strongly performing industries drive overall employment growth in that period and lo-

cation. The final measure of interest for county d in period t is the change in the growth rate

skewness measure over the five years from t − 1 to t.

6We manually check the patenting per capita measure for outliers likely due to errors in location coding
by the USPTO, finding a few instances in which manual correction was possible. However, to guard against
the possibility that any miscoding remains, we winsorize the resulting distribution of the change in patents per
capita outcome variable.
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Other Data. We compute local average annual wages from the Quarterly Census of Wages

(QCEW) dataset provided by the US Bureau of Labor Statistics. The data stem from state-level

unemployment insurance records. It records employment and wages at the county-by-industry-

by-year level starting in 1975. We compute the total wages per capita in a given county-year

combination deflate using the Personal Consumption Expenditure price index from the same

source. The outcomes of interest in specifications studying income growth is the change in

wages per capita in county d over the five-years period ending in t. We also construct data on

the change in average annual wages for US-born working individuals (natives) and the subset of

US-born working individuals who have lived in their county of residence for the past 5 years at

the time of the Census (native non-movers) using data from IPUMS USA; for these outcomes,

we consider the change in average CPI-deflated wages for natives (or native non-movers) in

county d over the 10-year period ending in t.

Summary Statistics. Table 1 reports summary statistics on the outcomes described above,

as well as various other instruments and derived variables studied below. The series are observed

at the county by 5-year window level. The table reveals sensible patterns. Counties on average

received around 1.4 thousand non-European immigrants in each 5-year period between 1975

and 2010, a meaningful contribution to overall population growth of around four thousand.

Innovation (as measured by per capita patenting) increased on average over the period, with

substantial heterogeneity across counties. As emphasized by the dynamism literature, measures

of creative destruction including job creation rates, job destruction rates, and growth rate

skewness declined on average during our sample, although the average obscures wide differences

in experience: some counties became substantially more dynamic over the period we study.

Wages per capita grew on average, as expected. The statistics on the remaining variables,

reflecting the variation in subsets of our data or several constructed instruments, will become

useful in our discussion below.

3 Constructing a Valid Instrument for Immigration

Our aim is to estimate the causal impact of immigration on innovation and local economic

dynamsim. To do so, we estimate the following equation

ΔY t
d = δt + δs + β ∙ Immigrationt

d + εt
d, (1)
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where Immigrationt
d measures the number of migrants flowing into destination county d between

t−1 and t, ΔY t
d is a change from t−1 to t in the outcome of interest, and δt and δs are time and

state fixed effects, respectively. Our most conservative specification also includes a county fixed

effect, δd, which controls for any county specific trend in Y t
d , so that we exploit only variation

over time within a given county.

The main concern with a simple OLS estimate of (1) is that unobserved factors may affect

both immigration and innovation or dynamism. For instance, it is likely that migrants are

disproportionately drawn to more innovative destinations within the US. We estimate (1) in

differences, so that any systematic differences in the level of innovation are controlled for.

Nevertheless, it remains possible that migrants are disproportionately drawn to counties within

the US which are temporarily on an upward innovation trend.

To address this concern, one possibility would be to construct a “shift-share” instrument

in the spirit of Card (2001), predicting immigration flows using the interaction of pre-existing

foreign ancestry shares in a given destination county with the total number of migrants arriving

in the United States from that origin country, and then summing over origin countries, as for

example in Hunt and Gauthier-Loiselle (2010). However, it is likely that omitted factors which

make a set of US counties more innovative may also have attracted disproportionately many

migrants from specific sets of origin countries in the past, rendering pre-existing ancestry shares

endogenous. For example, Indian engineers may be particularly good programmers and may

have historically migrated to Silicon Valley (and to other information technology hubs) because

those destinations provided attractive employment opportunities for programmers; and more

Indian engineers may systematically migrate to Silicon Valley (and other information technology

hubs) whenever there is a boom in the information technology industry. If this were the

case, the canonical shift-share approach would falsely identify a causal effect of immigration

on innovation, when in reality innovations in software are the reason why destinations with

high pre-existing Indian ancestry shares receive more immigration. Thus, if ancestry shares

are themselves endogenous – i.e. are potentially correlated with unobserved factors affecting

innovation – this poses a challenge to the canonical shift-share approach.

To overcome this challenge we augment the canonical shift-share approach with a set of

instruments that isolate quasi-random variation in the pre-existing ancestry composition of US

counties. This variation results only from the coincidental timing of two forces driving historical

migration patterns in the US: (i) time-series variation in the relative attractiveness of different

destinations within the United States to the average migrant arriving at the time (e.g. end of
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nineteenth century Midwest versus early twentieth century West) and (ii) the staggered arrival

of migrants from different origins (e.g. end of nineteenth century China versus early twentieth

century Japan). We argue that the interaction of these two forces can be used to construct

valid instruments for the distribution of ancestries across US counties that are orthogonal to

origin-destination specific confounding factors, like the affinity of Indian engineers for software

development mentioned above. We then use only the exogenous component of the pre-existing

distribution of ancestries to predict migrations into each US county post 1970. Doing so,

we eliminate a wide range of concerns relating to the endogeneity of pre-existing ancestry

composition. We discuss this procedure, its merits, and also limits, in detail below.

3.1 Constructing an Instrument for Immigration

To construct our instrument for the number of migrants flowing into a given destination county

at a given point in time, we build upon Burchardi et al. (2019), and start from a simple reduced

form model of migration. Migrants from origin country o settle in destination county d at time

t according to,

I t
o,d = δt + δt

o + δt
d + X ′

o,dβ + I t
o

(

at
I t
d

I t
+ bt

At−1
o,d

At−1
o

)

+ ut
o,d, (2)

where ancestry evolves recursively as cohorts of migrants accumulate,

At
o,d = δt + δt

o + δt
d + X ′

o,dβ + ctI
t
o,d + dtA

t−1
o,d + vt

o,d. (3)

In both equations, the δ terms are fixed effects, and X ′
o,dβ controls for observables.

Our key assumption on the forces driving migration, upon which our identification is built,

corresponds to the interaction terms, I t
o

(
at (I t

d/I
t) + bt

(
At−1

o,d /At−1
o

))
. We model the choices

of migrants as driven by two distinct forces, which we label ‘push-pull’ and ‘shift-share’. The

‘push-pull’ force is captured by the term I t
o (I t

d/I
t): in time periods where many migrants

arrive from country o to the US (a large I t
o ‘push’ factor), and when a destination county d is

particularly attractive to the average migrant arriving at the time (a large ‘pull’ I t
d/I

t factor),

we expect many migrants from o to settle in d. This corresponds to an economic motive

for migration: upon arriving in the US, migrants tend to flock to destination counties that are

attractive to the average migrant arriving at the time. The ‘shift-share’ force is captured by the

term I t
o

(
At−1

o,d /At−1
o

)
: migrants arriving from o (the ‘shift’ factor I t

o) have a tendency to locate

in destinations d with a pre-existing community from their home country (the ‘share’ factor
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At−1
o,d /At−1

o ). This corresponds to a social motive for migration: other things equal, migrants

tend to prefer living near others of their own ethnicity.

We use the recursive set of equations (2)-(3) to construct an instrument for immigration.

The ‘push-pull’ force, cumulated over several periods, allows us to isolate plausibly exoge-

nous variations in pre-existing ancestry inherited from historical shocks that operated prior

to 1975. To fix ideas around these ‘push-pull’ forces more concretely, directly examining the

underlying variation proves useful. Figure 1 plots the share of non-European immigration into

the US from 14 of the non-European origin nations with the largest cumulative immigration to

the US. This push-factor variation within countries is generally clustered in time in “bursts”

of immigration to the US, often driven by historic events in the home countries or by changes

in origin-specific rules for migration to the US. For example, Mexican migration to the US

experiences a spike during the period of the Mexican Revolution from 1910-20. Cuban immi-

gration flows increase during the 1960s and 1970s in the decades after the Cuban revolution.

Immigration from Vietnam reaches substantial numbers only from the mid-1970s onwards in

the wake of US involvement in the Vietnam War. Chinese and Japanese migration to the US

fell from relatively higher levels early in the sample to low levels before rising over time, in this

case as the various US immigration exclusion acts were repealed.

As the different nations in Figure 1 sent immigrants at different points in time to the US,

the location of relatively attractive destination counties – our source of variation for the pull

factor also changed substantially over time. Figure 2 plots color-coded maps of migration

into the US over Census waves from 1880 to 2010, with darker shades representing a higher

intensity of migration to a given county. Early on in the sample during the late 19th century

northeastern locations were particularly attractive destinations. But by the early 1900’s the

average immigrant’s favored destinations shifted to the midwest and western regions, before

shifting yet again to the coastal and southeastern regions later on.

So to summarize, the rich variation in Figures 1 and 2 allows us to isolate variation in pre-

existing ancestry attributable to the coincidence of historical push and pull factors operating

on the average immigrant arriving in the US at different times from different origins. Instead of,

say, considering the stock of individuals with Mexican ancestry in each US county in 1975, our

eventual set of quasi-random variation instead exploits, say, the fact that certain southeastern

and midwestern regions happened to be popular destinations (‘pulling’ people into destination

counties d ∈ {Southeast,Midwest}) during the period of heavy Mexican immigration around

the Mexican Revolution (‘pushing’ people out of that origin nation o = Mexico).
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Having isolated plausibly exogenous variation in pre-existing ancestry composition, we can

then confidently use the ‘shift-share’ force to predict contemporaneous immigration shocks in

the period after 1975.

In practice, we construct our instrument for the number of migrants flowing into a given

destination county at a given point in time in three steps, each of which is easy to implement

and follows the simple logic of the above model of migration.

Step 1: Isolating quasi-random variation in ancestry. We predict the number of resi-

dents of destination county d with ancestry from origin country o in baseline year t (in thou-

sands), At
o,d, by using the ‘push-pull’ force in (2), and by cumulating successive migration waves

using (3). We complement this model by adding ‘leave-outs’, to ensure that our instruments

do not contain any, potentially confounding, origin-destination-specific factors . Formally, we

estimate

At
o,d = δt

o,r(d) + δt
c(o),d + X ′

o,dβ +
t∑

τ=1880

bτ
r(d)I

τ
o,leaveout

Iτ
leaveout,d

Iτ
leaveout

+ ut
o,d. (4)

The ‘leave-outs’ ensure that we do not use the endogenous choice of migrants from o to settle in

d to predict ancestry from o in d. In our baseline, we use as our ‘push’ factor Iτ
o,leaveout = Iτ

o,−r(d),

the total number of migrants arriving from o who settle in locations outside of the region (Census

division, a grouping of several adjacent US states) where d is located over the 5-year period

ending in τ ; and we use for our ‘pull’ factor Iτ
leaveout,d/I

τ
leaveout = Iτ

Europe,d/I
τ
Europe, the fraction

of all incoming European migrants who settle in d.7 Our results are robust to using various

alternative ‘leave-out’ strategies. δt
o,r(d) and δt

c(o),d are a series of origin country-destination

region and continent of origin-destination county interacted fixed effects, while Xo,d contains

a series of time invariant controls for {o, d} characteristics (including distance and latitude

difference). We estimate (4) separately for each t = 1980, 1985, 1990, 1995, 2000, 2005, 2010 on

all non-European countries.

From this estimation, we derive predicted ancestry in county d from origin o at time t as

Ât
o,d =

t∑

τ=1880

b̂τ
r(d)

(

Iτ
o,leaveout

Iτ
leaveout,d

Iτ
leaveout

)⊥

, (5)

7The focus of our main regression of interest is on non-European migrants who arrived in the US in recent
decades, a period during which most migrants were not coming from Europe. Using the historical migrations
of Europeans to predict the settlement patterns of non-Europeans ensures our results are not driven by other
origin countries with similar characteristics and settlement patterns. Note that this leave-out imposes a stricter
requirement than simply removing migrants from o from Iτ

d /Iτ .
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where
(
Iτ
o,leaveout

Iτ
leaveout,d/Iτ

leaveout

)⊥
are residuals of a regression of Iτ

o,leaveout
Iτ
leaveout,d/Iτ

leaveout on

δt
o,r(d), δt

c(o),d and Xo,d. Again, our baseline specification uses region and continental leave-outs,

Iτ
o,leaveout = Iτ

o,−r(d) and Iτ
leaveout,d/I

τ
leaveout = Iτ

Europe,d/I
τ
Europe.

Step 2: Predicting migration from individual countries. Having isolated plausibly

exogenous variation in the stock of ancestry at the {o, d} level for all periods after 1970, we

use the ‘shift-share’ force from (2) to predict contemporaneous immigration. This method is

similar to Card (2001), except we address the concern that ancestry itself is an endogenous

variable. We predict immigration from o to d in period t by estimating

I t
o,d = δo,r(d) + δc(o),d + δt + X ′

o,dβ + γt ∙ [Â
t−1
o,d × Ĩ t

o,leave−out] + νt
o,d, (6)

where the δ’s are time, country×region, and continent×county fixed effects, X ′
o,d observable

controls, Ât−1
o,d is predicted ancestry from (5), and Ĩ t

o,leave−out = I t
o,−r(d)

(
It
Europe,r(d)/It

Europe,−r(d)

)
.

As we leave-out all migrants from o who settle in d’s region from Io,−r(d), we include a scaling

factor at the regional level, It
Europe,r(d)/It

Europe,−r(d)
, to correct for differences in region sizes.

Step 3: Predicting aggregate migration. We are finally able to generate our main in-

strument for the total number of migrants settling in county d in period t, Immigrationt
d in

equation (1),

Î t
d =

∑

o

γ̂t ∙ [Â
t−1
o,d × Ĩ t

o,leave−out]. (7)

Identifying assumption. With our baseline regional and continental leave-outs, a sufficient

condition for the validity of this instrument can be written as

Iτ
o,−r(d)

Iτ
Europe,d

Iτ
Europe

⊥ εt
d ∀o, d, τ ≤ t. (8)

It requires that confounding factors that correlate with increases in a given county’s innovation

or dynamism post-1975 and historically made a given destination more attractive for migration

from a given non-European origin country do not also correlate with past instances of the

interaction of the settlement of European migrants with the total number of migrants arriving

from that non-European origin who settle in other US regions. If this condition is satisfied, the

ancestry shares used to predict immigration in Step 2 are exogenous, as is the variation in total

immigration calculated in (7).8

8Exogeneity of ancestry shares is a sufficient, but generally not a necessary condition for the validity of
the canonical shift-share approach. For work identifying necessary and sufficient conditions for the validity of
the shift-share instrument as proposed by Altonji and Card (1991) and Bartik (1991) see Borusyak, Hull, and
Jaravel (2018).
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We believe this assumption is plausible: consider again a shock to productivity of software

development in Silicon Valley that attracts Indian software engineers. This confounding shock,

and any other origin-destination specific factor that drives migration and might affect the

destination’s capacity for future innovation, in general affects neither Ât−1
o,d nor Ĩ t

o,−r(d); the

former depends only on how the historical destination choices of Europeans coincided with the

number of Indians arriving in the US who chose destinations other than the West Coast, while

the latter depends only on the number of Indians arriving in t who again do not settle on the

West Coast. In order to violate (8), the confounding shock would instead have to systematically

affect both the destination choices of Indians and large numbers of Europeans (enough to sway

shares), while also attracting large numbers of Indians to US counties outside of the West Coast

and generating economic dynamism in these locations post-1975. We address this remaining

(if unlikely-sounding) concern below by varying the way in which we construct the leave-out

categories in our estimation.

3.2 The Construction and Performance of the Instrument

We now review the estimation results of each of the steps towards the construction of our

instrument, including the performance of the resulting instrument for county-level immigration

in the relevant first-stage regression.

In Step 1 of our instrument construction, we predict ancestry levels by using historical push-

pull factors in (5). Figure 3 reports the coefficients in this regression predicting 2010 ancestries,

and reports the coefficients on the interaction term by time period (assuming for presentational

purposes only that bτ
r(d) = bτ ∀r(d)). The results indicate that we identify variation in current

ancestry levels based on push and pull factors from across the full range of time periods in

our sample, with statistically precise contributions from periods as far back as the pre-1900’s

census waves. These coefficients are positive and mostly significant. The negative coefficient

in the late 1920s is consistent with large return-migrations during the Great Depression, when

arriving migrants swiftly returned home and possibly attracted earlier migrants to follow suit

(Abramitzky and Boustan, 2017). Figure 4 presents a bin scatter plot of the resulting predicted

ancestry levels against realized ancestry in 2010. Realized and predicted ancestry are tightly

aligned along the 45-degree line. (The corresponding regression of A2010
o,d on Â2010

o,d as defined in

(5) yields an R2 of 74.9%.) We conclude that Step 1 successfully predicts plausibly exogenous

variation in ancestry.

In Step 2, we interact lagged predicted ancestry with contemporaneous scaled push factors
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(Ât−1
o,d × Ĩ t

o,−r(d)) for each 5-year period post-1970 to predict plausibly exogenous variation in

immigration I t
o,d at the {o, d} level in (6). We allow the coefficient γt to vary by time period

t, and Table 2 reports the resulting estimates. Our ancestry and push factors positively and

significantly predict immigration at the origin-county level in all seven time periods post-1970,

with an R2 value of 65.6% in Column 1 indicating high explanatory power with no other

predictors included. The following columns add controls for distance, latitude difference, as

well as a full set of origin-country, destination-county, and time fixed effects. Column 3 adds

a total of 12,564 interactions of origin-country × destination-census-division and destination-

county × continent-of-origin fixed effects. Throughout these variations the coefficients on our

(instrumented) ‘shift-share’ terms remain virtually unchanged. Remarkably, they even remain

unchanged in column 5, where we control directly for contemporaneous economic forces shaping

migration by including ‘push-pull’ interactions for each period post-1970; 9 and even when we

include the (endogenous) total flow of European migration to the same county as an additional

control in column 4. We conclude that our instruments for origin-destination-specific migration

are orthogonal to a wide range of observables, and that Step 2 successfully predicts plausibly

exogenous variation in immigration at the {o, d} level.

In Step 3, we sum across origin countries to compute an instrument Î t
d for total non-European

immigration to county d at time t (7). Figure 5 presents a series of maps displaying this

“immigration shock” for each 5-year period from 1975 to 2010. To make those maps easier to

read, we remove county and state-time fixed effects. As a sense-check, Appendix Table 1 shows

that Î t
d indeed significantly predicts both non-European immigration and population growth

conditional on these controls. For example, in column 5, a regression of a county’s 5-year change

in population on Î t
d yields a coefficient of 1.921 (s.e.=0.323), suggesting that a one standard

deviation increase in our immigration shock (4.99) is associated with a 0.49 standard deviation

increase in the county’s population and, equivalently, a 0.65 standard deviation increase in the

county’s number of newly arrived immigrants.

9Because this specification is saturated with controls, the incremental increase in R2 from adding this variable
appears small. However, if we allow for flexible coefficients at the census region level (as in (4)), the R2 increases
by about six percentage points.
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4 The Impact of Immigration on Innovation and Growth

Classical endogenous growth theories link population growth to innovation, dynamism, and

income growth at the local level, a result which we lay out in a straightforward theoretical

derivation in Appendix B. In this section, we exploit our quasi-random variation in immigration

above to test these predictions explicitly.

4.1 Immigration and Innovation

We first test the hypothesis that immigration causes an increase in innovation at the county

level. Table 3 panel A shows estimates of (1) where we instrument for the number of immigrants

arriving in the county during the 5-year period. The dependent variable is the change in patents

per capita over the same period. Column 2 shows our standard specification which includes state

and time fixed effects, thus controlling for differential trends in innovation growth at the state

level. The estimated effect is positive and statistically highly significant (0.101, s.e.=0.031).

We interpret it as the local average treatment effect of immigration (particularly, immigration

allocated by the social factor in (2)) on county-level innovation. It implies that the arrival

of 10,000 additional immigrants in a given county on average increases the flow of patents

filed over a 5-year period by 1 patent per 100,000 people. Comparing these magnitudes to

the summary statistics above, an increase in immigration flows of one standard deviation -

12 thousand immigrants - causes around 1.2 more patents per 100,000 people, an increase of

27% relative to mean (4.45 patents per 100,000 people).10 The F-statistic on the excluded

instrument 911, and thus far above critical values.

Column 1 shows the OLS estimate of (1) for comparison. As expected, it is larger than our

preferred estimate (by about 2 standard errors), consistent with the view that, other things

equal, immigrants select into innovative counties in equilibrium – resulting in an upward bias

in OLS estimates of the effect of immigration on innovation.

Columns 3 and 4 show our results are robust and the estimated impact of immigration on

innovation vary little if we include interacted time and state fixed effects (0.100, s.e.=0.032 in

column 3), or even county fixed effects (0.108, s.e.=0.033 in column 4).11 Panel B of Table 3

10In order to first focus on issues of identification and the sign of the local average treatment effect, we defer
a detailed characterization of functional forms, particularly those commonly predicted by endogenous growth
models, to section 5.3.

11The fact that the estimates with and without county fixed effects are almost identical (0.100, s.e.=0.032
vs. 0.108, s.e.=0.033) strongly suggests that Ît

d is not spuriously correlated with highly persistent responses to
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shows similar results and similar magnitudes when we consider the impact of population growth

on innovation, instrumenting population growth with immigration shocks as in panel B of Table

1.12

4.2 Robustness

We show below that our results are robust to a large array of alternative specifications.

Alternative Instruments. Table 4 shows how our instrumentation and identifying assump-

tions affect our estimates of (1). Column 1 freezes predicted ancestry at its 1975 level, instead

of updating predicted ancestry each period. Column 2 uses a different leave-out strategy for the

‘push’ factor in step 1 of the construction of our instrument: instead of leaving out migrants

from country o who settle in the same census division as county d when predicting migrations

from o to d, we leave out migrants from o who settle in counties with migrations that are seri-

ally correlated with those towards d. Column 3 uses a different leave-out strategy for the ‘pull’

factor in step 1: instead of using the European migrants to county d as a measure of the ‘pull’

towards d when predicting migrations from o to d, we use instead all migrants to d originating

from countries outside d’s continent. Comforting for our identifying assumption, all of these

variations yield estimates that are almost identical to the one in our standard specification

(0.101).

In particular, recall that a confounding factor violating our assumption (8) would have to

systematically and repeatedly attract immigrants of a given ethnic group (Indians) to a given

US destination (Silicon Valley), while at the same time also attracting and large numbers of

Europeans (enough to sway shares) to the same county, and also attracting large numbers

of migrants from the same origin to US locations in other census regions (regions other than

the West Coast), while also generating economic dynamism in these locations post-1975. If

such (complicated) confounding factors were indeed at work, we would expect our estimates

to change dramatically when we change the leave-out categories in the construction of our

instruments to exclude the number of migrants arriving in destinations that tend to receive

inflows of migrants at the same time (column 2) or when we use shares of migrants from other

continents (instead of Europeans) to measure historical pull factors (Column 3). Instead, our

prior shocks, a common problem with traditional implementations of the ‘shift-share’ approach emphasized in
recent work by Jaeger et al. (2018).

12Consistent with this positive effect of immigration on innovation we also find that a positive immigration
shock has an agglomerative effect. That is, an exogenous increase in the number of immigrants to a county also
attracts more native-born Americans to that same county. See Appendix Table 3 for details.

18



estimates remain virtually unchanged (0.098, s.e.=0.033 and 0.094, s.e.=0.027, respectively).

Construction of the Baseline Instrument. The construction of our baseline instrument

Î t
d =

∑
o γ̂t ∙ [Â

t−1
o,d × Ĩ t

o,leave−out] differs from canonical applications of the ‘shift-share’ approach

(Card, 2001) in three respects. First, it instruments for pre-existing ancestry, second it leaves

out all migrants from o who migrate to the same census region as d when calculating the

‘shift’ (Ĩ t
o,leave−out), and third it uses a different functional form, where migrants are assumed

to respond to the number of individuals of their own ancestry in d rather than their share in

the local population. Table 5 re-traces each of these steps to make clear how each modification

affects our estimates, and how they help to address econometric shortcomings of canonical

applications of the ‘shift-share’ approach highlighted in the recent literature (Adão et al., 2019).

Column 1 replicates our standard specification for comparison. Column 2 implements our

baseline instrument but replaces ancestry in levels with ancestry shares, so that Î t
d =

∑
o γ̂t ∙

[Ãt−1
o,d /Ãt−1

o × Ĩ t
o,leave−out]. This procedure has the added complication that, in some instances,

predicted ancestry shares lie outside of the [0, 1] interval, as predicted ancestry from (5) is

sometimes negative. We remedy this issue by performing a simple translation of predicted

ancestries that avoids negative shares, Ãt−1
o,d = Ât−1

o,d − min[0, minδ[Â
t−1
o,δ ]]∀{t − 1, o}. Using this

translation, we find a larger positive and significant effect of immigration on innovation (0.195,

s.e.=0.090), though the larger standard error makes it statistically indistinguishable from our

standard specification.

Though less statistically precise, this formulation of our instrument has the advantage that it

allows us to test whether our instrumentation approach successfully addresses an over-rejection

problem in standard ‘shift-share’ applications, which take pre-existing ancestry shares as given.

This over-rejection problem arises because two US counties with similar pre-existing ancestry

composition may also have similar exposure to other (unobservable) economic forces, which

may lead to a dependency across regression residuals that is not accounted for by conven-

tional clustered standard errors. To test for this issue, we implement the statistical placebo

test for shift-share instruments pioneered by Adão et al. (2019).13 Following their procedure,

we randomly generate immigration shocks (for each {o, r, t} country-region-time triplet), and

construct placebo instruments by interacting these random shocks with our predicted ancestry

shares. We then run 1,000 placebo regressions of actual immigration on our randomly generated

13To clarify the comparison, the ‘shifts’ are industry shocks in Adão et al. (2019) versus immigration shocks
in our case, while the ‘shares’ are employment shares in Adão et al. (2019) versus ancestry shares in our case;
the variation is at the sector-county level in Adão et al. (2019), versus country-county in our case.
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instrument and report the fraction for which we reject the null hypothesis of no effect at the

5% statistical significance threshold. Comforting for our inference, we find a false rejection rate

of 4.5%.14

For comparison, column 3 repeats the same estimation as that of column 2 but utilizing

realized rather than predicted ancestry shares, so that Î t
d =

∑
o γ̂t ∙ [At−1

o,d /At−1
o × Ĩ t

o,leave−out].

Consistent with the findings in Adão et al. (2019), the false rejection rate is now close to 28%,

far above the expected 5%, pointing to a significant tendency to over-reject the null (and a

correspondingly much narrower standard error, although the point estimate remain similar).

Finally, in column 4, we fully converge to the conventional shift-share approach by also dropping

our leave-out adjustment (so that Î t
d =

∑
o γ̂t ∙ [At−1

o,d /At−1
o × Ĩ t

o]). The coefficient of interest

is again close to our standard specification (0.132, s.e.=0.055), but continues to suffer from

dramatic over-rejection in the placebo test.

We conclude that our instrumentation strategy is sufficiently powerful to isolate quasi-

random variation in ancestry levels, or shares, and that it effectively removes spurious corre-

lation with the error term, bolstering our confidence in a causal interpretation of the results.

Finally, it is worth noting that, despite their various challenges, all approaches to identifica-

tion, including the simpler ones, unanimously find a positive effect of innovation on county-level

innovation.

Robustness: Additional Controls. In Table 6 we go one step further and control paramet-

rically for a number of initial conditions that could be considered drivers of long-term economic

growth: population density in 1970, the number of patents generated in 1975 per 1,000, 1970

inhabitants (1975 is the first year for which our patent data is available), and the share of the

1970 population that is high-school and college educated, respectively. All of these covariates

could be considered “bad controls” (Angrist and Pischke, 2009), in the sense that they are

themselves outcomes of migration and should thus more appropriately be thought of as various

channels through which historical migration and ancestry may affect innovation. Nevertheless,

it is comforting for our identifying assumption that controlling for these initial conditions has

only modest effects on our result. The largest change in the coefficient of interest occurs when

we include the share of the population with a college education in 1970, lowering it from 0.101

to 0.082, less than one standard error (s.e.=0.031). Column 6 imposes an even stronger iden-

tification restriction, by including a county fixed effect to control for county-specific trends in

14We report additional details of this placebo test in Appendix Table 5.
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innovation (as already shown in Table 3). Throughout these variations, the estimated effect of

immigration varies little, and it remains positive and statistically highly significant.

Robustness: Alternative Samples. Table 7 further probes the robustness of these results

by excluding important origin countries (panel A), or using only important origin countries

(panel B). In panel A, we sequentially exclude migrations from the five largest sending countries

post 1975 (Mexico, China, India, Philippines, and Vietnam) from the sum in (7), thus treating

migration from these countries as endogenous. While dropping Mexican immigration from our

instrument lowers the F-statistic in the first stage by about half, the estimated coefficients vary

little across these alternative samples, showing that no single large sending country drives our

results. In panel B, we include only migration from those individual origin countries. Again,

while our F-statistics decrease as we move to smaller origin countries, the coefficients vary

surprisingly little across specifications.

Robustness: Different Time Horizons. Table 8 serves two purposes. First and reassur-

ingly, we show in column 1 that contemporaneous migrations have no effect on past innovation.

This finding further strengthens our confidence in our identification strategy. Second, in column

2-4, we explore the dynamic impact of exogenous immigration shocks on innovation. Column

2 replicates our baseline results, the contemporaneous effect of immigration on innovation over

a 5-year period, as in Table 3 panel A column 4. Columns 3 and 4 consider the impact of

immigration on patenting over a 10- or 15-year period. We find that the effect of immigration

on innovation gradually increases, and stabilizes after about 10 years. In other words, the effect

more than doubles from 5 to 10 years, and remains constant beyond. This speed of adjustment

is plausible, and consistent with endogenous growth models, as the population shock induced by

immigration gradually percolates through the local labor market and firms are able to innovate.

Robustness: Alternative Measures of Innovation. We show in Appendix Table 2 that

our results are robust to alternative measures of innovation. Our measure for innovation comes

from USPTO patent microdata. In our main specification, we assign patents to a specific

county d according to the firm or assignee owning the patents, and we treat all patents as

equally important, simply counting the total number of patents. We consider two variations on

each dimension. First, we assign patents according to the place of residence of the inventor of

the patent, not the firm owning the patent. Second, we weight each patent according to their

relative citation counts following Hall et al. (2001) in order to distinguish between high impact-
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high citation patents and low impact-low citation patents. Across all four possible measures

of patents, our results are similar, with a positive and significant effect of immigration on

innovation, and a similar estimated size for this effect. The differences in the point estimates

simply reflect differences in the scale of the various measures of innovation.

4.3 Immigration, Economic Dynamism, and Income Growth

In Table 9, we supplement our analysis of immigration’s impact on innovation with a range of

additional economic dynamism and income growth outcomes which endogenous growth theory

suggests should link positively to innovation.

Immigration causes an increase in creative destruction or gross flows in jobs, as reported in

columns 1 and 2. Both the job creation rate and job destruction rate increase with immigration,

implying that the overall churning or reallocation in the labor market also responds positively.

Recall that dynamism measures decline on average over this period, as emphasized by the

wide literature on declining creative destruction in the US. Our positive estimated responses

to immigration indicate that immigration may help to dampen such declines. Turning to

magnitudes, a one standard deviation increase in immigration in a county - around 12 thousand

more people - leads to an increase in the job creation rate of 2.1 percentage points (around

7% relative to the mean decline) and an increase in the job destruction rate of 1.8 percentage

points (around 11% relative to the mean decline).15

Exploring an alternative measure of dynamism, higher immigration causes an increase in

the skewness of employment growth (column 3). Intuitively, when more immigrants arrive, the

importance of ‘superstar’ employment growth experiences across sectors in an area increases. A

one standard deviation increase in immigration causes about a 3% increase in skewness relative

to the mean decline in this measure over the sample.

At their core, endogenous growth models link innovation to income growth, and column 4 of

Table 9 confirms that more immigration causes an increase in wages per person. Immigration of

around 12 thousand more people to a county on average increases wages per capita by around

5% relative to the mean observed growth. Because the QCEW wage data does not allow us to

distinguish between wages of natives and non-natives, columns 5 and 6 repeat this estimation

using 10-year changes in average wages measured from the US census, aggregating separately

across all natives (individuals born in the US) and natives who report having lived in the same

15It is worth noting that although most endogenous growth theories link higher dynamism to innovation,
higher income growth, and higher welfare, the impact of dynamism on the subjective wellbeing of individuals
exposed to such creative destruction is more ambiguous (Aghion et al., 2016).
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county 5 years prior to the census. We find a positive, and statistically significant, effect of

immigration on the average wage of both groups.

To summarize the estimates in this section, immigration causes moderately large increases

in creative destruction and income growth at the local level, validating traditional endogenous

growth theories and potentially serving as a potent counterweight to trend decline in dynamism

and growth in the US in recent decades.

5 Spillovers and Education

The local positive impact of immigration on innovation that we document above validates long-

standing theoretical mechanisms linking innovation to population growth. However, two natural

questions remain. First, if ideas and goods flow across regions, to what extent do the impacts

of immigration spill over across counties in our data? Second, since most theoretical models

predict that more highly skilled workers bring more effective input to bear for innovation or

production, to what extent do the impacts of immigration on innovation vary with the education

level of migrants? We tackle both issues directly in this section, finding that positive spillovers

appear meaningful and that the impact of immigration on innovation increases with average

schooling levels.

5.1 Spatial Spillovers

To explore the impact of cross-county spillovers, we consider two geographic spillover concepts

in Table 10. First, we consider within-state spillovers, constructing for each destination county

d at each time t a measure of immigration to all counties other than d in the same state.

This measure, labeled Immigrationt
State, varies at the same level as the county-specific baseline

immigration flow Immigrationt
d. To construct a separate instrument for state-level immigration

flows we follow a symmetric procedure, adding the immigration shocks up for all other counties

within the same state as d.

In a second approach, we consider a specification allowing spillovers from neighboring coun-

ties to vary smoothly by distance. For county d at time t, we construct the sum of all immi-

gration to other counties, inversely weighted by the distance to the reference county d. The

distance measures reflect a matrix of great circle distances computed from county centroids

using the Census mapping files for county geographies. The resulting distance-weighted mea-

sure of immigration to other counties, labeled Neighbor′s Immigrationt
d, varies at the county

d by time t level. We also consider a non-parametric estimate for the diffusion of the effect
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of immigration, with separate instruments for immigration within 100km (60 miles), excluding

county d itself, immigration between 100km and 250km (150 miles), and between 250km and

500km (300 miles).

We explore the spatial spillovers of immigration on both innovation (panel A of Table 10),

and on local wages (panel B of Table 10).

Innovation Spillovers. In column 1 of Table 10, we first report an IV estimate of the effect of

own-county immigration on innovation using census division instead of state fixed effects. The

coefficient of interest is similar to those in Table 3 (0.130, s.e.=0.039). Column 2 adds a second

endogenous variable, the state-level sum across other counties’ immigration. The first-stage

F statistics reveal strong power for both the own-county and state-level immigration flows. 16

The impact of own-county migration on immigration remains strongly positive with a similar

magnitude. In addition to this direct effect of immigration, more immigration to other counties

within the same state also increases local innovation. The magnitudes implied by column 2 are

sensible. A one-standard deviation increase in immigration to a county (12 thousand people) on

average increases patenting per capita by 29% relative to mean, holding state-level immigration

to other counties constant. Similarly, a one-standard deviation increase in immigration to all

other counties in the state (1.4 million more immigrants), holding the county’s immigration flow

constant, increases patenting per capita by around 31% relative to mean. In other words, both

local immigration and immigration to the surrounding state positively impact local innovation.

Although migrants to other counties matter less individually for a county’s innovation, the

larger scale of those flows means that such immigrants bring similarly sized innovation impacts

to the local economy.

Columns 3 and 4 explore the spatial diffusion of the effect of immigration on innovation,

doing away with the somewhat arbitrary notion of state boundaries. Column 3 shows that

immigration to nearby counties, where we discount distant counties inversely with distance. 17

We show that immigration to nearby counties (defined as geographically proximate counties)

has a strong positive effect on innovation. Column 4 quantifies this spatial diffusion in a non

parametric way. It shows that immigration to close-by counties has a positive effect on innova-

tion, but this effect dies out with distance. A one standard deviation increase in immigration

within 100km increases innovation by 80% relative to mean; a one standard deviation increase in

16For all specifications involving multiple endogenous variables, we use the Angrist and Pischke (2009, p.
217-218) first-stage F -statistic, testing for each regressor separately the null of weak identification.

17This measure is akin to a measure of market access in international trade.
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immigration between 100km and 250km increases innovation by 42%; but immigration beyond

250km no longer has a statistically detectable effect on innovation.

Wage Growth Spillovers. The spatial spillovers of the effect of immigration on wage growth,

shown in panel B of Table 10, are similar to those on innovation, although they seem more local

than the innovation spillovers. Immigration to other counties within the state (column 2) do not

have a significant impact on wage growth. Immigration to nearby counties, using an inverse

distance weighted sum of immigration to other counties, does have a strong and significant

impact on local wage growth (column 3), though it appears smaller than that for innovation.

Immigration within 100km positively affects local wage growth, with a one-standard deviation

increase leading to around a 20% increase relative to mean. However, the effect is statistically

indistinguishable from zero beyond 100km.

5.2 Education of Immigrants

We now explore whether more educated immigrants have different impacts on local innovation

and wages. First, to measure educational attainment for individuals who might reasonably have

had the time to complete their schooling, we limit ourselves to the analysis of immigrants age 25

or greater, constructing the endogenous measure of immigration at the county level within this

subset of immigrants. We then interact this overall adult immigration flow with the average

schooling levels - total years of education or total years of college, in two alternative versions -

adding a second endogenous variable to our baseline specification.

To successfully instrument for both the total immigration flow and the interaction of im-

migration and education, we exploit the fact that different origin countries send migrants with

different levels of education to the US at different times. Our identification strategy allows us to

construct a separate instrument for each origin country o - destination county d pair and each

time period t, Î t
o,d = Ât−1

o,d × Ĩ t
o,−r(d). We disaggregate our baseline instrument to this level, using

the predicted immigration shocks for each of the the top 20 origin countries as a joint set of

instruments for both total immigration and immigration interacted with the average education

level of the new arrivals, so that the first stage for this additional endogenous variable takes

the form

Average Y ears Educationt
d × Immigrationt

d = δs + δt +
20∑

o=1

κoÎ
t
o,d + νt

d.

Since migrants from different countries have different schooling levels, and they emigrate to
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different counties, we are able to isolate variations in the level of education of migrants across

counties.

Innovation and Education Table 11 reports the results of our analysis. The top panel

examines heterogeneity in the impact of immigrants on innovation by education level. Column

1 replicates our standard specification for the age 25+ immigration sample, with a positive -

now slightly stronger than baseline - impact of immigration on the growth of patenting per

capita.18 Column 2 adds the interaction of immigration with (demeaned) average years of

education for immigrants to the same county. The estimates indicate that more highly educated

immigrants cause a bigger increase in innovation. To inspect the magnitude of the heterogeneity

at work here, consider two counties both receiving ten thousand more migrants. A county

receiving migrants of average education (around 11 years per person) would see innovation

increase by around 10 × 0.200 = 2 more patents per 100,000 people. However, a county

receiving the same number of immigrants with one standard deviation (about 3.5) extra years

of education per person would see 10×(0.200+3.5×0.221) = 9 more patents per 100,000 people.

Column 4 reports a similar analysis, but measuring educational attainment by average years

of college completed rather than average years of total schooling. Unsurprisingly, the impact

of immigration on innovation increases even more strongly with college attainment than with

overall educational attainment. Note that columns 2 through 4 rely on a linear interaction of

immigration and education, imposing functional form restrictions on the link between education

and innovation responses. Column 4 instead conducts a nonparametric analysis, separately

instrumenting for the immigration into counties receiving migrants with low, medium, and high

levels of average education per person by terciles. The more flexible analysis in this column

reveals that counties receiving the most highly educated immigrants see an order of magnitude

higher impact on patenting relative to counties receiving medium-education migrants, while the

impact of the lowest-education immigrants is too noisy to determine.

Wage Growth and Education The bottom panel of Table 11 examines heterogeneity in

the impact of immigration on overall wages per capita by education levels, with a structure

identical to the top panel. The average immigrant in our sample increases average wages

18In column 1 of Table 11 (both panels) we consider a specification with a single endogenous regressor and
multiple instruments and, therefore, report the first-stage F-statistic developed in Montiel Olea and Pflueger
(2013). The remaining columns in this table report results for specifications with multiple endogenous variables
and multiple instruments and, to our knowledge, there is no comparable effective F-statistic to report in this
case.
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in column 1. Column 2 reveals a higher impact in counties which receive immigrants with

a higher average education level. To evaluate magnitudes, once again consider two counties

both receiving 10 thousand more migrants. A county receiving migrants of average education

(around 11 years per person) would see wage increases by around 10 × 0.290 × $100 = $290

more per person over 5 years. A county receiving the same number of immigrants with one

standard deviation (about 3.7) extra years of education per person would see more wage growth

by around 10× (0.290+3.7×0.231)×$100 = $1,145 per person over 5 years. Column 4 reveals

similar - unsurprisingly stronger - patterns for college education rather than total years of

education. And in column 5, a nonparametric analysis splitting education levels into terciles

reveals that, just as in the case of patenting, the most highly skilled immigrants have an order

of magnitude higher impact on local wages per person than moderately educated immigrants,

with only noisily estimated impacts from the lowest-educated migrants.

5.3 Growth Models and Population Change

Endogenous growth models often link growth to total population change, rather than immi-

gration per se. Furthermore, different models imply different functional forms. For example,

innovation growth rates respond to absolute population in “strong scale effects” models (Romer,

1990), suggesting a positive semi-elasticity of innovation to people. By contrast, “weak scale ef-

fects” models (Jones, 1995, 1999) suggest a positive growth response to population growth rates

or elasticity specifications. Although we build a suggestive motivating model in Appendix B,

our data does not have the sometimes centuries-long time scale required to cleanly differentiate

alternative models, and our results relate to local or relative innovation rather than aggregate

dynamics. However, with those limitations in mind, Table 12 explores a range of variations on

our baseline specification loosely inspired by the endogenous growth literature.

First, column 1 duplicates our baseline results. We then note that if population growth rates

determine innovation growth, as in models with weak scale effects, counties with larger absolute

immigration flows - and lower corresponding population growth rates induced by immigration

- should see smaller increments in innovation. Column 2 tests for such concavity by adding

the squared immigration flow, instrumenting for this higher order term with the square of the

baseline predicted immigration instrument. The negative coefficients on squared innovation

suggests that such nonlinearities or concavities are present.

To this point we have found it convenient to conservatively analyze the impact of immi-

gration on the change in patenting in order to flexibly account for any permanent destination-
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county specific variation in the levels of patent flows. However, baseline growth models typically

relate to the flow of patenting rather than its difference. So we explore the implications of a

switch to this flow measure, first duplicating our baseline specification and revealing a posi-

tive impact of immigration on patent flows (column 3) and evidence of some concavity again

(column 4).

The final four columns switch to an alternative outcome measure, the inverse hyperbolic

sine (IHS) of patent flows. The inverse hyperbolic sine function, approximately equivalent

to the natural logarithm for non-negative values, allows us to examine the semi-elasticity or

elasticity of innovation to various changes, with different classes of growth models mapping to

each concept as discussed above. Column 5 reveals a positive semi-elasticity of innovation to

immigration. Although our instrument was designed to predict immigration rather than overall

population change, and has less power for predicting overall population change as measured

by the first-stage F-statistic. Column 6 reveals a positive semi-elasticity to total population

changes induced by predicted immigration. Columns 7 and 8 repeat the exercise, instrumenting

for the IHS of immigration or population change. The resulting coefficients are interpretable

as elasticities, with a one-percent increase in immigration inducing 1.7% higher innovation in

column 7. Column 8, for which we have the least first-stage power and more noisy estimates,

reveals an increase in innovation of around 2.5% after 1% higher population change.

6 Conclusion

We find that plausibly exogenous variation in migration at the county level induced by quasi-

random variation in historical “push” and “pull” factors for immigration strongly predicts

overall realized immigration. We then estimate that over the past four decades immigration

at the local level has spurred increased innovation or patenting per capita. A strong tradition

in endogenous growth theory predicts exactly these links, with more immigrants bringing new

ideas, purchasing power, and scale which contribute to innovation. The impact of immigration

on innovation spills over positively to nearby counties and unsurprisingly increases with the

schooling of immigrants.

However, we also find that immigration increases dynamism or creative destruction at the

local level. Classic theoretical models predict that such creative destruction, which has been

declining on average in the US overall in recent decades, should move with overall innovation,

consistent with our findings on patents above. We conclude that increased immigration in

recent decades may have prevented even worse declines in dynamism at the local level, and
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might contribute to further mitigating the downward trend in dynamism if allowed in the

future.

Finally, we show that immigration to an area also has increased income growth or wages

per capita at the local level.

Given the relevance of innovation, dynamism, and growth for the long-run prospects of the

US economy as well as for macro models of growth, we view our results as relevant to the

ongoing debate about the appropriate choice of immigration policy.
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Table 1: Summary Statistics by County-Year

N mean sd iqr
Immigration Flows and Population Change
Non-European immigration (1000s) 21,987 1.42 12.21 0.22
Difference in population (1000s) 21,986 4.03 19.56 2.56
Instrument for Non-European immigration (1000s) 21,987 0.00 4.99 0.24
Patents
Patenting per 100,000 people 21,987 32.60 94.73 20.66
Difference in patenting per 100,000 people 18,846 4.45 47.83 6.45
Difference in patenting per 100,000 people (Inventors) 18,846 18.85 90.45 41.13
Difference in patenting per 100,000 people (Citation Weighted) 18,846 5.23 63.91 6.04
Dynamism and Wages
Difference in job creation rate 6,600 -32.47 209.90 50.00
Difference in job destruction rate 6,600 -17.37 199.58 38.46
Difference in skewness of employment growth 12,564 -6.82 48.91 51.87
Difference in average annual wage ($100) 21,976 19.00 56.23 25.80
Difference in average annual wage of natives ($100) 12,546 10.75 25.80 32.20
Difference in average annual wage of native non-movers ($100) 6,274 16.85 27.19 33.08
Immigration and Education
Non-Euro. immigration, age 25+ 21,987 0.80 6.91 0.11
Non-Euro. immigration, age 25+: Average years college 21,987 1.50 1.41 1.82
Non-Euro. immigration, age 25+: : Average years education 21,987 10.88 3.65 4.59
Immigration for Spillovers
State (minus own county) non-Euro. immigration (1000s) 21,987 808.00 1,438.90 557.47
Instrument for state (minus own county) non-Euro. immigration (1000s) 21,987 31.92 366.25 60.89
Inverse-distance weighted non-Euro. immigration (1000s) 21,987 1.15 0.78 0.65
Instrument for inverse-distance weighted non-Euro. immigration (1000s) 21,987 -0.01 0.15 0.03
Non-Euro. immigration to counties within 100km of d (1000s) 21,987 18.58 64.65 9.21
Instrument for non-Euro. immigration to counties within 100km of d (1000s) 21,987 -0.24 11.69 2.93
Non-Euro. immigration to counties within 250km of d (1000s) 21,987 74.96 133.50 67.60
Instrument for non-Euro. immigration to counties within 250km of d (1000s) 21,987 -2.46 26.90 10.81
Non-Euro. immigration to counties within 500km of d (1000s) 21,987 123.10 149.52 143.69
Instrument for non-Euro. immigration to counties within 500km of d (1000s) 21,987 0.00 36.88 10.01

Notes: This table displays the number of observations, mean, standard deviation, and interquartile range for all
outcome variables considered as well as the variables for immigration and the immigration instruments. Variables
for immigration, population growth and education are all for 5-year periods as are the differenced outcomes except
in the case of differences in average annual wage for natives and non-native movers, which are over 10-year periods.

34



c

35



Table 2: Regressions of Immigration on Shift-Share Instruments at the Country-County Level

Immigrationt
o,d

(1) (2) (3) (4) (5)

Â1975
o,d × Ĩ1980

o,−r(d) 0.0036*** 0.0036*** 0.0035*** 0.0035*** 0.0035***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1980
o,d × Ĩ1985

o,−r(d) 0.0016*** 0.0016*** 0.0016*** 0.0016*** 0.0016***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1985
o,d × Ĩ1990

o,−r(d) 0.0018*** 0.0018*** 0.0018*** 0.0018*** 0.0018***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1990
o,d × Ĩ1995

o,−r(d) 0.0005*** 0.0005*** 0.0005*** 0.0005*** 0.0005***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â1995
o,d × Ĩ2000

o,−r(d) 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â2000
o,d × Ĩ2005

o,−r(d) 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Â2005
o,d × Ĩ2010

o,−r(d) 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
I t
Euro,d 0.0109***

(0.0031)

I t
o,−r(d)

It
Euro,d

It
Euro

0.3913**

(0.1558)

N 3,583,881 3,583,881 3,583,881 3,583,881 3,583,881

R2 0.656 0.657 0.709 0.709 0.709

Controls:
Distance no yes yes yes yes
Latitude Dis. no yes yes yes yes
Region-Country FE no no yes yes yes
County-Continent FE no no yes yes yes
Time FE no no yes yes yes
Concurrent European Immigration no no no yes no
Contemporaneous Push-Pull no no no no yes

Notes: This table reports coefficient estimates for step 2 of our instrument construction, shown in
Equation (6), at the country-county level. Moving from column 1 to column 3 we introduce controls
for distance and latitude distance and then fixed effects into the regression specification. Column
4 adds contemporaneous European migration as a control while column 5 instead introduces the
contemporaneous push-pull factor for non-European migration. Standard errors are clustered by
country for all specifications and *,**, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.
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Table 3: Panel Regressions of 5-year Difference in Patenting per 100,000 People on Immigra-
tion (and Population Growth) at the County Level

5-year Difference in Patenting per 100,000
People Post-1980

(1) (2) (3) (4)

Panel A: Non-European Immigraton

Immigrationt
d 0.167** 0.101*** 0.100*** 0.108***

(0.080) (0.031) (0.032) (0.033)

N 18,846 18,846 18,840 18,846

First-Stage F Stat. 911 807 85

Panel B: Population Growth

Δ Populationt
d 0.223*** 0.113*** 0.113*** 0.087***

(0.066) (0.030) (0.031) (0.027)

N 18,846 18,846 18,840 18,846

First-Stage F Stat. 112 105 53

Controls:
Specification OLS IV IV IV
Geography FE state state state county
Time FE yes yes yes yes
State-Time FE no no yes no

Notes: This table reports the results of our second stage specifi-
cation, described in Equation (1), where the dependent variable is
the change in patenting per 100,000 people (population is based on
baseline 1970 levels) in county d in the 5-year period ending in t
and the endogenous variable is non-European immigration (1,000s)
(Panel A) or population growth (1,000s) (Panel B) in d and period
t. Column 1 provides the results of the OLS estimation of Equation
(1) while columns 2 through 4 provide an IV estimate of the second
stage. The table includes the first stage F-statistic on the excluded
instrument for each of the IV specifications. Standard errors are
clustered by state for all specifications and *,**, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 4: Robustness - Alternative Instruments

5-year Difference in Patenting per 100,000
Specification: Ancestry in Leave-Out Leave-Out

1975 Only Correlated Counties Own Continent

(1) (2) (3)

Immigrationt
d 0.093*** 0.098*** 0.094***

(0.027) (0.033) (0.027)

N 18,846 18,846 18,846

First Stage F-Stat 1,171 127 830

Controls:
Geography FE state state state
Time FE yes yes yes

Notes: This table displays the results of estimating Equation (1), where
the dependent variable is the change in patenting per 100,000 people (pop-
ulation is based on baseline 1970 levels) and the endogenous variable is
non-European immigration (1,000s) to d in t. In this table, each column
utilizes the same approach for instrument construction as the main instru-
ment but with one adjustment. Column 1 replaces predicted ancestry in
t − 1 with predicted ancestry in 1975 for all periods. Column 2 uses an
alternative leave-out strategy in Step 1: the push factor excludes all desti-
nation counties whose overall time-series of immigration flows are correlated
with those of d (as opposed to excluding counties in the same census division
(r(d)) as d). Column 3 replaces the pull factor in Step 1 with the share of
all migrants who settle in d but excluding migrants from the same continent
as o(instead of using only European migrants). We report the first-stage
F -statistic on the excluded instrument for each specification. Standard er-
rors are clustered by state for all specifications and *,**, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 5: Robustness - Construction of the Baseline Instrument and Shares Instrument

5-year Difference in Patenting per 100,000 People Post-1980

Specification: Baseline Predicted Ancestry Realized Ancestry Realized Ancestry
Instrument Shares Shares No Leave-Out

(1) (2) (3) (4)

Immigrationt
d 0.101*** 0.195** 0.106*** 0.132**

(0.031) (0.090) (0.035) (0.055)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 911 656 265 361

Adã o et al (2019) First-
Stage False Rejection Rate: 4.5 28.2 28.2

Instrument Functional Form:
Ancestry Measure Levels Shares Shares Shares
Instrumented Ancestry yes yes no no
Shift Leave-Out yes yes yes no
Controls:
Geography FE state state state state
Time FE yes yes yes yes

Notes: This table displays the results of estimating Equation (1), where the dependent variable is the
change in patenting per 100,000 people (population is based on baseline 1970 levels) and the endogenous
variable is non-European immigration (1,000s) to d in t. Column 1 is our baseline instrument which utilizes
prediced ancestry in levels while column 2 utilizes predicted ancestry shares. Column 3 utilizes the same
instrument as column 2, with predicted ancestry shares, but with no leave-out in the shift factor. Finally,
column 4 takes the instrument in column 3 but replaces prediced ancestry shares with actual ancestry
but with actual ancestry shares as in the traditional Card-style shift-share instrument. We report the
first-stage F -statistic on the excluded instrument for each specification. For columns 2 through 4, we
report the false rejection rate in the first stage regression for a robustness test that follows the method
proposed by Adão et al. (2019). Standard errors are clustered by state for all specifications and *,**, and
*** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Robustness - Additional Controls from Baseline Year (1970)

5-year Difference in Patents per 100,000 People for 1980 to 2010

(1) (2) (3) (4) (5) (6)

Immigrationt
d 0.101*** 0.102*** 0.100*** 0.092*** 0.082*** 0.108***

(0.031) (0.032) (0.031) (0.029) (0.027) (0.033)
Population Density (1970) -0.001

(0.004)
Patents per 1,000 People (1975) 0.089**

(0.042)
Share High School Education (1970) 27.821**

(11.059)
Share 4+ Years College (1970) 103.990***

(29.961)

N 18,846 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 911 1,658 911 945 1,017 85

Controls:
Geography FE state state state state state county
Time FE yes yes yes yes yes yes

Notes: This table reports the results of our second stage specification, described in Equation (1), where
the dependent variable is the change in patenting per 100,000 people (population is based on baseline 1970
levels) and the endogenous variable is non-European immigration (1,000s) to d in t. Column 1 repeats our
main specification while columns 2 through 5 add as a control county d’s population density in 1970; patents
per 1,000 people in 1975 (1970 population is used to match the dependent variable); share of high school
educated; and share of the population with 4+ years of college, respectively. Finally, column 6 then adds a
county fixed effect. We report the first-stage F -statistic on the excluded instrument for each specification.
Standard errors are clustered by state for all specifications and *,**, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Table 7: Robustness - Alternative Samples

Difference in Patenting per 100,000 People Post-1980

Excluding: Mexico China India Philippines Vietnam

(1) (2) (3) (4) (5)

Panel A: Excluding Given Country

Immigrationt
d 0.080*** 0.102*** 0.101*** 0.100*** 0.101***

(0.025) (0.032) (0.031) (0.031) (0.031)

N 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 666 1,576 1,267 1,261 1,179

Panel B: Including Only Given Country

Immigrationt
d 0.103*** 0.068** 0.129*** 0.133** 0.123**

(0.032) (0.032) (0.032) (0.051) (0.060)

N 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 2,094 535 318 22 2

Controls:
Geography FE state state state state state
Time FE yes yes yes yes yes

Notes: This table reports the results of our second stage specification, de-
scribed in Equation (1), run on alternative samples where the dependent vari-
able is the change in patenting per 100,000 people (population is based on
baseline 1970 levels) and the endogenous variable is non-European immigration
(1,000s) to d in t. In instrument construction, each column either drops mi-
grants from the given country (Panel A) or drops all other migrants except those
from the specified country (Panel B) from the sum in Equation (7) for each of
the five largest sending countries post 1975 (Mexico, China, India, Philippines,
and Vietnam). We report the first-stage F -statistic on the excluded instrument
for each specification and note that for instrument constructed using only mi-
grants from Vietnam does not significantly predict non-European immigration.
Standard errors are clustered by state for all specifications and *,**, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 8: Robustness - The Effect of Immigration on Long Differences in Innovation

Difference in Patenting per 100,000 People

ΔPatt−1
t−2 ΔPattt−1 ΔPatt+1

t−1 ΔPatt+2
t−1

(1) (2) (3) (4)

Immigrationt
d -0.099 0.108*** 0.369*** 0.332**

(0.069) (0.033) (0.098) (0.137)

N 15,705 18,846 15,705 12,564

First Stage F-Stat 80 85 11 7

Controls:
Geogrpahy FE county county county county
Time FE yes yes yes yes

Notes: This table reports the results of our second stage speci-
fication, described in Equation (1), for changes in patenting per
100,000 people with non-European immigration to d in t as the
endogenous variable. Column 1 uses the one-period lag of the de-
pendent variable while column 2 repeats the standard specification.
Columns 3 and 4 then utilize the two-period and 3-period chanage
in patenting as the dependent variable, respectively. We report the
first-stage F -statistic on the excluded instrument for each specifi-
cation. Standard errors are clustered by state for all specifications
and *,**, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.
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Table 9: Panel Regressions of All Outcomes on Immigration

5-Year Difference in: 10-Year Difference in:

Job Job Job Growth Average Avg. Annual Wage:
Creation Destruction Rate Annual Native Native

Rate Rate Skewness Wage Non-Mover

(1) (2) (3) (4) (5) (6)

Immigrationt
d 0.176*** 0.152*** 0.019*** 0.083*** 0.049*** 0.056***

(0.033) (0.035) (0.004) (0.019) (0.016) (0.020)

N 6,600 6,600 12,564 21,976 9,411 6,274

First Stage F-Stat 951 951 151 1,202 750 1,178

Controls:
Geography FE state state state state state state
Time FE yes yes yes yes yes yes

Notes: This table reports the results of our second stage specification, described in Equation
(1), for each of our dependent variables with non-European immigration (1,000s) to d in t as
the endogenous variable. Columns 1 and 2 report the results of our second stage with the job
creation rate and job destruction rate as the dependent variable, respectively. Column 3 then
provides results for job growth rate skewness as the dependent variable while the dependent
variable for the specification shown in column 4 is the change in the average annual real wage
($100) over the 5-year period ending in t. Columns 5 and 6 reports results of a regression of the
change in the average annual real wage ($100) for natives and non-native movers over the 10-year
period ending in t on instrumented non-European immigration for the 10-year period ending in t.
We report the first-stage F -statistic on the excluded instrument for each specification. Standard
errors are clustered by state for all specifications and *,**, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Table 10: Spillovers Analysis

(1) (2) (3) (4)

5-Year Difference in Patenting per 100,000
People Post-1980

Immigrationt
d 0.130*** 0.107*** 0.072** 0.080**

(0.039) (0.035) (0.032) (0.037)
Immigrationt

State 0.001***
(0.000)

Neighbors’ Immigrationt
d (Inverse Distance Weight) 6.600***

(1.593)
Immigrationt

100km 0.056***
(0.018)

Immigrationt
250km 0.014***

(0.005)
Immigrationt

500km 0.006
(0.005)

N 18,846 18,846 18,846 18,846

First Stage F-Stat d 876 1,792 2,175 6,065

First Stage F-Stat Spillover 470 162 383

First Stage F-Stat Spillover 150

First Stage F-Stat Spillover 66

5-Year Difference in Average Annual Wage
($1,000) Post-1975

Immigrationt
d 0.010*** 0.009*** 0.005*** 0.005***

(0.002) (0.003) (0.001) (0.002)
Immigrationt

State 0.000
(0.000)

Neighbors’ Immigrationt
d (Inverse Distance Weight) 0.560***

(0.191)
Immigrationt

100km 0.006***
(0.002)

Immigrationt
250km -0.001

(0.001)
Immigrationt

500km -0.000
(0.001)

N 21,976 21,976 21,976 21,976

First Stage F-Stat d 1,166 2,289 3,482 7,967

First Stage F-Stat Spillover 434 165 395

First Stage F-Stat Spillover 157

First Stage F-Stat Spillover 67

Controls:
Geography FE division division division division
Time FE yes yes yes yes

Notes: This table reports the results of our second stage specification for the change in patenting
per 100,000 people (population is based on baseline 1970 levels) (Panel A) and the change in the
average annual wage ($1,000s) (Panel B) with non-European immigration (1,000s) to d in t as the
endogenous variable. The first column repeats our baseline specification but with census division
controls. Column 2 adds as a second endogenous variable total non-European immigration to the
state in which d is located, excluding own-immigration to d, in period t and a comparable instrument.
Column 3 adds as a second endogenous variable the inverse-distance-weighted sum of non-European
immigration to all counties in the US, excluding own-immigration, and an instrument constructed
in the same way. Column 4 includes variables, and appropriate instruments, for non-European
immigration to counties within 100km, 100km to 250km, and 250km to 500km of county d. For each
specification we report the first-stage F -statistic(s), utilizing the F -statistic described in Angrist
and Pischke (2009, p. 217-218) in the case of multiple endogenous variables. Standard errors are
clustered by state for all specifications and *,**, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.
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Table 11: Education Analysis

(1) (2) (3) (4) (5)

5-year Difference in Patenting per 100,000 People Post-1980

Immigrationt
d 0.166*** 0.200*** 0.485*** 0.415***

(0.053) (0.070) (0.165) (0.076)
Average Years Educationt

d × Immigrationt
d 0.221*** 0.251***

(0.068) (0.079)
Average Years Colleget

d × Immigrationt
d 0.887***

(0.166)
1{Low Avg. Years Education} × Immigrationt

d 1.863
(4.539)

1{Medium Avg. Years Education} × Immigrationt
d 0.084*

(0.044)
1{High Avg. Years Education} × Immigrationt

d 1.401*
(0.792)

N 18,846 18,846 18,846 18,846 18,846

5-year Difference in Average Annual Wage ($100) Post-1975

Immigrationt
d 0.239** 0.290*** 0.770* 0.400***

(0.091) (0.058) (0.419) (0.078)
Average Years Educationt

d × Immigrationt
d 0.231*** 0.221**

(0.051) (0.096)
Average Years Colleget

d × Immigrationt
d 0.569***

(0.084)
1{Low Avg. Years Education} × Immigrationt

d -0.296
(0.249)

1{Medium Avg. Years Education} × Immigrationt
d 0.189***

(0.069)
1{High Avg. Years Education} × Immigrationt

d 1.514***
(0.473)

N 21,976 21,976 21,976 21,976 21,976

Controls:
Geogrpahy FE state state county state state
Time FE yes yes yes yes yes

Notes: The table reports the results of our second stage specification for the change in patenting per 100,000
people (population is based on baseline 1970 levels) in the first panel and the 5-year difference in county-level
average annual wages ($100s) in the second panel. Column 1 repeats our main specification but adjusting the
migrant pool to those aged 25+ (1,000s). Columns 2 and 3 then add a second endogenous variable for the
interaction of immigration with the (demeaned) average years of education while column 4 adds (demeaned)
average years of college education of those migrants. Repeating the regression in column 2 of the second
panel for the 10-year difference in average annual wages ($100s) of native non-movers (US-born working
individuals who have not moved outside of the county within the past 5 years) on 10-year migration and
corresponding education results in coefficients of .418 (.095) and .299 (.083) on immigration and average
years of education times immigration, respectively. Column 5 uses as endogenous variables adult immigration
interacted with indicators for the terciles of average years of education of migrants across counties in period
t. In all specifications, for instrumentation we exploit the fact that in our initial instrument construction we
created quasi-exogenous immigration shocks for each origin country-o × destination county-d pair in each time
period t; each specification utilizes the predicted immigration shocks for each of the the top 20 origin nations
as a joint set of instruments. For column 1, the Montiel Olea and Pflueger (2013) Effective F -statistic is 39
(critical value 32 for τ of 5%) for the first panel and 40 (critical value 31 for τ of 5%) for the second panel.
Standard errors are clustered by state for all specifications and *,**, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.
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Table 12: Growth Models and Population Change

Difference in Patenting per Patenting per 100,000 IHS of Patents
100,000 People Post-1980 People Post-1975 Post-1975

(1) (2) (3) (4) (5) (6) (7) (8)

Immigrationt
d 0.101*** 0.509*** 0.501** 2.505*** 0.028***

(0.031) (0.090) (0.190) (0.268) (0.011)
sq(Immigrationt

d) -0.001*** -0.004***
(0.000) (0.000)

Δ Populationt
d 0.033***

(0.012)
IHS(Immigrationt

d) 1.723***
(0.111)

IHS(Δ Populationt
d) 2.471***

(0.510)

N 18,846 18,846 21,987 21,987 21,987 21,986 21,987 21,986

First Stage F-Stat 911 95 1,202 102 1,202 102 94 16

First Stage F-Stat 11,231 11,879

Controls:
Geography FE state state state state state state state state
Time FE yes yes yes yes yes yes yes yes

Notes: This table reports the results of our second stage specification, described in Equation (1), for changes in patenting
per 100,000 people (columns 1 and 2), patenting per 100,000 people (columns 3 and 4), and IHS of patents (columns
5 through 8). Column 1 repeats our main specification while column 2 adds as a dependent variable the square of
non-European immigration (1,000s) to d in t as the endogenous variable. Columns 3 and 4 repeat the specifications in
columns 1 and 2 but with patenting as the dependent variable. Finally, columns 5 and 6 include as endogenous variables
non-European immigration and population change in d at t, respectively, while columns 7 and 8 include as endogenous
variables the IHS of non-European immigration and population change in d at t, respectively. For each specification we
report the first-stage F -statistic(s), utilizing the F -statistic described in Angrist and Pischke (2009, p. 217-218) in the
case of multiple endogenous variables. Standard errors are clustered by state for all specifications and *,**, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Figure 1: Origins of Non-European Immigrants to the U.S.

Notes: This figure plots the share of non-European immigration into the US from the
14 non-European origin nation (except for Canada which is included in “Other”) with
the largest cumulative immigration to the US. The figure highlights variation in the push
factor, showing that the number of migrants from a given source country o to the US
varies by period t. The year 1975 is marked with a vertical line.
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Figure 2: Destinations of Immigrants to the United States, pre-1880 to
2010

Notes: This figure maps immigration flows into US counties by 10-year periods (except
between 1930 and 1950). We regress the number of immigrants into US county d at time
t, It

d, on destination county d and year t fixed effects, and calculate the residuals. The
map’s color coding depicts the 20 quantiles of the residuals across counties and within
census periods. Darker colors indicate a higher quantile.
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Figure 3: Stage 0: Predicting Ancestry

Notes: This figure displays the coefficients (bars) and 95% confidence intervals (red lines)
in the ancestry prediction regression, equation (5), for estimating 2010 reported ancestry
(assuming for presentational purposes only that bτ

r(d) = bτ ∀r(d)). The figure shows that
we identify variation in current ancestry levels based on push-pull interactions from the
full range of time periods in our sample. Standard errors are clustered at the origin
country level. (R2 .5041)
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Figure 4: Stage 0: Predicting Ancestry (2010)

Notes: This figure plots actual ancestry in 2010 against predicted ancestry, as given in
equation (5), with the size of each circle indicating the log number of observations in a
given bin of predicted ancestry. The labeled counties are those with the highest number
of individuals declaring a given ancestry in 2010.
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Figure 5: Immigrantion Shock Conditional on County and State-Time FE

Notes: This figure maps the instrumented non-European immigration flows into US coun-
ties by 5-year periods. We regress the instrument for immigration into US county d at
time t on county and state-year fixed effects, and calculate the residuals. This figure
provides a visualization for the labor shock used as in instrument in the regression shown
in column 3 of Table 3. The map’s color coding depicts the 20 quantiles of the residuals
across counties and within census periods. Darker colors indicate a higher quantile.
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A Data Appendix

A.1 Details on the construction of migration and ethnicity data

In order to construct county-level data on migration, ancestry, and ethnicity, we follow the ap-

proach of Burchardi et al. (2019). The following section summarizes this approach, highlighting

any difference in data construction made in this paper.

Construction of post-1880 immigrantion flows

We start the construction of our immigration variable by identifying the number of individuals

located in a given US geography d at the time of a each census who immigrated to the US since

the prior census and were born in a historic origin country o (based on the detailed birthplace

variable). For each census wave, we then separate this immigration count into (roughly) 5-

year periods based on the year in which each migrant arrived to the US.19 We then follow

the approach outlined in Burchardi et al. (2019) to transform foreign origin countries, given

as birthplaces, to 1990 foreign countries and non-1990 counties and county groups into 1990

counties.

19For the 1970, 1980 and 1990 censuses, the exact year of arrival for migrants is not provided and so we use as
our ‘5-year periods’ the following bins: 1925-34, 1935-44, 1945-49, 1950-54, 1955-59, 1960-64, 1965-70, 1970-74,
1975-80, 1980-84 and 1985-90.
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Construction of pre-1880 immigration stock

From the 1880 census, we develop the count of all individuals who were born in a foreign

origin country o and reside in a historic US geography d, regardless of the date of arrival to

the US. We then add to this count all individuals residing in d who were born in the US but

whose parents were born in origin country o (if an individual’s parents were born in different

countries, the individual is assigned a count of one half for each parents’ origin country o). We

then transform the given birthplace to 1990 foreign countries and the pre-1880 US geography

to 1990 US counties following the transition method outlined in Burchardi et al. (2019).

Construction of ancestry stock

For the years 1980, 1990, 2000, and 2010, we take from the respective census all individuals in

a US county or county group that list as their primary ancestry a foreign nationality or area.

We then estimate the ancestry stock in each midyear (1975, 1985, 1995, and 2005) by taking

the individuals identified in each census year as belonging to a given ancestry and removing all

individuals that either were born or migrated to the US after the midyear. Again, we follow

Burchardi et al. (2019) in transforming ancestries to 1990 countries and US geographies to 1990

US counties.

Construction of education data for migrants

For the five-year migration periods from 1975 to 2010, whose construction is previously de-

scribed, we also identify the total number of years of education for migrants aged 25 years or

more at the time of each respective census. For each 1990 US county d, we sum the number of

years an individual is reported to have over all migrants, assigning the midpoint when a range

of years of education is provided instead of an exact number of years.

For the 1970 census, we consider the share of all individuals, regardless of birthplace, residing

in a historic US county d who report having at least a Grade 12 education (share of high school

educated) and those who report having at least 4 years of college education (share of college

educated). These values are then transformed from 1970 US counties to 1990 US counties,

again using the transition matrices described by Burchardi et al. (2019).

A.2 Construction of patenting data

We utilize data on corporate utility patents with a US assignee from the the US Patent and

Trademark Office microdata for the period 1975 to 2010. We translate the location of patents
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from assignee (or inventor) location to 2010 US counties and then transition to 1990 counties

using area weights as in Burchardi et al. (2019) to estimate the number of patents granted to

assignees in each county and year. For our main measure of patenting we utilize unweighted

patent counts with locations based on assignee, but we also consider location based on inventors

and weighted patent counts as in Hall et al. (2001). We then construct a variable for the total

number of patents filed in each 5-year period ending in t, for each measure of patenting, and

divide by the 1970 population (100,000 people) to get ‘per capita patenting’ in t. We then

winsorize the variables at the 1% and 99% levels. The main patenting outcome variable is then

the difference in this per capita patenting variable between t − 1 and t.

A.3 Construction of business dynamism data

In this section we explain the construction of variables used to measure business dynamism. In

each case, we take the 5-year difference in the dynamism or wage variable.

Wages. The county-level average annual wage for every five years from 1975 to 2010 are taken

from the Quarterly Census of Employment and Wages. The data for each period is then trans-

formed from the US counties for that period to 1990 US counties using the transition matrices

developed in Burchardi et al. (2019) and then converted to 2010 US dollars using the Personal

Consumption Expenditures Price Index from the Bureau of Economic Analysis.

Growth Rate Skewness. The growth rate skewness variable for 2010 US counties for each

5-years from 1995 to 2010 is estimated using data from the Longitudinal Business Database.

We compute hte Kelly Skewness of employment growth rates for 4-digit sectors and then tran-

sition this measure from 2010 to 1990 US counties.

Job Creation and Destruction Rates. Job creation and destruction data is taken from

the Business Dynamics Statistics for metropolitan statistical areas (MSAs) and transitioned to

1990 US counties based on weights derived from 1990 population data.

A.4 Construction of native wages data

We construct variables for native wages in each census year from 1970 to 2010 using data from

the: 1970 1% Form 1 Metro sample; 1980 5% State sample; 1990 5% State sample; 2000 5%

Census sample; and 2010 American Community Service (ACS). In each year, we limit the sample
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to the pre-tax wage and salary income (incwage) for individuals born in the United States who

are employed (empstat is equal to 1), referred to here as natives. For the census years 1980 to

2000 we also generate a wage measure for the subset of natives who report that they lived in

the same county 5 years prior to the census year, referred to as native non-movers. We use the

Consumer Price Index provided in IPUMS USA (CPI99) to adjust wages to a common dollar

year. We then follow the same method as that used in Burchardi et al. (2019) to transform

wages for county groups into 1990 US counties. Finally we determine average wages in each

county using the person weight (PERWT) for the selected sample and generate a variable for

wage growth in each county that is the 10-year difference in average annual wages for natives

(or native non-movers).
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B Growth, Population Growth, Innovation, & Dynamism

In this appendix we sketch out a deliberately simple theoretical mechanism linking innova-

tion, income growth, dynamism, and population growth. We present the minimum ingredients

needed from a combination of the “semi-endogenous growth” model outlined in Jones (1995)

and the micro-level distribution of creative destruction from Schumpeterian growth models

(Aghion and Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004). We

show that in such a model the long-run balanced growth path per capita growth rate of the

economy must be proportional to the growth rate of labor input in the economy and that the

economy-wide growth rate links positively to the rates of creative destruction and innovation at

the micro level. These two outcomes concisely justify our empirical analysis linking population

dynamics to measures of scaled innovation, dynamism rates, and income growth, abstracting

from cross-economy spillovers and heterogeneity in labor input, both of which we nevertheless

explore empirically.

B.1 Environment

Final Goods Production We examine a closed local economy in continuous time t. Final

output Yt is produced according to the technology

log Yt =

∫
log yjtdj

utilizing a unit mass of intermediate varieties j.

Intermediate Goods Production Intermediate goods are each produced with a symmetric

technology combining production labor lPjt and variety-specific quality qjt, with yjt = qjtl
P
jt.

Incumbent intermediate goods firms f produce portfolios of intermediate varieties j for which

they operate the current leading-edge quality level qjt. Let log Qt =
∫

log qjtdj be the average

quality level in the economy.

Innovation For an individual variety, innovation is embodied in instantaneous increase in the

quality level qjt in that good’s production, i.e., a switch from qjt to qjt+Δ = λqjt, where λ > 1

is a quality ladder or innovation step size. Incumbent firms f may innovate by hiring labor for

innovation in the amount sI
ft to guarantee an innovation arrival rate pI

ft satisfying

pI
ft ∝ sI

ft

γ
Q−α

t ,
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where α, γ > 0. A mass of potential entrants each hires labor for innovation sE
t to guarantee

an innovation arrival rate pE
t satisfying

pE
t ∝ sE

t

γ
Q−α

t .

In both of the innovation technologies, innovation arrival probabilities depend positively on

innovation input – labor – but negatively on the current average quality level in the economy

Qt. Solving harder problems to improve upon a higher existing average quality level requires

more input. When an innovation occurs, for either an entrant or incumbent, they become the

leading-edge incumbent producer of a random variety.

Labor Input The exogenous instantaneous growth rate of labor input or the population of

the economy Lt is n, and total labor input in any period must equal the sum of the total

amounts of labor used for production, incumbent innovation, and entrant innovation.

Lt = LP
t + SI

t + SE
t

B.2 Balanced Growth

A range of straightforward and standard additional machinery needed for description of a

decentralized equilibrium along a stationary balanced growth path – along the lines of the

equilibria described in Klette and Kortum (2004) or Grossman and Helpman (1991) – could be

added to the framework already outlined above. But we do not need additional elements for

our desired implications. Instead, we simply note that in standard decentralizations output per

capita is proportional to the average quality level Qt. We also note that along any stationary

balanced growth path in this economy by definition there must be constant output growth

rates, constant quality growth rates, constant ratios of production labor and innovation labor

to total labor input, and a stationary distribution of outcomes at the firm and variety levels.

But then note that constant quality growth rates and constant innovation rates for incum-

bents and entrants - given the innovation technologies - imply that

Qα
t ∝ SI

t

γ
∝ SE

t

γ
∝ Lγ

t → αgQ = γn → gQ =
γ

α
n.

In other words, average quality growth, which is equal to per capita growth in this economy,

must be positively proportional to the population growth rate n. This is our first desired result,

echoing Jones (1995). Then, given the definition of average quality Qt, the implication of a

constant growth rate gQ = ∂ log Qt

∂t
is that

gQ = p log λ,
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where p = pI + pE is the sum of the constant incumbent and entrant innovation rates and λ is

the quality ladder step size described above. But note that

p = P(Innovation) = P(Displacement)

in this Schumpeterian economy. So we obtain that

P(Innovation) = P(Displacement) =
gQ

log λ
=

γ

α log λ
n,

i.e., the rate of creative destruction and the innovation rate are positively proportional to

population growth. This is our second result, following directly from the logic of creative

destruction-based growth models.

B.3 Implications

Along a balanced growth path, in models with the ingredients outlined above, we must have

the following implications.

• Per-capita output and income growth rates positively link to population growth rates.

• Innovation rates positively link to population growth rates.

• Creative destruction or displacement rates positively link to population growth rates.
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Appendix Table 1: Panel Regressions of Immigration and Population Change on Predicted
Immigration Flows at the County Level for 1980 to 2010

(1) (2) (3) (4) (5)

5-Year Non-European Immigration

̂Immigration
t

d 2.107*** 2.107*** 2.100*** 2.111*** 1.580***
(0.046) (0.062) (0.061) (0.068) (0.196)

N 21,987 21,987 21,987 6,600 21,987

F-Stat 2,139 1,168 1,202 951 65

R2 0.741 0.768 0.777 0.771 0.947

5-Year Population Growth

̂Immigration
t

d 1.890*** 1.890*** 1.818*** 1.767*** 1.921***
(0.168) (0.190) (0.180) (0.157) (0.323)

N 21,986 21,986 21,986 6,600 21,986

F-Stat 127 99 102 126 35

R2 0.233 0.272 0.314 0.370 0.795

Controls:
Geogrpahy FE none division state state county
Time FE no yes yes yes yes
MSA Counties no no no yes no

Notes: This table reports the results for step 3 of instrument con-
struction, or the coefficient estimates for the first stage specification for
non-European immigration (1,000s) (first panel) and population change
(1,000s) (second panel). Column 1 provides the results from a regression
of non-European immigration or population change on the instrument de-
scribed in equation (7). Column 2 then adds to that regression time and
census division effects while Column 3, our main specification, includes
state and time fixed effects. Column 4 shows the first stage estimated
on a restricted sample of counties, which is used in analyses of natively
MSA-level BDS data, and Column 6 reports results with county and
time fixed effects. We report the first-stage F -statistic on the excluded
instrument for each specification. Standard errors are clustered by state
for all specifications and *,**, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.
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Appendix Table 2: Panel Regression of 5-Year Difference in Patenting per 100,000 People on
Immigration using Alternative Patent Counts

Difference in Patenting per 100,000 People Post-1980

Assignee Assignee Inventors Inventors
(Unweighted) (Cite Weight) (Unweighted) (Cite Weight)

(1) (2) (3) (4

Immigrationt
d 0.101*** 0.162*** 0.269*** 0.487***

(0.031) (0.042) (0.092) (0.140)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 911 911 911 911

Controls:
Geography FE state state state state
Time FE yes yes yes yes

Notes: This table reports the results of our second stage specification, described in
Equation (1), for the change in patenting per 100,000 people (population is based
on baseline 1970 levels) with non-European immigration (1,000s) to d in t as the en-
dogenous variable. Column 1 repeats our main specification where patent location is
based on assignees and raw patent counts are used. Column 2 also uses the assignee
for patent location but uses citation-weighted patent counts. Columns 3 and 4 then
provide results when inventors are used for identifying patent location where patent
counts are unweighted and citation-weighted, respectively. Standard errors are clus-
tered by state for all specifications and *,**, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Appendix Table 3: Panel Regressions of Inflows of Native Migrants on Non-European Immi-
gration

Inflows of Internal Migrants:
All Non-Hispanic

Natives White Natives

(1) (2)

Immigrationt
d 3.675*** 2.100***

(0.616) (0.406)

N 9,415 9,415

First Stage F-Stat 3,484 3,484

Controls:
Geography FE state state
Time FE yes yes

Notes: This table reports the results of our second
stage specification, described in Equation (1), for the
migration of natives (1,000s) into county d in period
t (for 1980, 1990, and 2000) with non-European im-
migration (1,000s) to d in t as the endogenous vari-
able. Note, migrants who moved into county d from
a foreign country are excluded. Standard errors are
clustered by state for all specifications and *,**, and
*** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.
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Appendix Table 4: Placebo Tests of Main Specification

Coefficient Median RHS Rejection
Mean Std. Dev. Standard Error Rate (%)
(1) (2) (3) (4)

Panel A: First Stage
Placebo 1 -0.0003 0.013 0.005 0.20
Placebo 2 0.0001 0.013 0.005 0.00
Placebo 3 -0.0117 0.031 0.019 2.70

Panel B: Reduced Form
Placebo 1 0.0016 0.073 0.036 0.80
Placebo 2 0.0026 0.069 0.034 0.70
Placebo 3 -0.0023 0.069 0.035 4.40

Notes: This table reports the results of a placebo test of the first
stage of our standard specification (Panel A) and a reduced form anal-
ysis of Equation (1) (Panel B), for changes in patenting per 100,000
people with non-European immigration to d in t as the endogenous
variable and state and time fixed effects as controls. Columns 1 and
2 report the average and standard deviation for the coefficient of in-
terest for 1,000 placebo runs. Column 3 then reports the median
standard errors of the 1,000 runs. Finally, we report the percentage
of runs for which we reject that the coefficient of interest is different
from 0 at the 5 percent level on the right-hand side (Column 4). Each
row represents a different random assignment strategy for the placebo
analysis where we randomly reassign an observation the instrument
of another observation: in the sample (Placebo 1), in the same pe-
riod t (Placebo 2), or in the same period t and census division r(d).
Standard errors are clustered by state for all specifications.
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Appendix Table 5: Results from Placebo Analysis Based on Adão et al (2019)

Coefficient Median Rejection
Mean Std. Dev. Standard Error Rate (%)
(1) (2) (3) (4)

Panel A: Realized Ancestry Shares

First Stage -0.003229 0.0776 0.0403 28.2
Reduced Form -0.000471 0.0168 0.0112 18.8

Panel B: Predicted Ancestry Shares

First Stage -0.002000 0.0388 0.0240 4.5
Reduced Form -0.002597 0.1088 0.0904 8.2

Notes: Following Adão et al. (2019), we randomly generate immi-
gration shocks (for each {o, r, t} country-region-time triplet), and con-
struct placebo instruments by interacting these random shocks with
actual baseline ancestry shares (as in a traditional shift-share instru-
ment) and our predicted baseline ancestry shares (as in the ancestry
share-version of our baseline instrument). We then run 1,000 placebo
regressions of actual immigration on the randomly generated Card-style
instrument (Panel A) and our randomly generated instrument (Panel
B); we also run the comparable reduced form regressions where the
dependent variable is our primary measure of patenting, difference in
patenting flows per 100,000 people. Column 1 reports the mean value
of the coefficient over all placebo regressions while column 2 reports
the standard deviation. Column 3 then reports the median standard
error for the coefficient of interest over all placebo regressions and fi-
nally column 4 reports the fraction of placebo regressions for which we
reject the null hypothesis of no effect at the 5% statistical significance
threshold. As shown, the traditional ‘shift-share’ suffers from the over-
rejection identified in Adão et al. (2019) with false rejection rates of
28.2% in the first stage and 18.8% in the reduced form specification.
The ancestry share-version of our baseline instrument has false rejec-
tion rates of 4.5% (first stage) and 8.2% (reduced form), the latter is
consistent with the false rejection rates achieved by the AKM method
for correcting standard errors outlined in Adão et al. (2019).
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